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Abstract

The paper uses structures in Con, the author’s 2-category of sketches
for arithmetic universes (AUs), to provide constructive, base-independent
results for Grothendieck toposes (bounded S-toposes) as generalized spaces.

The main result is to show how an extension map U : T1 → T0 can
be viewed as a bundle, transforming base points (models of T0 in any
elementary topos S with nno) to fibres (generalized spaces over S).

Features of the work include analysis of strictness of models, using
properties of the objects of Con; the use of Gray tensor products to relate
syntactic transformation of models by 1-cells in Con and semantic trans-
formations by non-strict AU-functors; and the use of 2-fibrations to index
over a 2-category of base toposes S.
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1 Introduction

If T is a geometric theory, then the generalized topological space – in Gro-
thendieck’s sense – of models of T is realized mathematically as its category of
sheaves, the classifying topos S[T].
S here, the base, could be any elementary topos with nno that is able to

support the infinite disjunctions appearing in T, and if those disjunctions are
countable then any such S will do. So which topos S[T] is the true incarnation
of the generalized space?

[Vic16] developed a 2-category Con whose objects are, in sketch form, such
theories; and whose 1-cells are the maps got if one replaces the classifying topos
S[T] by a classifying arithmetic universe AU〈T〉, which can thus be understood
as a base-independent incarnation of the space.

The present paper shows how to recover the base-dependent topos theory,
but in an indexed way, using 2-fibrations, that allows for change of base.
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As a significant generalization of the indexed construction S 7→ S[T], we
also relativize by looking at certain maps U : T1 → T0 in Con considered as
bundles – that is to say, transformations from base point M (model of T0) to
space (fibre of U over M). If M is in an elementary topos S, then we construct
an S-geometric theory T1/M of models of T1 that are reduced to M by U , and
then the fibre, as generalized space in the topos sense, is S[T1/M ].

Our main result, Theorem 31, is that the whole construction (S,M) 7→
S[T1/M ] is indexed over pairs (S,M). This is formalized 2-fibrationally using
a new notion (Definition 18) of local representability.

Throughout this paper, every elementary topos will be assumed to have a
natural numbers object. We write eTop for the 2-category of elementary toposes
with nno, geometric morphisms (not necessarily bounded), and natural trans-
formations.

1.1 Generalized spaces and their categories of sheaves

Let us elaborate on the underlying question. Grothendieck discovered a huge
generalization of the notions of topology and continuity, with a generalized space
represented concretely by its category of sheaves (continuous set-valued maps).

This is point-free topology, analogous to representing a space X by its frame
ΩX of opens, albeit on a much grander scale.

[Vic99] made an explicit attempt to make the analogous notational distinc-
tion, writing X for the generalized space and SX for its category of sheaves. If
[T] is written for the space of models of a geometric theory T, then S[T] can be
read either as “Sheaves over the space [T]” or as “the (geometric) mathematics
generated over the category S of sets by adjoining a generic model of T”.

That paper was applied to domain theory, and in particular the ideal comple-
tion of information systems (the compact bases) for SFP-domains. These were
studied using a generic SFP-domain, a geometric morphism [IS][idl] → [IS],
where [IS] classifies SFP information systems and the fibre over one of them is
its ideal completion. (We shall see a more general account of such bundles in
Section 5.2.)

But what is this category S of sets, within which one constructs the sheaves,
and over which one constructs S[T]? To Grothendieck it would have been clas-
sical set theory Set. With the subsequent discovery of elementary toposes, it
was found that any elementary topos S with nno could be used as base for a
notion of geometric theory and for constructing generalized spaces (bounded
geometric morphisms into S) as classifying toposes. S-indexed categories are
used to capture the idea that an object of S can be used as an indexing set for
a colimit diagram (see [Joh02, B1.4]).

That relieves the classical dependency, but unfortunately creates a problem
of its own: even if (as in [Vic99]) the working is foundationally robust, one still
has to choose a base S in order to have a mathematical incarnation S[T] of the
generalized space [T].

In its conclusions, [Vic99] proposed that S might be dispensed with if all
the working could be reduced to that of arithmetic universes (AUs), with finite
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colimits and list objects instead of “S-indexed” colimits. By [JW78], every
elementary topos with nno is an AU, and for any geometric morphism f between
them, the inverse image part f∗ is a (non-strict) AU-functor. Then the infinities
of geometric logic, supplied extrinsically by S, would be replaced where possible
by intrinsic infinities supplied by the list object construction.

The ultimate ambition would be to develop an entirely “arithmetic” account
of generalized topology, using AUs AU〈T〉, to replace the present geometric ac-
count using Grothendieck toposes. How far that can be carried through remains
to be tested. The more modest aim of the present paper is to show how arith-
metic techniques can give base-independent results in the existing topos theory.

1.2 Outline

Section 2 summarizes the background of AUs, their sketches, and the 2-category
Con [Vic16]; and of geometric theories and classifying toposes largely as pre-
sented in [Joh02, B4.2].

Section 3 discusses the models of AU-sketches in AUs in general, and ele-
mentary toposes in particular. A particular issue is whether the models should
be strict or not. We need both, and the contexts, the AU-sketches appearing
as objects of Con, have the special property that every non-strict model has a
canonical strict isomorph. We describe two interacting actions on models: one
by context maps between theories, and one by non-strict AU-functors between
the AUs where the models are found.

Section 4 collects miscellaneous remarks on the 2-fibrational background that
allows us to vary the base elementary topos S, and includes (Definition 18) a
notion of local representability that captures, 2-fibrationally, the idea of classify-
ing toposes behaving in an indexed way under pseudopullback along change of
base topos. In essence this is the idea of “geometricity” as expressed in [Vic04].

Section 5 examines classifying toposes for contexts. In fact, we deal with
a relativized version, with a context extension map U : T1 → T0 (given by
T0 ⊂ T1). If each context represents “the space of its models”, then we wish to
view U as a bundle: over each model M of T0, the fibre over it is the “space
of models of T1 that restrict to M”. We shall show how these fibres can be
represented as classifying toposes.

Now we fibre over pairs (S,M), where M is a strict model of T0 in S. We
find a geometric (though not arithmetic in general) theory T1/M of models
of T1 restricting to M , and it has a classifying topos S[T1/M ] → S (with its
generic model).

Our main result, Theorem 31, is that this construction is locally repre-
sentable, in other words that it is geometric – preserved by pseudopullback
along arbitrary geometric morphisms. A corollary is the “geometricity of pre-
sentations” result of [Vic04, Section 5].
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2 Background

2.1 Sketches for arithmetic universes

We summarize the sketch approach to arithmetic universes as set out in [Vic16].
The sketches are roughly as in [BW05], with a reflexive graph of nodes and edges
for objects and morphisms, a set of “commutativities” to specify commutative
triangles, and “universals” (the cones and cocones) for finite limits and finite
colimits – specifically: terminals, pullbacks, initials, pushouts. In addition they
have universals to specify list objects, thus gaining an nno as List 1.

In our sketch extensions T ⊂ T′ such universals may be introduced only for
fresh objects, and hence in a definitional way. A context is then an extension of
the empty sketch 11.

In equivalence extensions T b T′, everything fresh that is introduced must
have been implicitly present already. This includes composites of composable
pairs of edges; commutativities deducible from existing ones (e.g. by unit laws
or associativities); universals, fillins for universals and uniqueness of fillins; and
inverses for certain edges that must be isomorphisms because of the categorical
properties of AUs such as balance, stability and exactness.

Homomorphisms T l T′ are structure-preserving homomorphisms for the
algebraic theory of sketches. They translate nodes to nodes, edges to edges,
commutativities to commutativities and universals to universals. The two kinds
of extensions are special cases of this.

Next, we have a notion of object equalities between nodes, certain edges that
include all identity edges but can also arise as fillins when the same universal con-
struction is applied to equal data. We extend this to object equalities between
edges, when their domains have an object equality and so do the codomains,
and there are appropriate commutativities to make a commutative square; and
then we extend to object equalities between homomorphism of models, using
object equalities between corresponding nodes and edges in the image.

Putting these together we get a category Con whose objects are contexts. Its
morphisms, context maps, are the dual of context homomorphisms, but subject
to (i) those for equivalence extensions are invertible, and (ii) object equalities
become identity morphisms between actually equal objects. Every map T0 → T1

is an equivalence class of opspans of homomorphisms T0 b T′0 m T1.
Notice that, for each of the special symbols ⊂, b and l, the narrow end is

at the codomain for the corresponding reduction map.
For each context T there is also a context T→ for which a model is a pair

of models of T, together with a T-homomorphism between them. These enable
us to define 2-cells between maps, using maps T0 → T→1 , and Con becomes a 2-
category. It has finite PIE-limits (Product, Inserter, Equifier) and pullbacks of
extension maps (the duals of the homomorphisms corresponding to extensions).

There is a full and faithful 2-functor from Con to the category AUs of AUs
and strict AU-functors, contravariant on 1-cells, that takes T 7→ AU〈T〉, the
AU presented using T as generators and relations.

A central issue for models of sketches is that of strictness. The standard
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sketch-theoretic notion is non-strict: for a universal, such as a pullback of
some given opspan, the pullback cone can be interpreted as any pullback of
the opspan. However, we could also seek strict models that use the canoni-
cal pullbacks (in categories where they exist). Strictness is essential for the
universal algebra that generates AU〈T〉, but in general it is inconvenient. Sig-
nificant parts of the present paper are concerned with relating the strict and
the non-strict.

Contexts are designed to give us good control over strictness, as summarized
by the following proposition.

Proposition 1 Let U : T1 → T0 be an extension map in Con, that is to say one
deriving from an extension T0 ⊂ T1. Suppose in some AU A we have a model
M1 of T1, a strict model M ′0 of T0, and an isomorphism φ0 : M ′0

∼= M1U (the
restriction of M1 to T0).

T1

U

��

M ′1
φ1

∼=
//

_

��

M1_

��
T0 M ′0

φ0

∼=
// M1U

Then there is a unique model M ′1 of T1 and isomorphism φ1 : M ′1
∼= M1 such

that

1. M ′1 is strict,

2. M ′1U = M ′0,

3. φ1U = φ0, and

4. φ1 is equality on all the primitive nodes for the extension T0 ⊂ T1.

The proof can be deduced from the strictness results in [Vic16]. In brief, it is
reduced by induction to the case of simple extension steps in T0 ⊂ T1. Adjoining
a primitive node, M ′1 and φ1 are determined by (4). Adjoining a primitive edge,
M ′1 and φ1 are determined by the need to make φ1 an isomorphism. Adjoining a
universal, M ′1 is determined by (1) and φ1 by (3), as the unique fillin consistent
with φ0.

In the case where T0 is the empty context 11, we see the important corollary
that for a context T every model is uniquely isomorphic to a unique strict model
with which it agrees on all primitive nodes. We call this its canonical strict
isomorph.

Thus in topos theory, where non-strict AU-functors are liable to transform
strict models into non-strict ones, we can regain strictness of models.

Example 2 The Proposition does not hold for arbitrary context maps H : T1 →
T0. Let O,O2 be the contexts that have, respectively, one and two nodes, and
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nothing else. Consider the diagonal ∆: O→ O2 given by the context homomor-
phism that takes both nodes in O2 to the node in O. If X is a model of O, then
its ∆-reduct X∆ = (X,X). If we can find X1

∼= X ∼= X2 with X1 6= X2, then
(X1, X2) ∼= X∆ without itself being a ∆-reduct.

2.2 Elephant theories

Here we briefly summarize the account in [Joh02, B4.2] of classifying toposes,
over a fixed base elementary topos S.

Central to its treatment is the 2-category BTop/S. A 0-cell is a bounded
geometric morphism p : E → S, a Grothendieck topos over S. In Definition 15
these will appear in the fibre of our GTop over S. A 1-cell f is a pair (f, f⇓),
where f is a bounded geometric morphism and f⇓ is a specified isomorphism
in the triangle over S.

Any logical description of a theory does implicitly describe the models, but
one can also try to use the category of models as a direct semantic description
of the theory. Unfortunately this does not work for geometric theories, which
may be incomplete – there are not enough models for semantic entailment to
agree with the syntactic entailment got from the rules of geometric logic.

The semantic description used to get round this in [Joh02, B4.2] is to describe
all the models in all Grothendieck toposes. For narrative purposes in the present
paper, to make a clear distinction from the logical theories, I shall refer to such
an “all model” description as an “elephant theory”. Of course that acknowledges
their use in [Joh02], but I also want to convey something of the sheer quantity
of data encapsulated in one of these theories.

Definition 3 An elephant theory over S is an indexed category T over BTop/S.
Then an object of T(E) is a “model of T in E”.

In our applications derived from AU-sketches, the elephant theories will be
strict, 2-functors to CAT.

A particularly important example is the context O, the object classifier, with
O(E) = E .

Given an elephant theory T over S, a geometric construct on T is an indexed
functor from T to O.

Definition 4 Let T0 be an elephant theory over S. A geometric extension of T0

is a theory built, starting from T0, by a finite sequence of the following “simple”
steps from T to T′.

• Simple functional extension: Let H0, H1 : T → O be two geometric con-
structs. Define the theory T′ whose models in E are pairs (M,u) where M
is a model of T in E and u : MH0 → MH1 is a morphism. A morphism
from (M,u) to (M ′, u′) is morphism φ : M →M ′ such that that following
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diagram commutes.

MH0
u //

φH0

��

MH1

φH1

��
M ′H0

u′
// M ′H1

.

• Simple geometric quotient: Let φ : H0 → H1 be a morphism of geometric
constructs on T. T′ is the theory whose models in E are those models of
T for which φ is an isomorphism; its morphisms are all T-morphisms.

• Simple extension by primitive object: We define T′(E) = T(E) × E. In
other words, we may write T′ = T×O.

Then a geometric theory over S is a geometric extension of 11, the trivial theory
for which every 11(E) is the category with one object ∗ and its identity morphism.

Note that [Joh02] does not define the general notion of geometric extension,
but simply that of geometric theory as an extension of On (for some finite n)
by simple functional extensions and simple geometric quotients. The two are
equivalent, because no harm is done if the primitive sorts are all adjoined at the
start, and doing this n times to 11 gives On.

If T1 is a geometric extension of T0, then there is a theory morphism from
T1 to T0 given by model reduction.

For future reference we prove the following result that does not appear to
be in [Joh02].

Proposition 5 In the category of elephant theories over S and indexed functors
between them, geometric extensions can be pulled back along any morphism.

Proof. The point is that we have a pullback, not a pseudopullback.
Let H : T′0 → T0 be an indexed functor between elephant theories over S,

and let T1 be a geometric extension of T0 with indexed functor U : T1 → T0

defined by model reduction. We define the elephant theory T′1 by argumentwise
pullback of categories.

T′1(E) //

��

T1(E)

U(E)

��
T′0(E)

H(E)
// T0(E)

Thus a model of T′1 is a pair (M0,M1) of models of T′0 and T1 for which M0H =
M1U .

For reindexing along f : F → E (over S), the naive attempt to define
f∗(M0,M1) as (f∗M0, f

∗M1) fails because we only have

(f∗M0)H ∼= f∗(M0H) = f∗(M1U) = (f∗M1)U .
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(The last equality can be readily checked for different kinds of simple geometric
extension.) The trick then is to define f∗(M0,M1) as (f∗M0, N1) for some
N1
∼= f∗M1 whose T0-reduct is (f∗M0)H ∼= (f∗M1)U .
It suffices to check the three kinds of simple geometric extension. For ex-

tension by primitive sort, T1 = T0 ×O, we find that T′1 as defined by pullback
is T′0 ×O. For the reindexing question, we have M1 of the form (M0H,X) and
define N1 = ((f∗M0)H, f∗X).

The next case is when T1 is a simple functional extension of T0 for two
geometric constructs G0, G1 : T0 → O. We find that T′1, as defined by pullback,
is a simple functional extension of T′0 for HG0 and HG1. For the reindexing,
we have M1 of the form (M0H,u : M0HG0 → M0HG1). Then we take N1 to
be ((f∗M0)H,u′), where u′ is so as to make the following diagram commute.

(f∗M0)HG0

∼= //

u′

��

(f∗(M0H))G0

∼= // f∗(M0HG0)

f∗u

��
(f∗M0)HG1

∼= // (f∗(M0H))G1

∼= // f∗(M0HG1)

For the final case, T1 is an extension of T0 by simple geometric quotient
for a morphism φ : G0 → G1 of two geometric constructs on T0. Now T′1 is an
extension of T′0 by simple geometric quotient for a morphism Hφ : HG0 → HG1.

Definition 6 Let T be an elephant theory over S. A classifying topos for T is
a bounded S-topos p : S[T] → S, equipped with a “generic” T-model NG, such
that, for each bounded S-topos E, the functor

BTop/S[E ,S[T]]→ T(E), f 7→ f∗NG,

is one half of an equivalence of categories.
In other words, the pseudofunctor T : BTop/S → CAT is representable.

Since all our elementary toposes have nno, [Joh02, Theorem B4.2.9] tells us
that every geometric theory has a classifying topos.

3 Indexed categories of models

In this section we deal with categories of models of AU-contexts from Con. For
each AU A and AU-context T we have a category A-Mod-T of models of T in
A, and a full subcategory A-Mods-T of strict models.

We shall show that A-Mods-T is acted on strictly (on the right) by Con, and
strictly (on the left) by AU, the category of AUs and non-strict AU-functors.
This strict left action arises because T, a context, has the strict model corollary
of Proposition 1: applying a non-strict AU-functor gives us a non-strict model,
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but we can then replace it by its canonical strict isomorph.1 The left and right
actions commute up to isomorphism, which we express in Theorem 12 as a
category strictly indexed over the Gray tensor product. However, right action
by extension maps commutes up to equality with the left actions (Lemma 13),
and this will be important for us.

Note that the context maps, between contexts T, correspond to strict AU-
functors between the classifying AUs AU〈T〉. What we have done, therefore,
is in effect to have strict and non-strict AU-functors acting on the right and
left respectively, with the Gray tensor action representing the interplay between
strict and non-strict.

One might wonder whether we could instead have focused on the non-strict
models A-Mod-T. There is an obvious action on the left by AU, and an
action on the right, by model reduction, by the context maps that correspond to
context homomorphisms. Those left and right actions commute up to equality.
However, the right action does not extend strictly to arbitrary context maps:
this is because the maps for context equivalence extensions, which are invertible
in Con, give only equivalences between model categories, not isomorphisms. We
prefer to work with the strict action on strict models.

In any case, the non-strict models of a context T are the strict models of an
extension T′. For each node X in T introduced by a universal, adjoin another
copy X ′ with edges and commutativities to make X ′ ∼= X.

Definition 7 Let A be an AU and T a context. Then A-Mods-T is the category
of strict models of T in A.

Lemma 8 For each arithmetic universe A, we can define a 2-functor

A-Mods-• : Con→ CAT

for which A-Mods-•(T) = A-Mods-T.

Proof. Since those models are in bijection with strict AU-functors from AU〈T〉
to A, and we have a (full and faithful) 2-functor from Con to AUop

s , this extends
to a 2-functor A-Mods-• as desired.

If M is a strict model in A-Mods-T0 and H : T0 → T1 is a context map, then
we write MH for A-Mods-H(M). If H is the dual of a context homomorphism
then MH is got by model reduction. If H is the inverse of the dual for an
equivalence extension T0 b T1, then MH is got by interpreting all the adjoined
ingredients of T1 in the unique strict way.

Now we fix T and let A vary.

Definition 9 Let f : A0 → A1 be an AU-functor, T a context and M a model
in A0-Mods-T. Then we define f∗M = f -Mods-T(M) as follows. We first
define f · M as the non-strict model got by applying f to M . Then f∗M is
(using Proposition 1) the canonical strict isomorph of f ·M .

1 In fact, the definitions of extension and context in [Vic16] were made in anticipation of
these results.
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We extend this to 2-cells α : f0 → f1 by treating them as AU-functors from
A0 to the comma AU A1 ↓ A1. α∗M : f∗0M → f∗1M is then calculated by pasting
the following diagram.

A1 A0

f1

ii

f0
uu

�� α AU〈T〉
M
oo

f∗0M

∼=zz

f∗1M

∼=
dd

Proposition 10 For each context T we have a 2-functor

•-Mods-T : AU→ CAT

for which •-Mods-T(A) = A-Mods-T and •-Mods-T(f)(M) = f∗(M).

Proof. The main point is that it is strictly functorial on 1-cells f . Suppose we
have AU-functors

A2
oo f1 A1

oo f0 A0 .

Then f∗1 f
∗
0M and (f0f1)∗M are both the canonical strict isomorph of f1 ·f0 ·M .

After this, the rest follows by pasting diagrams.
The equation f∗1 f

∗
0M = (f0f1)∗M will seem notationally perverse for mor-

phisms in AU, composed diagrammatically, but it looks more natural for geo-
metric morphisms, where the AU-functor for f is f∗.

Definition 11 Suppose we have 1-cells f : A0 → A1 in AU and H : T0 → T1

in Con. Then we define a natural isomorphism Σf,H as follows.

A0-Mods-T0
A0-Mods-H //

f-Mods-T0

��

A0-Mods-T1

f-Mods-T1

��
A1-Mods-T0 A1-Mods-H

//

Σf,H⇓

A1-Mods-T1

(1)

For each M in A0-Mods-T0, we define the isomorphism

Σf,H(M) : f∗(MH) ∼= (f∗M)H

by pasting the following diagram.

A1 A0
f
oo AU〈T0〉

Moo

f∗M

∼=
bb AU〈T1〉

AU〈H〉
oo

f∗(MH)

∼=vv

Naturality is clear.
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Theorem 12 The two actions on •-Mods-• by AU and Con, together with
the pseudo-naturality isomorphisms Σf,H , make up a “cubical functor” from
AU×Con to CAT in the sense of [Gur13], and hence a 2-functor from the Gray
tensor product AU⊗ Con to CAT.

Proof. There are three conditions to be checked. The first two are that the
squares (1) paste together correctly, either horizontally or vertically, for compo-
sition of 1-cells in either Con or AU. The third is that it pastes correctly with
2-cells in Con and AU. All are clear by pasting the appropriate isomorphisms
from the definition of f∗.

Lemma 13

1. If U is an extension map (for T0 ⊂ T1) then (f∗M)U = f∗(MU) for
every f and M , and Σf,U (M) is the identity morphism.

2. If U is an equivalence extension map (T0 b T1), then (f∗M)U−1 =
f∗(MU−1), and Σf,U−1(M) is the identity morphism.

Proof. (1) f∗(MU) is the canonical strict isomorph of f · (MU).
On the other hand (f∗M)U ∼= (f ·M)U = f · (MU) and they are equal on

all the primitive nodes of T0 because they are also primitive in the extension
T1.

(2) Apply part (1) to MU−1.

Example 14 Equality in Lemma 13 can fail for a map H : T1 → T0 involving a
context homomorphism that maps primitive nodes to non-primitives. Consider
the context T with a single node T , declared terminal, and H : T→ O given by
the sketch homomorphism that takes the single node X in O to T .

If M is the unique strict model of T in A, then MH simply picks out the
canonical terminal object, and (f∗M)H does the same in A′. f∗(MH) picks
out the image under f of the canonical terminal in A.

Finally, we can translate these results to elementary toposes. For each AU-
context T we have a 2-category •-Mods-T, strictly indexed over eTop, and it
restricts to BTop/S, with the geometric morphisms p : E → S playing no role
in the reindexing. Thus it gives a strict elephant theory over S for T. Also,
each context map H : T0 → T1 gives a corresponding indexed functor from T0

to T1 as elephant theories.

4 Remarks on 2-fibrations

In the 2-functor •-Mods-T : AU → CAT we have already seen a category
strictly indexed over the 2-category AUop. As we proceed, however, we shall
encounter non-strict indexations, with pseudofunctors, and for these we shall
prefer a fibrational approach. Thus we avoid confronting coherence conditions
for indexed 2-categories.
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For the appropriate notion of 2-fibration we shall follow Buckley’s account [Buc14],
which in turn was based on earlier work of Hermida [Her99] and Baković [Bak11].
Definitions are given for fibrations both between 2-categories and between bi-
categories. Note that, although we deal only with 2-categories, and 2-functors
between them, we shall still need to use the bicategorical notion of fibration
once we go beyond strictly indexed categories. The essential difference, for a
2-functor P : E → B, is that the properties characterizing a cartesian 1-cell
f : x→ y in E are weaker. Given g : z → y and h : Pz → Px with h(Pf) = Pg,

we can lift h to ĥ : z → x but the corresponding triangle in E commutes only
up to isomorphism.

z
ĥ

��
∼=

g

��
x

f
// y

Pz

h

}}
=

Pg

!!
Px

Pf
// Py

To summarize Buckley’s definitions, –

• A 1-cell f in E is cartesian if it lifts 1-cells up to isomorphism, and lifts 2-
cells coherently with the lifted isos. The uniqueness of lifted 2-cells implies
that lifted 1-cells are unique up to a coherent isomorphism.

• A 2-cell α : f ⇒ g : x→ y in E is cartesian if it is cartesian as a 1-cell for
the functor Pxy : E(x, y)→ B(Px, Py).

• P is a fibration if for every f : b→ Pe in B, there is a cartesian h : a→ e
with Ph = f ; each Pxy is a fibration of categories; and the cartesian 2-cells
are closed under whiskering on both sides.

4.1 The fibred 2-category of Grothendieck toposes

By “Grothendieck topos”, we mean a bounded geometric morphism from some
elementary topos E to some, understood, base elementary topos S.2 The 2-
category of Grothendieck toposes over S is studied in [Joh02, B4] as BTop/S.

A notable property of BTop/S is that any geometric theory T (geometric,
that is, with respect to S) has a classifying topos S[T] that behaves in many
respect as “the space of models of T”; indeed, the whole of BTop/S may then
be viewed as the 2-category of generalized spaces relative to S: 0-cells are
spaces, 1-cells are (continuous) maps, and 2-cells are generalized specializations
(morphisms, not order).

Our interest in using arithmetic universes is to deal with theories T that
depend on the base S only to the extent that nnos are required to exist. Our
aim here will be to prove results about Grothendieck toposes that are fibred
over choice of base.

From the point of view of indexed categories, the key result [Joh02, B3.3.6] is
that bounded geometric morphisms can be pseudo-pulled-back along arbitrary

2As always for us, our elementary toposes are assumed to have nnos.
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geometric morphisms.3 Thus for any geometric morphism f : S0 → S1 we get
a reindexing f∗ : BTop/S1 → BTop/S0. This does not extend to arbitrary
natural transformations α : f → g unless the Grothendieck toposes are restricted
to fibrations or opfibrations over S, so instead we restrict the αs at the base
level to be isomorphisms.

We write eTop∼= for the 2-category of elementary toposes (with nno), geo-
metric morphisms and natural isomorphisms.

We now express S 7→ BTop/S as a fibred 2-category GTop of Grothendieck
toposes.

Definition 15 The data for the 2-category GTop is defined as follows.
A 0-cell is a bounded geometric morphism p : E → S.

A 1-cell f = (f, f⇓, f) from E0
p0 // S0 to E1

p1 // S1 is a square

E0
f //

f⇓p0

��

E1
p1

��
S0

f
// S1

in which f⇓ : fp1 → p0f is an isomorphism.
Given two such 1-cells, f and f ′ from p0 to p1, a 2-cell α : f → f ′ is a pair

of natural transformations α : f → f
′

and α : f → f ′

E0
f

))

f
′

55�� α

f⇓

f ′⇓
p0

��

E1

p1

��
S0

f

))

f ′
55�� α S1

such that the obvious diagram of 2-cells commutes. Moreover, as mentioned
earlier, we require α to be an isomorphism.

It is clear that GTop is a 2-category

Proposition 16 There is a 2-functor GTopco → eTopco∼= that forgets all but the
downstairs part. Although it is strict, we consider it as a homomorphsm of
bicategories for the purposes of [Buc14, 3.1].

1. A 1-cell is cartesian iff it is a pseudopullback square in eTop.

3Beware that, in 2-categorical contexts, [Joh02] consistently omits “pseudo-” – see B1.1.
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2. A 2-cell α is cartesian iff α is an isomorphism.

3. The 2-functor is a fibration of bicategories.

Proof. (1): This is essentially the same as the proof of the result for 1-
categories, that for the codomain fibration cod : C→ → C, a morphism for C→
is cartesian iff it is a pullback square in C. The conditions for pseudopullbacks
and cartesian 1-cells both bring in the 2-cells in the same way. For the “⇒”
direction, note that an arbitrary elementary topos E can be treated as a 0-cell
in GTop using the identity geometric morphism.

(2): If α is an isomorphism then so is the 2-cell α, and it is then clearly
cartesian. For the converse, suppose α : f → g is a cartesian 2-cell. (Note that
because we are going to dualize, α is really cocartesian in GTop.) Downstairs,
α is invertible and so by lifting α−1 we get α′ : g → f , with αα′ = Idf . By
considering Idg and α′α as lifts of Idg we see that they are equal.

(3) Cartesian lifting of 1-cells arises because, in eTop, pseudopullbacks of
bounded geometric morphisms along arbitrary geometric morphisms always ex-
ist [Joh02, B3.3.6].

Cartesian lifting of 2-cells is easy – in fact we can ensure that the upstairs
part of the lifted 2-cell is an identity.

Of course, eTopco∼=
∼= eTop∼=, so we could equally well consider GTopco as

fibred over eTop∼=.

4.2 Representability

In Definition 6, “classifying topos” is defined in terms of representability of an
indexed category, a pseudofunctor T : (BTop/S)op → CAT. We now look at
how this appears in terms of fibrations.

To work abstractly, suppose C is a 2-category, and F : Ccoop → CAT a pseud-
ofunctor. We shall describe the Grothendieck construction for it. In our appli-
cations, for elephant theories deriving from AU-contexts, F will be strict and
the Grothendieck construction is described in [Buc14, 2.2] as a fibration of 2-
categories. For the present section, however, we shall not assume strictness:
thus we retain the connection with general elephant theories. Because of this
we need to use [Buc14, 3.3.3], which describes the Grothendieck construction as
a fibration of bicategories. Nonetheless, our situation is somewhat simpler than
Buckley’s. We have not allowed C to be a bicategory, and we have taken each
F (X) to be a category, not a bicategory. Because of this, our fibred bicategory
E is actually a 2-category, though not fibred as such. It has –

0-cells are pairs (x, x−) of objects of C and Fx.
1-cells are pairs (f, f−) : (x, x−)→ (y, y−) where

f : x→ y and f− : x− → Ff(y−).

2-cells (f, f−) → (g, g−) : (x, x−) → (y, y−) are 2-cells α : f → g such that

14



the following diagram commutes.

x−
f− //

g− ##
=

Ff(y−)

Fg(y−)

Fαy−

99

Then the 1-cell (f, f−) is cartesian iff f− is an isomorphism. Every 2-cell α
is cartesian.

In the following proposition we characterize representability of the pseudo-
functor F in a purely fibrational way, independent of F as choice of cleavage.

Proposition 17 Let F : Ccoop → CAT be a pseudofunctor as above, and let
P : E → C be its Grothendieck construction. Then F is representable iff there is
an object (x, x−) in E (a representing object) with the following properties.

1. For each (y, y−) in E, there is a cartesian 1-cell (f, f−) : (y, y−)→ (x, x−).

2. Each cartesian 1-cell (f, f−) : (y, y−)→ (x, x−) is terminal in the category
E((y, y−), (x, x−)).

Proof. By definition, F is represented by (x, x−) iff for every y the functor
Ky : C(y, x)op → Fy, given by f 7→ Ff(x−), is an equivalence.

Condition (1) says that each Ky is essentially surjective. It remains to show
that, for each y, Ky is full and faithful iff condition (2) holds.

Suppose Ky is full and faithful and, for a given y−, we have

(f, f−), (g, g−) : (y, y−)→ (x, x−)

with (f, f−) cartesian, i.e. f− an isomorphism. Then there is a unique α : g → f
such that Fαx− = f−1

− ; g−, in other words a unique 2-cell from (g, g−) to (f, f−).
Conversely, suppose condition (2) holds for a given y, and suppose we have

f, g : y → x and g− : Ff(x−)→ Fg(x−). We then have two 1-cells

(f, Id), (g, g−) : (y, Ff(x−))→ (x, x−).

Since (f, Id) is cartesian we get a unique 2-cell α : (g, g−) → (f, Id), in other
words, a unique α : g → f such that Ky(α) = g−.

By the usual means, one can show that if x is a representing object for P ,
then for any object x′ in E we have that x′ is a representing object iff it is
equivalent to x.

We now extend the above discussion to a situation where C too is fibred: we
have fibrations

E P // C
Q // B .

In our applications, P will again be got from a pseudofunctor (in fact a 2-
functor) Ccoop → CAT, but Q will be more general. The paradigm example for
Q is GTopco fibred over eTopco∼= .
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We also assume (as in the paradigm) that all 2-cells in B are isomorphisms.
Note that f : x→ y in E is cartesian for P ;Q iff it is cartesian for P and Pf

is cartesian for Q. For the “⇐” direction, we just lift in two stages. For “⇒”,

consider cartesian lifts f̂ : x̂ → Py of Q(Pf), and then
ˆ̂
f : ˆ̂x → y of f̂ . We get

an equivalence x ' ˆ̂x and deduce the result from that.
Now each object w of B has a fibre over it, a fibration Pw : Ew → Cw: it

comprises the 0-cells of C and E that map to w, and the 1- and 2-cells that
map to identities at w. We are now interested in the situation where each Pw
is representable, and in how the representing objects transform under 1-cells in
B.

Since we are assuming P arises from a pseudofunctor, it is easy to see that
a 1-cell or 2-cell in Ew is cartesian for Pw iff it is cartesian for P .

Definition 18 P is locally representable (over Q) iff

1. Each fibre Pw is representable.

2. (Geometricity) Suppose Pw is represented by xw, f : w′ → w in B, and
h : y → xw is P ;Q-cartesian over f . Then y is a representing object for
Pw′ .

We call condition (2) “geometricity” in line with [Vic04], because it concerns
a property that is preserved by pseudopullback in eTop. Note that it suffices
to verify it for some xw and some h. This is because representing objects are
equivalent, and so too are cartesian liftings.

As defined, local representability focuses on the fibres Pw. We can express
the property in a way that says more about the interaction with change of base.

Proposition 19 P is locally representable over Q iff, for each object w of B,
we have an object xw of E over it that satisfies the following conditions.

1. For every object y of E, and 1-cell f : Q(Py) → w in B, there is some

f̂ : y → xw over f that is cartesian with respect to P .

2. Suppose h0, h1 : y → xw in E, with h1 being P -cartesian.

If α : Q(Ph0)→ Q(Ph1), then there is a unique α̂ : h0 → h1 over α.

Proof. ⇐: Clearly any xw satisfying the conditions must be a representing ob-
ject for Pw. It remains to show that the representing objects transform correctly
under base 1-cells f : w′ → w.

Suppose xw and xw′ satisfy the conditions. By the conditions for xw we have
P -cartesian g : xw′ → xw over f . Suppose also that h : y → xw is P ;Q-cartesian
over f . By the conditions on xw′ we get P -cartesian u : y → xw′ over Idw′ ,
and by cartesianness of h we get v : xw′ → y over Idw′ with an isomorphism
α : vh→ g over Idf .

xw′
g

""α⇑
v

��
y

u

BB

h
// xw
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Since both g and h are P -cartesian, so is v. It follows by the conditions on
xw′ that there is a unique isomorphism vu ∼= Idxw′ in Pw′ . Also, by the P ;Q-
cartesian property of h, there is a unique isomorphism uv ∼= Idy in Pw′ . Hence
y is equivalent to xw′ , and so represents Pw′ as required.
⇒: Let xw be a representing object for Pw. We show it has the two properties

stated.
Suppose y is an object in E , and f : w′ = Q(Py) → w a 1-cell in B. Let

g : xw′ → xw be P ;Q-cartesian over f , so that xw′ is a representing object for
Pw′ . Then there is a P -cartesian 1-cell u : y → xw′ in Pw′ , and ug : y → xw is
P -cartesian (because u and g are) over f .

Now suppose h0, h1 : y → xw are two 1-cells, with h1 cartesian for P , and
with fi = Q(Phi) : w′ → w, and α : f0 → f1. Recall our assumption that all
2-cells in B are isomorphisms. Let gi : zi → xw be a P ;Q-cartesian lifting of fi,
with ui : y → zi in Pw′ and βi : uigi ∼= hi over fi. By [Buc14, 3.1.15], there is
an equivalence k : z0 ' z1 with isomorphism kg1

∼= g0 over α, and the pair is
unique up to unique isomorphism between ks in Pw′ . Thus 2-cells h0 → h1 over
α are in bijection with 2-cells u0kg1 → u1g1 over f1, and hence (because g1 is
P ;Q-cartesian) with 2-cells u0k → u1 in Pw′ . Since z1 is a representing object
for Pw′ , and u1 is P -cartesian (because h1 and g1 are), and hence cartesian in
Pw′ , we get a unique 2-cell u0k → u1 in Pw′ .

5 Context extensions as bundles

In this Section we gather together the previous remarks to get results on clas-
sifying toposes in a form that is fibred over a category of bases.

This is most easily understood in the simple case of a single context T. For
each Grothendieck topos p : E → S we have a category E-Mods-T of strict
models of T in E . This extends to a 2-functor from GTopop = (GTopco)coop to
CAT, and its Grothendieck construction can be written as P : (GTop-T)co →
GTopco.

In constructing that fibration we ignored the parts
p // S , but when we

bring in S we find that the classifying topos S[T] provides a representing object
for PS .

The main novelty here is that those representing objects transform according
to Definition 18: that (Theorem 30) the pseudopullback along any f : S0 → S1

preserves classifiers. Our proof is non-trivial, and shows that the steps con-
structing the classifier are preserved under pseudopullback.

As mentioned in Section 1.2, we shall prove local representability more gen-
erally, dealing not just with a single context T, but in the relativized situation
for an extension T0 ⊂ T1.

Why extensions, and not arbitrary H : T1 → T0? The main reason is the
repeated use of Proposition 1, sometimes via Lemma 13.

17



5.1 Models for a context extension

Definition 20 Let T0 ⊂ T1 be an extension of contexts, with corresponding
extension map U : T1 → T0, and let p : E → S be a bounded geometric morphism.
A strict model of U in p is a pair (M,N) where M is a strict model of T0 in S,
N a strict model of T1 in E, and NU = p∗M .

A morphism from one such strict model, (M,N), to another, (M ′, N ′), is a
pair φ = (φ−, φ

−) where φ− : M → M ′ and φ− : N → N ′ are homomorphisms
and φ−U = p∗φ−.

For given U we thus get, for each p, a category p-Mods-U . It is strictly
indexed over GTop in the following way.

First suppose f : p0 → p1 is a 1-cell in GTop, as in Definition 15. If (M,N)
is a strict model in p1, then we define a strict model f∗(M,N) = (f∗M,f∗N)

f∗N oo
∼=

_

��

f
∗
N_

��
p∗0f
∗M oo

(f⇓)∗M
f
∗
p∗1M

where the upstairs isomorphism is the canonical one obtained from Proposi-
tion 1. The action extends to morphisms between strict models of U , and we
obtain a functor f -Mods-U : p1-Mods-U → p0-Mods-U .

If α : f → f ′ is a 2-cell in GTop, then it gives a natural transformation from
f -Mods-U to f ′-Mods-U . We obtain a strict 2-functor from GTopop to CAT.
Its Grothendieck construction is a fibration (Mods-U)co → GTopco.

Definition 21 The data for the 2-category Mods-U is defined as follows. In
each case, a 0-, 1- or 2-cell is the corresponding item for GTop, equipped with
extra structure in the form of models of U .

A 0-cell is a bounded geometric morphism p : E → S, equipped with a strict
model (M,N) of U .

A 1-cell from (p0,M0, N0) to (p1,M1, N1) is a 1-cell f : p0 → p1 from GTop,
equipped with a homomorphism (f−, f

−) : (M0, N0) → f∗(M1, N1). (Note that
the letter f is highly decorated: we have f , f⇓, f , f− and f−.)

Given 1-cells (f, f−, f
−) and (f ′, f ′−, f

′−), with the same domain and codomain,
a 2-cell from one to the other is a 2-cell α : f → f ′ in GTop such that

(f−, f
−)(α∗(M1, N1)) = (f ′−, f

′−).

It is clear that Mods-U is a 2-category, with a functor F ′ : Mods-U → GTop
that forgets the model, and by construction F ′co is a split fibration. Note that
–

1. A 1-cell (f, f−, f
−) is cartesian iff f− and f− are isomorphisms.

2. Every 2-cell α is (co-)cartesian.
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Note the special case of a trivial extension T0 = T0. A model of this in p
is simply a model M of T0 in S, since the corresponding model in E has to be
p∗M . In this case we write Mods-(T0 ⊂ T0).

We have an obvious forgetful functor from Mods-U to Mods-(T0 ⊂ T0),
which (or its co-dual) is almost, but not quite, a fibration. The problem is that
T0-homomorphisms φ− : M → M ′ do not lift to functors for the categories of
U -models over them. To rectify this, we restrict to isomorphisms downstairs.

Definition 22 GTop-U is the sub-2-category of Mods-U with all the 0-cells,
but with only the 1-cells (f, f−, f

−) for which f− is an isomorphism. It is full
on 2-cells.

Proposition 23 We write P co : GTop-U → GTop-(T0 ⊂ T0) for the forgetful
functor. Then P : (GTop-U)co → (GTop-(T0 ⊂ T0))co is a split fibration. A
1-cell (f, f−, f

−) is cartesian iff its f− is an isomorphism. Every 2-cell is
cartesian.

Proof. It is the Grothendieck construction for the evident 2-functor from
(GTop-(T0 ⊂ T0))op to CAT.

We now fibre over pairs (S,M).

Definition 24 The 2-category eTop∼=-T has structure as follows. A 0-cell is a
pair (S,M) where S is an elementary topos and M a model of T in S. A 1-cell
from (S0,M0) to (S1,M1) is a pair (f, f−) where f : S0 → S1 is a geometric
morphism and f− : M0 → f∗M1 is an isomorphism. A 2-cell from (f, f−) to
(g, g−) is a natural isomorphism α : f → g such that f−;α∗M1 = g−.

The 2-category GTop-(T ⊂ T) is made from GTop by adding components
M and f−, and the condition on α, in the same way as eTop∼=-T is made from
eTop∼=.

Proposition 25 Let Qco : GTop-(T ⊂ T) → eTop∼=-T be the evident forgetful
functor. Then Q = (Qco)co is a fibration of bicategories.

Proof. Much as in Proposition 16.
We now get a diagram of 2-functors as follows, where the P s and Qs are

fibrations. The left hand tower is for the relativized situation T0 ⊂ T1, while
the right hand tower is the special case T0 = 11.

(GTop-U)co

P

�� ))
(GTop-(T0 ⊂ T0))co

Q

�� ))

(GTop-T1)co

P

��
(eTop∼=-T0)co

))

GTopco

Q

��
eTopco∼=

(2)
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5.2 Context extensions fibred over models

Our aim now is to show that, in diagram (2), each P is locally representable over
its Q. (Note that the right hand one is a special case of the left hand, for when
T0 = 11.) The existence of the representing objects (as classifying toposes) is
straightforward; what seems more novel is their preservation by pseudopullback.

Proposition 26 Let T0 ⊂ T1 be a context extension. Then, over any elemen-
tary topos S, it is also a geometric extension of elephant theories.

Proof. It suffices to check the different kinds of simple context extension. Note
that any node X in T0 gives a context homomorphism OlT0, so a map T0 → O,
and hence a geometric construct on T0. Likewise, any edge or composite of edges
gives a map T0 → O→, and hence a morphism between geometric constructs.

An extension by primitive node is a geometric extension by primitive sort.
A simple functional extension of contexts (adjoining a primitive edge) is also

a simple functional extension of geometric theories.
An extension by a universal is essentially no geometric extension at all, as

the categories of (strict) models are isomorphic.
An extension by commutativities is a simple geometric quotient, as imposing

an equality between morphisms is equivalent to requiring the equalizer to be an
isomorphism.

Proposition 27 Let T0 be a context, and M a strict model of T0 in an ele-
mentary topos S. Then there is an elephant morphism M : 11 → T0 that, on
bounded S-topos (E , p), takes ∗ to p∗M .

Proof. Note that, although the elephant theories for both 11 and T0 are strictly
indexed, M is not a strict morphism. Consider a morphism of S-toposes

F
f //

q
��
f⇓

E

p
��
S

, 11(F)

M(F)

��
∼=

11(E)

M(E)

��
T0(F) oo

T0(f)
T0(E)

On the right is a pseudo-naturality square, subject to the isomorphism

(f⇓)∗M : f
∗
p∗M ∼= q∗M .

Of course, M : 11→ T0 is not a map of contexts in general.

Definition 28 Let T0 ⊂ T1 be a context extension and M a strict model of
T0 in an elementary topos S. By Proposition 5 we can pull back the geometric
extension for T0 ⊂ T1 along M : 11→ T0, getting a geometric theory T1/M over
S. Its models in (E , p) are the strict models of T1 whose T0-reducts are equal to
p∗M . It has a classifying topos S[T1/M ].
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Proposition 29 Let T0 ⊂ T1 ⊂ T2 be a sequence of context extensions, with

extension maps T2
U ′ // T1

U // T0 .
Let M be a strict model of T0 in an elementary topos S, and consider the

classifying toposes p : S ′ = S[T1/M ]→ S with generic model NG, and p′ : S ′′ =
S ′[T2/NG]→ S ′ with generic model N ′G.

Then (S ′′, p′p) serves as classifier for T2/M , with generic model N ′G.

Proof. Note that, using Lemma 13, N ′GU
′U = p′∗NGU = (p′p)∗M .

For the “essential surjectivity” part, suppose N is a model of T2/M in (F , q).
Then NU ′ is a model of T1/M , so we get g = (g, g⇓) : (F , q) → (S ′, p) with
NU ′ ∼= g∗NG as models of T1/M ; also g∗NG ∼= g∗NG as models of T1. Now
using Proposition 1 we can find a strict model N ′ ∼= N of T2 with N ′U ′ = g∗NG,
so N ′ is a model of T2/NG in (F , g). Hence there is a morphism

f ′ = (f ′, f ′⇓) : (F , g)→ (S ′′, p′)

such that f ′∗N ′G
∼= N ′. Now define

f = (f ′, ((f ′⇓) · p; g⇓)) : (F , q)→ (S ′′, p′p) F
f ′ //

f ′⇓
g

  
g⇓

q

##

S ′′

p′

��
S ′

p

��
S

.

As models of T2, we have f∗N ′G
∼= f ′

∗
N ′G
∼= f ′∗N ′G

∼= N ′ ∼= N ; and we see from
the following diagram that this composite isomorphism restricts under U ′U to
the identity – it is an isomorphism for T2/M .

f∗N ′G

∼=
zz

_

��

f ′∗N ′G
∼=

zz

G

��

f ′
∗
N ′G

∼=rr
∼=

oo
_

��

N_

��

N ′
∼=oo

_

��
NU ′_

��

g∗NG
∼=oo

_

��

g∗NG
∼=oo

_

��

f ′
∗
p′∗NG

∼=
(f⇓)∗NG

oo
_

��
NU ′U q∗M g∗p∗M

∼=
(g⇓)∗M
oo f ′

∗
p′∗p∗M

∼=
(f⇓)∗p∗M

oo
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Now suppose we have two morphisms fi = (fi, fi⇓) : (F , q) → (S ′′, p′p)
(i = 0, 1). Let us write gi = fip

′ and

gi = (gi, fi⇓) : (F , q)→ (S ′, p) F
fi //

=
gi

  
fi⇓

q

##

S ′′

p′

��
S ′

p

��
S

.

This makes F two separate toposes (F , gi) over S ′.
Suppose also we have a T2/M -morphism θ : f∗0N

′
G → f∗1N

′
G. Our aim is to

show that there is a unique 2-cell α : f0 → f1 such that α∗N ′G = θ. Consider
the diagram

f∗i N
′
GB

��

fi
∗
N ′G

∼=oo
_

��

T2

U ′

��
g∗iNG_

��

fi
∗
p′∗NG = gi

∗NG∼=
oo

_

��

T1

U

��
q∗M fi

∗
p′∗p∗M∼=

fi⇓oo T0.

We find that (f∗i N
′
G)U ′ = g∗iNG, as it has the correct properties according

to Proposition 1. Hence we have θU ′ : g∗0NG → g∗1NG, and there is a unique
β : g0 → g1 such that θU ′ = β∗NG. (This is modulo the appropriate isomor-
phisms, for β is actually a natural transformation from g0 to g1.)

Let us first deal with the case where θ is an isomorphism, and β likewise.
We thus have two morphisms f ′i : (F , g1) → (S ′′, p′), given by f ′0 = (f0, β)
and f ′1 = (f1, Id). In the diagrams below, three levels are for T2, T1 and T0,
successively reduced by U ′ and U . The horizontal isomorphisms ‘∼=’ come from
Proposition 1, and the vertical ones are defined to make their outer squares
commute. We then find a unique α : f ′0 → f ′1 (which is the same as saying
α · p′ = β) such that α∗N ′G is the isomorphism f ′∗0 N

′
G
∼= f ′∗1 N

′
G at top right in

22



the diagram. Then α : f0 → f1 and is unique such that θ = α∗N ′G.

T2

U ′

��

f∗0N
′
G

θ

��

f0
∗
N ′G

∼=oo ∼= //

α∗N ′G
��

f ′∗0 N
′
G

∼=
��

f∗1N
′
G f1

∗
N ′G

∼=oo f ′∗1 N
′
G

T1

U

��

g∗0NG

θU ′

��

g0
∗NG

∼=oo β∗NG //

β∗NG

��

g′∗1 NG

g∗1NG g1
∗NG

∼=oo g′∗1 NG

T0 q∗M g0
∗p∗M

(f0⇓)∗Moo

∼=
��

q∗M g1
∗p∗M

(f1⇓)∗M
oo

We now generalize to arbitrary morphisms θ. Let (G, q′) be the cocomma
object in BTop/S of the identity on (F , q) against itself, with cocomma injec-
tions hi : (F , q)→ (G, q′) and η : h0 → h1. By [Joh02, B3.4.7], G as a category is
just the comma category F ↓ F . It follows from [MV12] that there is a bijection
between, on the one hand, morphisms θ : N0 → N1 between strict T2/M -models
in F , and, on the other, strict T2/M -models in G. Applying the essential sur-
jectivity property (already proved) for S ′′, in relation to G, we see that for every
such θ there is a morphism f ′ : (G, q′) → (S ′′, p′p), hence a pair of morphisms
f ′i : (F , q)→ (S ′′, p′p), and a 2-cell α′ between them, with a commuting diagram

N0

∼= //

θ

��

f ′∗0 N
′
G

α′∗N ′G
��

N1

∼= // f ′∗1 N
′
G

We return to the case of interest, where Ni = f∗i N
′
G. By the restricted case,

with θ an isomorphism, we find 2-cell isomorphisms βi : fi → f ′i that, applied
to N ′G, give the horizontal isomorphisms above. Then, taking α = β0;α′;β−1

1 ,
we get θ = α∗N ′G. This proves fullness.

Finally we must prove faithfulness. Suppose we have f0 and f1 as before,
and 2-cells α, α′ : f0 → f1 with α∗N ′G = α′∗N ′G. We deduce that α · p′ = α′ · p′
because S ′ is a classifier. Hence we have two geometric morphisms g = (f0, α, f1)
and g′ = (f0, α

′, f1) from G to S ′′, with gp′ = g′p′. We have g∗N ′G = g′∗N ′G, so
from the properties of S ′′ as classifying topos we get a unique 2-cell β : g → g′
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such that β∗N ′G is the identity. This gives two 2-cells βi : fi → fi, making a

commutative square with α and α′, with β∗iN
′
G the identity on fi

∗
N ′G. We

deduce that each βi is an identity, and it follows that α = α′.

Theorem 30 Let T0 ⊂ T1 be a context extension and M a strict model of T0

in an elementary topos S1. Let the following diagram be a cartesian 1-cell f in
GTop over eTop∼=, hence a pseudopullback in eTop.

E0
f //

p0

��
f⇓

E1 = S1[T1/M ]

p1

��
S0

f
// S1

Then p0 : E0 → S0 serves as a classifying topos S0[T1/f
∗M ].

If NG is a generic model for T1/M , then f∗NG serves as generic model for
T1/f

∗M .

Proof. First, pseudopullback squares are preserved under composition with
equivalences over S0 and S1, so it suffices to show that there is some pseudo-
pullback square whose vertical maps are classifiers as stated.

By Proposition 29 we can reduce to the case where the extension is simple.
For extension by primitive node, we have the task of constructing an object

classifier, and this is a special case of classifying torsors (internal flat presheaves)
over an internal category C, here the category of finite sets: objects are natural
numbers, morphisms defined in the appropriate way.

For extension by commutativity, we have already remarked that this is equiv-
alent to inverting a morphism.

For a simple functional extension, adjoining a morphism from X to Y , we
can decompose the classification problem into two steps of the above kinds.
First, we adjoin a subjobject of X × Y for the graph of the morphism, and this
is equivalent to adjoining a torsor (ideal) for the poset F(X × Y ), the Kura-
towski finite powerobject (free semilattice). Next we impose some axioms for
single-valuedness and totality, and this is equivalent to making some morphism
invertible.

It follows that we reduce to two cases over T0: adjoining a torsor for an
internal category C, and forcing the invertibility of some morphism. (Although
these are not simple extensions of contexts, we can still work with them as
single steps.) We show that our classifiers S1[T1/M ] can be found in a way
that is preserved under pseudopullback. The argument parallels that of [Joh02,
B3.3.6].

In one case, T1 adjoins a torsor (flat presheaf) for an internal category C in
S1. Here we can take the classifier to be [C,S1] by Diaconescu’s Theorem, and
this can be pulled back along any f : S0 → S1 to [f∗C,S0] over S0. (See [Joh02,
B3.2.7, B3.2.14].)
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For any geometric theory T, the models of T in [C,S1] are the internal C-
indexed families of models of T in S1, and in the particular case of C-torsors the
generic model is the Yoneda embedding Y, with the representable torsor Y(j)
for each object j of C. To express this more concretely as a (p∗1C)-indexed family
of C-torsors in [C,S1], use the morphism

C1
〈d,c〉 // C0 × C0

π2 // C0

It becomes the object part of an internal presheaf over p∗1C, and is the generic
torsor. Its construction is geometric (arithmetic, even) and so is preserved by
f∗.

In the other case, T1 imposes invertibility for a morphism u : X → Y in S1.
Here p1 : E1 → S1 is an inclusion, and by [Joh02, A4.3.11] it can be taken to be
the topos of sheaves for the smallest local operator for which im(u) � Y and
X � kp(u), the kernel pair, are both dense. Inverting both of these monomor-
phisms will make u invertible. By [Joh02, A4.5.14(e)] its pseudopullback along
f is also an inclusion, in fact for the smallest local operator that makes f∗u
an isomorphism. The generic model is p∗1M , so f∗p∗1M

∼= p∗0f
∗M is a generic

model in E0.
Putting together these results, we now obtain our main Local Representability

Theorem –

Theorem 31 In diagram (2), the left hand fibration P is locally representable
(Definition 18) over its Q.

Proof. Given (S,M), then, as noted in Definition 28, the classifying topos
S[T1/M ] exists, and, by Proposition 17, this gives condition (1) of Definition 18.
The geometricity condition (2) is Theorem 30.

As we have already mentioned, by taking T0 = 11 we get that the right hand
P in diagram (2) is also locally representable. This tells us that the assignment
S 7→ S[T1] is preserved under change of base S.

After the main theorem, Proposition 19 now provides us with ways to use
the classifying toposes S[T1/M ] in places beyond BTop/S. In particular, –

Corollary 32 Let T0 ⊂ T1 be a context extension and M a strict model of T0

in an elementary topos S. Then E = S[T1/M ] has the classifying topos property
for arbitrary q : F → S, not necessarily bounded.

Proof. Apply Proposition 19 to models of U in Id : F → F for which the T0

part is q∗M .

Example 33 Let T0 be the context whose models are “GRD-systems” as in [Vic04].
It has three nodes G,R,D, together with (amongst other ingredients) a further
node FG constrained to be the Kuratowski finite powerset of G. (For instance,
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it can be constructed as a quotient of the list object ListG.) Finally, it has edges

D
ρ

}}
π

��
FG R

λ
oo

This can be used to present a frame, with generators g ∈ G subject to relations
(for r ∈ R) ∧

λ(r) ≤
∨
{
∧
ρ(d) | π(d) = r}.

The points of the corresponding locale, the subsets F ⊆ G respecting the
relations, are models of a context T1 that extends T0. It has a node for F , with
an edge F → G constrained to be monic, nodes for X = {r ∈ R | λ(r) ⊆ F}
and Y = {r ∈ R | (∃d)(π(d) = r ∧ ρ(d) ⊆ F )} (which can be constructed in the
AU-sketches) and an edge X ⊆ Y .

Then the local representability Theorem 31 implies [Vic04, Corollary 5.4],
the geometricity of presentations.

6 Conclusion

What our main result has done is to elaborate the idea that a map U : T1 → T0,
a T0-valued map on T1, may also be a bundle: that is to say, a space-valued
map on the codomain T0, transforming points to the corresponding fibres.

This interpretation is often tacit in a morphism in a category, and is par-
ticularly important in type theory. We have made it concrete in the particular
case of a morphism U in Con that arises from a context extension.

Note that U certainly is a “T0-valued map on T1”, if we think of the points
of a context as its strict models. This is shown in Section 3 and does not need
toposes – the models can be taken in any AU.

To get U as a bundle, we interpret “space” as Grothendieck topos and look
for the classifying toposes for the fibres. However, the base toposes are now
allowed to vary, and in Theorem 30 we showed the geometricity property that
when you change the base, and the corresponding base point of T0, the classifier
(representing the fibre) transforms by pseudopullback. This result, which I
have not been able to find in the literature, relies on a difference between the
“arithmetic” theories of Con and the geometric theories that are classified. An
arithmetic theory depends only on the existence of an nno, whereas a geometric
theory depends on the choice of some base topos S.

To avoid the intricacies of coherence for the choices made in indexed 2-
categories, we have adopted a fibrational approach to classifiers. As part of
that, the definition of classifier as representing object for an indexed 2-category
has been reformulated in terms of fibrations. Then their indexed behaviour was
formulated (our “local representability”, Definition 18) in terms of towers of
two 2-fibrations. It may be that the formulation in Proposition 19 has broader
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usefulness. I sense that the classifying objects xw may be trying to fulfill some
notion of “cartesian 0-cell”, though I have not been able to make that idea any
more precise.

The results here are a piece in the broad programme of using AU techniques
to prove base-independent, geometric results for toposes in those situations that
do not need the full power of S-indexed colimits for some S. One already
mentioned is the “geometricity of presentations”, Example 33.

On the other hand, the results also provide clues to how one might seek
a self-standing arithmetic logic of spaces, developing [MV12]. They suggest
that the extension maps might be the correct analogues of bounded geometric
morphisms.

A final comment regards the word “topos” itself, which Grothendieck chose
to suggest “those things of which topology is the study”. The very word “topos”
should strongly carry the idea of generalized space, but with the advent of the el-
ementary topos this inherent meaning has become obscure. It is not so much the
elementary toposes themselves that are the generalized spaces, as the bounded
geometric morphisms between them, and those are what are called “Grothen-
dieck toposes” in the present paper. One might dream that the true toposes,
the generalized spaces, the subjects of topology, are arithmetic universes, and
[MV12, Vic16] were written with that in mind. All the same, there are signifi-
cant gaps between that and Grothendieck’s vision, which was partly of “those
categories with the structure needed to do sheaf cohomology”. Much as one
might hope that, suitably formulated, the basic results of algebraic topology are
foundationally robust enough to work with AUs, we have no idea at present as
to how to do that.
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