
Sketches for arithmetic universes

Steven Vickers
School of Computer Science, University of Birmingham

s.j.vickers@cs.bham.ac.uk

July 11, 2018

Abstract

A theory of sketches for arithmetic universes (AUs) is developed, as a
base-independent surrogate for suitable geometric theories.

A restricted notion of sketch, called here context, is defined with the
property that every non-strict model is uniquely isomorphic to a strict
model. This allows us to reconcile the syntactic, dealt with strictly using
universal algebra, with the semantic, in which non-strict models must be
considered.

For any context T, a concrete construction is given of the AU AU〈T〉
freely generated by it.

A 2-category Con of contexts is defined, with a full and faithful 2-
functor to the 2-category of AUs and strict AU-functors, given by T 7→
AU〈T〉. It has finite pie limits, and also all pullbacks of a certain class
of “extension” maps. Every object, morphism or 2-cell of Con is a finite
structure.

Maths Subject Classification 18C30; 03G30

This is a preprint version of [Vic16].

1 Introduction

My 1999 paper “Topical Categories of Domains” [Vic99], which used geometric
logic to deal with toposes as generalized spaces, makes the following comment
on the logic.

It seems to us that in the work of the paper the infinities are re-
stricted to those that can be accessed effectively through free al-
gebra constructions. This emboldens us to hope that the full ge-
ometric logic is unnecessary, that it suffices to have coherent logic
with assorted free algebras, and that [Grothendieck toposes] could
be replaced by Joyal’s arithmetic universes [AUs].

The aim of the present paper is to set out a formal basis for doing this, while
a companion paper [Vic17] explores in greater depth the relation with toposes.

1

Our main accomplishment (Section 8) is to construct a 2-category Con that
can serve as one of generalized spaces. It is analogous to the 2-category Top of
Grothendieck toposes and geometric morphisms, or, more generally, to BTop/S,
where S is a chosen base elementary topos with nno, and BTop/S is the 2-
category of bounded S-toposes (see [Joh02, B4.4]).

Although Con is based on a semantics using arithmetic universes, its objects
are not AUs as such, but finite structures, presentations of AUs in the style of
sketches. It is as if we defined Grothendieck toposes to be the geometric theories
they classify, with no attempt to identify equivalent presentations. Similarly the
1-cells and 2-cells of Con are finite structures. We prove (Theorem 51) that a
2-functor from Con to AUs and strict AU-functors, mapping presentations T to
the presented AUs AU〈T〉, is full and faithful. This shows that we have defined
the 1- and 2-cells in a sufficiently general manner.

We finish with a proof that the entire construction can be internalized in
any AU, as anticipated by Joyal’s original work on Gödel’s Theorem.

1.1 Generalized spaces via arithmetic universes

The broad goal of the AU programme of [Vic99] is to use arithmetic universes
(AUs) to provide a predicative and base-free surrogate for Grothendieck toposes
as generalized spaces, covering also point-free ungeneralized spaces such as lo-
cales or formal topologies, and rich enough to include significant mathematics
such as the real line.

Briefly, a generalized space is presented by a geometric theory T that de-
scribes – as its models – the points of the space, and then the classifying topos
S[T] is a presentation-independent representation of the space. In the case of a
theory for an ungeneralized space, the topos is the category of sheaves. In gen-
eral, it embodies (as its internal logic) the “geometric mathematics” of colimits
and finite limits that is generated by a generic model of T. In other words, it is
the Grothendieck topos presented by T as a system of generators and relations.

Continuous maps (geometric morphisms) can be expressed as models of one
theory in the classifying topos of another – this is the universal property of
“classifying topos” – and so this also provides a logical account of continuity. A
map from T1 to T2 is defined by declaring “Let M be a model of T1”, and then
defining a model of T2, in that context (in other words, in S[T1], with M the
generic model), and within the constraints of geometricity. From this point of
view one might say that continuity is logical geometricity. See [Vic14] or [Vic07]
for a more detailed account of the ideas.

A significant problem in the approach is that the notions of Grothendieck
topos and classifying topos are parametrized by the base topos S, whose ob-
jects supply the infinities needed for the infinite disjunctions needed in geometric
logic, and for the infinite coproducts needed in the category of sheaves – for ex-
ample, to supply a natural numbers object. Technically, Grothendieck toposes
(with respect to S) are then elementary toposes equipped with bounded geo-
metric morphisms to S.

2

The aim of the AU programme is to develop a framework in which spaces,
maps and other constructions can be described in a way that does not depend
on any choice of base topos. In this “arithmetic” logic, disjunctions would all
be finite, but some countable disjunctions could be dealt with by existential
quantification over infinite objects (such as N) defined using the list objects of
AUs. Thus those infinite disjunctions become an intrinsic part of the logic –
albeit a logic with aspects of a type theory – rather than being extrinsically
defined by reference to a natural numbers object in a base topos.

Now suppose a geometric theory T can be expressed in this arithmetic way.
We write AU〈T〉 for its classifying AU, which stands in for the base-dependent
classifying topos S[T]. Models of T0 in an AU A correspond to AU-functors
from AU〈T0〉 to A (we shall return later to issues of strictness here), and an
AU-functor h : AU〈T1〉 → AU〈T0〉 will, by composition, transform models of
T0 into models of T1. It is fruitfully thought of as a point-free map between
“spaces of models” of the two theories. In particular, for any base topos S with
nno, h will transform the generic model of T0 in S[T0] into a model of T1 and
so induce a geometric morphism from S[T0] to S[T1]. Thus a result expressed
using AUs can provide a single statement of a topos result valid over any base
topos with nno. This is explored in greater depth in [Vic17].

It is already known that a range of results proved using geometric logic can
in fact be expressed in the setting of AUs. [MV12] develops some techniques
for dealing with the fact that AUs are not cartesian closed in general, nor even
Heyting pretoposes.

This would be fully predicative, in that it does not at any point rely on the
impredicative theory of elementary toposes (with their power objects). Instead
of a predicative geometric theory of Grothendieck toposes, parametrized by an
impredicative base elementary topos, we have a predicative arithmetic logic of
AUs that is itself internalizable in AUs, and so depends on a predicative ambient
logic. (This internalizability aspect will be seen in, e.g., Section 9, where we
give a concrete construction of the AU presented by a context.)

1.2 Outline of paper

Since the objects of our Con are to be presentations of AUs, our first task is
to show that we do indeed have a suitable notion of presentation of an AU,
analogous (at least in its universal characterization, though not in its concrete
construction) to the way a geometric theory presents its classifying topos.

Section 2, after some initial results about AUs, accomplishes this by show-
ing in detail the known result that there is a cartesian theory of AUs; specifi-
cally we use the approach via quasiequational theories [PV07]. (This algebraic
mode of presenting the AU is foundationally much more robust than that used
for classifying toposes. The route to sheaves uses presheaves to adjoin “arbi-
trary” colimits, and depends on a chosen base topos to explain what “arbitrary”
means.)

In principle, we could now use the algebraic generators and relations for AUs
as “arithmetic” theories for our generalized spaces. However, we find that the

3

universal algebra, with its fundamental reliance on equations, is too “strict”. It
is difficult to get beyond the semantics in which an algebraic expression for –
say – a pullback must, strictly, denote “the canonical” pullback.

In Section 3 we develop an alternative approach using sketches. Tradition-
ally in sketch theory models are defined non-strictly, so that the cone for a
pullback may denote any suitable pullback. However, it is convenient to con-
sider strict models at the same time and thus get a comparison between them.
Our general rule of thumb, more evident in [Vic17], is that syntax, and algebra
more generally, should be strict, while semantics is non-strict.

In Section 4 we gain control over this interaction by giving extension rules
for building a (finite) sketch out of nothing. The sketches thus obtained are
our AU-“contexts”, and have the important property (Section 4.2) that every
non-strict model of a context has a canonical strict isomorph. A side effect of
this restriction is that it is impossible for a context to stipulate equality between
objects, which in any case would be categorically unnatural.

At this point we have the object transformation from contexts to AUs, T 7→
AU〈T〉. Although we don’t care if different contexts map to isomorphic AUs,
we do want a full and faithful 2-functor: so our task is to define the 1-cells and
2-cells in Con so that they match exactly the (strict) AU-functors between the
AUs AU〈T〉.

Section 5 shows how the 1-cells between contexts are constructed. The
universal characterization of AU〈T1〉 tells that morphisms T0 → T1 interpret
the ingredients of T1 as structure in AU〈T0〉, so our task is to describe how that
structure is derived from T0. Only finitely much structure is needed to interpret
the finite sketch T1, and our notion of equivalence extension provides extension
rules that adjoin finite amounts of uniquely determined structure. Defining a
morphism (a context map) as a sketch homomorphism from T1 to an equivalence
extension of T0 provides enough morphisms to get a full functor to AUs. This
stage is a localization, forcing the equivalence extensions to be isomorphisms.

However, we we still require faithfulness. This requires us to compare in-
terpretations and discover equalities required by the algebraic rules of AUs.
Section 6 deals with this with its notion of object equality, inductive rules to
show when the same derivation has been applied twice over.

The next Section 7 contains miscellaneous results about context maps and
object equalities (as particular isomorphisms) in preparation for Section 8. Here
we put the constructions together, taking context maps modulo object equality,
to define our 2-category Con and explore its properties.

In Section 9 we finally prove the fullness and faithfulness (Theorem 51),
showing (Theorem 49) that AU〈T〉 is isomorphic to a hom-category of Con. We
finish the section with a proof that the entire construction can be internalized
in any AU, as anticipated by Joyal’s original work.

Note on notation: Our default order of composition of morphisms is dia-
grammatic. For applicational order we shall always use “◦”. For diagrammatic
order we shall occasionally show this explicitly using “;”.

4

2 Arithmetic universes

We follow [Mai10, MV12] in defining Joyal’s arithmetic universes (AUs) to be
list arithmetic pretoposes.

More explicitly, as a pretopos an AUA is a category equipped with finite lim-
its, stable finite disjoint coproducts and stable effective quotients of equivalence
relations. (For more detailed discussion, see, e.g., [Joh02, A1.4.8].)

In addition, it has, for each object A, a parametrized list object List(A). It
is equipped with morphisms

1
ε // List(A) oo

cons
A× List(A)

(where cons(a, x) = a : x is the list x with a appended at the front) and whenever
we have the solid part of the following diagram, there is a unique fillin of the
dotted parts to make a commutative diagram.

List(A)×B

recA(y,g)

��

(A× List(A))×Bcons×Boo

∼=
��

A× (List(A)×B)

A×recA(y,g)

��
B

〈ε,B〉

==

y
// Y oo

g
A× Y

(1)

In other words, this recursively defines r = recA(y, g) by

r([], b) = y(b)

r(a : x, b) = g(a, r(x, b))

Note that the use of B rather than 1 corresponds to this being a parameter-
ized list object – that is to say, it makes List(A) × B a list object in the slice
over B.

Remark 1 For future reference, we note the functoriality of List: If f : A0 →
A1, then there is a unique List(f) : List(A0) → List(A1) making the following
diagram commute.

List(A0) oo
cons0

List(f)

��

A0 × List(A0)

f×List(f)

��
1

ε0

77

ε1
// List(A1) oo

cons1
A1 × List(A1)

To see this, consider the action of A0 on List(A1) by

List(A1) A1 × List(A1)
cons1oo A0 × List(A1)

f×List(A1)oo .

5

We assume the AU structure specifies canonical choices of those colimits,
limits and list objects. This enables an approach using the universal algebra of
cartesian theories, with (partial) algebraic operators for the canonical choices.

We shall use the quasiequational form of cartesian theories [PV07]. Our
cartesian theory of AUs will use primitive operators as suggested by the fol-
lowing proposition, although that particular choice of primitives is not critical.
Doubtless there are more efficient characterizations, and the techniques in the
remainder of the present paper are intended to be equally applicable for other
choices.

Proposition 2 A category A is an arithmetic universe iff the following hold.

1. A has a terminal object and pullbacks (hence all finite limits).

2. A has an initial object and pushouts (hence all finite colimits), and they
are stable under pullback.

3. Balance (unique choice): if a morphism is both mono and epi, then it is
iso.

4. Exactness: any equivalence relation is effective (it is the kernel pair of its
own coequalizer).

5. A has parameterized list objects.

Proof. ⇒: (1), (3) and (4) are properties of any pretopos, as is the existence
of stable finite coproducts. (5) is a postulate for AUs.

Hence it remains to show the existence of stable coequalizers for all pairs
X ⇒ Y . First, because, as pretopos, A is regular, we can take the image R of
X in Y × Y , a relation on Y . Next, in a pretopos we can find the reflexive-
symmetric closure of R. Next, in an AU we can find the free category over
any directed graph, and in particular we can find the transitive closure of any
relation. We end up with the equivalence relation generated by R, and at each
step, we keep the same set of morphisms from Y that compose equally with the
two morphisms from X or R. Thus the coequalizer of the equivalence relation,
existing because of exactness of A as pretopos, also serves as a coequalizer for
X ⇒ Y .

Stability follows from the stability, in a pretopos, of image factorization and
of coequalizers of equivalence relations.
⇐: Two properties of pretoposes remain to be proved. First, for binary co-

product, the injections are monic and disjoint. Second, any epi is the coequalizer
of its kernel pair.

Consider a coproduct cocone (bottom row here) pulled back along one of the
injections. The two squares are pullbacks, ∆ is diagonal.

K
p2 //

p1

��

X

∆

cc

i1
��

L
q2oo

q1

��
X

i1
// X + Y Y

i2
oo

6

By stability the top row is a coproduct cocone, and so we can define a copairing
morphism f = [IdK , q2∆]: X → K and calculate that f = p−1

2 . Since the kernel
pair projection p2 is an isomorphism, it follows that i1 is monic.

We can now replace K and the projections by X and identity morphisms,
and the coproduct property of the top row can be rephrased as follows: every

triangle L
q2
// %%X // commutes.

Now consider ! : 0 → L. By stability of the initial object, we see that !
is mono. It is also epi. For suppose we have two morphisms f1, f2 : L → Z.
Consider the following diagram, where j1 and j2 are coproduct injections.

L
q2 //

f2
��

f1
��

X

j2
��

Z
j1 // Z +X

Both squares must commute, and we already know that j1 is monic, so f1 = f2.
By balance, it follows that L ∼= 0.

It remains to show that any epi e : X → Y is the coequalizer of its kernel
pair. In fact we show something slightly more general, without assuming e is
epi. Let K2 be its kernel pair, with projections p1 and p2, and let e′ : X → Y ′

be their coequalizer, with factorization e = e′e′′. Then we show that e′′ is mono.
(If e is epi then so too is e′′, so e′′ is an isomorphism by balance.)

In the following diagram, where the bottom row is pulled back along e, we
see that the top row is a split fork and hence a coequalizer.

K3

p13 //
p23
//

p12

��

K2

∆122

cc
p2 //

p1

��

X

∆

cc

e

��
K2

p1 //
p2
// X

e // Y

Now consider pulling back the factorization e′e′′:

K2
f ′
//

p1

��

X ′
f ′′
//

g

��

X

∆

hh

e

��
X

e′
// Y ′

e′′
// Y

By stability, we see that f ′ is a coequalizer of p13 and p23, and by comparing
with the split fork we find ∆f ′ = f ′′−1. We deduce that we can replace X ′ by
X, and have a pullback square

X

e′

��

X

e

��
Y ′

e′′
// Y

7

Now we can use the above pullback square, turned on its side, to pull back the
factorization e′e′′ along e′′.

L
p2

p1

��

X

〈e′,e′〉
>>

e′
// Y ′

e′′

��

Y ′

e′′

X

e′
>>

e
// Y

By stability (for e′ as coequalizer) we see that p2 is an isomorphism and so e′′

is monic.
It follows that the theory of AUs is quasiequational as in [PV07].

Definition 3 We present the quasiequational theory of AUs as follows. Some
of the operators and axioms are already set out explicitly in [PV07, MV12], and
we refer back to them for some of the details.

• (See [PV07, Example 4].) The ingredients of the theory of categories:
sorts obj, arr, total operators d, c : arr→ obj (domain and codomain) and
id : obj → arr (identity morphisms), and partial ◦ : arr2 → arr (composi-
tion, as binary operator, in applicational order).

• (See [PV07, Section 6].) Ingredients for terminal objects: a constant
1: obj and operator !1· : obj → arr (unique morphism to terminal) with
axioms

> � X
d(!1X) = X ∧ c(!1X) = 1

c(u) = 1 � u
u = !1d(u) (for uniqueness).

• (See [PV07, Section 6.1].) Ingredients for pullbacks:

First, operators p1
·,·, p

2
·,· : arr2 → arr for pullback projections. If u1 and u2

have a common codomain, then p1
u1,u2

and p2
u1,u2

are the two projections
from the pullback. We also write pu1,u2

for u1 ◦ p1
u1,u2

, the diagonal of the
pullback square, and Pu1,u2

for d(pu1,u2
), the pullback object itself.

Next, a pairing operator 〈·, ·〉·,· : arr4 → arr, with 〈v1, v2〉u1,u2
the fillin

to the pullback of u1 and u2 for a cone (v1, v2). It is defined iff the four
arrows make a commutative square in the obvious way, and it has the
expected domain and codomain and commutativities.

For uniqueness of fillins,

c(w) = Pu1,u2

�w,u1,u2
w =

〈
p1
u1,u2

◦ w, p2
u1,u2

◦ w
〉
u1,u2

.

8

• We shall also use some derived notation in a self-explanatory way for
products X ×Y = P!1X ,!

1
Y

. For example, the projections are piX,Y = pi
!1X ,!

1
Y

,

and the fillins require no subscripts.

Also, we shall write equ1,u2
: Eu1,u2

→ X for the equalizer of u1, u2 : X →
Y , defined in a canonical way. Specifically,

equ1,u2
, p1
〈id(X),u1〉,〈id(X),u2〉

(The two projections are equal.)

• Ingredients for initial objects and pushouts. They are dual to those for
terminal objects and pullbacks. (We can also express coproducts and co-
equalizer, by dualizing the treatment for products and equalizers.)

For initial objects we have a constant 0: obj, an operator !0· : obj → arr,
and a conditional equation that if d(u) = 0, then u = !0c(u).

Operators q1
·,·, q

2
·,· : arr2 → arr are for pushout injections. If u1 and u2

have a common domain, then q1
u1,u2

and q2
u1,u2

are the two injections to
the pushout. We also write qu1,u2

for q1
u1,u2

◦ u1, the diagonal of the
pushout square, and Qu1,u2

for c(qu1,u2
), the pushout object itself.

Next, a copairing operator [·, ·]·,· : arr4 → arr, with [v1, v2]u1,u2
the fillin

from the pushout of u1 and u2 for a cocone (v1, v2).

For uniqueness of fillins,

d(w) = Qu1,u2

�w,u1,u2
w =

[
w ◦ q1

u1,u2
, w ◦ q2

u1,u2

]
u1,u2

.

• Ingredients for stability of colimits under pullback.

For stability of the initial object, it suffices to say that any morphism with
0 for codomain is an isomorphism:

c(u) = 0 � u
!0d(u) ◦u = id(d(u)) .

For stability of pushouts, we have an operator stab·,·(·) : arr3 → arr, with
stabu1,u2

(w) defined iff c(w) = Qu1,u2
. To express its equations, we define

notation as shown in this diagram. Here the base diamond is a pushout,
and it is pulled back along w. The inner top diamond is also a pushout,
with fillin e, and the equations for the operator, when it is defined, are

9

those required to say that stabu1,u2(w) = e−1.

Pw,v
u′
2 //

u′
1

""

��

Pw,v2
v′2

))
##

��

Pw,v1 //

v′1

33

��

Qu′
1,u

′
2

e //

w

��

u2 //

v

,,
u1

$$

v2

**
v1

// Qu1,u2

(2)

v = qu1,u2

vi = qiu1,u2

v′i = p1
w,vi

u′i =
〈
p1
w,v, ui ◦ p2

w,v

〉
w,vi

e = [v′1, v
′
2]u′

1,u
′
2

• Ingredients for balance (unique choice).

We have an operator uc : arr → arr, with uc(u) defined if p1
u,u = p2

u,u

and q1
u,u = q2

u,u (i.e. u is monic and epi). When it is defined we have
uc(u) = u−1.

• Ingredients for exactness.

We have an operator ex : arr5 → arr, with ex(π1, π2, r, s, t) defined if 〈π1, π2〉
describes a binary relation, with r, s, t expressing reflexivity, symmetry and
transitivity.

K

piγ,γ (i=1,2)

��
X2

piπ2,π1 (i=1,2)
//

t
// X1

πi (i=1,2) //

e

66

π=〈π1,π2〉 ((

s

��
X0

r
oo

γ
// X

X0 ×X0

piX0,X0
(i=1,2)

OO

(3)

We require that π is monic; that X2 = Pπ2,π1
; that r, s, t compose correctly

with π1 and π2; that γ is the canonical coequalizer of π1 and π2; that K is
the kernel pair of γ; and that e is the fillin. Our characterizing equations
for ex are to say

ex(π1, π2, r, s, t) = e−1.

• Ingredients for list objects.

10

We have total operators ε, cons : obj→ arr for the principal structure, and
we also write List(A) for c(ε(A)).

For the fillins we have a partial operator rec·(·, ·) : obj× arr2 → arr.

Let us write, temporarily, the following. (See diagram (1).)

φA(y, g) , c(y) = c(g) ∧ d(g) = A× c(g)

ψAy,g(r) , y = r ◦ 〈B, ε〉
∧ g ◦ (r ×A) ◦ ∼= = r ◦ (B × cons(A))

where

B , d(y)

〈B, ε〉 ,
〈
id(B), ε(A) ◦ !1B

〉
∼= ,

〈
p1
A,ListA ◦ p1

A×ListA,B ,
〈
p2
A,ListA ◦ p1

A×ListA,B , p
2
A×ListA,B

〉〉
Here φ expresses the domain of definition of the fillin recA(y, g), and ψ is
the condition (on r) that it needs to satisfy. The axioms are now –

> � A
φA(ε(A), cons(A)) ∧ d(ε(A)) = 1

φA(y, g)
� A,y,g

ψAy,g(rec
A(y, g))

recA(y, g)↓ �
A,y,g

φA(y, g)

ψAy,g(r)
�A,y,g,r r = recA(y, g)

Definition 4 A strict AU-functor from one AU to another is a homomorphism
for the quasiequational theory of AUs. In other words, it is a functor that
preserves terminals, pullbacks, intials, pushouts and list objects strictly.

An AU-functor is a functor that preserves those constructions (and hence
also all finite limits and finite colimits) up to isomorphism.

In AUs we have a general ability to construct free algebras. For theories
given by finite product (FP) sketches this is described in some detail in [Mai05].
That paper also alludes to the ability to generalize to finite limit (FL) sketches,
in other words to cartesian theories. [PV07] gives a general account of the
cartesian construction, and it is valid in AUs.

3 AU-sketches

We shall be interested in generators and relations for AUs, but we shall generally
not express them directly using the quasiequational algebra. Instead, we borrow
the ideas of sketches.

In their most general form (in this section), they are equivalent in expressive
power to the quasiequational algebra. In one direction we make this explicit

11

by giving the equations that correspond to ingredients of a sketch. The other
direction comes down to the question of how to express the operators in the
quasiequational theory of AUs, and this is done using the equivalence exten-
sions of Section 5. The operators for pullbacks and their projections, and anal-
ogous operators for other universal constructions, can be captured using the
“universals” in a sketch. The operators for fillins, being the unique solutions to
certain equational constraints on edges, can be captured with edges constrained
by suitable commutativities.

Our main reason for using the sketches is that they give us better control of
the important issue of strictness of models (Section 3.1). In Section 4 we shall
restrict our attentions from general sketches to “contexts”, finite sketches for
which non-strict models have canonical strict isomorphs.

Definition 5 An AU-sketch (or just sketch) is a structure with sorts and op-
erations as shown in this diagram.

Upb

Γ2

��
Γ1

��

UlistΛ2oo Λ0 //

e

��
c

��

U1

t
��

G2
di (i=0,1,2) // G1

di (i=0,1) // G0

s
oo

Upo

Γ′
1

OO

Γ′
2

OO

U0

i

OO

They are required to satisfy the following equations:

sd0 = sd1 = Id

d0d1 = d2d0 d0d0 = d1d0 d2d1 = d1d1

Γ1d1 = Γ2d1

Γ′1d1 = Γ′2d1

Λ2Γ1d1d1 = Λ0t

ed0 = Λ0t cd0 = Λ2Γ1d0d0

ed1 = cd1 = Λ2Γ2d0d1

If T1 and T2 are sketches, then a homomorphism of sketches from T1 to T2,
written f : T1lT2, is defined in the obvious way – a family of carrier functions,
one for each sort, preserving the operators.

However, we shall consider two sketch homomorphisms to be equal if they
agree merely on G0 and G1.

We write Skl for the category of sketches and sketch homomorphisms.

The structures are a formalization of the sketches well known from e.g.
[BW84], but adapted for AUs. We shall describe the parts in more detail be-
low, but as a preliminary let us introduce some language that indicates the

12

connection. The elements of G0, G1 and G2 are referred to as nodes, edges and
commutativities.

The elements of the other sorts are universals, and specify universal prop-
erties of various kinds for their subjects. For example, an element of Upb is a
pullback universal and corresponds to a cone in a finite limit sketch. Its sub-
jects are the pullback node and the three projection edges of the pullback cone.
Similarly, an element of Ulist is a list universal. Its subjects are the list object
and the two structure maps, for ε and cons. It will also have indirect subjects,
since it needs terminal and pullback universals to express the domains of the
structure maps.

Any sketch can be used as a system of generators (the nodes and edges) and
relations to present an AU. We shall list these implied relations in the general
description below. Note that in each case the equations constraining sketches
ensure that all the terms used in the relations are defined.

G0, s,G1,d0,d1 form the graph (which we take to be reflexive) of nodes and
edges, declaring some objects and arrows and specifying their identities, domains
and codomains. The elements of G0 and G1 are taken as generators of sorts obj
and arr. The implied relations are –

id(X) = s(X) d(u) = d0(u) c(u) = d1(u)

G2, with d0, d2 and d1, comprises the commutativities, stipulating commu-

tative triangles
d0

//
•
d1

d2

// . Given a triangle of edges X
u
//

w

%%
Y

v
//Z , we

shall write uv ∼XY Z w for the existence of a commutativity with that triangle.
(Note the diagrammatic order.) We shall also write u ∼XY u′ for a unary com-
mutativity, meaning a commutativity s(X)u ∼XXY u′. We shall omit the node
subscripts where convenient.

Equationally, each commutativity ω corresponds to a relation

d2(ω) ◦ d0(ω) = d1(ω).

U1 and Upb, using t,Γ1,Γ2, are universals for finite limits, here terminal
objects or pullbacks. For each pullback universal (in Upb) we describe the cone
by two commutative triangles (Γ1,Γ2), the two halves of the pullback square.
For universals ω ∈ U1 or ω ∈ Upb, the implied relations are –

t(ω) = 1

d0(Γλ(ω)) = pλd2(Γ1(ω)),d2(Γ2(ω)) (λ = 1, 2)

U0, i,Upo,Γ′1,Γ′2 are similar, and dual, for finite colimits.

i(ω) = 0

d2(Γ′λ(ω)) = qλd0(Γ′1(ω)),d0(Γ′2(ω)) (λ = 1, 2)

13

Ulist, for list universals, is novel, but works on similar principles. For a list
universal ω ∈ Ulist, e(ω) and c(ω) supply the primary structure morphisms ε
and cons for List(A(ω)), where A(ω) = d1(d0(Γ1(Λ2(ω)))). The domains of the
structure morphisms (1 and A(ω) × List(A(ω))) are limits, and Λ0,Λ2 supply
universals to stipulate them. Note that, since we need a terminal anyway, we
might as well reuse it as the terminal needed for a product as special case of
pullback. The implied relations, which are in addition to those already implied
for Λ0(ω) and Λ2(ω), are –

ε(A(ω)) = e(ω) cons(A(ω)) = c(ω)

3.1 Models

Definition 6 Let T be a sketch and A an AU.
A strict model of T in A is an interpretation of nodes and edges in T as

objects (carriers) and morphisms (operations) in A, in a way that respects all
the implied relations of the sketch strictly, i.e. up to equality.

A model of T in A is an interpretation of nodes and edges in T as objects
and morphisms in A, in a way that respects up to equality all the domains,
codomains, identities and commutativities of the sketch, and up to isomorphism
all the universals. In other words, the subjects of each universal have to have the
appropriate universal property, but do not have to be the canonical construction.

A homomorphism between models of T in an AU A comprises a carrier mor-
phism for each node, together commuting with the operations in the appropriate
way. This can be conveniently expressed as a model of T in the comma category
A ↓ A, also an AU. (See [MV12] for results concerning these comma categories
and their AU structure, and also for the related pseudopullback A ↓∼= A.)

We write T-Mod(A) for the category of models of T in A, and T-Mods(A)
for the full subcategory of strict models.

If h : A → B is an AU-functor, then we obtain a functor

T-Mod(h) : T-Mod(A)→ T-Mod(B).

If h is a strict AU-functor, then T-Mod(h) preserves strictness of models.

As we remarked earlier, any sketch T can be treated as generators and re-
lations for presenting an arithmetic universe, using the fact that the theory of
AUs is cartesian (see [PV07]). We shall write this as AU〈T〉. It is the AU
version of the notion of classifying category, and we shall call it the classifying
AU for T. It is the analogue of the classifying topos when geometric logic is
replaced by an arithmetic form.

The injection of generators provides a strict generic model MG of T in
AU〈T〉, and then the universal property is that any strict model M of T in
an AU A extends uniquely to a strict AU-functor h : AU〈T〉 → A for which
T-Mod(h) transforms MG to M – up to equality. (This is analogous to the
universal property for classifying toposes, with strict AU-functors correspond-
ing to the inverse image parts of geometric morphisms, but note that the AU
property is stricter.)

14

Thus strict models of T are in bijection with strict AU-functors out of
AU〈T〉. We have already seen that a non-strict AU functor out of AU〈T〉
will also give rise to a non-strict model of T, the non-strict image of the generic
model. However, the universal property does not allow us to recover the non-
strict AU-functor from the model. Hence the universal algebra is less precise
for non-strict models and AU-functors. In Section 4 we restrict the notion of
sketch in a way that gives better control over the non-strict models.

Definition 7 Let f : T1 lT0 be a homomorphism of sketches,1 and M a model
of T0 in A. Then the f -reduct of M , written M |f , is the model of T1 whose
carriers and operations are got by taking those for M corresponding by f .

It is a model because the sketch homomorphism transforms all the implied
relations of T1 into implied relations of T0.

Model reduction is functorial with respect to model homomorphisms, and so
the assignment T 7→ T-Mod(A) is the object part of a contravariant category-
valued functor (−)-Mod(A) on Skl, with sketch homomorphisms assigned to
model reduction.

Model reduction preserves strictness.
By taking the f -reduct of the generic model in AU〈T0〉, we get a strict model

of T1 in AU〈T0〉 and hence a strict AU-functor AU〈f〉 : AU〈T1〉 → AU〈T0〉.

3.2 Examples of sketches

Here are some examples of sketches. Again, the notation is adapted to thinking
of the sketch as prescribing a class of models in each AU.

1. The empty sketch 11 has a unique model in any AU.

2. The sketch O has a single node and its identity edge and nothing else. Its
models in A are the objects of A.

3. Let T and U be two sketches. Their disjoint union is called the product
sketch T × U. Its models are pairs of models of T and U. We also use
notation such as T2 for T× T.

4. Let T be a sketch. The hom sketch T→ is made as follows. First, take two
disjoint copies of T as in T2, distinguished by subscripts 0 and 1. These
give two sketch homomorphisms i0, i1 : T → T→. Next, for each node X
of T, adjoin an edge θX : X0 → X1; and, for each edge u : X → Y of T,
adjoin an edge θu : X0 → Y1 together with two commutativities to make
a commutative diagram

X0
θX

•
//

θu

!!
u0

��

X1

u1

��
Y0

θY

• // Y1

1 Why this order of 1 and 0? Because in Section 7 we shall think of f as a map from the
space of models of T0 to that of T1, acting by model reduction.

15

Then a model of T→ comprises a pair M0,M1 of models of T, together
with a homomorphism θ : M0 →M1.

The assignment T 7→ T→ extends functorially to sketch homomorphisms,
and then i0 and i1 become natural transformations.

5. We shall also write T→→ for the theory of composable pairs of homomor-
phisms of T-models, and analogously for greater numbers of arrows. In
fact, for any finite category C we can write TC for the theory of C-diagrams
of models of T. (Actually, finiteness is not important here, as we have not
set any finiteness conditions on the sketch T. But it will be important for
contexts.)

The existence of T→ enables us to define 2-cells in Skl. If f0, f1 : T1 l T0,
then a 2-cell from f0 to f1 is a sketch homomorphism α : T→1 l T0 such that
iλα = fλ (λ = 0, 1). We also say that α is between T0 and T1.

2-cells cannot yet be composed, either vertically or horizontally, because
edges cannot be composed in sketches. However, we do have whiskering on
both sides, using either αf or f→α, and it has all relevant associativities.

We can also take reducts along 2-cells. If M is a model of T0 in A, then
the homomorphism M |γ : M |f0 → M |f1 uses the carrier functions of T→1 as
interpreted in T0.

4 Extensions, contexts

In this section we define a class of sketches, the contexts, for which every non-
strict model can be made strict in a canonical way.

What makes this non-trivial is that in general, strictness has the ability to
assert equalities between sorts by making a single node X the subject of two
different universals, for example making it both A × B and ListC. In a non-
strict model this just requires A×B ∼= ListC, whereas strictness would require
equality; and in an AU it can easily happen that the first holds but not the
second. Such equalities are not really the concern of category theory, so better
would be to have universals specifying two nodes X1 and X2 as A×B and ListC
respectively, and then to specify an isomorphism X1

∼= X2. Strict models of
that are unproblematic.

To enforce the latter kind we shall use each universal with a simple defini-
tional effect, defining its subjects fresh from some other ingredients (nodes and
edges) defined previously. This leads to our notion of extension of sketches. To
prepare for this, we introduce a notion of protoextension, in which the syntactic
notion of freshness is represented using categorical coproducts.

We say that a set is strongly finite if it is isomorphic to a finite cardinal
{1, . . . , n} for some n ∈ N. Equivalently, it is Kuratowski finite, has decidable
equality, and can be equipped with a decidable total order.

16

Definition 8 A sketch homomorphism i′ : UlU′ is a protoextension if for each
sketch sort Ξ, we have that U′Ξ can be expressed as a coproduct UΞ + δΞ, with
i′Ξ a coproduct injection and δΞ strongly finite.

Proposition 9 Let i′ : U l U′ be a sketch homomorphism. Then the following
are equivalent.

1. i′ is a protoextension.

2. i′ is a pushout of some strongly finite sketch inclusion, by which we mean
a sketch monomorphism i : T l T′ in which T and T′ are strongly finite
(i.e. their carriers are).

Proof. (2) ⇒ (1): Let i : T l T′ be a strongly finite sketch inclusion. For each
sketch sort Ξ, we can write T′Ξ as a coproduct T′Ξ = TΞ+δΞ. (Informally in such
a situation, we shall often write T′ as T + δT, although this is not a coproduct
of sketches. δT is not a sketch in its own right, as some of its structure may lie
in T.)

Now let f : TlU be an arbitrary sketch homomorphism. Then the pushout
i′ : Ul U′ of i along f can be constructed as follows.

For each sketch sort Ξ, we let U′Ξ = UΞ + δΞ. For elements of UΞ, their
structure is determined as in U. Now suppose ω ∈ δΞ. In T+δT, each structural
element of ω (i.e. the result of applying a sketch operator) is in either T or δT.
If the latter, then we keep it there in U′. If the former, then we apply f to get
it in U. We obtain a commutative diagram of sketches that is readily verified
to be a pushout:

U + δT T + δT
f+δToo

U

i′

OO

T
f

oo

i

OO

From the construction, i′ is clearly a protoextension.
(1) ⇒ (2): Use the elements of the δΞs as generators for a sketch T′, with

relations to say that the sketch operations in U′ are preserved insofar as they
stay in the δΞs. Then T′ is strongly finite, and the inclusion of the δΞs in U′
induces a sketch homomorphism f ′ : T′ lU′.

Let T be the pullback of i′ and f ′, with projections i and f . i is monic,
because i′ is. Also, in a coproduct the images of the injections are decidable
subobjects, and it follows that the carriers of T are decidable subobjects of those
of T′, and so T too is strongly finite.

Applying the construction of (2) ⇒ (1), we recover i′.
It was already clear from the definition that protoextensions are closed under

composition. From Proposition 9 it is also clear that protoextensions i′ are
closed under pushout along any sketch homomorphism g. The pushout is called
the reindexing of i′ along g, and written g(i′).

17

4.1 Extensions: the definition

In the following definition, central to the whole paper, we restrict our proto-
extensions by restricting the strongly finite sketch inclusions i of Proposition 9.
First we define a finite family of inclusions i : T l T + δT that are generic for
simple extensions, and then a general extension (written ⊂) is a composite of
simple extensions.

For each kind of simple extension, using an inclusion i, the sketch homomor-
phism f : TlU that we reindex along can be understood as a data configuration
in U, some tuple of elements satisfying some equations. Thus each kind of simple
extension can be understood as a sketch transformation that takes data (given
by f) and delivers a delta, according to Proposition 9.

Since any sketch homomorphism will transform extension data to extension
data, we see that reindexing (as sketch pushout) is got by applying the same
extension to the transformed data. For an extension c : T1 ⊂ T′1, we shall
typically write a reindexing square as

T′0 T′1
εoo

T0

f(c)

OO

T1

c

OO

f
oo

. (4)

Definition 10 A simple extension is a proto-extension got as a pushout of one
of the following strongly finite sketch inclusions i : Tl T + δT. Where we don’t
specify δΞ, it is empty.

1. (Adding a new primitive node) No data (i.e. T is 11). Deltas:

δG0 = {∗}
δG1 = {s(∗)}

2. (A simple functional extension, by a new primitive edge) Data: (X,Y) ∈
G0 ×G0. Delta:

δG1 = {X //Y }.

In other words δG1 = 1 = {∗},d0(∗) = X, d1(∗) = Y . We shall use
similar informal notation in the other cases. Note that the “delta” edges
are shown dotted.

3. (Adding a commutativity) Data:
u
//
w

((
v
// . Delta:

δG2 = {
u
//

w

•

v
// } (uv ∼ w).

In other words δG2 = {∗} with d0(∗) = u, d2(∗) = v, d1(∗) = w.

18

4. (Adding a terminal) No data. Deltas:

δU1 = {∗}
δG0 = {t(∗)}
δG1 = {s(t(∗))}

Adding an initial object is similar.

5. (Adding a pullback) Data:
u1 // u2oo . Deltas:

δUpb =

P

p2

•
//

p

��
p1

��

u2

��
u1

• //

δG2 = {p1u1 ∼ p, p2u2 ∼ p}
δG1 = {p1, p, p2, s(P)}
δG0 = {P}

Adding a pushout is similar.

6. (Adding a list object) Data: A ∈ G0. Deltas:

δUlist = {∗ = (T
ε //L P

consoo)}
δU1 = {Λ0(∗) = T}

δUpb =

Λ2(∗) =

P
p2

•
//

p

��
p1

��

L

!L
��

A
!A

• // T

δG2 = {p1!A ∼ p, p2!L ∼ p}
δG1 = {ε, cons, p1, p, p2, !A, !L, s(T), s(L), s(P)}
δG0 = {T, L, P}

An extension of sketches is a proto-extension that can be expressed as a finite
composite of simple extensions. We write T1 ⊂ T2.

An AU-context is an extension of the empty sketch 11.

Proposition 11 Let c : T ⊂ T′ be an extension of sketches. Then for each node
or edge α in T′ that is not in T, we can construct an expression wα(−→n ,−→e) in
the quasiequational theory of AUs with the following properties.

1. Its free variables −→n ,−→e are in bijection with some (finitely many) of the
nodes and edges of T, and the primitive nodes and edges adjoined in the
extension.

19

2. Its definedness can be deduced from the domains and codomains of edges
as specified in T′. (Recall that the quasiequational theory has partial oper-
ators.)

3. Let M be a strict model of T′. Then the interpretation of α in M can be
found by evaluating wα on the interpretations of −→n and −→e .

Proof. By inspecting the cases, we see that for a simple extension each fresh
node or edge can be described uniquely in one of the ways listed in the following
tables. In each case we also give the corresponding wα in the third column. The
free variables (e.g. u1 and u2 for the pullback) correspond to the components
of the data for that extension, and the domains and codomains implied by the
data suffice to guarantee that wα is defined. The definition of strict model then
tells us that the interpretation of α is got by evaluating wα.

For nodes: the node is primitive or takes one of the forms

t($) ($ ∈ U1) 1
i($) ($ ∈ U0) 0
d0d1Γ1($) ($ ∈ Upb) Pu1,u2

d1d1Γ′1($) ($ ∈ Upo) Qu1,u2

d1e($) ($ ∈ Ulist) List(A)

For edges: the edge is primitive or takes one of the forms

s(X) (X ∈ G0) id(X)
d1Γ1($) or d0Γi($) ($ ∈ Upb) pu1,u2

or piu1,u2

d1Γ′1($) or d2Γ′i($) ($ ∈ Upo) qu1,u2 or qiu1,u2

e($), c($) ($ ∈ Ulist) ε(A), cons(A)

d2Γ1Λ2($) or d2Γ2Λ2($) ($ ∈ Ulist) !1(A) or !1(List(A))

These facts are preserved by subsequent simple extensions, since those forms
are only introduced for fresh nodes or edges. It follows that the facts remain
true for the composite extension.

We can now apply an induction on the number of composed simple exten-
sions, and use the equations for strict models that are imposed by the sketch
structure. We look explicitly at universals for pullbacks and list. Other situa-
tions are similar or easier.

First, consider a simple extension in the form of a pullback universal $,

defined on the configuration
u1 // u2oo . The relations for such a universal

tell us that the fresh edge d0Γ1($) has to be interpreted as p1
u1,u2

, and we use
induction to find the expressions for u1 and u2. (The base case is if they are
primitive or in T.) The other fresh edges and the fresh node are dealt with in a
similar way. Note that if $ = Λ2($′) for some $′ ∈ Ulist, then the subjects of
$ are treated in the same way, but ui = d2(Γi($)) gets its expression from $′.

Now consider a simple extension in the form of a list universal $, on object
A. All the fresh nodes and edges have expressions in terms of A. For e($)
and c($) and their codomain this is clear. Next, from the terminal universal

20

Λ0($) we have t(Λ0($)) = 1. Because this appears as a vertex in the pullback
square Λ2($), it follows from the AU axioms that d2(Γ1(Λ2($))) = !1A and
d2(Γ2(Λ2($))) = !1List(A). Since these are u1 and u2 in the treatment of the
pullback universals, it only remains to deal with the easy case of the identity
morphisms.

Note that a primitive edge can acquire equality with an AU-expression by
subsequently added commutativities. We shall use this later for introducing AU
operators that have not been mentioned so far in extensions.

4.2 Strictness results

The reason for introducing extensions was for an important property that non-
strict interpretations can be reinterpreted strictly in a canonical way. The follow-
ing definition and lemma will make this precise, in a generality whose usefulness
becomes more apparent in [Vic17].

Definition 12 Let T ⊂ T′ be a sketch extension. A model of T′ is strict for
the extension if, for each universal, each subject node or edge α is equal to the
result of its expression wα.

Note that a model of T′ is strict in its own right iff it is strict for the extension
and its T-reduct is strict.

Lemma 13 Suppose, as in the diagram below, an extension T1 ⊂ T′1 is rein-
dexed along a sketch homomorphism T1 lT0. Suppose also that in some AU A
we have models M0 and M ′1 of T0 and T′1, with an isomorphism φ : M0|T1

∼=
M ′1|T1.

M ′0 T′0 T′1
εoo M ′0|T′1

φ′

∼=
// M ′1

M ′0|T0 M0 T0

f(⊂)

OO

T1
f
oo

⊂

OO

M0|T1
φ

∼=
// M ′1|T1

Then there is a unique model M ′0 of T′0 and isomorphism φ′ : M ′0|T′1 ∼= M ′1
such that

1. M ′0|T0 = M0,

2. M ′0 is strict for the extension T0 ⊂ T′0,

3. φ′|T1 = φ, and

4. φ′ is equality on all the primitive nodes for the extension T1 ⊂ T′1.

21

Proof. It suffices to cover the cases for a simple extension T1 ⊂ T′1.
If the extension adjoins a primitive node X, then we can and must take its

carrier in M ′0 to be equal to its carrier in M ′1, and the carrier function in φ′ to
be the identity.

Suppose the extension adjoins a primitive edge u : X → Y . Then φ′ must
equal φ, and to preserve the homomorphism property we can and must define
the operation for u in M ′0 to be φ(X)M ′1(u)φ−1(Y), using the operation in M ′1.

If the extension adjoins a new commutativity, then the morphism equation
already holds in M ′1|T1 and hence in M0, so we can and must take M ′0 and φ′

to be given by the same data as M0 and φ.
It remains only to examine the case where the extension adds a universal.

We consider the case of a list universal, as the others are similar (and easier).
M ′0 has to interpret the new nodes and edges in the canonical way. In particular,
T , L and P are 1, List(A) and A × List(A). Then the universal properties (of
terminal object, list object and binary product) give canonical isomorphisms
between those canonical interpretations in M ′0 and the corresponding interpre-
tations (possibly non-canonical) in M ′1. The corresponding carrier morphisms
of φ′ can be defined to be those canonical isomorphisms, and indeed by the
homomorphism properties and uniqueness of fillins they must be so defined.

By considering the case where T0 = T1 = 11, we obtain –

Corollary 14 Let T be a context, A an AU, and M1 a model of T. Then there
is a unique isomorphism φ : M0

∼= M1 such that M0 is a strict model of T and
φ is an identity on each primitive node.

We call M0 the canonical strict isomorph of M1.
It follows that if T is a context, and h : A → B is a non-strict AU-functor,

then we get a functor T-Mods(h) : T-Mods(A)→ T-Mods(B). Given a strict
model M in A, composing with h gives a non-strict model in B, and we can then
take its canonical strict isomorph. An important example, developed in [Vic17],
is when h is the inverse image part of a geometric morphism between two toposes
with natural number objects.

4.3 Examples of contexts

Here are some examples of contexts. (cf. Section 3.2.)

1. The sketches 11 and O are both contexts.

2. If T0 and T1 are both contexts, then so is T0×T1. To be specific, we shall
adjoin the ingredients of T0 first, so that T0 ⊂ T0 × T1 is an extension
and for T1 we just have a homomorphism T1 l T0 × T1.

3. If T is a context, then so is T→. We take it that i0 : T ⊂ T→ is the
extension.

Similarly, T→→ is a context, with extensions T i0

⊂
//T→ i01

⊂
//T→→ , where

i01 is the reindexing i1(i0).

22

More generally, for any strongly finite category C we have that TC can be
made a context. The order of simple extensions for it will depend on a
total order given to each finite set involved.

4. If T is a context, then it has an extension Tns whose strict models are
the non-strict models of T. For each non-primitive node X, we adjoin a
primitive node X ′ together with an isomorphism X ′ ∼= X.

Note that we do need T to be a context here, not an arbitrary sketch. A
model of Tns is actually an isomorphic pair of two models, one strict and
the other not. We need Corollary 14 to get this pair from any non-strict
model.

5. Without going into details, there is a context R for the theory of Dedekind
sections. It is defined as outlined in [MV12]. First, the natural numbers
N can be defined as List(1). Their (decidable) order and arithmetic can
be defined using the universal property. Then the rationals Q can be
defined by standard techniques, together with their decidable order and
arithmetic. Next, two nodes L and R are adjoined, with edges to Q and
conditions to make them monic. Finally we add axioms to make (L,R) a
Dedekind section.

6. For various kinds of presentation of locales, there are context extensions
T0 ⊂ T1 where a model of T0 is a presentation, and one of T1 is a presen-
tation equipped with a point of the corresponding locale.

The same principle also applies in formal topology, with an inductively
generated formal topology understood as a presentation.

For example, suppose we take the formal topologies as defined in [CSSV03].
First we declare the base B, a poset. Next, the cover C0 can be adjoined
as a node, with an edge to B. A node C is adjoined for a disjoint union
of all the covering sets, with an edge to C0. The conditions on these can
also be expressed using AU structure in a context T0. For T1 we adjoin
to T0 a monic into B, together with conditions to make it a formal point.

Note that we have not attempted here to extract the full cover C.

5 Equivalence extensions

An equivalence extension is an extension, but one in which the simple extension
steps are grouped together in a way that guarantees that the fresh ingredients
(nodes, edges, properties, equations) introduced in the extension are all already
known to exist uniquely. The most intricate parts are for the edges. In an
ordinary extension, an unconstrained fresh edge can subsequently be specified
uniquely up to equality by commutativities (equations). In an equivalence ex-
tension when we introduce an edge we must also document the justification for
its existence (as a composite or a fillin; universal structure edges such as limit
projections are introduced along with the universal objects). In addition, we

23

must also include steps for proving equations between edges – this is to provide
images for commutativities under a sketch morphism. These steps essentially
codify the rules for congruences in universal algebra. (The reason this is not
needed for nodes is that essentially algebraic theories of categories do not nor-
mally have any axioms to imply equations between objects.)

The game now is to describe simple equivalence extensions sufficient to gen-
erate all the operators of the the theory of AUs and all the arrow equalities
generated by the axioms. (For object equalities see Section 6.)

Definition 15 A simple equivalence extension is a proto-extension of one of
the following forms (or rules). Note that each is in fact an extension.

In each case, every node or edge introduced will, in any strict model, become
equal to a certain AU expression in terms of the data. For nodes, which are all
introduced by simple extensions of universal kind, this has already been covered
in Definition 10. For edges the expressions are given in δG1. Those expressions
do indeed satisfy the commutativities listed in δG2. On the other hand, any
edges satisfying them will be equal to the expressions by the AU equations for
uniqueness of fillins.

First, there are various rules associated with morphisms and their composi-
tion. They are summarized in this table.

Data Delta

u
//

v
//

u
//
•
v◦u

v
// composition

X
u
//Y X

s(X)
//

u

• &&
X

u
//Y left unit law

X
u
//Y X

u
//

u

• %%
Y

s(Y)
//Y right unit law

//
•

==
•

 //
•

 // 66
•

%%// left associativity

//
•

==

•

==//
•

 // //
•

88 ((right associativity

Second, for each kind of universal (terminal, pullback, initial, pushout, list),
we have three rules. The first will be the simple extension that introduces the
corresponding node, the second will introduce fillins by adjoining a primitive
edge with the appropriate equations, and the third will introduce equations for
the uniqueness of fillins.

We illustrate this for pullbacks and for list objects. The rules for terminals,
initials and pushouts follow the same principles as for pullbacks.

For pullbacks:

• A simple extension for a pullback universal is also an equivalence exten-
sion.

24

• Suppose we have a pullback universal ω ∈ Upb, and another cone given as
∆1,∆2 ∈ G2, with

d2(∆i) = d2(Γi(ω)) = ui

d1(∆1) = d1(∆2) = v.

ω is P

p1

��

p

��

p2

•
//

u2

��
u1

• //

∆1,∆2 are

v1

��

v

��

v2

•
//

u2

��
u1

• //

Then our equivalence extension has

δG1 = {w = 〈v1, v2〉u1,u2
}

δG2 = {wp1 ∼ v1, wp
2 ∼ v2}.

• Suppose we have a pullback universal ω ∈ Upb as above, and edges v1, v2, w, w
′

with commutativities wp1 ∼ v1, wp
2 ∼ v2, w

′p1 ∼ v1, w
′p2 ∼ v2. Then our

equivalence extension has

δG2 = {w ∼ w′}.

For list objects:

• A simple extension for a list universal is also an equivalence extension.

• Suppose we have a list universal ω ∈ Ulist with 1
ε //L A× Lconsoo .

Suppose (see diagram (1)) we also have nodes B, Y , pullback universals
to specify nodes for L × B, (A × L) × B, A × (L × B) and A × Y , edges

B
y //Y A× Y

goo , and edges for
〈
!1B ε,B

〉
, cons×B and the asso-

ciativity isomorphism, together with auxiliary edges and commutativities
needed to characterize them.

Using the notation of the following diagrams, our equivalence extension
has δG1 = {r, r′, r′′, g′, g′′}, where r = recA(y, g), and δG2 comprises the
seven commutativities shown. The second diagram is what is needed to
specify that r′ = A× r.

L×B

r

•
��

(A× L)×Bcons×Boo

g′′

•
��

∼=
��

A× (L×B)

g′

•ww
r′=A×r
��

B

〈!1B ε,B〉
DD

y

• // Y A× Y
g

oo

A× (L×B)
p2 //

r′′

&&
r′

��

p1

zz

L×B

r•
��

A A× Y
p1

•oo
p2

• // Y

(5)

25

• Suppose, given the configuration for the above fillin, we have two solutions
with fillins r1, r2. Then our equivalence extension has

δG2 = {r1 ∼ r2}.

(Equivalence of the other edges can then be deduced.)

Finally, we have rules for balance, stability and exactness. In each case,
the given configuration contains a particular edge u : X → Y for which the
equivalence extension adjoins an inverse. Hence

δG1 = {u−1}, δG2 = {uu−1 ∼ s(X), u−1u ∼ s(Y)}.

• Rule for balance. Suppose we are given pullback and pushout universals
ω ∈ Upb, ω′ ∈ Upo, expressing the kernel pair and cokernel pair for the
same edge u : X → Y .

ω has Pu,u
p2u,u //

p1u,u
��

X

u

��
X

u
// Y

, ω′ has X
u //

u

��

Y

q2u,u
��

Y
q1u,u

// Qu,u

.

Suppose we also have commutativities p1
u,u ∼ p2

u,u (u is monic) and q1
u,u ∼

q2
u,u (u is epi). Then our equivalence extension has δG1 = {u−1 = uc(u)}.

• Rule for stability of initial objects. Suppose we are given a universal ω ∈
U0 for an initial object 0, and an edge u : X → 0. Then δG1 = {u−1 =
!0X}.

• Rule for stability of pushouts. Suppose we have data as outlined in dia-
gram (2). This will include two pushout universals (bottom square and
inner square on top), three pullback universals for vertical squares (front
and right faces, and also one stretching diagonally over v), the extra edge
e, and other diagonal edges where necessary. Then the equivalence exten-
sion inverts e, δG1 = {e−1 = stabu1,u2(w)}.

• Rule for exactness. Suppose we have data as outlined in diagram (3). This
will include pullback universals to specify that X0×X0, X2 and K are the
appropriate limits, pushout universals to specify that γ is a coequalizer, and
commutativities to specify that π and e are fillins. Then the equivalence
extension inverts e, δG1 = {e−1 = ex(π1, π2, r, s, t)}.

An equivalence extension, written T b T′, is a proto-extension that can be
expressed as a composite of finitely many simple equivalence extensions.

Note also that if T b T′ is an equivalence extension, then so too is its
reindexing along any sketch homomorphism.

26

Definition 16 If ei : T b Ti (i = 1, 2) are two equivalence extensions of a
context T, then e2 is a refinement of e1, by ε, if ε : T1 → T2 is a homomorphism
such that e1ε = e2.

For any two equivalence extensions ei of T, we can reindex e2 along e1 (or
vice versa), compose, and thereby get a common refinement of e1 and e2.

Equality between morphisms u, u′ : X → Y is expressed using unary com-
mutativities u ∼ u′, defined as s(X)u ∼ u′. Since the rules used in equivalence
extensions must be capable of supplying proofs of equality, we verify that the
standard rules for equality can be derived as composite rules of equivalence ex-
tensions. Given these, it will be clear that all proofs of equality of morphisms
in the essentially algebraic theory of categories can be represented by commu-
tativities in a suitable equivalence extension.

Proposition 17 Let T be a sketch. In the following results we are interested
in properties holding in T, and properties derivable from them in the sense that
they hold in some equivalence extension of T.

1. For any two nodes X and Y , ∼XY is an equivalence relation on the edges
between them. This is in the sense that for each of the three properties
for an equivalence relation, if the hypothesis holds in some sketch then the
conclusion holds in some equivalence extension.

2. If u, u′ are two edges from X to Y , then the commutativities s(X)u ∼ u′

and u′s(Y) ∼ u are mutually derivable.

It follows that we have four mutually derivable characterizations of u ∼ u′,
namely s(X)u ∼ u′, s(X)u′ ∼ u, us(Y) ∼ u′ and u′s(Y) ∼ u.

3. Suppose we have u ∼XY u′ and v ∼Y Z v′, and also w,w′ : X → Z with
uv ∼ w. Then the commutativities u′v′ ∼ w′ and w ∼ w′ are mutually
derivable.

From left to right is congruence. From right to left (with u′ = u and
v′ = v) shows that the set of composites uv is the entire congruence class
of w.

Proof. (1) Reflexivity is immediate from the left unit law.
For symmetry, suppose u ∼XY u′. By the left unit law we derive

X
s(X)

•
//

s(X)

88

u

•
99X

s(X) //

u′
•

!!
X

u //Y ,

and then right associativity gives s(X)u′ ∼ u.
For transitivity, suppose u ∼ u′ ∼ u′′. By the left unit law we get

X
s(X)

• //

s(X)
•

>>

u′′

%%
X

s(X)
//

u′
• &&
X

u
//Y ,

27

and then s(X)u ∼ u′′ is derived by left associativity.
(2) The two directions follow by applying associative laws to the two dia-

grams

X
s(X)

• //

u′•
>>

u

%%
X

u
//

u
• &&
X

s(Y)
//Y and X

s(X)

•
//

u′

88

u′

•
99X

u′
//

u•
!!

X
s(Y) //Y

(3) First, consider the case when v = v′, and the diagram

X
s(X) //

u′

•
88X

u
//

w

• %%
Y

v
//Z .

The two associativities give the two directions we want. A similar proof, but
dual (using (2)), deals with the case u = u′. Putting these together gives the
general result.

Proposition 18 Let T b T′ be an equivalence extension, and let M be a strict
model of T in an AU A.

Then there is a unique strict model M ′ of T′ in A whose restriction to T is
M .

We call this the extension of M to T′.

Proof. Each node or edge introduced in T′ has a canonical description as
an AU-expression in terms of older nodes and edges, and so has a canonical
interpretation already in AU〈T〉. For a node, strictness implies already that we
must use this interpretation. For an edge, the commutativities introduced at
the same time are enough to force equality in A between the interpretations of
the edge and the canonical description.

It remains to show that all the commutativities fg ∼ h in T′ are respected.
Let us write [f] for the interpretation of the canonical expression for f in M ,
and similarly for g and h. We require [h] = [g] ◦ [f] in A.

We have to examine the rule that introduces the commutativity, and use
induction on the number of simple equational extensions needed.

For the rules that introduce nodes or edges, the commutativities introduced
follow directly from quasiequational rules for AUs. It is also clear for unit laws
and associativity.

There remain the uniqueness rules for fillins. Suppose we have one expressing
f ∼ f ′. Then in A we have that f and f ′ are both equal to the fillin, and so
equal to each other.

Proposition 19 Let e : T b T′ be an equivalence extension. Then the corre-
sponding AU-functor AU〈e〉 : AU〈T〉 → AU〈T′〉 is an isomorphism.

28

Proof. In terms of strict AU-functors, Proposition 18 says that for any strict
M : AU〈T〉 → A there is a unique strictM ′ : AU〈T′〉 → A such that AU〈e〉M ′ =
M . Applying this with IdAU〈T〉 for M gives us an F : AU〈T′〉 → AU〈T〉 for
M ′, and then for more general M we see that M ′ = FM . From this we deduce
that F is an inverse for AU〈e〉.

6 Object equalities

The notion of equality between two context homomorphisms (Definition 5) is
very strong, and in essence syntactic. The homomorphisms must act equally on
the nodes and edges as sketch ingredients. In practice we usually want a more
semantic notion that allows us to say when nodes and edges are equal in the
sense that they must be interpreted equally in strict models. This will allow us
to get faithfulness for a functor that takes T to AU〈T〉.

For edges, we already have a machinery for proving equality as morphisms
by using commutativities. For nodes we have deliberately avoided anything
analogous, beyond equality in the graph. However, semantic equality can still
arise when two nodes are declared by universals for two identical constructions
from equal data. We define certain kinds of edges as being “object equalities”
between their domains and codomains; semantically they must be equal to iden-
tity morphisms. We then extend the phrase to apply also to “object equality”
between edges or context homomorphisms.

We use the phrase object equality for a situation where a context already has
the required structure, and objectively equal, or objective equality, for a situation
where an equivalence extension can provide it.

Definition 20 Let T be a context, and suppose γ : X → Y is an edge in T.
Then γ is an object equality, written γ : X ⇒ Y , if either X = Y as nodes and
γ ∼ s(X) in T, or γ can be associated with structure in T in one of the following
ways.

1. If X,Y are subjects of terminal universals: no extra structure needed.

2. Suppose X and Y are subjects of pullback universals, for the back and front
faces of the following diagram, and we have object equalities γi : Ui ⇒ Vi.
Suppose also that we have sufficient composite edges and commutativities
to assert that uiγ3 ∼ γivi and γqi ∼ piγi, so that γ is characterized as a
fillin 〈p1γ1, p2γ2〉v1,v2 .

29

Then γ : : X ⇒ Y is an object equality.

X
p1 //

p2

��

γ

U1

u1

��

γ1

�$
Y

q1 //

q2

��

V1

v1

��

U2 u2

//

γ2 �$

U3

γ3

�$
V2 v2

// V3

.

3. Similarly for initial objects and pushouts.

4. Suppose we have two list universals for Li = List(Ai) (i = 0, 1) and an
object equality γA : A0 ⇒ A1, and an edge γL : L0 → L1 with sufficient
data to characterize it as List(γA) (Remark 1). Then γL is an object
equality.

Lemma 21 Let T be a context.

1. If γ : X ⇒ Y is an object equality, then in AU〈T〉 we have X = Y and γ
is the identity morphism.

2. If γ : X ⇒ X is an object equality, then there is some equivalence extension
T b T′ in which s(X) ∼ γ.

3. If γ : X ⇒ Y and γ′ : Y ⇒ Z are object equalities, then there is some
T b T′ in which we have an object equality δ : X ⇒ Z and γγ′ ∼ δ.

4. If γ : X ⇒ Y is an object equality, then there is some T b T′ in which γ
is an isomorphism, and its inverse is also an object equality.

5. If γ, γ′ : X ⇒ Y are two object equalities, then there is some T b T′ in
which γ ∼ γ′.

Proof. (1) is immediate from the definition, bearing in mind that for a list
universal the expression for A × L is defined to be that for the pullback of !L
and !A.

(2) and (3) follow from the uniqueness clauses for fillins.
(4) follows because all the cases for object equality are symmetric, and we

can then apply (3) and (2).
(5) again follows from the uniqueness clauses for fillins.
We shall use the phrase “object equality” more generally than just for ob-

jects.

30

Definition 22 Let T be a context.
If ui : Xi → Yi (i = 1, 2) are edges in T, then an object equality from u1 to

u2 is the data of a commutative diagram

X1
u1

•
//

γu

γX

��

Y1

γY

��
X2 u2

• // Y2

such that γX and γY are object equalities.
Let f0, f1 : T1lT0 be two context homomorphisms. Then an object equality

from f0 to f1 is a 2-cell γ from f0 to f1, for which every carrier edge is an
object equality γX : f0(X)⇒ f1(X). (It follows that for each edge u : X → Y of
T1, we get an object equality (γX , γu, γY) from f0(u) to f1(u).)

By taking T1 as either O or O→, we see that object equality for homomor-
phisms subsumes the cases for nodes and edges.

We say that two context homomorphisms are objectively equal in T, sym-
bolized =o, if there is some equivalence extension of T in which they have an
object equality.

Proposition 23 Objective equality of context homomorphisms is an equivalence
relation.

Proof. This is a straightforward extension of Lemma 21. For transitivity
f0 =o f1 =o f2, note that we may have different equivalence extensions for
f0 =o f1 and for f1 =o f2. Work in a common refinement.

7 Context maps

In Section 8 we shall define a 2-category Con whose objects are contexts, and
whose morphisms T0 → T1 are in bijection with strict AU-functors AU〈T0〉 ←
AU〈T1〉. In fact, its 1-cells will be what we shall define here as context maps.

In this section we investigate the 1-category Conbm of contexts and context
maps, from which Con is got by factoring out a congruence based on objective
equality. To save repetition, we shall exploit the fact that object equalities are
a special case of 2-cells, and the present section is really a collection of ad hoc
preliminary results about 2-cells in the not-a-2-category Conbm.

We already have a category Conl of contexts and context homomorphisms
(and we shall also write Conm for its opposite). Recall that we consider two
sketch homomorphisms equal if they agree on the nodes and edges. For the
present section, all diagrams of contexts are in Conl.

Definition 24 Let T0,T1 be contexts. Then a context map from T0 to T1 is
an opspan (e, f) from T0 to T1, where e is an equivalence extension:

T0
e

b
//T′0 T1

foo

31

Using reindexing, we can compose context maps.

Definition 25 Suppose we have context maps as in the bottom two rows of the
following diagram, and we reindex e1 along f0.

T′′0

T′0

f0(e1)
>>

T′1

ε

``

T0

e0

b

>>

T1

f0
``

e1

b

>>

T2

f1
``

Then the composite (e0, f0)(e1, f1) is (e0f0(e1), ε ◦ f1).

Contexts and context maps form a category Conbm, with composition as
defined and identity maps (Id, Id). Note that (e, f) is the composite (e, Id)(Id, f).

Definition 26 A 2-cell in Conbm, between T0 and T1, is a context map (e, α)
from T0 to T→1 . Its domain and codomain are (e, α ◦ iλ) (λ = 0, 1).

An object equality is a 2-cell (e, γ) in which γ is an object equality.
Two context maps (ei, fi), with the same domain and codomain, are objec-

tively equal if e0 and e1 have a common refinement e such there is an object
equality from f0ε0 to f1ε1.

ε0

??
ε1

__

e0

__

e1

??e

OO

f0

jj
f1

__

(6)

From Proposition 23 it is easy to see that objective equality is an equivalence
relation on each hom-set of Conbm.

Conbm is not a 2-category – it lacks vertical and horizontal composition. For
example, suppose we have two vertically composable 2-cells between T0 and T1.
To compose them we need to be able to compose the carrier edges in T0.

For the time being we examine whiskering, horizontal composition of 2-cells
with 1-cells.

Left whiskering2 is done by composition of context maps T0
//T1

//T→2 .
Right whiskering by context maps (Id, f) is similar, with a composition

T0
//T→1

(id,f→)//T→2 .
For whiskering as defined so far, it is clear that –

2 It is arguable which is left and which is right. We take it that left whiskering is for when
the 1-cell is on the left in diagrammatic order of context maps.

32

1. all possible associativities hold, and

2. whiskering preserves object equalities.

The remaining case is right whiskering by maps (e, Id). For these we start
to need equivalence extensions.

Lemma 27 Let T1, T′1 and T0 be contexts. Suppose we have an equivalence ex-
tension e1 : T1 b T′1, two homomorphisms f0, f1 : T′1lT0, and a 2-cell α : e1f0 →
e1f1. Then,

1. There is some equivalence extension e0 : T0 b T′0 and a 2-cell α′ : f0e0 →
f1e0 such that αe0 = e→1 α

′.

T′0 T′→1
α′
oo T′1

iλoo

fλ

vvT0

e0

OO

T→1
e→1

OO

α
oo T1

e1

OO

iλ
oo

2. For any such e0 and α′ as in (1), suppose we also have (for the same e0)
α′′ satisfying the same conditions as for α′. Then α′ =o α

′′. (This just
means that unary commutativities can be found between the actions of α′

and α′′ on edges, since their actions on nodes are already constrained up
to equality by f0 and f1.)

Proof. It suffices to consider simple equivalence extensions e1, and the only
non-trivial ones are those that introduce nodes or edges. If e1 introduces only
commutativities, then the action of α′ is already explicit in that of α and e0

just has to introduce the images under f0 and f1 of those commutativities. This
applies to the unit and associativity rules, and to the rules for the uniqueness
of fillins.

We need therefore to find the image under α′ uniquely defined for every node
and edge in T→1 .

For everything in the image of i0 or i1 (and this includes all the nodes), the
image under α′ is already in T0, and given by f0 or f1.

It remains only to consider edges θX or θu, and again the α′ image is already
in T0, and given by α, for X or u in the image of e1: so we must consider fresh
X and u in T1. If u : X → Y then θu is determined as a composite as soon as
θX or θY is known. Then it remains only to adjoin sufficient ingredients to T0

to justify the commutativities i0(u)θY = θX i1(u).
First, for adjoining a composite w ∼XY Z uv, the commutative square for

w is got by pasting those already known for u and v. Explicitly, we check
algebraically that the appropriate square for w commutes:

f0(w)αZ = f0(u)f0(v)αZ = f0(u)αv = f0(u)αY f1(v)

= αuf1(v) = αXf1(u)f1(v) = αXf1(w).

33

By Proposition 17 we can find an equivalence extension with sufficient edges
and commutativities to express this.

A similar argument applies to all those equivalence extensions that adjoin
an inverse to a particular edge u : X → Y .

We now look at pullbacks.
For a pullback universal we have one fresh node P and three fresh edges for

three projections p : P → X (say) in the pullback cone. For each p, θp is defined
from the known θX , and then the three θps provide a cone from i0(P) to the
i1-copy of the diagram opspan. To achieve the commutative squares for the θps,
θP can and must be defined as the fillin for the cone.

For pullback fillins, suppose in T1 we have a pullback P of some opspan,
and suppose that u : Y → P fills in for a cone that has, for each projection
p : P → X, a morphism q : Y → X. We need to show f0(u)αP ∼ αY f1(u), and
it suffices to show that when composed with each pullback projection for f1(p).

f0(Y)
αY //

f0(u)

��
f0(q)

$$

f1(Y)

f1(u)

��
f1(q)

zz

f0(P)

f0(p)

��

αP
// f1(P)

f1(p)

��
f0(X)

αX
// f1(X)

The bounding quadrangle, the lower small rectangle and the two side-bows all
commute, and so (in some suitable equational extension) we can show f0(u)αP f1(p) ∼
αY f1(u)f1(p).

The same argument applies dually to pushouts, and simpler arguments apply
to terminal and initial universals.

For list universals the ideas are similar, but with some extra intricacies that
we shall now outline. For a list universal the essential task is to implement
the functoriality expressed in Remark 1, for the situation where f : A0 → A1 is
θA : f0(A)→ f1(A). Over T0 we can define the A0-action on List(A1), and then
we can and must define θList(A) as the fillin. The θs for the other new nodes are
determined by the arguments for terminals and pullbacks.

For list fillins the argument is analogous to that for pullbacks, but more
intricate. It is left to the reader.

Note that if α is an object equality then so is α′. In other words, we can
cancel equivalence extensions e from objective equalities: if there is an object
equality from ef1 to ef2, then f1 and f2 are objectively equal. A particular
special case is for refinements of equivalence extensions (Definition 16). If e2 =
e1ε = e1ε

′ then ε and ε′ are objectively equal.

Definition 28 Let α : T→1 l T0 be a 2-cell, with domain and codomain f0 and
f1, and let e1 : T1 b T′1 be an equivalence extension. Then a right whiskering
(Id, α)(e1, Id) is a map (e0, α

′) where e0 : T0 b T′0 is a common refinement of
f0(e1) and f1(e1), and α′ : T′→ → T′0 has e→1 α

′ = αe0.

34

Note that, because of the need to use a common refinement of f0(e1) and f1(e1),
the domain of the whiskering is not strictly equal to what it should be at the
1-cell level. However, they are objectively equal. The codomain is similar.

Proposition 29 Right whiskering (Id, α)(e1, Id) exists and is unique up to ob-
jective equality.

Proof. First, reindex f1(e1) along f0(e1) to obtain a common refinement
e′′ : T0 b T′′0 , and define f ′λ : T′1 → T′′0 by composing the morphisms introduced
for reindexing and the refinements.

T′′0 oo T′1oo

f ′
λ

vv

T0

e′′

``
fλ(e1)

OO

T1
fλ

oo

e1

OO

Now apply Lemma 27 to αe′′ and the f ′λs to get e′ : T′′0 b T′0 and α′ : T′→1 → T′0.
The required right whiskering is (e0, α

′), where e0 = e′′e′.
Uniqueness follows from the uniqueness in Lemma 27.
General right whiskering can now be defined by

(e0, α0)(e1, f1) = (e0, Id)((Id, α)(e1, Id))(Id, f1).

Proposition 30

1. Whiskering obeys the usual associative laws up to objective equality.

2. Whiskering preserves object equalities.

Proof. (1) After what we said earlier, the only remaining issue is the associa-
tivity of (Id, α)(e0, Id)(e1, Id).

((Id, α)(e0, Id))(e1, Id) has the property required for (Id, α)(e0e1, Id), so they
are objectively equal.

(2) Clear from the remark after Lemma 27.
The following lemma has an important application in Lemma 34. Note that

if cg is equal to f , then e can be trivial, with εg′ = g. With object equalities
there is a little more work, and it is embodied in e.

Lemma 31

1. Suppose we have the solid parts of the following diagram,

T′0
g′

~~

T′1
εoo

g

��
T′′0 T0e
oo

f(c)

OO

T1
f
oo

c

OO

35

where c is an extension, the square is the reindexing, and we have an object
equality γ : f ⇒ cg.

Then we can find an equivalence extension e : T0 b T′′0 and a homomor-
phism g′ : T′0 → T′′0 such that f(c)g′ is strictly equal to e and there is an
object equality γ′ : εg′ ⇒ ge such that cγ′ = γe.

2. Suppose, in the situation above, we have an equivalence extension e and
two homomorphisms g′i with the properties described. Then g′1 and g′2 are
objectively equal in T′′0 .

Proof. (1) By induction we can assume that c is a simple extension.
If c adjoins a primitive nodeX, then we define e as trivial, and g′(X) = g(X).
If c adjoins a primitive edge u : X → Y then in T0 we have the solid part of

f(X)
γX +3

g′(u)

��

g(c(X))

g(u)

��
f(Y)

γY
+3 g(c(Y))

and in a suitable equivalence extension of T0 we can define g′(u) to make the
square commute.

Suppose c adjoins a commutativity vw ∼XY Z u. We have

f(X) +3

f(v)

{{

f(u)

��

g(c(X))

g(c(v))

yy
g(c(u))

��

f(Y) +3

f(w) ##

g(c(Y))

g(c(w)) %%
f(Z) +3 g(c(Z))

The square faces all commute because they are object equalities. Once c has
made the right-hand triangle commute, in a suitable equivalence extension we
can deduce that so does the left-hand one.

If c adjoins a universal, then we let e adjoin the same universal.
(2) Every ingredient of T′0 is in the image of either f(c) or ε. It therefore

suffices to note that f(c)g′1 and f(c)g′2 are strictly equal, while εg′1 and εg′2 are
objectively equal by Proposition 23.

8 The 2-category of contexts

We now define our 2-category Con in which the 0-cells are contexts, and the 1-
cells between T0 and T1 are in bijection with strict AU-functors from AU〈T1〉
to AU〈T0〉. At the same time, we shall make the reversal of direction by which

36

a strict AU-functor can be thought of as a transformation of models. Thus we
shall think of a 1-cell as a “map” from the “space of models of T0” to the “space
of models of T1”.

8.1 Con as a 1-category

Proposition 32 Objective equality of context maps is a congruence on Conbm.
Hence contexts and their maps modulo objective equality form a category

Con.

Proof. It has already been remarked that objective equality is an equivalence
relation on each hom-set. To show that it is a congruence, we show that if two
context maps are objectively equal, then their composites with any (e, f) are
also objectively equal. On the left, we just reindex everything along f . On the
right, we apply right whiskering by (e, f), and use the fact that this preserves
objective equality.

We now have a functor (Id,−) : Conm → Con given by

(T0
oo f

T1) 7→ (T0 T0
oo f

T1).

Theorem 33 Con is free over Conm subject to object equalities becoming equal-
ities, and equivalence extensions becoming invertible.

Proof. If e : T0 b T′0 is an equivalence extension, then (Id, e) has inverse (e, Id)
in Con.

We have (e, Id); (Id, e) = (e, e), and this is objectively equal to (Id, Id) using
e as a refinement of Id.

For the other composite we get (e(e), ε) by reindexing. Now by the remark
preceding Lemma 31, with g as an identity, we get a homomorphism g′ with
e(e); g′ = ε; g′ = Id, showing that (e(e), ε) is equal to the identity.

It follows that, in Con, every morphism can be expressed in the form (Id, e)−1; (Id, f),
where e is an equivalence extension.

Now suppose we have a functor F : Conm → C with those properties. We
must show it factors uniquely via (Id,−), with F ′ : Con → C. Uniqueness is
clear: we must have

F ′(e, f) = F ′(e, Id);F ′(Id, f) = F (e)−1;F (f).

For existence, first we show that F ′ thus defined transforms objective equal-
ity to equality. Suppose (ei, fi) (i = 0, 1) are objectively equal, as in diagram (6).
Then

F (ei)
−1;F (fi) = F (e)−1;F (εi);F (fi) = F (e)−1;F (fiεi)

and these are equal for i = 0, 1 because F transforms object equality to equality.
It is obvious that F ′ preserves identities, and for composition it suffices to

consider the composite (Id, f); (e, Id) = (f(e), ε). In C we have

F (f);F (e)−1 = F (f(e))−1;F (ff(e));F (e)−1 = F (f(e))−1;F (eε);F (e)−1

= F (f(e))−1;F (ε).

37

Lemma 34 1. Any reindexing square (4) for a context extension becomes a
pullback square in Con.

2. In Con, extension maps (i.e. those of the form (Id, c) where c is an exten-
sion) can be pulled back along any morphism.

Proof. (1) Consider a diagram as on the left here, with the outer square
commuting.

U

(e2,g2)

''

(e1,g1) ��

T′0 (Id,ε)
//

(Id,f(c))

��

T′1
(Id,c)

��
T0

(Id,f)
// T1

g′2

��

T′0
ε′oo T′1

εoo

g2

wwU
e

oo

g1(f(c))

OO

T0

f(c)

OO

g1
oo T1

c

OO

f
oo

Taking a common refinement of e1 and e2, we might as well assume that they
are both trivial and that we have an object equality fg1 ⇒ cg2. Now consider
the diagram on the right, and apply Lemma 31 with g2 for g. We obtain e
and g′2, with e an equivalence extension, strict equality g1(f(c)); g′2 = e, and an
object equality εε′g′2 ⇒ g2e.

The required fillin is (e, ε′g′2). It has the correct composites with (Id, f(c))
and (Id, ε). Moreover, uniqueness follows by the same argument as in Lemma 31.

(2) After part (1), it suffices to show that (Id, c) can be pulled back along
any map (e, Id) where e : T0 b T1 is an equivalence extension. This is trivial,
because pullbacks along invertible morphisms always exist.

8.2 Con as 2-category

We now develop the 2-categorical structure.

Lemma 35 Let T be a context. Then (T→)→ has an involution (e, τ) such that
(Id, iµ)(e, τ) = (Id, i→µ).

Proof. We shall write iλµ (λ, µ = 0, 1) for the composite

iλiµ = T
iλ
//T→

iµ
//(T→)→ .

In (T→)→ we write θ for the first level homomorphism, in T→, represented in
(T→)→ by iµ(θ), and φ for the second level homomorphism.

Note that iλi
→
µ = iµiλ. It follows that any model of (T→)→ has a square of

four models of T, got from the iλµs, and four homomorphisms between them,
got from the iµs and the i→µ s. In fact, the square will commute, because φ is

38

homomorphic with respect to the iµs. Conversely, any such commutative square
of homomorphisms gives a model of (T→)→.

i00(X)
i0(θX) //

φi0(X)=i
→
0 (θX)

��

i10(X)

φi0(X)=i
→
1 (θX)

��
i01(X)

i1(θX)
// i11(X)

Reflecting the square about its leading diagonal gives another such square, and
that is the essential action of τ . The only remaining issue is that in the context
(T→)→, we need an equivalence extension e to introduce some composites and
associativities – mere commutativity of the squares (of carrier edges) does not
explicitly have all the data for a homomorphism between homomorphisms.

Lemma 36 Let f0, f1 : T1 l T0 have an object equality γ. Then f→0 and f→1
are objectively equal.

Proof. Use (Id, γ→)(e, τ), where (e, τ) is as in Lemma 35.

Lemma 37 Let e : T1 b T0 be an equivalence extension. Then e→ is invertible
in Con.

Proof. The identity on T→1 gives the generic 2-cell between T→1 and T1, its do-
main and codomain being i0 and i1. Consider its right whiskering (Definition 28)
by (e, Id), giving the right hand square in the diagram below. Then (e′, α) is the
inverse of (Id, e→). Immediately we have (e′, α)(Id, e→) = (e′, e→α) = (e′, e′).
For (Id, e→)(e′, α), consider the reindexing square on the left here.

Uεoo T→0
αoo

T→0

e→(e′)

OO

T→1e→
oo

e′

OO

T→1

e→

OO

(e→(e′), αε) is a right whiskering of (Id, e→) by (e, Id): for e→ factors via iλ(e),
so e′ and e→(e′) are refinements of, respectively, iλ(e) and iλe

→. But then so is
(e→(e′), e→(e′)), and so they are objectively equal, and the latter is objectively
equal to the identity on T→0 .

Theorem 38 The functor −→ on Conl gives an endofunctor on Con.

Proof. Theorem 33 reduces this to Lemmas 36 and 37.
We now define an internal category in the functor category [Con,Con] in

which the object of objects is Id, and the object of morphisms is −→.
The structure operations will be natural transformations. Note that to prove

naturality, it suffices to prove it with respect to maps of the form (Id, f), since
the rest follows from invertibility of (e, Id).

39

The domain and codomain, natural transformations from −→ to Id, are given
by the maps dom = (Id, i0) and cod = (Id, i1).

The identity Id : Id → −→ is given by maps (e, γ) where γ : T→ l T′ takes
θ to the equality homomorphism on the generic model of T. The equivalence
extension e : T b T′ uses instances of the unit laws to provide the necessary
commutativities.

Since i0 is an extension, we can reindex along i1, and in fact this gives T→→
as a pullback in Con.

T→→
(Id,ε) //

(Id,i1(i0))

��

T→

dom=(Id,i0)

��
T→

cod=(Id,i1)
// T

i1(i0) maps the ingredients of T→ to the 0- and 1-copies in T→→, and adjoins
the 2-copies with the carrier edges from 1 to 2.

In an equivalence extension of T→→, the two model homomorphisms can
be composed, and this provides composition as a natural transformation from
−→→ to −→. It is vertical composition of the two 2-cells T→ l T→→.

Thus for each T we get an internal category N(T) in Con, on objects T and
morphisms T→.

Using the category structure of N(T1), this makes Con(T0,T1) into a cate-
gory, with objects and morphisms the 1-cells and 2-cells between T0 and T1.

We already have vertical composition of 2-cells. (We shall compose from top
to bottom, so the codomain of the upper 2-cell must equal the domain of the
lower.)

We deal with horizontal composition by whiskering. Using the functor −→,
we can make Con(−,−→) into a profunctor from Con to Con, and this provides
whiskering on both sides. The proof of Lemma 37 shows that this agrees with
the whiskering we already have.

Horizontal composition can now be defined as

αβ =
α dom(β)

cod(α)β
.

The interchange law follows from –

Lemma 39
α dom(β)

cod(α)β
=

dom(α)β

α cod(β)
.

Proof. Suppose we have the following.

T0
))
55�� (e,α) T1

))
55�� (e

′,β) T2.

40

By whiskering (e, α)(e′, Id) we might as well assume that e and e′ are both
identities. In Conl we now have

α ◦ β→ : T0 T→1
αoo (T→2)→

β→
oo

The two vertical composites in the statement are the images in T0 of the two
routes round the square of homomorphisms in (T→2)→ (see Lemma 35) and so
are equal.

Putting together the properties proved so far, we can deduce –

Theorem 40 Con is a 2-category.

8.3 Limits in Con

We have two main results here. The first (Theorem 48) is that Con has finite
PIE-limits (products, inserters, equifiers [PR91]).

This is a large class of finite weighted limits, but a notable lack is equalizers
and pullbacks. Although by universal algebra AUs has all pushouts and AUop

s

has all pullbacks, in general we cannot replicate this in contexts. For example,
suppose we have two context homomorphisms fi : T0 l Ti where T0 has just
a single node, and the fis map it to nodes introduced by two different kinds
of universals. Then the pushout must specify an equality between those two
different nodes, and that cannot be done with a context.

The second main result (Theorem 42) is that, nonetheless, pullbacks of ex-
tension maps do exist, essentially by reindexing. In fact this has already been
addressed in Lemma 34. All that remains here is to show that they are 2-
categorical conical limits (in other words, they take proper account of 2-cells
between fillins).

Note that all our weighted limits are strict, with strict cones, as in [PR91].
We do not follow the convention in [Joh02, p.244] of interpreting them in a
“pseudo” sense.

Also note that we do not claim to have constructed the limits in a canonical
way, at least not those – such as pullbacks, inserters and equifiers – that depend
on maps. This is because the construction will depend on the representatives
(e, f) of the maps.

Pullbacks and products

Lemma 41 Consider a context reindexing square (4). Then the following square
in Conl becomes a pullback in Con.

T′→0 T′→1
ε→oo

T→0

f(c)→

OO

T→1

c→

OO

f→
oo

(7)

41

Proof. If c→ were an extension, then we could apply Lemma 34. In fact it
is not, but only for bureaucratic reasons based on the concrete definition of
coproduct “+” (see Section 9). The issue is that the steps constructing T′→1
are applied in an order that does not start off with all those for T→1 . Those
steps can be reordered to give an extension c′ : T→1 ⊂ T′′1 isomorphic to c→, and
moreover that reordering can be reindexed along f→ to get a reindexing square
isomorphic to (7):

T′→0 T′→1
ε→oo

T′′0

∼=

aa

T′′1
ε′oo

∼=

==

T→0

f(c)→

OO

f→(c′)

==

T→1

c→

OO

c′

aa

f→
oo

By Lemma 34 the reindexing square is a pullback in Con, and it follows that so
too is (7).

Theorem 42 Con has pullbacks of extension maps along any map.

Proof. Lemma 34 has already shown the 1-categorical form of this. It remains
to show that we also have 2-cell fillins, and the ability to do this follows from
Lemma 41.

Lemma 43 Con has all finite products.

Proof. The empty theory 11 is initial in Conl. After that one easily shows that
it is terminal in Con.

The case for binary products follows from Theorem 42, since the unique
homomorphism 11 l T is an extension.

Inserters

First, we work in Conl (or, dually, in Conm).

Definition 44 Let fλ : T1lT0 (λ = 0, 1) be two context homomorphisms. Then
we define an extension c : T0 ⊂ Ins(f0, f1) by adjoining:

• for every node Y in T1, an edge θY : f0(Y)→ f1(Y); and

• for every edge u : Y → Y ′ in T1, an edge θu and two commutativities

f0(Y)
θY

•
//

θu

$$
f0(u)

��

f1(Y)

f1(u)

��
f0(Y ′)

θY ′

• // f1(Y ′)

42

Obviously this generalizes the construction of T→1 out of T2
1, and gives f : T→1 →

Ins(f0, f1) with two strictly commutative squares

Ins(f0, f1) T→1
foo

T0

c

OO

T1
fλ

oo

iλ

OO
.

In fact Ins(f0, f1) is their joint pushout in Conl.
To put this another way, whiskering induces a bijection between

1. context homomorphisms g′ : Ins(f0, f1) lU, and

2. pairs (g, θ) where g : T0lU is a context homomorphism, and θ : f0g → f1g
is a 2-cell.

This very nearly also works at the level of 2-cells. Consider two sketch
homomorphisms g′µ : Ins(f0, f1) l U (µ = 0, 1), corresponding to pairs (gµ =

cg′µ, θµ = fg′µ) as above, and suppose we have a 2-cell α′ : g′0 → g′1. Considering
the nodes and edges of Ins(f0, f1), we see that the edge data needed for α′

comprises edges of the form α′cX and α′cu, for nodes and edges in T0, and α′θY
and α′θv , for nodes and edges in T1. The first two kinds come along with
commutativitites that make the whiskered 2-cell g0 → g1. The last two kinds
have commutativities

g′0cf0Y
α′
cf0Y

•
//

g′0θY

��

α′
θY

%%

g′1cf0Y

g′1θY

��
g′0cf1Y

α′
cf1Y

• // g′1cf1Y

g′0cf0Y
α′
cf0Y

•
//

g′0θv

��

α′
θv

%%

g′1cf0Y

g′1θv

��
g′0cf1Y

′
α′
cf1Y

′

• // g′1cf1Y
′

.

The first of these expresses that the α′θY s give the correct carrier edges for the
horizontal composition of α′ and θ. The second is equivalent to saying that
the α′θvs give the correct naturality diagonals for this horizontal composition,
in other words

g′0cf0Y
α′
θY

•
//

α′
θv

%%
g′0cf0v

��

g′1cf1Y

g′1cf1v

��
g′0cf0Y

′
α′
θY

• // g′1cf1Y
′

,

but only modulo applications of associativity laws.

Lemma 45 Con has inserters.

43

Proof. Suppose we have two maps from T0 to T1. We can represent them as
homomorphisms f0 and f1 into a single equivalence extension T′0 of T0. We
shall show that T0 b T′0 ⊂ Ins(f0, f1) provides the inserter in Con.

In the following diagram we use arrows � �
(e,Id)

,
(Id,f) // , � �

(e,f) // for maps of the
forms indicated.

U′))// Ins(f0, f1)
c

// T′0
fλ // T1

U � � //
?�

T0

?�
e

The map from Ins(f0, f1) to T0 is got by inverting the equivalence extension
e : T0 b T′0.

Suppose we have a map from U to T0 and a 2-cell between its composites
with the fλs. By replacing U by a suitable equivalence extension U′, we may
assume that the 2-cell, between maps from U′ to T1, is entirely in Conm as in
the above diagram, and we get a unique factorization U′ → Ins(f0, f1) in Conm.
This then gives us a unique factorization in Con.

The remarks before the lemma now enable us to extend this to 2-cells in the
manner required for a weighted limit. (Now we need an equivalence extension
of U′ for the associativities needed.)

Equifiers

Again, we start off in Conm.

Definition 46 Suppose we have two homomorphisms α, β : T→1 l T0 that, as
2-cells, have the same domain and codomain – fλ = iλα = iλβ (λ = 0, 1).
(Equality is in the sense of agreeing on nodes and edges.) Then we define an
extension c : T0 ⊂ Eq(α, β) that adjoins unary commutativities αY ∼ βY and
αv ∼ βv for the nodes Y and edges v in T1.

A homomorphism g′ : Eq(α, β)lU is equivalent to a homomorphism g : T0lU
such that αg and βg are equal in the sense that there are unary commutativities
in U equating the images under g of the θY s and the θvs.

We can extend this precisely to 2-cells in Conm. If g′λ are two homomorphisms
from Eq(α, β) to U, then a 2-cell from g′0 to g′1 is equivalent to a 2-cell from cg′0
to cg′1.

Lemma 47 Con has equifiers.

Proof. Suppose in Con we have two 2-cells between T0 and T1 with equal
domain and codomain. Then by taking common refinements, and vertically
composing one of the 2-cells with object equalities, we can suppose without
loss of generality that our 2-cells are given by a suitable equivalence extension
e : T0 b T′0 and, entirely in Conm, two 2-cells between T′0 and T1 with equal

44

domain and codomain. Then Eq(α, β), mapped through to T0 using (Id, e),
provides the equifier we seek.

Eq(α, β)
c // T′0

f0

''
⇓α⇓β

f1

77 T1

T0

?�
e

The rest is similar to Lemma 45.

Theorem 48 Con has finite pie limits.

Proof. This is the combined content of Lemmas 43, 45 and 47.
We emphasize again that the inserters and equifiers do not have canonical

constructions, because they depend on the representations of 1-cells.

9 A concrete construction of AU〈T〉
We can define a 2-functor AU〈−〉 : Con → AUop

s , acting on objects as T 7→
AU〈T〉. (At the 1-category level this is immediate from Theorem 33, using
Proposition 19 and Lemma 21.)

The main result of this section, Theorem 49, is that this 2-functor is rep-
resentable, with AU〈T〉 isomorphic to Con(T,O). We also show, Theorem 51,
that it is full and faithful: thus all strict AU-functors between AUs of the form
AU〈T〉, with T a context, can be got by the finitary means of constructions in
Con.

Finally we shall show how the construction itself can be conducted entirely
within the logic of AUs. This is in the spirit of the idea that AU constructions
should be internalizable within AUs, the idea that inspired Joyal’s original use
of them with regard to Gödel’s Theorem.

For the 2-cells, first note that AU〈T→〉 is a tensor 2⊗AU〈T〉 in AUs. This
is because a strict AU-functor AU〈T→〉 → A is equivalent to a strict model of
T→ in A, which is equivalent to a strict model of T in A ↓ A, which is equivalent
to a strict AU-functor AU〈T〉 → A ↓ A, which is equivalent to a 2-cell between
AU〈T〉 and A with domain and codomain both strict.

Hence AU〈T→〉 is a cotensor 2 t AU〈T〉 in AUop
s . Thus we find that 2-cells

in Con, which are 1-cells to some T→, are mapped to 2-cells in AUop
s , and this

preserves vertical and horizontal composition.
We next investigate the categories Con(T,O). The objects and morphisms of

this are the nodes and edges of equivalence extensions of T, all modulo objective
equality.

Theorem 49 Let T be a context. Then Con(T,O) is an AU freely presented by
T, in other words AU〈T〉 ∼= Con(T,O).

45

Proof. All the AU constructions can be captured by equivalence extensions,
and have the necessary properties. The rules of object equalities (for nodes)
and fillin uniqueness (for edges) ensure that the constructions yield equals when
applied to equals, and so have canonical representatives. Thus Con(T,O) is an
AU.

To show its freeness property, let M be a strict model of T in A. Then any
object or morphism in Con(T,O) gets a unique interpretation in A by model
extension along the equivalence extension used. This respects objective equality,
and so yields a well defined interpretation of the object or morphism.

Proposition 50 Let T,T0 be contexts. If (e, f) is a context map from T to T0,
then the nodes and edges of T0, translated along f , give a strict model of T0 in
Con(T,O). This induces a bijection between

• context maps from T to T0 (modulo objective equality), and

• strict models of T0 in Con(T,O).

Proof. Objective equality of the context maps is determined solely by objective
equalities for their nodes and edges, which is equality of the models in Con(T,O).
Hence we have injectivity.

For surjectivity, each piece of data for a strict model of T0 is expressed in
an equivalence extension of T. There are only finitely many of these, so they
have a common refinement e, say, and then the strict model can be expressed
as a context map (e, f).

Theorem 51 The 2-functor AU〈−〉 is full and faithful on 1-cells and 2-cells.

Proof. Let T0 and T1 be contexts. Strict AU-functors AU〈T1〉 → AU〈T0〉
are equivalent to strict models of T1 in AU〈T0〉 ∼= Con(T,O), and these are
equivalent to 1-cells in Con.

The result for 2-cells follows by considering maps to arrow contexts T→1 .
We now look at the concrete construction in AU logic.
Each kind σ of simple extension or simple equivalence extension takes some

given data, and produces a delta. The possible data are given by a functor
Datσ from sketches to sets. More carefully, an element of Datσ(T) is some finite
tuple of elements of carriers in T, subject to some equations. Hence Datσ can
be understood as an object of the cartesian classifying category for the unary
theory of sketches, and for any sketch T in a cartesian category C, Datσ(T) is
an object of C. If the sketch T is in an AU, then, for each element of Datσ(T),
the delta now gives us a proto-extension T l T′.

Since there are only finitely many kinds of simple extension or simple equiv-
alence extension, in an AU we can sum over them and get

Dats⊂ ,
∑
{Datσ | σ a kind of simple extension},

Datsb ,
∑
{Datσ | σ a kind of simple equivalence extension.}

46

Let us now restrict ourselves to strongly finite sketches, in other words,
sketches in the category Fin whose objects are natural numbers and whose mor-
phisms are functions between the corresponding finite cardinals. This can be
defined internally in any AU. We obtain an internal graph Sks⊂ whose nodes
are strongly finite sketches T, and whose edges are pairs (T, e ∈ Dats⊂(T)) –
the source is T, the target is the corresponding simple extension T′. Note that
we can, and shall, choose the deltas in such a way that, for every carrier, the
corresponding carrier function for the extension is the natural inclusion for some
natural numbers m ≤ n. We write Sk⊂ for the path category of Sks⊂, its mor-
phisms being the composable tuples of edges. (Note that two different paths
could still give the same extension.)

We can now take the contexts to be the targets of extensions whose domains
are the empty sketch 11.

Next we do the same with equivalence extensions, to obtain a graph Sksb
and its path category Skb.

Note that if f : T1lT2 then f extends to a function Dats⊂(T1)→ Dats⊂(T2),
and so transforms any extension c of T1 into one f(c) of T2. This is the rein-
dexing, and it applies similarly to equivalence extensions.

From these ingredients we can now, internally in any AU, define the 2-
category Con and also, from any internal context T, define Con(T,O) and hence
AU〈T〉.

10 Conclusion

The technical achievement of the present paper, of providing a finitary means
for dealing with arbitrary strict AU-functors between certain finitely presented
AUs, was a necessary first step in pursuing the programme set out in [Vic99],
with its goal of using AUs to provide a uniform, base-independent setting for
geometric reasoning about toposes as generalized spaces.

That programme is developed further in [Vic17]. It shows in particular
how extension maps U : T1 ⊃ T0 in Con can be understood as bundles: for
each model M of T0 in an elementary topos S with nno, the fibre over M is
a certain bounded S-topos, the generalized space over S of T1-models N for
which U(N) = M . [HV18] shows furthermore that if U is an (op)fibration in
Con then the bounded geometric morphism for each M is an (op)fibration in
the 2-category of elementary toposes with nno.

Experience with geometric reasoning has shown that many of the construc-
tions can be conducted within the “arithmetic” AU constraints, so an obvious
direction of investigation is to attempt to express them within the finitary for-
malism developed in the present paper. At the same time, it is also necessary
to clarify the connection with the type theory for AUs as set out in [Mai03].

Another pressing need is for a coherent account of the “geometricity” proper-
ties of point-free hyperspaces and related constructions. Existing accounts such
as that of [Vic04] prove that the constructions are preserved up to isomorphism
by pullback of bundles, but do not express any coherence properties of those

47

isomorphisms. It is to be hoped that that will become clearer in the arithmetic
account when bundles are understood as extensions.

A big question, requiring much further work, is that of whether the AU
formalization is capable of providing a satisfactory substitute for Grothendieck
toposes as an alternative account of generalized spaces. Already it seems clear
that they can support much of arithmetic, algebra, real analysis, and logic.
The critical question is whether they can also recapture the invariants, such
as cohomology, for which Grothendieck invented toposes as generalized spaces.
Many of the established techniques rely on a classical ambient set theory that
is alien to the spirit of the finitary constructions with AU-contexts.

Many of the technical details in the present paper are open to change. Our
axiomatization of AUs is surely not the final word on the subject. Nonetheless,
the broad approach of sketches, using the novel notions of extensions, contexts,
equivalence extensions and object equalities, would seem to have very general
usefulness. They would apply not only to modified definitions of AU but also
to other logics. A simple and important fragment of the AU theory would be
a sketch account of cartesian logic. Following the ideas of [PV07], we would
expect there to be a rich interplay between that and the AU theory – because
the AU logic is what is needed to construct initial models for cartesian theories.

11 Acknowledgements

I am grateful to the organizers of the 5th Workshop on Formal Topology, held at
the Institute Mittag-Leffler, Stockholm, on 8-10 June 2015, for the opportunity
to outline the ideas of this paper there.

References

[BW84] M. Barr and C. Wells, Toposes, triples and theories, Springer-Verlag,
1984, reissued as [BW05].

[BW05] , Toposes, triples and theories, Reprints in Theory and Appli-
cations of Categories, no. 12, Theory and Applications of Categories,
Mount Allison University, 2005, originally published as [BW84].

[CSSV03] T. Coquand, G. Sambin, J. Smith, and S. Valentini, Inductively
generated formal topologies, Annals of Pure and Applied Logic 124
(2003), 71–106.

[HV18] Sina Hazratpour and Steven Vickers, Fibrations of contexts beget fi-
brations of toposes, In preparation, 2018.

[Joh02] P.T. Johnstone, Sketches of an elephant: A topos theory compendium,
vol. 1, Oxford Logic Guides, no. 44, Oxford University Press, 2002.

48

[Mai03] Maria Emilia Maietti, Joyal’s arithmetic universes via type theory,
Category Theory and Computer Science (CTCS ’02) (Rick Blute and
Peter Selinger, eds.), Electronic Notes in Theoretical Computer Sci-
ence, no. 69, Elsevier, 2003.

[Mai05] , Reflection into models of finite decidable FP-sketches in an
arithmetic universe, Proceedings of the 10th Conference on Cate-
gory Theory in Computer Science (CTCS 2004) (L. Birkedal, ed.),
Electronic Notes in Theoretical Computer Science, vol. 122, Elsevier,
2005, pp. 105–126.

[Mai10] , Joyal’s arithmetic universe as list-arithmetic pretopos, The-
ory and Applications of Categories 24 (2010), no. 3, 39–83.

[MV12] Maria Emilia Maietti and Steven Vickers, An induction principle for
consequence in arithmetic universes, Journal of Pure and Applied
Algebra 216 (2012), no. 8–9, 2049–2067.

[PR91] John Power and Edmund Robinson, A characterization of pie limits,
Mathematical Proceedings of the Cambridge Philosophical Society
110 (1991), 33–47.

[PV07] Erik Palmgren and Steven Vickers, Partial Horn logic and cartesian
categories, Annals of Pure and Applied Logic 145 (2007), no. 3, 314–
353.

[Vic99] Steven Vickers, Topical categories of domains, Mathematical Struc-
tures in Computer Science 9 (1999), 569–616.

[Vic04] , The double powerlocale and exponentiation: A case study
in geometric reasoning, Theory and Applications of Categories 12
(2004), 372–422, Online at http://www.tac.mta.ca/tac/index.

html#vol12.

[Vic07] , Locales and toposes as spaces, Handbook of Spatial Logics
(Marco Aiello, Ian E. Pratt-Hartmann, and Johan F.A.K. van Ben-
them, eds.), Springer, 2007, pp. 429–496.

[Vic14] , Continuity and geometric logic, Journal of Applied Logic 12
(2014), no. 1, 14–27.

[Vic16] , Sketches for arithmetic universes, Accepted 2018 for publi-
cation in Journal of Logic and Analysis. See arXiv:1608.01559, 2016.

[Vic17] , Arithmetic universes and classifying toposes, Cahiers de
topologie et géométrie différentielle catégorique 58 (2017), no. 4, 213–
248.

49

http://www.tac.mta.ca/tac/index.html#vol12
http://www.tac.mta.ca/tac/index.html#vol12

	Introduction
	Generalized spaces via arithmetic universes
	Outline of paper

	Arithmetic universes
	AU-sketches
	Models
	Examples of sketches

	Extensions, contexts
	Extensions: the definition
	Strictness results
	Examples of contexts

	Equivalence extensions
	Object equalities
	Context maps
	The 2-category of contexts
	Con as a 1-category
	Con as 2-category
	Limits in Con

	A concrete construction of AU<T>
	Conclusion
	Acknowledgements

