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Grothendieck toposes as generalized spaces?
Classifying topos S[T] = "space of models of T"
  - but depends on choice of elementary topos S.
For some T, can use any S with nno.
Use arithmetic universes (AUs) to get base-independence.
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Vickers:
"Sketches for arithmetic universes" (arXiv:1608.01559)
"Arithmetic universes and classifying toposes" (arXiv:1701.04611)



Point-free topology

Point-set topology says:
1 - define collection of points as set
2 - define topology, using open subsets

In constructive mathematics:
  Separating the points from the topology damages the space

Evidence?
From topos theory -
- important theorems (Heine-Borel, Tychonoff) fail for point-set spaces
From predicative mathematics -
- points may even fail to form a set.

Point-free topology describes points and opens in one single structure
- a logical theory
- points are models
- opens are propositions



Locales Frames with morphisms reversed

Frame = complete lattice, binary meet distributes over all joins
Frame homomorphism preserves finite meets, all joins

Locale X = frame OX
Locale map f: X -> Y = frame homomorphism Of: OY -> OX

Categories: Loc = Fr^op



Presentations = propositional geometric theories

frame presented

generators

relations

O[T] =
  Fr<G|R>

Lindenbaum algebra
(formulae modulo equivalence)

Algebra Logic

G signature
- propositional symbols

R axioms

presentation T = (G, R) theory (signature, axioms)

connectives: finite conjunction, arbitrary disjunction



Universal property of O[T] = Fr<G|R>

For any frame A, and for any -

Algebra Logic

Function f: G -> A
respecting the relations R Model of T in A

there is a unique frame homomorphism f': Fr<G|R> -> A
  that agrees with f on generators G

Locales: write [T] for locale with O[T] = Fr<G|R>
For any locale X,
  maps f: X -> [T] in bijection with
  models of T in OX - models of T "at X"
Points of [T] = models of T

Easier to see when X = 1,
A = OX = P(X)
  = {truth values}



Another approach: formal topology

Assume G a poset, and a base of opens

Relations take simpler form

Same principles apply

It has
- formal points (models)
- formal opens (formulae modulo equivalence)



e.g. Sierpinski $

one generator P, no relations

Point = model = truth value Open = formula

Map X -> $
= model of theory in OX
= open of X

model of theory at X



Grothendieck topos = generalized point-free space

Ungeneralized: locale X
Frame = algebraic theory of 
opens
  X -> Sierpinski $
Lattice, finite /\, arbitrary \/
Map = function (backwards) 
preserving those

Generalized: topos X
Grothendieck topos = algebraic theory of 
sheaves (local homeomorphisms)
  X -> {sets}
Category, finite limits, arbitrary colimits
Map = functor (backwards) preserving 
those
~ geometric morphism

X -> $

X

X -> {sets}
x |-> fibre



Presentations: Geometric theories

Ungeneralized: propositional
no sorts,
signature just propositional symbols

Present frame by generators and 
relations:
Lindenbaum algebra
= formulae modulo equivalence

generators = signature: sorts, functions, predicates
relations = axioms

formulae built with

Generalized: predicate

Grothendieck topos generated 
using finite limits, arbitrary colimits
"making axioms hold"
= classifying topos

Injection of generators gives 
generic model of theory.



Example: "space of sets" (object classifier)

Theory        one sort, nothing else.

Classifying topos

Conceptually object = continuous map {sets} -> {sets}
Continuity is (at least) functorial + preserves filtered colimits
Hence functor {finite sets} -> {sets}

Generic model is the subcategory inclusion Inc: Fin -> Set



Example: "space of pointed sets"

Theory              one sort X, one constant x: 1 -> X.

Classifying topos

In slice category: 1 becomes Inc, Inc becomes Inc x Inc

Generic model is Inc with

1 in slice Inc in slice



Universal property of Set[T]

1. Set[T] has a distinguished "generic" model M of T.

2. For any Grothendieck topos E,
and for any model N of T in E,
there is a unique (up to isomorphism) functor f*: Set[T] -> E
that preserves finite limits and arbitrary colimits
and takes M to N.

f* preserves arbitrary colimits
- can deduce it has right adjoint

These give a geometric morphism f: E -> Set[T]
- topos analogue of continuous map

Same idea as for frames



Reasoning in point-free logic

Let M be a model of T ...

Reasoning here must be geometric
- finite limits, arbitrary colimits
- includes wide range of free algebras
- e.g. finite powerset
- not full powerset or exponentials
- it's predicative

Box is S[T]
Its internal mathematics is
- geometric mathematics
freely generated
by a (generic) model of T

To get f* to another topos E:
Once you know what M maps to (a model in E)
- the rest follows
- by preservation of colimits and finite limits



Reasoning in point-free logic

Let M be a model of T_1 ...

Geometric reasoning
- inside box

 Then f(M) = ... is a model of T_2

Get map (geometric morphism) f: S[T_1] -> S[T_2]

Outside box



Reasoning in point-free topology: examples

Dedekind sections, e.g. (L_x, R_x)



Reasoning in point-free topology: examples

Let (x,y) be on the unit circle

Then can define presentation for a subspace of RxR,
the points (x', y') satisfying
  xx' + yy' = 1

It's the tangent of the circle at (x,y)

This construction is geometric

Inside the box:
For each point (x,y), a space T(x,y)

Outside the box:
Defines the tangent bundle of the circle. T(x,y) is the fibre at (x,y)

Joyal and Tierney:
Internal point-free space = external bundle

fibrewise topology of bundles



Reasoning in point-free topology: examples

Spec: [BA] -> Spaces

Let B be a Boolean algebra

Then Spec (B) is point-free space of prime filters of B,
presented by -



Reasoning in point-free topology: examples

- B a pt of space of Boolean algebras
- internal point-free space
  = external bundle

Spec(B) is fibre over B

Geometricity => construction is uniform:
- single construction on generic B
- also applies to specific B's
- get those by pullback pullback

= generalized fibre of generalized point



Suppose you don't like Set?

Replace with your favourite elementary topos S.
Needs nno N.

Fin becomes internal category in S.

n = {0, ..., n-1}

Classifying topos becomes
- category of internal diagrams on Fin

Finite functions
f: m -> n

X(n) = fibre over n(f: m -> n, x in X(m))

X(f)(x) in X(n)

Other classifier is slice, as before.

the base topos

Suppose you don't like 
impredicative toposes?

Be patient!



Roles of S

(1) Supply infinities for infinite disjunctions:
get theories T geometric over S.

(2) Classifying topos built over S: geometric morphism

Suppose T has disjunctions all countable

It's geometric over any S with nno.

But different choices of S give different classifying toposes.

Idea: use finitary logic with type theory that provides nno
- replace countable disjunctions by existential quantification over 
countable types
- they become intrinsic to logic

Infinities are extrinsic to logic
- supplied by S



Arithmetic universes instead of Grothendieck toposes

Pretopos - finite limits
coequalizers of equivalence relations
finite coproducts

+ all well behaved

+ set-indexed coproducts
+ smallness conditions

Giraud's theorem

Grothendieck toposes
bounded S-toposes

extrinsic infinities from S

+ parametrized list objects

Arithmetic universes (AUs)

intrinsic infinities
e.g. N = List(1)



Aims

- Finitary formalism for geometric theories

- Dependent type theory of (generalized) spaces

- Use methods of classifying toposes in base-independent way

- Computer support for that

- Foundationally very robust - topos-valid, predicative

- Logic intemalizable in itself
  (cf. Joyal applying AUs to Goedel's theorem)



Classifying AUs

Universal algebra => AUs can be presented by
- generators (objects and morphisms)
- and relations

(G, R) can be used as a logical theory

AU<G|R> has property like that of classifying toposes

Treat AU<G|R> as "space of models of (G,R)"
- But no dependence on a base topos!

theory of AUs is cartesian
(essentially algebraic)



Issues: How to present theories?

Not pure logic - needs ability to construct new sorts

Use sketches - hybrid of logic and category theory
- sorts, unary functions, commutativities
- universals: ability to declare sorts as finite limits, finite colimits or list 
objects

"Arithmetic" instead of geometric



Issues: strictness

Strict model - interprets pullbacks etc. as the canonical 
ones
- needed for universal algebra of AUs

But non-strict models are also needed for semantics

Contexts are sketches built in a constrained way
- better behaved than general sketches
- every non-strict model has a canonical strict isomorph

Con is 2-category of contexts
- made by finitary means

The assignment T |-> AU<T>
is full and faithful 2-functor
- from contexts
- to AUs and strict AU-functors (reversed)

"Sketches for arithmetic universes" 
(arXiv:1608.01559)

A base-independent category of 
generalized point-free spaces



Bundles a context map (morphism in Con)
- transforms models N of T_1
- to models NU of T_0

For each model M of T_0:
- think of its fibre as
"the space of models N of T_1 such that NU = M"

If U is of a particular kind (extension map)
and if M is a model in an elementary topos (with nno) S,
then this fibre exists as a generalized space in Grothendieck's sense
- get geometric theory T_1/M
- it has classifying topos "Arithmetic universes and classifying 

toposes" (arXiv:1701.04611)



Conclusions

Con is proposed as a category of Grothendieck's generalized spaces
- but in a base-independent way
- consists of what can be done in a minimal foundational setting
- of AUs
- constructive, predicative
- includes real line; also theory of regular measures.


