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Grothendieck toposes as generalized spaces?
Classifying topos S[T] = "space of models of T"
- but depends on choice of elementary topos S.
For some T, can use any S with nno.
Use arithmetic universes (AUs) to get base-independence.

Vickers:
"Sketches for arithmetic universes" (arXiv:1608.01559)
"Arithmetic universes and classifying toposes" (arXiv:1701.04611)
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Point-free topology

Point-set topology says:
1 - define collection of points as set
2 - define topology, using open subsets

In constructive mathematics:
Separating the points from the topology damages the space

Evidence?

From topos theory -

- Important theorems (Heine-Borel, Tychonoff) fail for point-set spaces
From predicative mathematics -

- points may even fail to form a set.

Point-free topology describes points and opens in one single structure
- a logical theory

- points are models

- opens are propositions



Locales Frames with morphisms reversed

Frame = complete lattice, binary meet distributes over all joins
Frame homomorphism preserves finite meets, all joins

Locale X = frame OX
Locale map f: X -> Y = frame homomorphism Of: OY -> OX

Categories: Loc = Fr*op



Presentations = propositional geometric theories

Algebra Logic
generators G signature
- propositional symbols
relations R axioms
/\ o, <N Nbop /\ o b N Nbog
y R 5 R 5
)
presentation T=(G, R) theory (signature, axioms)
frame presented O[T] = Lindenbaum algebra

Fr<G|R> (formulae modulo equivalence)

/

connectives: finite conjunction, arbitrary disjunction



Universal property of O[T] = Fr<G|R>

For any frame A, and for any -

—_ - N)—
e N

Algebra

Logic

Function f: G -> A |
respecting the relations R Model of T in A

_ ——— \ )

there is a unique frame homomorphism f': Fr<G|R> S\
that agrees with f on generators G

Easier to see when X =1,
A = OX = P(X)

For any locale X = {truth values}

maps f. X -> [T] in bijection with
models of T in OX - models of T "at X"
Points of [T] = models of T

Locales: write [T] for locale with O[T] = Fr@y



Another approach: formal topology

Assume G a poset, and a base of opens

Relations take simpler form
D < \/ T 31 3 < {3\ \Lelzg
Same principles apply

(G><\,<w\ ammg
It has

- formal points (models)
- formal opens (formulae modulo equivalence)



e.g. Sierpinski $

one generator P, no relations

Point = model = truth value Open = formula

A
2
¥ :

— O

Map X -> $
= model of theory in OX
= open of X

model of theory at X



Grothendieck topos = generalized point-free space

Ungeneralized: locale X Generalized: topos X |
Frame = algebraic theory of ~ Grothendieck topos = algebraic theory of
opens sheaves (local homeomorphisms)

X -> Sierpinski $ X->{sets} | o
Lattice, finite A\, arbitrary V/ Category, finite limits, arbitrary collr_nlts
Map = function (backwards) Map = functor (backwards) preserving
preserving those those |

~ geometric morphism
. T %3
X-> X -> {sets}
o x |-> fibre
——




Presentations: Geometric theories

generators = signature: sorts, functions, predicates

relations = axioms

CP\C’C—{ oo .)C—,\) l-/"/LP ()C—D---%y;)
Ungeneralized: propositional formulae built with AN = 3
No sorts,

signature just propositional symbols Generalized: predicate

Present frame by generators and  Grothendieck topos generated
relations: using finite limits, arbitrary colimits

Lindenbaum algebra "making axioms hold"

= formulae modulo equivalence = classitying topos -  {~ EW,J

Injection of generators gives
generic model of theory.



Example: "space of sets" (object classifier)

Theory @ one sort, nothing else.

Classifying topos &QXE(D,_) {r Oy &e’t}

Conceptually object = continuous map {sets} -> {sets}
Continuity is (at least) functorial + preserves filtered colimits
Hence functor {finite sets} -> {sets}

Generic model is the subcategory inclusion Inc: Fin -> Set



Example: "space of pointed sets"

Theory @Rt one sort X, one constant x: 1 -> X.
Classifying topos S@b {@, th = [F"“/sebl/ e
In slice category: 1 becomes Inc, Inc becomes Inc x Inc

Generic model is Inc with

] s \nwe x \ac

nC
g
1 in slice \J\\1 /L Inc in slice
ln

A




Universal property of Set|[T]

1. Set[T] has a distinguished "generic" model M of T.

2. For any Grothendieck topos E,
and for any model N of T in E,
there is a unique (up to isomorphism) functor f*: Set[T] -> E

that preserves finite limits and arbitrary colimits _
and takes M to N. Same idea as for frames

f* preserves arbitrary colimits
- can deduce it has right adjoint

These give a geometric morphism f: E -> Set[T]
- topos analogue of continuous map



Reasoning in point-free logic

Let M be a model of T ...

Reasoning h
- finite limits,
- Includes wit

- not full pow
- It's predicat

Box is S[T]

Its internal mathematics is
- geometric mathematics
freely generated

by a (generic) model of T

bre must be geometric
arbitrary colimits
le range of free algebras

- e.g. finite ppwerset

erset or exponentials
ve

To get f* to another topos E:

Once you know what M maps to (a model in E)

- the rest follows

- by preservation of colimits and finite limits



Reasoning in point-free logic

Let M be amodelof T_1 ...

, Geometric rgasoning
- Inside box

Then f(M) = ... iIsamodel of T_2
Outside box

yod
Get map (geometric morphism) f: S[T_1] -> S[T_2]




Reasoning in point-free topology: examples

4 (?\X(P\ — Dedekind sections, e.g. (L_x, R_X)
/

[ eT BC.,S c \L/
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Reasoning in point-free topology: examples

Let (X,y) be on the unit circle

5(‘,4'-(— > = \
Then can define presentation for a sub%ce of RXR,
the points (x', y') satisfying —™————

Xx' +yy' =1 This constructign is geometric

It's the tangent of the circle at (x,y)

Inside the box:
For each point (x,y), a space T(X,y)

Outside the box:

Defines the tangent bundle of the circle. T IS the fibpeat (x,y)

Joyal and Tierney: fibrewise topology of bundles
Internal point-free space = external bundle



Reasoning in point-free topology: examples

Spec: [BA] -> Spaces

Let B be a Boolean algebra

Then Spec (B) is point-free space of prime filters of B,
presented by -

aneasos (k) QoéE\ Qm\f)
: ?e,\ot’ﬂo\mﬁ /\\02\ = C‘?BQ\‘)\"
W\Q_Q,l’: /-/('"\"X -

— /
(o v > ) = (\Dz_
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(oo
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Reasoning in point-free topology: examples

Spec : I8l — Syos - B a pt of space of Boolean algebras
Cet B be & Booleon adsdo& - internal point-free space
T hwen S‘>€c, @%’;5 ‘P&vﬂ'—-j{eq Spaca = external bundle
of P s T me. Lillec)
et S [Bh~ pame 5
. OQn o G Ge® . %
.?e_\mo“g (b, Ab2) = (:)@5\) nckisn \V\«%{)\({\‘z}; ”Q[
N B T eA] P i
® =\
Spec(B) is fibre over B 3?60_(1@ > [Bh« pame f"lw}
Geometricity => construction is uniform: \(/
- single construction on generic B 4 _———> 1oA]
- also applies to specific B's
- get those by pullback pullback

= generalized fibre of generalized point



Suppose you don't like Set?
O

Replace with your favourite elementary topos S. (2
Needs nno N. K

Fin becomes internal category in S.

Finite functions L/, % (— IQ n={0, ..., n-1}
. _ — (A — "W\ =
f:m->n \ _? 0

Cco

Classifying topos becomes 6,;@] - EF WA )g]

- category of internal diagrams on Fin

),
fm - in X S — — fi
(f: m ->n, x in X(m)) 3 ? X(n) = fibre over n
X(0)(x) In X(n) — Ao, M Suppose you don't like
o ‘_ﬁ . . . ’?
— u/\‘ < Impredicative toposes”
coN\

Other classifier iIs slice, as before.

Be patient!



Roles of S Infinities are extrinsic to logic

- supplied by S

(1) Supply infinities for infinite disjunctions:
get theories T geometric over S.

(2) Classifying topos built over S: geometric morphism g BV] ’?&
Suppose T has disjunctions all countable

It's geometric over any S with nno.

But different choices of S give different classifying toposes.

ldea: use finitary logic with type theory that provides nno

- replace countable disjunctions by existential quantification over

countable types
- they become intrinsic to logic



Arithmetic universes instead of Grothendieck toposes

Pretopos - finite Iim_its | | + all well behaved
coequalizers of equivalence relations
finite coproducts
o DN
2 Y
+'setrindexed coproducts + parametrized list objects

+ smallnhess conditions

\S/ Giraud's theorem 1 -E;‘?L\\S{:@(SQQ?KFL‘&S{(@D

Grothendieck toposes \]/
bounded S-toposes _ _ _
Arithmetic universes (AUS)
extrinsic infinities from S S
Intrinsic infinities
e.g. N = List(1)



Aims
- Finitary formalism for geometric theories
- Dependent type theory of (generalized) spaces
- Use methods of classifying toposes in base-independent way
- Computer support for that
- Foundationally very robust - topos-valid, predicative

- Logic intemalizable in itself
(cf. Joyal applying AUs to Goedel's theorem)



Classifying AUs

Universal algebra => AUs can be presented by

- generators (objects and morphisms) | |
- and relations theory of AUs Is cartesian

(essentially algebraic)
(G, R) can be used as a logical theory

AU<G|R> has property like that of classifying toposes

Treat AU<G|R> as "space of models of (G,R)"
- But no dependence on a base topos!



Issues: How to present theories?_Arlthmetic” instead of geometric

Not pure logic - needs ability to construct new sorts

Use sketches - hybrid of logic and category theory
- sorts, unary functions, commutativities
- universals: abllity to declare sorts as finite limits, finite colimits or list

objects

- —3¢' —
S —s = &
< !
commisticiey, el nodes



Issues: strictness

Strict model - interprets pullbacks etc. as the canonical
ones
- needed for universal algebra of AUs

But non-strict models are also needed for semantics

Contexts are sketches built in a constrained way
- better behaved than general sketches
- every non-strict model has a canonical strict isomorph

A base-independent category of

Con is 2-category of contexts . .
generalized point-free spaces

- made by finitary means

The assignment T |-> AU<T>
IS full and faithful 2-functor "Sketches for arithmetic universes"
- from contexts (arXiv:1608.01559)

- to AUs and strict AU-functors (reversed)



’“/\ a context map (morphism in Con)
\ - transforms models Nof T_1

- to models NUof T O
AU
To K ST S <

For each model M of T_O:

- think of its fibre as
"the space of models N of T_1 such that NU = M"

Bundles

= AN<T )

If U is of a particular kind (extension map)
and if M is a model in an elementary topos (with nno) S,
then this fibre exists as a generalized space in Grothendieck's sense

- get geometric theory T_1/M _ o o
- it has classifying topos "Arithmetic universes and classifying
toposes" (arXiv:1701.04611)
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Conclusions

Con is proposed as a category of Grothendieck's generalized spaces
- but in a base-independent way

- consists of what can be done in a minimal foundational setting

- of AUs

- constructive, predicative

- includes real line; also theory of regular measures.



