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Sketches for AUs
"Contexts" for control over strictness

Questions:
(1) Using type theory to make AUs
* Reconcile Maietti's syntactic category with my sketches
(2) Using type theory to compare AUs
* "Dependent type theory of (generalized) spaces"



Why AUs?

Grothendieck says toposes are generalized spaces.

Each geometric theory has a classifying topos,
somehow its "space of models".

First must choose a base elementary topos S "of sets" -
* determines what infinite disjunctions are allowed in 
geometric logic,
* used in constructing classifying topos.

If disjunctions are countable, will work for any S with nno
- but different S's give different classifying toposes.

Idea Get a classifying AU independent of S.
AU-functors give geometric morphisms,
hence "continuous maps" between the spaces.



Type theory Universal algebra

Maietti:
Modular correspondence ...

Maietti:
Joyal's AUs via TT

Palmgren, Vickers:
Partial Horn logic and 
cartesian categories

Making AUs:

Syntactic category -
Types and terms for objects and 
morphisms.
Type constructors for pullbacks, 
list objects etc.
Term constructor for associated 
morphisms.

Present by generators (objects, 
morphisms) and relations.
Operators for pullbacks, list 
objects  etc, and associated 
morphisms.



Type theory Universal algebra

Maietti:
Modular correspondence ...

Maietti:
Joyal's AUs via TT

Palmgren, Vickers:
Partial Horn logic and 
cartesian categories

Maietti, Vickers:
An induction principle 
for consequence in AUs

Hope: Exploit TT for calculations in 
AU presented by generators and 
relations.
Didn't work out -
?? Universal characterization of 
syntactic category.
?? Issues of strictness for AU-
functors.



Type theory Universal algebra

Maietti:
Modular correspondence ...

Maietti:
Joyal's AUs via TT

Palmgren, Vickers:
Partial Horn logic and 
cartesian categories

Maietti, Vickers:
An induction principle 
for consequence in AUs

Vickers:
Sketches for AUs

Vickers:
AUs and classifying toposes



Sketches

A directed graph (nodes, edges) names all objects and morphisms 
involved in a model.
Commutativities specify that diagrams commute.
Universals specify particular properties.

e.g. set M with binary operation u:

Product universal specifies (N, p1, p2) is a product cone



Models of a sketch

Interpret
nodes

edges
as

objects

morphisms

respecting commutativities and universals.

Strictly or non-strictly? e.g. for product universals:

Strict model: the canonical product
- convenient for syntax (universal algebra)

Non-strict model: any product
- convenient for semantics

We find ways to reconcile these.



Sketches for AUs

nodes

edgescommutativities

G for graph, U for universals

pullback list terminal

pushout

initial

There are equations amongst the operators here.

codomain, 
identity,
domain



e.g. product universal, N is MxM

Graph includes:

The two Ms are the 
same node.

T (terminal) is the image 
of an element of U^0.

The two triangles are the 
images of two elements 
of G^2.

They are images of an 
element of U^pb, 
specifying the square is a 
pullback.

T terminal, square a pullback => (N, p1, p2) a product cone.



"Contexts" and strictness

Two universals of different kinds might specify same node.
e.g. X is both YxZ and List(A)
Possibly many non-strict models (YxZ and List(A) isomorphic),
no strict ones (YxZ = List(A)).

For better control of strictness:
ensure each node specified by at most one universal.
Then every non-strict model has a canonical strict isomorph.

e.g. contexts - sketches built up in finitely many extension steps
* adjoin fresh node
* adjoin fresh edge between old nodes
* adjoin fresh commutativity in old triangle
* adjoin universal specification for fresh node and edges (e.g. a 
pullback and its projections)

From now on all sketches are contexts.

For sketches in general:



Sketch presents AU

(1) Sketch = generators + relations for AU.
Then use universal algebra.

generators
relations

(2) Equivalence extensions embody derivation rules for ingredients 
of sketches.
Make category of nodes and edges that can arise in equivalence 
extensions (modulo suitable equivalence).

Theorem It's isomorphic to AU<T>.

classifying AU



Sketch presents AU

(3) Sketch provides types, terms, equalities for a typed theory for the AU 
typed calculus.

TT derivation rules give types and terms for objects and morphisms of 
syntactic AU. (Maietti)

Conjecture It's isomorphic/equivalent to AU<T>.

Potential Simplify reasoning for sketches, using methods of dependent 
TT.

Difficulty Hard to match universal characterizations of two constructions.



Equivalence extensions: derivation rules for sketches

Given data 
in a sketch,

composite edges

extend by 
adjoining delta:

universal, e.g. pullbacks

+ pb universal

equality rules for edges,
e.g. associativity

+ fillins for universals
+ uniqueness for fillins
+ inverses for certain edges, as required by categorical properties of 
AUs (balance, exactness, stability)



Object equalities

Equivalence extensions say nothing about equality of nodes.
We do that separately.

Inductively define certain edges to be object equalities.
* Identity edges are object equalities.
* Suppose have two universals of the same kind, with object 
equalities connecting the data. Then the fillin is also an object 
equality.

Object equalities are invertible and composable;
also (between any two nodes) unique.

Hence: equivalence relation on nodes.



Object equalities - between edges

two object equalities between nodes

is object equality between edges u, u'

AU<T> is category of nodes, edges from equivalence extensions of T
- modulo object equalities.



Summary of first level of type theory: within AUs

Conjecture

* AU type theory (Maietti) can be related to sketches, giving 
alternative construction of AU<T> as syntactic category.

* That would allow calculus of dependent types to be applied in the 
equivalence extensions.

* Object equality an interesting example of type equality?



Second level of type theory: amongst AUs

Idea:

context = "context"

type in context = one of possible extension steps

extension by type = extension

contexts - sketches built up in finitely 
many extension steps
* adjoin fresh node
* adjoin fresh edge between old nodes
* adjoin fresh commutativitiy in old triangle
* adjoin universal specification for fresh 
node and edges (e.g. a pullback and its 
projections)

cf. categories with attributes

Get AU-functor

On models get transformation backwards,
by model reduction.
Corresponds to context projection.



Terms?

Should be sections of context projections

We're looking for continuous t
- which should mean AU-functors backwards

= model

We construct these using the level-1 type 
theory (equivalence extensions of T_0)



The 2-category Con

Object = context

Morphism = context map = strict model in equivalence extension
  (modulo object equality)
- in bijection with strict AU-functors between corresponding AUs

2-cells use homomorphisms of strict models

Has finite PIE-limits (products, inserters, equifiers), and pullbacks of 
extension maps (context projections).

Question Can we exploit the dependent type calculus in Con?
It would be a dependent type theory of generalized spaces 
- not of sets
- nor of homotopy types



Type theory in Con?

Dependent TT is "point-set" in format:
"Here are the sets (types), here are their elements (terms)."

Sketch formalism is "point-free":
"Here are the ingredients you need to model in order to find a point."
- type (extension) indirectly describes space of models
- terms must reconstruct notion of point-free continuous map

Can we we fit TT formalism into Con?

Would restore points to point-free topology.
cf. use of geometric logic, despite incompleteness.
Slogan There are enough points if you look in the right place
(use generalized points, i.e. maps).

Goal: Dependent type theory of spaces



Concluding questions

Maietti already has a type theory for AUs.
Can this be securely related to the universal algebra via the sketches?
Is the TT syntactic category isomorphic to the algebraic classifying 
category?

How do the earlier Maietti-Vickers results relate to the new sketch 
theory?
Does the sketch-theoretic control of strictness help us understand the 
earlier problems with that?

Is there a genuine dependent type theory of spaces to be found round 
the 2-category of contexts?
How can we exploit it?
What is the scope of its mathematics?
  (Should approximate geometric logic.)


