
An induction principle for consequence in

arithmetic universes

Maria Emilia Maietti
Dipartimento di Matematica Pura ed Applicata, University of Padova,

via Trieste n.63, 35121 Padova, Italy
maietti@math.unipd.it

Steven Vickers
School of Computer Science, University of Birmingham,

Birmingham, B15 2TT, UK
s.j.vickers@cs.bham.ac.uk

July 25, 2013

Abstract

Suppose in an arithmetic unverse we have two predicates φ and ψ for
natural numbers, satisfying a base case φ(0) → ψ(0) and an induction
step that, for generic n, the hypothesis φ(n) → ψ(n) allows one to deduce
φ(n+ 1) → ψ(n+ 1). Then it is already true in that arithmetic universe
that (∀n)(φ(n) → ψ(n)). This is substantially harder than in a topos,
where cartesian closedness allows one to form an exponential φ(n) → ψ(n).

The principle is applied to the question of locatedness of Dedekind
sections.

The development analyses in some detail a notion of “subspace” of
an arithmetic universe, including open or closed subspaces and a boolean
algebra generated by them. There is a lattice of subspaces generated by
the opens and the closed, and it is isomorphic to the free Boolean algebra
over the distributive lattice of subobjects of 1 in the arithmetic universe.

NOTICE: This is the authors’ version of the work as accepted for
publication. The definitive final version appeared in –
Journal of Pure and Applied Algebra 216 (8-9) (2012), pp. 2049-2067.
doi: 10.1016/j.jpaa.2012.02.040.

1 Introduction

As has often been said, toposes embody two quite different ideas, under which
they are considered either as generalized universes of sets or as generalized
topological spaces. Our aim here is to explore the same idea when applied to
arithmetic universes (see [Joy05], [Mai10a]) instead of toposes. The geometric

1

structure of Grothendieck toposes – that is to say, the structure that is used to
generate them when one builds classifying toposes, that is preserved by inverse
image functors for geometric morphisms, and that appears in Giraud’s Theorem
– is the set-indexed colimits and finite limits. However, this begs the question
of what are the sets that index the colimits. The speculation behind our use
of arithmetic universes (AUs), mentioned already in [Vic99, section 6.1] and
discussed as “Coherent type theory” in [Vic07a], is that one might replace the
arbitrary set-indexed colimits by (i) finite colimits, and (ii) those colimits that
can be expressed internally using free algebra constructions such as the natural
numbers object and existential quantification over them.

The logical heart of the analogy is seen through the classifying toposes of
geometric theories. The classifying topos is, for geometric logic, the appropriate
notion of classifying category (or theory category). It is built from a generic
model of the theory by adjoining colimits and finite limits. (The power of “ar-
bitrary set-indexed colimits” is seen in the fact that, when the theory itself is
small, and sets themselves are taken as forming an elementary topos, the classi-
fying topos will then already be both an arithmetic universe and an elementary
topos.) The geometric morphisms between classifying toposes – given essentially
by their inverse image functors as functors preserving the geometric structure
of colimits and finite limits – then correspond to “continuous maps between the
spaces of models of the theories”, and this can be made precise in spatial cases.
The objects of the classifying topos are the sheaves over the space, or, more
generally, sheaves over a site.

In many cases in practice, the geometric theory can be rephrased in the
form of an arithmetic type theory, and then there is a corresponding classifying
AU. We think of this as the “arithmetic space” of models of the theory. AU-
functors, in the reverse direction, are then the maps between the arithmetic
spaces. To put it another way, we define the category AS of arithmetic spaces
as the opposite of the category AU of arithmetic universes. This is analogous
to the definition of the category Loc of locales as the opposite of the category
Fr of frames.

We should make a remark about strictness. Our development of AUs relies
heavily on the fact that they are the models of a cartesian (finite limit) theory,
so that we can use techniques of universal algebra derived from the initial model
theorem. For this it is natural to assume that AUs come equipped with canonical
choice of AU structure (finite limits – or more precisely: pullbacks and the
terminal object –, pushouts and the initial object, and list objects) and that
the morphisms are strict AU-functors, preserving the AU structure on the nose.
On the other hand our structure theorems (Section 3) require the use of AU-
functors, preserving the AU structure up to isomorphism but not necessarily
strict. The AU extensions that we shall use are characterized up to equivalence
in terms of AU-functors (Section 2).

The induction principle that forms the main result of the paper (Theo-
rem 46) is for implications φ(n) → ψ(n) where φ and ψ are predicates on
the natural numbers N . (Categorically, by “predicate” we mean that φ and
ψ are subobjects of N rather than – as one might expect from a propositions-

2

as-types interpretation – arbitrary morphisms into N .) An induction proof of
∀n (φ(n) → ψ(n)) would comprise a base case φ(0) → ψ(0) and an induction
step that, for generic n, assumes an induction hypothesis φ(n) → ψ(n) and
proves that φ(n+1)→ ψ(n+1). The problem arises because, since AUs are not
cartesian closed in general, φ(n)→ ψ(n) cannot be interpreted as a subobject of
N . Instead, we adjoin the induction hypothesis (the generic n and the sequent
φ(n) → ψ(n)) to generate a new AU, and ask for φ(n + 1) → ψ(n + 1) there
as the induction step. The task then is to use this property of the new AU to
deduce the conclusion φ ≤ ψ in the old one.

Our solution has two main stages.
Stage 1 analyses the induction step and how to extract information about

the original AU from it.
Somewhat remarkably, we can use classical logic and say φ(n) → ψ(n) is

equivalent to ¬φ(n)∨ψ(n). However, ¬ here is not the usual Heyting negation for
subobjects (which in any case cannot normally be done in an AU) but represents
a passage from φ(n) considered as an open subspace to its corresponding closed
subspace; and ∨ is a join in a Boolean lattice of “subspaces” (Section 4). This is
directly analogous to the use of subspaces (or sublocales) in point-free topology,
and a large part of our work here lies in showing analogous structure for AUs.
The induction step then becomes

¬φ(n) ∨ ψ(n) ≤ ¬φ(n+ 1) ∨ ψ(n+ 1),

and Boolean algebra manipulations allow us to eliminate the negations. Then
non-trivial conservativity theorems, based on analysing (in Section 3) the con-
crete structure of the AUs for open and closed subspaces, allow us to transfer
this conclusion from subspaces to subobjects of N in the original AU.

Stage 2 is then a new induction principle. It says that the conclusion
∀n (φ(n) → ψ(n)) can be deduced from the base case φ(0) → ψ(0) and two
conditions derived from the induction step.

2 Arithmetic universes

Arithmetic universes are very much the creation of André Joyal, in unpublished
work from the 1970s – though see [Joy05]. The general notion was at first
not clearly defined, and we shall follow [Mai10a] (which also discusses their
background in some detail) in defining them as list arithmetic pretoposes.

We recall that a pretopos is a category equipped with finite limits, stable
finite disjoint coproducts and stable effective quotients of equivalence relations.
(For more detailed discussion, see, e.g., [Joh02a, A1.4.8].)

Definition 1 An arithmetic universe (or AU) [Mai10a] is a list arithmetic
pretopos (see also [Coc90]), namely a pretopos in which for any object A there
is an object List(A) with maps rA0 : 1→ List(A) and rA1 : List(A)× A→ List(A)
such that for every b : B → Y and g : Y × A → Y there is a unique rec(b, g)

3

making the following diagrams commute

B
〈IdB,r

A
0 ·!B〉//

b
((

B×List(A)

rec(b,g)

��

B×(List(A)×A)
IdB×rA1oo

(rec(b,g)×IdA)·α
��

Y Y×A
g

oo

where α : B×(List(A)×A)→ (B×List(A))×A is the associativity isomorphism.

We assume that each arithmetic universe is equipped with a choice of its
structure. Hence we assume all the finite limits and colimits are defined by
adjoint functors to diagram functors. For example, given two objects A,B we
assume we have a functorial choice of their product and of the pairing morphisms
of two morphisms. Note that an AU has all coequalizers, not just the quotients
of equivalence relations. This is because the list objects allow one to construct
the transitive closure of any relation (see [Mai10a]).

Definition 2 A functor between AUs is an AU-functor if it preserves the AU
structure (finite limits, finite colimits, list objects) non-strictly, i.e. up to iso-
morphism. It is a strict AU-functor, if it preserves the AU structure strictly.

We shall be treating AUs as generalized spaces in a way analogous to that
understood for Grothendieck toposes: an AU is in some sense the category of
sheaves over its space. However, whereas Grothendieck toposes are all large,
having all set-indexed colimits, for AUs we may conveniently restrict our atten-
tion to the small ones.

Definition 3 We write AU and AUs for the categories of small AUs and
(respectively) AU-functors and strict AU-functors.

2.1 AUs as algebras

The theory of arithmetic universes is essentially algebraic (or cartesian). [PV07]
gives a simple “quasi-equational” formulation of the logic (similar to that of
[CGRW95]), as well as a simple predicative account of the initial model theorem.

In the case of AUs, we use a quasi-equational theory with two sorts, for
objects and morphisms. The category structure is described using a total op-
erator for identity morphisms and a partial operator for composition; then the
finite limit structure is described with a total operators for the terminal object
and unique morphisms and partial operators for pullbacks, the projection mor-
phisms and pairing. As a quasi-equational theory, this much is described for
cartesian categories in section 6.1 of [PV07]. Finite colimits are described du-
ally. (Remember that an AU has all finite colimits even though a pretopos does
not in general.) Then the properties relating colimits to limits can be expressed
quasi-equationally. Note that the partial operators for pullbacks and pushouts
have domains of definition defined as equations involving the operators for the

4

theory of categories: for example, the pullback projections pkf1,f2 (k = 1, 2) are
defined if the morphisms f1 and f2 have equal codomain.

Finally, we introduce operators to describe the list objects. List, r0 and r1
are described with total operators with a single argument A of sort object. rec
is a partial operator, with recA(b, g) defined iff c(b) = c(g) and d(g) = c(g)×A.
Finally, an extra partial operator u is needed to express uniqueness of recA(b, g).
uAb,g(r) is defined iff r is a possible solution for recA(b, g) in the diagram of
Definition 1: in other words, c(b) = c(g) and d(g) = c(g) × A (the same as for
recA(b, g)), c(r) = c(b), d(r) = d(b)×List(A) and r·(Idd(b)×rA1) = g·((r×IdA)·α).
It is then subject to equations uAb,g(r)
 r and uAb,g(r)
 recA(b, g) where “
”
means that if both sides are defined then they are equal.

The algebraic notion of homomorphism, preserving these operators, corre-
sponds to strict AU-functors. Note that it suffices to check strict preservation
of certain object-valued operators: the terminal object and pullbacks, the ini-
tial object and pushouts, and the list objects. Once that is done, preservation
of the other operators follows from the uniqueness conditions in Definition 1.
This is important, since those object-valued operators are either total or have
a definedness that depends only on the category structure.

The initial model theorem now implies that AUs can be presented by gen-
erators and relations, and that forgetful functors have left adjoints. In partic-
ular, the forgetful functor G0 : AUs → Cat has a left adjoint F0. We write
(T0 = G0F0, η0, µ0) for the corresponding monad on Cat. We shall also gener-
ally write σ : T0A→A for the structure morphism (a strict AU-functor) of an
AU A. If f : C→B is a functor to an AU B, we write f : T0C→B for the strict
AU-functor lifting it, that is f = σ · T0(f).

We shall require various limits and weighted limits, in both AUs and AU.
In fact G0 creates finite weighted limits, and a number of the same constructions
also serve as weighted limits in AU.

Our starting point is to show that comma objects in AU are constructed as
comma categories. Because the uniqueness clause in part (1) of the following
Lemma is relative to strict AU-functors, we do not have that the forgetful
functor from AU to Cat creates comma objects. However, the forgetful functor
from AUs to Cat does.

Proposition 4 Let f : A → C and g : B → C be two AU-functors.

1. There is a unique AU structure on the comma category f ↓ g such that
the projection functors π1 : f ↓ g → A and π2 : f ↓ g → B are both strict
AU-functors.

2. Let D be another AU, and let h = 〈f ′, α, g′〉 : D → f ↓ g be a functor.
(Here f ′ : D → A, g′ : D → B and α : ff ′ → gg′.) Then h is an
AU-functor iff both f ′ and g′ are. Moreover, h is strict iff both f ′ and g′

are.

Proof. Essentially the result holds because the AU constructions are all
covariant – this is related to the positivity of geometric logic and to the central

5

core of the paper, the lack of exponentials in AUs – and characterized uniquely
up to isomorphism. Recall that an object of f ↓ g is a triple (A, u,B) where
A and B are objects of A and B, and u : f(A) → g(B). Any construction on
such triples must be done componentwise on the As and Bs in order to achieve
strictness of π1 and π2, and then the morphisms u lift by covariantness.

We prove the two parts simultaneously, showing for each AU construction
its uniqueness as structure on f ↓ g and its preservation by h. Note that in part
(2), the ⇒ direction is obvious.

First, consider pullbacks or indeed any finite limits. Let Γ = 〈Γ1, β,Γ2〉 :
J → f ↓ g be a finite diagram in f ↓ g. Then there is a unique u : f(lim Γ1)→
g(lim Γ2) in C making a cone morphism between the limit cones. This gives,
uniquely, our lim Γ = 〈lim Γ1, u, lim Γ2〉. Now consider a diagram ∆ : J → D
and let Γ = h∆. By naturality of α, αlim ∆ satisfies the characteristic conditions
of u, and it follows that h(lim ∆) is a limit of Γ.

Pushouts are similar.
For list objects, if we have u : fA → gB then there is a unique List(u)

making these squares commute:

1

=

��

∼= // f1
f rA0 // fList(A)

List(u)

��

f(List(A)×A)
f rA1oo fList(A)×fA

List(u)×u
��

∼=oo

1 ∼=
// g1

grB0

// gList(B) g(List(B)×B)
grB1

oo gList(B)×gB∼=
oo

By a similar argument to the above, but now using the fact that h preserves
finite products, we see that h preserves list objects.

The remark on strictness is clear.

Proposition 5 Let f : A → C and g : B → C be two AU-functors, and let
f ↓∼= g be the pseudopullback, the full subcategory of f ↓ g whose objects are
those (A, u,B) for which u is an isomorphism. Then f ↓∼= g is a strict sub-AU
of f ↓ g.

If f and g are both strict, then the pullback f ↓= g is a strict sub-AU of
f ↓∼= g.

Proof. – clear.

Corollary 6 The forgetful functor G0 : AUs → Cat creates finite limits.

Proof. By Proposition 5 it creates pullbacks, and it clearly creates terminal
objects.

Theorem 7 The forgetful functor G0 : AUs → Cat creates finite weighted
limits.

Proof. By Corollary 6 G0 creates finite limits. By Proposition 4 it also cre-
ates cotensors by the category with two objects and one non-identity morphism,
since that cotensor for A, in other words the arrow category A→, is the comma
category IdA ↓ IdA. The result now follows from [Str76].

6

Lemma 8 Any G0-split fork of strict AU-functors is a coequalizer in AUs and
also in AU.

Proof. Suppose we have

A

f−→
g−→
←−
t

B
e−→
←−
s

C

where f , g and e are strict AU-functors, e · s = IdC , g · t = IdB and f · t = s · e.
Let h : B→D be a strict AU-functor with h · f = h · g. We must show that
h · s is also a strict AU-functor, in other words that it preserves final and initial
objects, pullbacks, pushouts, and list objects. Let ω be the operator in the
theory of AUs for any one of these, and suppose ω(~x) is defined in C. Even if ω
is partial, its domain of definition is defined solely by the category structure of
C and it follows that ω(s~x) is defined and eω(s~x) = ω(~x). Then

hsω(~x) = hsω(es~x) = hseω(s~x) = hftω(s~x) = hgtω(s~x) = hω(s~x) = ω(hs~x).

In AU the argument is the same except that we have hω(s~x) ∼= ω(hs~x).

Proposition 9 The comparison functor γ : AUs → CatT0 is full and faithful.

Proof. (Faithfulness is obvious.) This follows from Lemma 8 by standard
results associated with Beck’s Monadicity Theorem (see [BW84, Thm 3.13, Cor.
3.11]).

Corollary 10 A functor f : A→B between two AUs is a strict AU-functor iff
f · σ = f .

Proof. Recalling that f = σ · T0(f), the equation is the condition for f to
be a morphism of T0-algebras.

Proposition 11 Let f : A→B be a functor between two AUs. Then f is an
AU-functor iff f ·σ ∼= f . In this situation there is a unique natural isomorphism
whose composite with (η0)A is the identity on f .

Proof. ⇐: Since f is by definition a strict AU-functor, it follows that f · σ
is an AU-functor. Now consider Lemma 8 applied to the canonical presentation
of A (where e, f, g in the Lemma are σ, µ0, T0σ here) with f · σ for h. It follows
that f = f · σ · η0 is an AU-functor.
⇒: Let C = f ↓∼= B as in Proposition 5. The functor g = 〈A,=, f〉 : A → C

extends uniquely to a strict AU-functor g = 〈σ,∼=, f〉 : T0A → C such that
g = g · η0, giving f · σ ∼= f .

We have to take care regarding strictness (hence the s in A[T]s). In the al-
gebraic approach the AU structure appears as partial operators for finite limits,
finite colimits and list objects, and so the algebraic notion of homomorphism,

7

preserving these operators, corresponds to strict AU-functors. However, our
structure theorems in Section 3 involve non-strict AU-functors and to deal with
these we shall need a non-strict version of model. In this section we show how
to adjoin additional structure to give an A[S] that allows for this.

Proposition 12 The subcategory inclusion G : AUs → AU has a left adjoint.

Proof. We define its left adjoint F : AU→ AUs as follows. If A is an AU,
then FA is the AU defined over T0A by freely adjoining a natural isomorphism
υ : η0 · σ ∼= IdT0A, subject to its composing with η0 to give the identity on η0.
Let η′ : T0A → FA be the canonical strict AU-functor. By Proposition 11,
AU-functors f : A → B are in bijection with strict AU-functors f : T0A → B
equipped with isomorphisms υ of the kind described, and they are in bijection
with strict AU-functors FA → B. In fact, η′ · η0 is a universal arrow from A
to G, so we obtain a functor F left adjoint to G. (The fact that η′ · η0 is an
AU-functor follows from Proposition 11.)

We write (T, η, µ) for the corresponding strictification monad on AU. Note
that every object is a T -algebra, in a unique way – we write β : TA → A for the
structure morphism, a strict AU-functor. The point is that not every morphism
is a T -homomorphism.

Theorem 13 If A is an AU then the functors η and β form an equivalence
A ' TA.

Proof. By definition, β · η = IdA. To prove η · β ∼= IdTA we use a proof
similar to that of Proposition 11. Let C be the AU η ↓∼= TA. There is an
AU-functor g : A → C given by g(A) = (A, η(A), Idη(A)). Its extension to a
strict AU-functor g : TA → C provides the required natural isomorphism.

2.2 AUs as spaces

Our general philosophy is to view an arithmetic space (or AS) X as a small AU
AX. A map f : X → Y between ASs is an AU-functor f∗ : AY → AX. Thus
the category AS of ASs and maps is equal to AUop.

We shall be interested in understanding AS as a “category of (generalized)
spaces”, and in particular we shall be interested in understanding a slice AS/X
as a category of spaces “fibred overX”. Typical questions, for a map f : Y → X,
would be – When is f fibrewise discrete (i.e. a local homeomorphism or sheaf,
hence corresponding to an object of AX)? When is it a subspace inclusion?
When is it an open or closed subspace inclusion? And in all those we should
like to know something about the structure of AY and the AU-functor f∗. This
paper takes a step towards addressing such questions.

In the first question, on fibrewise discreteness, one expects the fibrewise
discrete spaces over X to be equivalent to objects of AX and hence form an
AU. Taylor [Tay05] has investigated the analogous question in his system of
Abstract Stone Duality and shown that there too the discrete spaces (or, to be
precise in his terminology, the overt discrete spaces) form an AU.

8

Our fundamental construction of spaces over X is to adjoin structure freely
to the AU AX, and for this we use universal algebra. In the present work,
the kind of structure we shall adjoin is morphisms constrained by commutative
diagrams, although it is clear that the techniques could also be extended to
adjoining objects, subject to equational constraints in terms of AU structure.

Definition 14 Let A be an AU, and let S specify morphisms and diagrams over
A. That is to say, it comprises an additional set of symbols for morphisms, with
specified domain and codomain already in A, and of equations amongst them and
the morphisms already in A. We say that a model of S in an AU B is a pair
(F, α) where F : A → B is an AU-functor and α assigns to each morphism listed
in S an interpretation in B, such that the equations specified in S all hold in B
when interpreted by F and α.

The model is strict if F is strict.
Note that any AU-functor H : B → C transforms models (F, α) in B to mod-

els H ·(F, α) = (H ·F,H ·α) in C, and that if H is strict then the transformation
preserves strictness.

For example, if U and V are objects in A and S specifies a morphism f :
U → V , then a model in B is an AU-functor F together with a given morphism
f : F (U)→ F (V) in B.

Comma categories can be used to make a category ModS(B) of models of S
in B. If (F, α) and (G, β) are two models in B, then a homomorphism between
them is a model in B ↓ B whose two projections down to B give (F, α) and
(G, β).

We shall adjoin structure in two styles: strictly and non-strictly.

Definition 15 Let A be an AU, and let S specify morphisms and diagrams over
A. Then A[S]s is the AU presented by generators corresponding to the objects
and morphisms of A and the morphisms in S, and relations to require that the
AU structure of A is strictly preserved and the equations of S hold.

It is equipped with a strict model (I, α) of S and is characterized up to
isomorphism by the universal property that for any AU B and strict S-model
(F, β) in B, there is a unique strict AU-functor F̃ : A[S]s → B such that

(F, β) = (F̃ · I, F̃ · α).
If X is an AS, then X[S]s is defined by A(X[S]s) = (AX)[S]s. Thus we

have a map X[S]s → X.

Definition 16 Let A be an AU, and let S specify morphisms and diagrams over
A. Then A[S] is defined as T (A)[ηS]s.

If X is an AS, then X[S] is defined by A(X[S]) = (AX)[S]. Thus we have
a map X[S]→ X.

Theorem 17 A[S] is equipped with a generic model (I, α). Given an AU B, let
us write i : AUs(A[S],B) → AU(A[S],B) for the subcategory inclusion (which
is full), and j : AU(A[S],B)→ ModS(B) for the functor F 7→ F · (I, α).

9

1. A[S] is characterized up to strict AU isomorphism by the universal prop-
erty that j · i is an isomorphism of categories for all B.

2. j is an equivalence of categories. (Hence: to show that two AU-functors
F,G : A[S] → B are isomorphic, one shows that F · I ∼= G · I and
F (α) ∼= G(α).)

Proof. The first part is immediate from the universal characterizations of T (A)
and then of T (A)[S]s.

For the second part, we already know that j · (i · (j · i)−1) = Id and it
remains to show that (i · (j · i)−1) · j ∼= Id. Let F : A[S] → B be an AU-

functor and let F̃ : A[S]→ B be the strict AU-functor (j · i)−1(j(F)). We have

F̃ ·(I, α) = F ·(I, α), and these identities make a model of S in (F̃ ↓∼= F), which
is an AU by Proposition 5, whose first and second projections both give (I, α).

So there exists a strict AU-functor A[S]→ (F̃ ↓∼= F) that composed with both

projections gives the identity on A[S] and so an isomorphism F̃ ∼= F .
It is also possible to use the type theoretic methods of [Mai05]. Though

much more complex, these deal with structure of general dependent type theory
and hence cover much more general kinds of adjoined structure. The basic idea
is as follows.

First, given an AU A, one can make a Tau-theory Tiso(A) (where Tau is
the typed calculus of AUs) that has constants (and suitable axioms) for all the
category structure of A; and also constants and axioms for coherent isomor-
phisms between the AU types that can be expressed in the type theory and the
constants for the corresponding values in A.

It has the property that, for any AU B, the interpretations of Tiso(A) in B
are equivalent to AU-functors A → B.

Next, if S expresses extra ingredients of type theory that we wish to adjoin to
A, then we can make an extended theory Tiso(A)[S]. We then writeA[S]t for the
syntactic category CTiso(A)[S], i.e. the category of ground types for Tiso(A)[S].
It has the property that for any AU B, pairs (F, α) (where F : A → B is an
AU-functor and α is an interpretation of S in B with respect to the image of
F) are equivalent to AU-functors A[S]t → B. The notion of “interpretation of
S” is as described in section 5 of [Mai05] and is highly non-trivial.

For a detailed proof of this approach, see [Mai10b].

3 Some structure theorems

In this section we discuss some theorems that describe concrete structure of
certain AUs presented as A[S] (Definition 16).

For our induction principle we shall need to analyse X[n : 1→ N] (discrete
space of natural numbers over X), X[> ≤ φ] (open subspace for φ a subobject
of 1) and X[φ ≤ ⊥] (closed subspace).

The first part (Theorem 19) presents for AUs a categorical construction
that is well known for a range of categorical structures: to adjoin to C an

10

indeterminate global element c : 1 → U is equivalent to taking the slice C/U
with c represented by the diagonal ∆ : U → U × U .

However, it is worth considering a topological aspect in the case of Grothendieck
toposes, since that also motivates the development for AUs. In general with the
slice we construct the local homeomorphism corresponding to the sheaf U . If U
is a subobject φ of 1, i.e. an open of the topos, then the topos of sheaves for the
corresponding open subspace is got by adjoining an element of φ – i.e. (since
the element is unique) insisting that φ is the whole of 1. Open subspaces are
got by adjoining global elements.

In topos theory a key result is what we might call the localic bundle theorem,
which establishes an equivalence between localic maps (i.e. localic geometric
morphisms) with codomain a topos E , and internal locales in E . (See [JT84].)
Given an internal frame in E , you then take the topos of internal sheaves over
it. For the open subspace φ, the frame is presented over Ω by the relation
> ≤ φ. However, this general approach is not available in AUs since there we
have neither Ω nor internal frames.

Having found a more ad hoc method for open subspaces, we still have to deal
with their closed complements, presented by a relation φ ≤ ⊥ (Section 3.2). The
same technique of adjoining an element will certainly not work, since closed em-
beddings, unlike open ones, are not local homeomorphisms in general. However,
they are Stone maps. That is to say, using the equivalence of the localic bun-
dle theorem, the corresponding internal frame in the topos of sheaves over the
codomain is the ideal completion of a Boolean algebra. Specifically, it is the
initial Boolean algebra 2 but with > = ⊥ forced, making inconsistency, over
φ. In an AU we find that the Boolean algebra exists even though the frame
doesn’t, and our construction in effect shows how to describe the sheaves over
the frame, or those sheaves one needs for an AU, purely in terms of the Boolean
algebra.

3.1 Adjoining a global element to an AU

Lemma 18 In any arithmetic universe A, List preserves equalizers.

Proof. We give an argument whose essential ingredients may be found in
[Mai10a]. Let e : E ↪→ A be an equalizer of f, g : A → B, and let eL : EL ↪→
List(A) be an equalizer of List(f) and List(g). Clearly List(e) factors via eL; we
must show the reverse, with a morphism EL → List(E).

First, note that
1

r0−→ List(A)
r1←− List(A)×A

is a coproduct diagram. This follows by using the morphism

inr · ([r0, r1]× IdA) : (1 + List(A)×A)×A→ 1 + List(A)×A

to define a morphism rec(inl, inr · ([r0, r1] × IdA)) : List(A) → 1 + List(A) × A.
The image of r1 is the object List∗(A) of non-empty lists. Pulling back along eL
we also get a coproduct diagram for EL; let E∗L be the pullback of List∗(A).

11

Next, the morphism p : N ×List∗(A)→ A is defined so that pn(s) is the nth
element of s (with suitable treatment of cases where n is out of bounds), and
one can then show that it restricts to a morphism N ×E∗L → E. Knowing (via
eL) the length function on EL, we can then derive a morphism E∗L → List∗(E)
and from that we obtain a morphism EL ∼= 1 + E∗L → List(E). It is then
straightforward to show that it composes with List(e) to give eL.

Theorem 19 Let U be an object of an AU A. Then A[c : 1→ U] is equivalent
to the slice category A/U .

Proof. It is known that A/U is an arithmetic universe (see proposition 2.13
in [Mai05] and also [Mai10a]). Our statement is a strengthening of ex. 6 page
71 of [LS86] to arithmetic universes (moreover our definition of A[c : 1 → U]
differs from that in [LS86] in that it classifies not strict AU-functors) and hence,
we here give the proof in full detail.

We can think of A/U as extending A via the AU-functor

ξ : A −→ A/U

sending an object V to π1 : U × V → U . Moreover the diagonal

∆U : U → U × U

is a global element of π1 : U × U → U . Therefore we get a strict AU-functor

ξ̃ : A[c : 1→ U] −→ A/U

extending ξ and taking c to ∆U .
Conversely, we can define a functor

γ : A/U → A[c : 1→ U]

sending any object f : V → U to the equalizer

γ(f) ↪→ I(V)
I(f)−→
−→
c·!

I(U).

We note immediately that ξ̃ ·γ ∼= IdA/U . This is because any object f : V →
U of A/U is an equalizer of the morphisms U × f,∆U · π1 : U × V → U × U
over U , and hence is isomorphic to ξ̃(γ(f)).

Next, we find γ · ξ(V) is isomorphic to the equalizer

I(V)
〈c·!,Id〉
↪→ I(U)× I(V) ∼= I(U × V)

I(π1)−→
−→
c·!

I(U)

giving γ · ξ ∼= I. Similarly, γ(∆U) : γ · ξ(1) → γ · ξ(U) corresponds under the
isomorphisms to c : 1→ I(U).

12

We shall need to show that γ is an AU-functor. Let δ : A/U → A be the
functor, left adjoint to ξ, that takes each object f : V → U to V ; δ preserves
finite colimits and pullback. Note that if h : f → g in A/U (so f = gh) then
the following square is a pullback.

γ(f) ↪→ Iδ(f)
γ(h) ↓ ↓ Iδ(h)
γ(g) ↪→ Iδ(g)

Now suppose that Γ is a finite diagram in A/U , with colimit h. The above
observation shows that to get the image under γ of the colimit cocone we first
take the image under Iδ and then pullback along γ(h) ↪→ Iδ(h). But finite
colimits are preserved by Iδ and in an AU they stable under pullback, so it fol-
lows that γ preserves finite colimits. A similar argument shows that it preserves
pullbacks. It also preserves the terminal object IdU ∼= ξ(1).

Using [Mai10a] the list object of f : V → U in A/U , let us write ListU (f),
is calculated as an equalizer of two morphisms in A,

List(V)× U π1−→ List(V)
List(f)−→ List(U), and

List(V)× U List(!)×U−→ N × U mult−→ List(U).

(Note that List(1) is N .) We define mult(n, u) to be a list of length n all of whose
elements are u. More categorically, it is defined according to Definition 1 using
rec(b, g) : U ×List(1)→ U ×List(U), where b : U → U ×List(U) is b(u) = (u, rU0)
and g : U × List(U) × 1 → U × List(U) is g(u, l, ∗) = (u, rU1 (l, u)). We can
re-express the equalizer as one in A/U , namely of

ξ(List(V))
ξ(List(f))−→ ξ(List(U)), and

ξ(List(V))
〈∆U ·!,ξ(List(!))〉−→ ξ(U)× ξ(N)

∼=−→ ξ(N × U)
ξ(mult)−→ ξ(List(U)).

Then, since γ preserves finite limits and γ · ξ ∼= I, we have that γ(ListU (f)) is
an equalizer of

I(List(V))
I(List(f))−→ I(List(U)), and

I(List(V))
〈c·!,I(List(!))〉−→ I(U)× I(N)

∼=−→ I(N × U)
I(mult)−→ I(List(U)).

The second of these is equal to I(List(c)) · I(List(!)). Since I preserves List, we
see that we are equalizing

List(I(V))
List(I(f))−→ List(I(U)), and

List(I(V))
List(I(!))−→ List(1)

List(I(c))−→ List(I(U)).

Using Lemma 18 we deduce that the equalizer we seek for γ(ListU (f)) is iso-
morphic to List(γ(f)).

Since (I, c) ∼= (γ · ξ̃ · I, γ · ξ̃ · c) = (γ · ξ, γ(∆U)) as models of the constant

c, we can use Theorem 17 to show γ · ξ̃ ∼= IdA[c], and we conclude that ξ̃ and γ
form an adjoint equivalence.

13

3.2 Closed subspaces

We now turn to the closed subspace presented by the relation φ ≤ ⊥, where φ
is a subobject of 1.

In topos theory, where this is the closed complement of the open subspace
for φ, we can analyse the situation as follows. A closed embedding is Stone
over its codomain, and the corresponding Boolean algebra of clopens (internal
in the topos of sheaves over the codomain) can be described as the coequalizer
Bφ of two maps φ ↪→ 1 → 2, where the second morphism is either of the two
coproduct injections. Thus Bφ has the two elements ⊥B and >B , but they are
equal (giving an inconsistent theory) over φ. The internal frame is then the
ideal completion of Bφ, and sheaves over it are equivalent to presheaves over Bφ
satisfying a finitary pasting condition.

A presheaf F over Bφ is a restriction morphism F (>B) → F (⊥B) that
is an isomorphism if φ holds – in other words, F (>B) × φ → F (⊥B) × φ is
an isomorphism. The only significant effect of the sheaf pasting conditions
is that F (⊥B) must be a singleton. Hence a finitary sheaf is determined by
F (>B), under the condition that it has exactly one element if φ holds – in other
words, the projection F (>B)× φ→ φ is an isomorphism. We can rephrase the
discussion in terms of a certain coequalizer.

For the rest of this subsection, we do not use presume the truth of this
topos-theoretic analysis, but by mimicking its construction for AUs we obtain
our Theorem 28. We take φ to be a subobject of 1 in an AU A.

Definition 20 The endofunctor Vφ on A is defined on objects U by letting
Vφ(U) be the following coequalizer:

U

i1

''
U×φ

π1

77

π2

''

U+φ
e // // Vφ(U)

φ

i2

77

Equivalently, Vφ(U) is the pushout of the two projections from U × φ.
This is extended to morphisms in the obvious way.

We shall use the following definition to calculate the equivalence relation
corresponding to the epi e.

Definition 21 If U is any object of AX, we define the relation ∼Uφ on U as
∆∨ (φ×U ×U), where we are writing ∆ for the equality relation, i.e. the image
of the diagonal morphism. (We shall sometimes omit the superscript U .) It is
clear that ∼Uφ is an equivalence relation.

Proposition 22 The equivalence relation for the epi e : U + φ � Vφ(U) is

∼U+φ
φ .

14

Proof. First, the image of 〈i1 ·π1, i2 ·π2〉 in (U+φ)2 is less than φ×(U+φ)2,

so U + φ� (U + φ)/ ∼U+φ
φ factors via e.

It remains to show that ∼U+φ
φ is less than the equivalence relation generated

by the relation implicit in the definition of e, and it suffices to consider the
disjunct φ× (U +φ)2 ∼= φ×U ×U +φ×U +U ×φ+φ. The part U ×φ is what
we have in the definition of e, and φ× U follows by symmetry then φ× U × U
by transitivity.

Lemma 23 Let U be an object of AX. Then the following conditions are equiv-
alent.

1. The projection π2 : U × φ π2−→ φ is an isomorphism.

2. The morphism ηU = e · i1 : U → Vφ(U) is an isomorphism.

Proof. (In the internal logic, condition (1) says that if φ holds then U is a
singleton.)

(1)⇒(2) is clear, since ηU is the pushout of π2 along π1.
For (2)⇒(1) first note that π1 is monic, and it follows that π2 is also monic.

Now from [Joh02a, A1.4.8] (valid in pretoposes) it follows that the pushout
square is also a pullback, and we deduce that π2 is an isomorphism.1

Proposition 24 Vφ preserves finite limits (non-strictly).

Proof. That Vφ preserves 1 follows from Lemma 23.
Next we show it preserves binary products. Given objects U and V , the

morphism eU × eV : (U + φ) × (V + φ) → Vφ(U) × Vφ(V) is epi. However, by
definition of e the images of the parts U×φ and φ×V are less than the image of
φ, and it follows that the morphism U ×V +φ� Vφ(U ×V)→ Vφ(U)×Vφ(V)
is also epi. We calculate its kernel pair as a subobject of (U × V + φ)2. Any

part with φ is a subobject of φ × (U × V + φ)2 ≤ ∼U×V+φ
φ , so it remains to

calculate the kernel pair restricted to (U ×V)2, which is ∼Uφ × ∼Vφ≤ ∼
U×V+φ
φ .

It follows that Vφ(U × V) � Vφ(U)× Vφ(V) is an iso.
Finally we show it preserves equalizers. Let E ↪→ U be the equalizer of

f, g : U → V , and let E′ ↪→ VφU be the equalizer of Vφf and Vφg. The inverse

image of E′ under eU is the inverse image of ∼V+φ
φ under 〈f+φ, g+φ〉 : U+φ→

(V + φ)2, namely (E + φ) ∨ φ × (U + φ), and it follows that the restriction of
eU from (E + φ) ∨ φ × (U + φ) to E′ is the pullback of an epi and hence epi.
But by definition of eU the image of φ × (U + φ) is contained in that of i1(φ)

and it follows that E + φ � Vφ(E) → E′ is also epi. Its kernel pair is ∼U+φ
φ

restricted to (E + φ)2, which is just ∼E+φ
φ . It follows that Vφ(E) � E′ is an

isomorphism.
It follows that Vφ preserves monics.

1We thank the anonymous referee for pointing out this argument.

15

Lemma 25 Let m : V ↪→ U be a monic in AX.

1. The pullback of

Vφ(V)
↓ Vφ(m)

U
i1−→ U + φ

e
� Vφ(U)

is the subobject V ∨ (φ× U) of U .

2. Vφ(m) is invertible iff U ≤ V ∨ (φ× U).

Proof. 1. Every monic is regular, and it follows that we can use the calcula-
tion for equalizers in the proof of Proposition 24. This shows that the pullback
of Vφ(m) along e is (V + φ) ∨ φ × (U + φ). Pulling that back along i1 we get
the result.

2. The ⇒ direction follows from part (1). For the converse, we see that
V + φ→ (V ∨ (φ× U)) + φ� Vφ(U) is epi, and so Vφ(V) � Vφ(U) is epi.

Proposition 26 The functor Vφ : A → A is the functor part of a monad whose
multiplication is an isomorphism.

Proof. Defining the unit η as in Lemma 23 (2), we show two properties of
it.

First, ηVφ(U) is an isomorphism. By Lemma 23 we need to show that the
projection Vφ(U) × φ → φ is an isomorphism, in other words there is some
δ : φ → Vφ(U) such that δ · π2 = π1. We define δ = eU · i2. Since eU × φ :
(U + φ)× φ→ Vφ(U)× φ is epi, it suffices to show that δ · π2 and π1 compose
equally with it. On φ× φ this is immediate, while on U × φ it follows from the
definition of eU .

Second, ηVφ(U) = Vφ(ηU). It suffices to check that they compose equally
with the epi eU , and

Vφ(ηU) · eU = eVφ(U) · (ηU + φ)

ηVφ(U) · eU = eVφ(U) · i1 · eU

These agree on both summands of U + φ.
Given these, we can define the multiplication µU as (ηVφ(U))

−1. From the
second property of η it follows that µVφ(U) = Vφ(µU). The monad properties
now follow.

For any monad, the multiplication is an isomorphism iff for each Eilenberg–
Moore algebra the structure map is an isomorphism, its inverse being the unit.
The category of Eilenberg–Moore algebras is then equal to the full subcategory
of the base category whose objects are those for which the unit is an isomor-
phism.

The discussion at the start of this subsection now suggests that we define
the “category of finitary sheaves over Bφ”, which we shall write Sh(Bφ), to be

16

the category of Eilenberg–Moore algebras of the monad Vφ. It is a reflective
subcategory of AX. We write J : A → Sh(Bφ) for the reflection and inc :
Sh(Bφ)→ A for the inclusion.

Proposition 27 Sh(Bφ) is an AU, and J : A → Sh(Bφ) is an AU-functor.

Proof. In general, the AU-structure of Sh(Bφ) is obtained by first taking the
corresponding structure in A and then applying J . We discuss the different
kinds of structure in more detail.

The inclusion inc creates limits, so Sh(Bφ) has all finite limits. Since Vφ
preserve finite limits, so does J . For finite colimits, let D be a finite diagram in
Sh(Bφ) and let γ : inc(D)→ C be the colimit cocone in A. J , as a left adjoint,
preserves all existing colimits, so J (γ) makes J (C) a colimit of J · inc(D) ∼= D
in Sh(Bφ). It follows that Sh(Bφ) has all finite colimits. The other conditions
for colimits follow from the fact that J preserves finite limits.

For list objects, suppose we have b : B → Y and g : Y × J (A) → Y in
Sh(Bφ). We then get a composite g′ : inc(Y)×A→ inc(Y) as

inc(Y)
inc(g)←− inc(Y × J (A)) ∼= inc(Y)× Vφ(A)

inc(Y)×ηA←− inc(Y)×A

and hence rec(inc(b), g′) : inc(B) × List(A) → inc(Y). Applying J to the dia-
gram in Definition 1, and using the isomorphism J · inc ∼= Id we get the cor-
responding diagram for J (List(A)) as list object of J (A) in Sh(Bφ). To prove
uniqueness of J (rec(inc(b), g′)) in making this diagram commute we use the fact
that morphisms r : B×J (List(A))→ Y are equivalent under the adjunction to
morphisms inc(B)× List(A)→ inc(Y), and commutativity of the two diagrams
is preserved by that equivalence.

To summarize: for any object A of A, J (List(A)) serves as a list object of
J (A) in Sh(Bφ). From this we deduce that Sh(Bφ) has list objects and that J
preserves them.

Theorem 28 Let A be an AU, let φ be a subobject of 1 in A and let Sh(Bφ)
and J be defined as above. Then Sh(Bφ) is equivalent to A[φ ≤ ⊥].

Proof. Here A[φ ≤ ⊥] is constructed according to Definition 16. We write
I : A → A[φ ≤ ⊥] for the canonical AU-functor. By Theorem 17 we can extend
the AU-functor J : A → Sh(Bφ) to a strict AU-functor

J̃ : A[φ ≤ ⊥]→ Sh(Bφ)

because there is a morphism from J (φ) to J (⊥).
Conversely we can define a functor

γ = I · inc : Sh(Bφ)→ A[φ ≤ ⊥]

These functors form an adjoint equivalence.
Immediately, J̃ · γ = J̃ · I · inc = J · inc is naturally isomorphic to the

identity. To see that γ · J̃ is naturally isomorphic to the identity we need that

17

γ · J̃ · I ∼= γ · J = I · Vφ is isomorphic to I, which is obvious by construction
of Vφ. This also shows that γ is an AU-functor, since the AU constructions in
Sh(Bφ) are calculated by applying Vφ to the constructions in A. After that the
result follows from Theorem 17.

4 Subspaces

In this section we examine subspaces and show (Theorem 42) how the open
subspaces and closed subspaces generate a Boolean algebra of subspaces that
is free over the distributive lattice of subobjects of 1. This result is wholly
constructive, but has the important consequence that we can reuse some classical
arguments as though we had a Boolean algebra of subobjects of 1 in an AU –
see Section 5.

Our treatment is developed from that of [Vic07b], albeit with substantial
changes: the underlying idea is that subspaces of an AS are analogous to induc-
tively generated subtopologies of a formal topology. Interestingly, however, it is
dualized, with meets and joins exchanged. This is because of the differing be-
haviours of two approaches to formal topology. For formal topologies in general,
specified by a full cover relation, arbitrary joins of subspaces are easily seen to
exist, but meets take more work insofar as they exist at all. On the other hand,
for inductively generated formal topologies, specified by an axiom set, meets are
easy, while finitary joins exist but take a little more work. [Vic07b] deals with
general formal topologies, using joins of subspaces, and then treats inductively
generated topologies as a special case. In the present AU setting we do not
have a good account of general formal topologies and so are intrinsically in the
inductively generated case.

Regarding closed subspaces, one should note that the classical property splits
into various inequivalent formulations in constructive point-free topology. We
follow the notion of closed subspace as complement of open subspace, using
Boolean complementation in a lattice of point-free subspaces. The other notion
is that a subspace is closed if it contains all its closure points. This is the notion
developed constructively by Sambin in his Basic Picture ([Sam03], [Sam11])
and also leads to definitions such as that of “weakly closed sublocale”. The two
notions are compared in [Vic07b].

For locales, a subspace (sublocale) can be understood as given by a family
of pairs (φi, ψi) (i ∈ I), where φi, ψi are subobjects of 1 in the topos of sheaves.
These can be understood as extra relations φi ≤ ψi used for presenting the
frame, and in terms of points they are extra constraints: a point x of the
superlocale is in the sublocale iff, for every i for which φi is a neighbourhood of
x, so too is ψi. This point of view is systematically taken in [Vic07b].

We can take a similar approach in arithmetic spaces. (Some other well
known characterizations of sublocales from topos theory, for instance as nuclei
on frames, do not adapt to the AU setting.) If φ, ψ are subobjects of 1 in the
arithmetic universe AX then the subspace for φ ≤ ψ has AU AX[φ → ψ]. We
may write X[φ ≤ ψ] or X[φ→ ψ] for the corresponding AS. However, the ques-

18

tion arises as to what the indexing set I might be. If it is external, then the AU is
got by adjoining morphisms for all its elements, obtaining AX[φi → ψi (i ∈ I)].
On the other hand it could be internal in AX, giving two subobjects U and V
of I and the subspace AU presented as AX[U → V over I] (or AX[U ≤I V]).
It is not clear to us what is going to be the right notion to adopt (and maybe
it varies). For the present work we shall take the internal view, which is in
line with the philosophy that the infinities one uses should be the ones that can
be characterized internally. However, in our present applications I will be a
finite cardinal, given by an external natural number, and so there is no essential
distinction between the two views.

We can simplify these presentations. Consider the pullback square

U ×I V
q−→ V

p ↓ ↓ f
U −→

e
I

If e and f are both monic then so are p and q, and a morphism U → V over
I is equivalent to a morphism U → U ×I V inverting p. Hence every subspace
presented as AX[U ≤I V] can equivalently be presented as AX[m−1] for some
monic m. To put it another way, in considering the presentations using U, I, V ,
we can without loss of generality take I = U and we invert U ←↩ V .

Definition 29 Let X be an arithmetic space. If m1, m2 are monics in AX
then we say m1 ≤ m2 if m2 is invertible in AX[m−1

1] – in other words, by
Theorem 17, there is an AU-functor AX[m−1

2]→ AX[m−1
1] under AX, i.e. an

AS-map X[m−1
1] → X[m−1

2] over the whole space X. This defines a preorder
on the set of monics. We call a subspace of X an equivalence class of monics
under ≤, and write Subsp(X) for the poset of subspaces. It is a ∧-semilattice,
with m1 ∧m2 defined as the coproduct monic m1 +m2.

Note that if m1 and m2 have the same codomain, i.e. they are U ←↩ Vi, then
the subspace meet, got by inverting U + U ←↩ V1 + V2, can equivalently be got
using the subobject meet by inverting U ←↩ V1 ∧ V2.

So far our knowledge of the structure of Subsp(X) is rather limited.

Lemma 30 If AX is an AU with m1 and m2 two monics, then

AX[m−1
1 ,m−1

2] ' AX[(m1 +m2)−1].

Writing I1 : AX → AX[m−1
1] for the canonical AU-functor, we also have

AX[m−1
1 ,m−1

2] ' AX[m−1
1][I1(m2)−1].

Proof. We write I2 : AX[m−1
1] → AX[m−1

1][I1(m2)−1] and I12 : AX →
AX[m−1

1 ,m−1
2] for the other canonical AU-functors. Then we can define strict

AU-functors

AX[m−1
1 ,m−1

2]
F−→
←−
G

AX[m−1
1][I1(m2)−1]

19

by F ·I12 = I2 ·I1 and G ·I2 = G′ where the strict AU-functor G′ : AX[m−1
1]→

AX[m−1
1 ,m−1

2] has G′ · I1 = I12. Then G · F = IdAX[m−1
1 ,m−1

2] because G · F ·
I12 = G · I2 · I1 = G′ · I1 = I12. Also (using Theorem 17) F ·G′ ∼= I2 because
F · G′ · I1 = F · I12 = I2 · I1, and then F · G ∼= IdAX[m−1

1][I1(m2)−1] because

F ·G · I2 = F ·G′ ∼= I2.

Lemma 31 Let m, m1 and m2 be monics in AX, and let Y = X[m−1] with
canonical AU-functor I : AX → AY . Then

m+m1 ≤ m2 over X iff I(m1) ≤ I(m2) over Y .

Proof. ¿From Lemma 30 it is clear that m2 is inverted in AX[m−1,m−1
1]

iff I(m2) is inverted in AY [I(m1)−1].

4.1 Boolean logic conservative over coherent logic

In this section we prove a well known conservativity result, but in a way that is
adapted to our subsequent development in Section 4.2.

Theorem 32 The category of boolean algebras is a reflexive subcategory of the
category of distributive lattices and the unit component is full, i.e. a distributive
lattice L order embeds in its free Boolean algebra.

We shall be applying this theorem in the case where the distributive lattice is
the lattice of subobjects of an object in an arithmetic universe.

Throughout, we shall understand “lattice” and “semilattice” in a bounded
sense: ∧-semilattices have top >, ∨-semilattices have bottom ⊥, and lattices
have both.

We write FX for the Kuratowski finite powerset of X, equivalently (under
∪) the free semilattice over X.

The free boolean algebra generated from a distributive lattice can be char-
acterized algebraically as follows:

Proposition 33 Let L be a distributive lattice. Then the free Boolean algebra
over it, BA〈L (qua DL)〉, can be presented as a distributive lattice as

DL〈L (qua DL), ¬φ (φ ∈ L) | ¬φ a Boolean complement of φ〉

and as a meet semilattice as

∧-semi〈Lop × L (qua poset) |(φ, ψ1) ∧ (φ, ψ2) ≤ (φ, ψ1 ∧ ψ2)

(φ1, ψ) ∧ (φ2, ψ) ≤ (φ1 ∨ φ2, ψ)

> ≤ (φ, ψ) (if φ ≤ ψ)

(φ, ψ) ∧ (ψ, χ) ≤ (φ, χ)〉.

20

Proof. The first part is well known: the set of complementable elements is
a sublattice containing L and the elements ¬φ and so is the whole of the lattice.
Hence the distributive lattice so presented is already a Boolean algebra, which
must be freely generated by L.

For the second part, we first enlarge the generator set L ∪ {¬φ | φ ∈ L} to
include joins ¬φ∨ψ, giving a ∨-preserving function from Lop×L. We then find
that the distributive lattice as presented in the first part is isomorphic to that
generated by Lop×L (qua ∨-semilattice) subject to the same relations as given
in the second presentation. The appropriate coverage theorem [VT04] says that
the same algebra can be presented as a ∧-semilattice using the same generators
and relations but with “qua poset” instead of “qua ∨-semilattice” – provided
that the relations are join stable, which they are here. This is the ∧-semilattice
presentation given.

We now give a concrete representation.

Proposition 34 Let L be a distributive lattice. Then the free Boolean algebra
BA〈L (qua DL)〉 is order isomorphic to F(L×L)/ ≤, where S ≤ T if for every
(t1, t2) ∈ T , and for every decomposition S = S1 ∪ S2 (with S1 and S2 both
finite) we have

t1 ∧
∧

(s1,s2)∈S2

s2 ≤ t2 ∨
∨

(s1,s2)∈S1

s1.

Meet is given by union. (Note that the cases where S1 and S2 intersect give us
no information, for then the inequality always holds.)

Proof. First, ≤ is a preorder. For reflexivity, with (s′1, s
′
2) ∈ S and S =

S1 ∪ S2, we consider which of S1 or S2 contains (s′1, s
′
2). For transitivity we use

induction on the length of an enumeration2 of T to show that if S ≤ T ≤ U then
S ≤ U . For suppose S = S1 ∪ S2 and (u1, u2) ∈ U . Let σ1 =

∨
(s1,s2)∈S1

s1 and

σ2 =
∧

(s1,s2)∈S2
s2, so we want u1 ∧ σ2 ≤ u2 ∨ σ1. If T = ∅ then from T ≤ U

we deduce u1 ≤ u2, which suffices. Now suppose T = T ′ ∪ {(t1, t2)}. From
S ≤ T we find S ≤ T ′ and t1 ∧ σ2 ≤ t2 ∨ σ1. From T ≤ U we see that for every
decomposition T ′ = T ′1∪T ′2 we get two decompositions T = (T ′1∪{(t1, t2)})∪T ′2
and T = T ′1 ∪ (T ′2 ∪ {(t1, t2)}) giving

u1 ∧
∧

(t′1,t
′
2)∈T ′2

t′2 ≤ u2 ∨
∨

(t′1,t
′
2)∈T ′1

t′1 ∨ t1,

u1 ∧
∧

(t′1,t
′
2)∈T ′2

t′2 ∧ t2 ≤ u2 ∨
∨

(t′1,t
′
2)∈T ′1

t′1

and so T ′ ≤ {(u1, u2 ∨ t1), (u1 ∧ t2, u2)}. It follows by induction that S ≤
{(u1, u2 ∨ t1), (u1 ∧ t2, u2)} and hence

u1 ∧ σ2 ≤ u2 ∨ t1 ∨ σ1,

u1 ∧ t2 ∧ σ2 ≤ u2 ∨ σ1.

2Our finite subsets are Kuratowski finite, so each has a finite enumeration. Note that we
cannot guarantee to eliminate duplicates, because L need not have decidable equality, so a
finite set need not have a well defined cardinality as a natural number.

21

Combining these with t1 ∧ σ2 ≤ t2 ∨ σ1, we obtain

u1 ∧ σ2 ≤ (u1 ∧ σ2) ∧ (u2 ∨ σ1 ∨ t1)

≤ u2 ∨ σ1 ∨ ((u1 ∧ σ2) ∧ t1)

≤ u2 ∨ σ1 ∨ (u1 ∧ σ2 ∧ (t2 ∨ σ1))

≤ u2 ∨ σ1 ∨ (u1 ∧ σ2 ∧ t2)

≤ u2 ∨ σ1.

It is immediate from the definition of ≤ that union provides a meet for it, so
F(L×L)/ ≤ is a meet semilattice quotient of F(L×L), as is (by Proposition 33)
BA〈L (qua DL)〉. It is easy to check that the homomorphism F(L × L) →
F(L × L)/ ≤ respects the meet semilattice relations in Proposition 33 and so
factors via BA〈L (qua DL)〉. Inversely, suppose S ≤ T in F(L×L). Calculating
their images in BA〈L (qua DL)〉 we can use distributivity there and find∧

(s1,s2)∈S

(¬s1 ∨ s2) =
∨

S=S1∪S2

∧
(s1,s2)∈S1

¬s1 ∧
∧

(s1,s2)∈S2

s2

=
∨

S=S1∪S2

¬

 ∨
(s1,s2)∈S1

s1

 ∧ ∧
(s1,s2)∈S2

s2

≤
∧

(t1,t2)∈T

(¬t1 ∨ t2)

so the homomorphism F(L× L)→ BA〈L (qua DL)〉 factors via F(L× L)/ ≤.

We can now prove the second part of Theorem 32.

Corollary 35 A distributive lattice L order embeds in its free Boolean algebra.

Proof. φ ∈ L maps to {(>, φ)} in F(L×L)/ ≤. Suppose {(>, φ1)} ≤ {(>, φ2)}.
Taking {(>, φ1)} = ∅ ∪ {(>, φ1)} we see > ∧ φ1 ≤ φ2 ∨ ⊥.

4.2 A boolean algebra of subspaces

Our main result now (Theorem 42) is to show that the free Boolean algebra
over SubAX(1) (the distributive lattice of subobjects of 1 in AX) order embeds
in the ∧-semilattice Subsp(X).

This, together with the results of Section 4.1, implies that one can use
Boolean reasoning in terms of subspaces, and that it is conservative over the
coherent reasoning with subobjects.

Definition 36 Let X be an AS, let L = SubAX(1) and let S = {(φi, ψi) |
1 ≤ i ≤ n} ∈ F(L × L). We write σ(S) for the subspace in X for the monic∐n
i=1 φi ←↩

∐n
i=1 φi ∧ ψi. (This is well defined, since different enumerations of

S give equivalent monics.) By definition σ is a ∧-semilattice homomorphism.

22

Our aim now is to show that σ(S) ≤ σ(T) iff S ≤ T as in Proposition 34. In
fact we do slightly more, since we show that σ, thus factoring as an embedding
BA〈L (qua DL)〉 ∼= F(L × L)/ ≤ → Subsp(X), preserves the finite meets and
joins of BA〈L (qua DL)〉.

For the rest of this section, we fix an AS X and write L for SubAX(1).

Proposition 37 If S ≤ T in F(L× L) then σ(S) ≤ σ(T).

Proof. Combining Propositions 33 and 34 we obtain a ∧-semilattice pre-
sentation for F(L× L)/ ≤ as quotient of F(L× L), so it suffices to check that
σ respects the relations in Proposition 33. These are all clear. (The first was
remarked on after Definition 29.)

The difficult part is the converse, essentially because we do not have a general
concrete description of AX[m−1]. Nor do we have a general way to translate the
condition m1 ≤ m2, which is defined in terms external to AX, into an explicit
description internal there. However, we can use the representation results of
Section 3 to gain some concrete knowledge for the open and closed subspaces
and their finite meets and finite joins.

Definition 38 Let X be an AS, and let φ, ψ be subobjects of 1 in AX. Then –

• X[> ≤ φ] = σ({(>, φ)}) is the open subspace for φ, written as φ;

• X[φ ≤ ⊥] = σ({(φ,⊥)}) is the closed subspace for φ, written as X − φ;

• (X − φ) ∧ ψ = σ({(>, ψ), (φ,⊥)}) is a crescent subspace, and

• X[φ ≤ ψ] = σ({(φ, ψ)}) a cocrescent.

(In Proposition 43 we shall see that the cocrescent is a join (X − φ) ∨ ψ.)

¿From Theorem 19 we see that for an open subspace, AX[> ≤ φ] ∼= AX[1→
φ] ' AX/φ, with AU-functor AX → AX/φ given by A 7→ (π2 : A× φ→ φ).

We now exploit Theorem 28 to find information about AX[φ ≤ ⊥].

Proposition 39 Let X be an AS, and let φ, ψ be subobjects of 1 in AX. Then
for the crescent (X −φ)∧ψ and for any subspace Z = X[U ≤ V] given U ←↩ V
in AX, we have (X − φ) ∧ ψ ≤ Z iff U × ψ ≤ V ∨ U × φ in AX.

Proof. Using Lemma 30, (X − φ) ∧ ψ is got by taking the closed subspace
for φ × ψ ↪→ ψ in AX/ψ, and by Lemma 25 we calculate that U ≤ V there iff
U × ψ ≤ V ∨ U × φ in AX.

For our development of a calculus of subspaces, we shall find it convenient
to define an action of BA〈L (qua DL)〉 on Subsp(X), (Y, a) 7→ Y · a (recall that
L is the free boolean algebra on SubAX(1)).

Definition 40 Let Y = X[U ≤ V] (where already we have V ↪→ U in AX) be
a subspace of X. We define for S ∈ F(L× L)

Y ·
∧
{¬φ ∨ ψ | (φ, ψ) ∈ S} ≡

∧
{X[U × φ ≤ V × φ ∨ U × (φ ∧ ψ)] | (φ, ψ) ∈ S} .

23

To show that this definition is good, and preserves finite meets, it suffices
to check that the function L × L → Subsp(X), mapping (φ, ψ) to X[U × φ ≤
V × φ ∨ U × (φ ∧ ψ)], respects the relations of the semilattice presentation in
Proposition 33. This is straightforward.

Note that the definition uses the presentation of Y as X[U ≤ V]. Presenta-
tion independence will follow from part 2 of Theorem 42.

We also define the bottom subspace ⊥ as X[1 ≤ 0]. Then we have σ(S) =
⊥ ·

∧
{¬φ ∨ ψ | (φ, ψ) ∈ S}. Also, the open ψ is ⊥ · ψ, the closed X − φ is

⊥ · ¬φ, the crescent (X − φ) ∧ ψ is ⊥ · (¬φ ∧ ψ) and the cocrescent X[φ ≤ ψ] is
⊥ · (¬φ ∨ ψ).

Lemma 41 If φ and ψ are subobjects of 1, and Y and Z are subspaces, then

Y ∧ ⊥ · (¬φ ∧ ψ) ≤ Z ⇐⇒ Y ≤ Z · (φ ∨ ¬ψ).

Proof. Proposition 39 proves this in the case Y = >. The full generality
can be proved by working over Y and using Lemma 31.

Theorem 42 1. The action Z · a preserves finite meets in both arguments.

2. For any a ∈ BA〈L (qua DL)〉, the function Z 7→ Z · a is right adjoint to
the function Y 7→ Y ∧ ⊥ · ¬a.

3. Z · ⊥ = Z and Z · (a ∨ b) = (Z · a) · b.

4. The function a 7→ ⊥ · a is an order isomorphism from BA〈L (qua DL)〉
to a sublattice of Subsp(X). Meet in Subsp(X) distributes over joins of
subspaces of the form ⊥ · a.

Proof. We prove the parts out of order.
One half of (1) (that Z · (−) preserves finite meets) is by definition. Of

course, this also implies that Z · (−) is monotone.
The first part of (3) (that Z · ⊥ = Z) is obvious.
Next, note that ⊥ · a ≤ Z · a for all Z (= X[U ≤ V], say) and a. Since a

can be expressed as a meet of cocrescents, it suffices to consider a = ¬φ ∨ ψ,
and then ⊥ · a = X[φ ≤ φ ∧ ψ]. Clearly if we impose this then we also have
U × φ ≤ V × φ ∨ U × (φ ∧ ψ), the defining relation for Z · a.

We now prove (2): we must show that Y ∧⊥ · ¬a ≤ Z iff Y ≤ Z · a. For the
⇐ direction, we have

Y ∧ ⊥ · ¬a ≤ Z · a ∧ Z · ¬a = Z · (a ∧ ¬a) = Z · ⊥ = Z.

For⇒, take a =
∧n
i=1(φi∨¬ψi) so ¬a =

∨n
i=1(¬φi∧ψi). Hence if Y ∧⊥·¬a ≤ Z

then we have Y ∧⊥·(¬φi∧ψi) ≤ Z for all i, i.e. (by Lemma 41) Y ≤ Z ·(φi∨¬ψi)
for all i, i.e. Y ≤

∧n
i=1 Z · (φi ∨ ¬ψi) = Z ·

∧n
i=1(φi ∨ ¬ψi) = Z · a.

¿From the adjunction we can deduce that Z 7→ Z · a is monotone (which we
did not know initially), and preserves all existing meets in Z. Thus this also
completes the proof of (1).

24

(3) (second part): By applying (2) and preservation of meets

Y ≤ Z · (a ∨ b)⇐⇒ Y ∧ ⊥ · ¬b ∧ ⊥ · ¬a = Y ∧ ⊥ · ¬(a ∨ b) ≤ Z
⇐⇒ Y ∧ ⊥ · ¬b ≤ Z · a⇐⇒ Y ≤ (Z · a) · b.

(4): Taking a =
∨n
i=1(¬φi∧ψi), our earlier discussion showed that Y ∧⊥·a ≤

Z iff Y ∧⊥·(¬φi∧ψi) ≤ Z for all i. In the case Y = > this shows that a 7→ ⊥·a
preserves finite joins; and for general Y it shows that meet distributes over those
joins. (Note that we do not know whether the whole of Subsp(X) is a lattice.)

We now show that the monotone function a 7→ ⊥ · a is an order embedding.
Suppose that ⊥ · a ≤ ⊥ · b, i.e. > ≤ ⊥ · (¬a ∨ b) using parts (2) and (3). We
show that ¬a ∨ b = >, for then a ≤ b. Let c = ¬a ∨ b =

∧n
i=1(¬φi ∨ ψi), so

> ≤ ⊥ · (¬φi ∨ ψi) = X[φi ≤ ψi] for all i. It follows that φi ≤ ψi for all i, so
¬φi ∨ ψi = > and c = >.

Corollary 43 Let X be an AS, and let φ, ψ be subobjects of 1 in AX. Then
X[φ ≤ ψ] is a least upper bound (X − φ) ∨ ψ.

Proof.

X[φ ≤ ψ] = ⊥ · (¬φ ∨ ψ) = ⊥ · ¬φ ∨ ⊥ · ψ = (X − φ) ∨ ψ

Corollary 44 Let X be an AS, and let φ be a subobject of 1 in AX. Then
amongst subspaces of X, X − φ is a complement of φ.

Proof. ¿From Corollary 43 we see that (X − φ) ∨ φ exists and is X[φ ≤ φ],
which is the whole of X. In (X − φ) ∧ φ we have > ≤ φ ≤ ⊥, which gives the
empty space.

Of our two structure theorems in Section 3, the first, Theorem 19, works
not only for AUs but for a wide range of categorical structures, including those
involving stable exponentials like a locally cartesian closed category. By contrast
the second, Theorem 28, is more restricted. Our use of sheaves for A[φ ≤ ⊥]
for an AU matches that known in topos theory, and the functor A → A[φ ≤ ⊥]
corresponds to the inverse image functor of the geometric morphism that is the
topos inclusion. By (e.g.) [Joh02b, C3.1.5] we know that that inverse image
functor preserves exponentials only if the inclusion is open, which of course is
not in general true of our closed inclusions.

This should not come as a surprise. Suppose, for example, we had a similar
result for Heyting pretoposes. Then the preservation of exponentials would im-
ply a conservativity theorem of the classical logic of subspaces over the Heyting
pretopos one, which would imply that any Heyting pretopos is a boolean one.

25

5 An induction principle

We now give an example that, in fact, was the original motivation for the work
in this paper. Suppose in an AU AX we have a subobject φ of the natural
numbers object N , in other words a predicate φ(n) where n : N . There is an
obvious induction principle arising from the fact that N is an initial induction
algebra. (An induction algebra is a set – or, more generally, an object of a
category – equipped with a constant and a unary operator.) If we have both
the base case φ(0) and an induction step (∀n)(φ(n) → φ(n + 1)), then φ as
subobject of N is a sub-(induction algebra): it contains 0 and is closed under
the successor operation s. It follows by the initiality property of N that there
is a unique induction algebra homomorphism f : N → φ and with a little more
reasoning one sees that it is inverse to the inclusion φ ↪→ N , which is therefore
an isomorphism. In other words, we have (∀n)φ(n).

Now suppose we have two predicates φ(n) and ψ(n) and we wish to use
induction to show (∀n)(φ(n) → ψ(n)). If AX were locally cartesian closed,
then we could form an implication formula φ(n) → ψ(n) as subobject of N
and use the same argument as above for φ. However, in general an AU is not
locally cartesian closed. Surprisingly, we get some clues from classical logic. The
formula φ(n)→ ψ(n) is classically equivalent to ¬φ(n)∨ψ(n), so classically our
induction step is

(∀n)((¬φ(n) ∨ ψ(n))→ (¬φ(n+ 1) ∨ ψ(n+ 1))),

which reduces to

(∀n)(φ(n+ 1)→ φ(n) ∨ ψ(n+ 1)) and

(∀n)(φ(n+ 1) ∧ ψ(n)→ ψ(n+ 1)).

These are two sequents that can be interpreted in an AU. Of course, the classical
reasoning cannot apply directly to subobjects in the AU. However, we shall show
how to exploit the fact that for subspaces we have a Boolean algebra. There
we can apply the classical reasoning, and it turns out that the sequents just
described are a satisfactory description of the induction step.

Let us examine in more detail what induction principle we might hope for.
First, we want a base case φ(0) → ψ(0). Categorically, it appears like this.
φ(0) is the subobject 0∗φ of 1 got by pulling φ ↪→ N back along the constant
0 : 1→ N :

φ(0) −→ φ
↓ ↓
1

0−→ N

ψ(0) is similar, and then the base case is the condition that there is a morphism
from φ(0)→ ψ(0).

Next, we want an induction step (∀n)((φ(n) → ψ(n)) ⇒ (φ(n + 1) →
ψ(n + 1))). We have to take care to explain this correctly. Note that the
induction hypothesis φ(n) → ψ(n) is not a formula in our arithmetic logic –

26

because AUs are not locally cartesian closed. But neither is it a sequent or
judgement n : N,φ(n) ` ψ(n), for that would be implicitly universally quanti-
fied as (∀n)(φ(n)→ ψ(n)), the very thing we are trying to prove. The induction
hypothesis amounts to a context in which n has been fixed (generically), and
φ(n)→ ψ(n) has been hypothesized. In other words, it is a context correspond-
ing to an AU AX[n : N][φ(n) → ψ(n)]. (This is a slight abuse of notation
– “φ” and “ψ” here denote the images of φ and ψ in AX[n : N].) The in-
duction step is then a construction that shows how in this AU we also have
φ(n + 1) → ψ(n + 1), and the induction principle (which we shall prove) says
that if we have both the base case and the induction step then, back in AX, we
have already (∀n)(φ(n)→ ψ(n)) – in other words, a morphism φ→ ψ over N .

The induction hypothesis is the subspace X[n : N][φ(n) ≤ ψ(n)] of X[n : N],
and from this point of view the induction step is to show that it is less than the
subspace X[n : N][φ(n+ 1) ≤ ψ(n+ 1)]: in other words, by Corollary 43

(X[n : N]− φ(n)) ∨ ψ(n) ≤ (X[n : N]− φ(n+ 1)) ∨ ψ(n+ 1).

That is equivalent to two conditions on X[n : N],

X[n : N]− φ(n) ≤ (X[n : N]− φ(n+ 1)) ∨ ψ(n+ 1)

ψ(n) ≤ (X[n : N]− φ(n+ 1)) ∨ ψ(n+ 1)

and those are equivalent, by Theorem 42 and Corollary 35, to

φ(n+ 1) ≤ φ(n) ∨ ψ(n+ 1) (IS1)

φ(n+ 1) ∧ ψ(n) ≤ ψ(n+ 1). (IS2)

These two conditions, in which n : 1 → N is the generic natural number in
AX[n : N], are the induction step rephrased as internal properties of AX[n : N].
However (Theorem 19), we have concrete knowledge of AX[n : N] as equivalent
to the slice category AX/N , and this enables us to rephrase the conditions
again as internal properties of AX. In AX/N we have that 1 is the morphism
Id : N → N and N is the projection π2 : N × N → N . The generic n is the
diagonal morphism ∆ : N → N ×N . The predicate φ becomes the projection
π2 : φ×N → N . To calculate the truth value (i.e. subobject of 1) φ(n) = n∗φ,
we calculate this pullback:

φ(n) −→ φ×N
↓ ↓
N

∆−→ N ×N

It can be calculated using generalized elements as comprising the triples (m,m′,m′′)
such that φ(m′) and (m,m) = (m′,m′′); and this is just φ. Hence φ(n) as ob-
ject of the slice is given by the morphism φ→ N . Next, φ(n+ 1) is got as the
pullback

φ(n+ 1) −→ φ×N
↓ ↓
N

∆−→ N ×N s×N−→ N ×N

27

and by similar reasoning we see that this is the pullback s∗φ,

φ(n+ 1) −→ φ
↓ ↓
N

s−→ N

The definitions of ψ(n) and ψ(n + 1) are, of course, similar. Thus, when φ(n)
etc. are defined this way in AX, we see that the induction step is equivalent to
Conditions IS1 and IS2 in AX.

We have now reduced the induction principle to a result about the internal
structure of AX, with no reference to AUs presented over it.

Lemma 45 Let X be an AS and let φ and ψ be two subobjects of N in AX. As
above, we shall write φ(n) and ψ(n) for φ and ψ, and φ(n+ 1) and ψ(n+ 1) for
their pullbacks along s : N → N . If we have φ(0) ≤ ψ(0) and Conditions IS1
and IS2, then we also have φ ≤ ψ.

Proof. Define A(k) (k : N) as the subobject of N comprising those j for
which j ≤ k and φ(j), ..., φ(k).

In the internal language of an arithmetic universe, the subobject A(k) can
be represented as the embedding in N whose domain is

{ j ∈ N | ∃l∈List({x∈N |φ(x)}) π1(l) =List(N) [j, . . . , k] & j ≤ k }

where π1 is the lifting of the first projection on lists and [j, . . . , k] is the list of
numbers from j to k.

We define recursively a function fk : A(k) → {x ∈ N | x = k&ψ(k)} as
follows, with j+k as recursion variant. Of course, the value of fk(j) will always
be k with a proof that ψ(k) holds.

If j = k = 0, then we have φ(0) and from the base case we deduce ψ(0) and
can take f0(0) = 0.

If j = k > 0, we have φ(j). From condition IS1 we deduce φ(j−1)∨ψ(k). In
the latter case we define fk(j) = k, and in the former we can recursively define
fk(j) = fk(j − 1).

If j < k, we have φ(k) and recursively calculating fk−1(j) gives us ψ(k− 1).
Now condition IS2 gives us ψ(k).

We can summarize the above discussion in our induction principle.

Theorem 46 (Principle of Sequent Induction) Let X be an AS, and let φ
and ψ be subobjects of N in AX. Suppose we have the following two conditions.

1. (Base case) Over X, we have φ(0) ≤ ψ(0).

2. (Induction step) Over X[n : N][φ(n) ≤ ψ(n)] (this context is the induction
hypothesis) we also have φ(n+ 1) ≤ ψ(n+ 1).

Then φ ≤ ψ holds over X.

28

Remark 47 With the same technique we can prove an induction principle for
list-objects analogous to that of natural numbers.

We can in fact prove the induction principle (over N) for arbitrary formulae
corresponding to finite conjunctions of implications

∧
i(φi(n) → ψi(n)). We

might try to prove this by separate inductions, one for each φi(n)→ ψi(n), but
the next Theorem tells us that we can assume all the conditions φi(n)→ ψi(n)
as induction hypotheses when trying to prove φi(n+ 1)→ ψi(n+ 1).

Theorem 48 Let X be an AS, and for 1 ≤ i ≤ r let φi and ψi be subobjects of
N in AX. Suppose we have the following two conditions.

1. (Base case) Over X, we have φi(0) ≤ ψi(0) for every i.

2. (Induction step) Over X[n : N][φi(n) ≤ ψi(n) (all i)] we have φi(n+ 1) ≤
ψi(n+ 1) for every i.

Then φi ≤ ψi holds over X for every i.

Proof. We sketch the proof, which is similar to that of Lemma 45 but more
complicated. By the calculus of subspaces, we can redistribute the induction
hypothesis over X[n : N] as

r∧
i=1

(¬φi(n) ∨ ψi(n)) =
∨

{1,...,r}=I+J

¬∨
j∈I

φj(n) ∧
∧
j∈J

ψj(n)

where + denotes disjoint union. Hence the induction step says that for every
(I, J) and every i we have

¬
∨
j∈I

φj(n) ∧
∧
j∈J

ψj(n) ≤ ¬φi(n+ 1) ∨ ψi(n+ 1),

i.e.
φi(n+ 1) ∧

∧
j∈J

ψj(n) ≤ ψi(n+ 1) ∨
∨
j∈I

φj(n).

By conservativity, the corresponding condition in AX holds. We must show
that, together with the base case, it implies the conclusion. If 1 ≤ i ≤ r and
k ∈ N , define Ai(k) as a set of finite subsets of {1, . . . , r}, that is Ai(k) ⊆
F{1, . . . , r}, by

Ai(0) = {∅ | φi(0)}

Ai(k + 1) = {F | φi(k + 1) ∧
∧
j∈F

φj(k)}.

We recursively define functions fki : Ai(k) → {x ∈ N | x = k&ψi(k)}. For
f0
i (∅), the definition is immediate from our base case φi(0) ≤ ψi(0). For k + 1

we define fk+1
i (F) as follows. ¿From F ∈ Ai(k + 1) we have ∅ ∈ Aj(k) for

29

all j ∈ F . By recursion on k, from fkj (∅) we deduce ψj(k) for all j ∈ F and
hence φi(k + 1) ∧

∧
j∈F ψj(k), and then our induction step (with I = F, J =

{1, . . . , r} − F) gives us either ψi(k + 1), as required, or φj(k) for some j /∈ F .
Recursing on |{1, . . . , r} − F |, we can use a recursive call to fk+1

i (F ∪ {j}).
¿From this we can deduce φi(k) ≤ ψi(k) for all i and k: for if we have φi(k)

then we can use fki (∅).

5.1 Application: locatedness of Dedekind sections

Corresponding to the localic form of the real line (see, e.g., [Joh82]) there is
a propositional geometric theory whose models are real numbers. However,
it is even more transparent to express it as a predicate theory of Dedekind
sections. It uses the rationals as a sort, but since the set of rationals can be
constructed geometrically out of nothing the theory is essentially propositional.
This is discussed in [Vic07a]. In this form, with no infinitary disjunctions, the
theory – including the construction of Q – can be modelled in AUs. Thus the
finitary algebra of AUs deals with countably infinitary disjunctions in the logic.
The signature has two unary predicates L and R on the rationals, so a model
comprises two subsets L and R of Q. They are disjoint, and both inhabited; and
L is rounded lower and R rounded upper. Those conditions can be expressed
as follows.

> −→ (∃q : Q)L(q)

(∀q : Q)(L(q)←→ (∃q′ : Q)q < q′ ∧ L(q′))

> −→ (∃r : Q)R(r)

(∀r : Q)(R(r)←→ (∃r′ : Q)r > r′ ∧R(r′))

(∀q : Q)(L(q) ∧R(q) −→ ⊥)

(Note that from these we can deduce that if L(q) and R(r) then q < r.)
There is a further “locatedness” condition. As expressed in [Joh82], it says

that L and R come arbitrarily close:

(∀ε : Q)(ε > 0→ (∃q, r : Q)L(q) ∧R(r) ∧ r − q < ε) (1)

or, alternatively,
(∀q, r : Q)(q < r → L(q) ∨R(r)). (2)

All these are compatible with the type theory for AUs, and so syntactic
categories AR can be constructed for them. However, the question arises as
to whether the two conditions (1) and (2) are still equivalent when one works
with AUs, for the proof that the second implies the first is non-trivial. One uses
induction on n to prove a lemma that, given q, r and ε with L(q), R(r) and
ε > 0, then

r − q < 2nε→ (∃q′, r′ : Q)L(q′) ∧R(r′) ∧ r′ − q′ < ε.

The base case, r − q < ε, is immediate. Now suppose it is true for n, and
r − q < 2n+1ε. Define si = q + i(r − q)/4 (0 ≤ i ≤ 4), so s0 = q and s4 = r, so

30

we already have L(s0) and R(s4). Applying condition (2) twice, we have both
L(s1)∨R(s2) and L(s2)∨R(s3), which implies R(s2)∨L(s2)∨ (L(s1)∧R(s3)).
For the three disjuncts respectively we can replace (q, r) by (s0, s2), (s2, s4) or
(s1, s3), halving the difference r − q, and apply induction.

To use this to show that (2) implies (1), suppose we are given ε > 0. We
can find some q and r with L(q) and R(r), and then some n with r − q < 2nε.
Then the lemma gives us the conclusion we want.

In toposes, with their function types, the inductively proved implication
in the lemma is not a problem. For AUs we must use Theorem 46. Let us
take R now to mean the AS defined for the theory of reals with (2), and let
R[ε > 0] be got by adjoining a positive rational ε. Take φ(n) to be the formula
(∃q, r : Q)(L(q)∧R(r)∧ r− q < 2nε), and ψ(n) the formula (∃q′, r′ : Q)(L(q′)∧
R(r′)∧ r′− q′ < ε) (which in fact does not use n). The induction step described
above is just what is needed to show, over R[ε > 0][n : N][φ(n) → ψ(n)], that
we have φ(n+ 1)→ ψ(n+ 1), and it follows (given also the base case) that over
R[ε > 0] we have (∀n : N)(φ(n)→ ψ(n)). This allows us to prove over R[ε > 0]
that we have (∃q, r : Q)(L(q) ∧R(r) ∧ r − q < ε), and hence that condition (1)
is valid over R.

5.2 A conjecture on induction algebras in AS

Recall that an induction algebra is an object A equipped with a constant a0

and an endomap t. In an AU, there is an initial induction algebra, namely
(N, 0, s). Now suppose X is an AS. Any object A in AX gives a discrete space
X[a : A] over X, an object of AS/X. (This slice of AS is not to be confused
with the slice AX/A ' AX[a : A], the AU of the discrete space for A over X.)
If (A, a0, t) is an induction algebra in AX, then X[a : A] is also an induction
algebra in AS/X. The constant X → X[a : A] is given by a homomorphism
AX[a : A]→ AX, a 7→ a0, and the unary operation X[a : A]→ X[a : A] by the
homomorphism AX[a : A]→ AX[a : A], a 7−→ t(a).

Conjecture 49 X[n : N] is initial amongst the induction algebras in AS/X.

We are far from proving this in general, or even formulating it accurately.
(The uniqueness part of the universal characterization of initiality will require
care in the handling of strictness, and of uniqueness up to isomorphism.) Nonethe-
less, our induction principle Theorem 46 is already an example of it.

Suppose, as in Theorem 46, we have φ and ψ subobjects of N in AX. The
base case φ(0) ≤ ψ(0) then states that the map X → X[n : N] given by n 7−→ 0
extends to a map X → X[n : N][φ(n) ≤ ψ(n)]. Next, the induction step states
that the endomap of X[n : N] given by n 7−→ n + 1 restricts to an endomap
of X[n : N][φ(n) ≤ ψ(n)] over X. In other words, the premisses state that
X[n : N][φ(n) ≤ ψ(n)] is an induction subalgebra of X[n : N] in AS/X. The
conjecture would then tell us that there is a map X[n : N]→ X[n : N][φ(n) ≤
ψ(n)] that is a homomorphism of induction algebras. This tells us that the
condition φ(n) ≤ ψ(n) already holds in X[n : N], and hence (using our concrete
structural knowledge that AX[n : N] ' AX/N) that φ ≤ ψ in X.

31

We propose our conjecture as a general principle of induction or recursion
over the natural numbers in our AU setting.

6 Conclusions

Our investigation arose out of a phenomenon seen in Vickers’s geometrization
programme and discussed explicitly in [Vic99]. Although the geometric reason-
ing was expressed in terms of topos theory, it was explicitly intended also to
be applicable in arithmetic universes. However, in certain places (such as the
question of locatedness of Dedekind sections, described in Section 5.1) it clearly
was not, and an argument was used that it was acceptable – in topos theory –
as part of the geometric reasoning to use a non-geometric but topos-valid proof
so long as the result could be stated geometrically.

The results in this paper are a first step towards filling that gap between
topos-valid geometric reasoning and AU-valid (“arithmetic”) reasoning. We
have proved the problematic induction principle and others, and also established
a significant part of the localic technology of complementable subspaces as well
as proving some particular cases of the structure theorems that are taken for
granted in classifying toposes.

Our methods are constructive throughout. In fact, we conjecture that, be-
cause of the way they use universal algebra, they are themselves valid in the
sense of arithmetic reasoning.

Clearly the results here are only a start in the programme of creating an AU
analogue of toposes as generalized spaces. We have various conjectures on how
the work might proceed.

• Theorem 28 was based on an analysis of a closed embedding as a Stone
map, corresponding to an internal Boolean algebra, and the algebraic
notion of “finitary sheaf” as set out in [PV07]. We conjecture that a
similar approach would work for general Stone locales or even spectral
locales: that if L is a distributive lattice internal in an AU A, then the
category of finitary sheaves over L is an AU equivalent to that got by
freely adjoining to A a prime filter of L.

• On the analogy with sublocales (see in particular [Vic07b]) we would con-
jecture that the meet semilattice of subspaces (Definition 29) is a distribu-
tive lattice, with binary join (U1 ←↩ V1) ∨ (U2 ←↩ V2) given by the monic
(U1 × U2 ←↩ V1 × U2 ∨ U1 × V2).

• The Boolean algebra of subspaces that we have identified provides a tech-
nical tool for studying how one might embed an AU in a Boolean pretopos,
or even in a Boolean AU, by adapting techniques from [?].

32

7 Acknowledgements

Dr Maietti acknowledges useful discussions with Pino Rosolini and Giovanni
Sambin about the background of this paper. Dr Vickers wishes to thank the
Padova department for their hospitality over many visits, and the project “For-
malization of Formal Topology by means of the interactive theorem prover
Matita” for financial support with some of those visits. Both authors thank
the anonymous referee for numerous helpful suggestions and various subscribers
to the categories list, in particular Claudio Hermida and Steve Lack, for com-
ments regarding the universal algebra of 2-categories.

The idea of embedding the logic of an arithmetic universe into a Boolean
algebra of subspaces to prove the generalized induction principle is due to the
second author.

References

[BW84] M. Barr and C. Wells, Toposes, triples and theories, Springer-Verlag,
1984, reissued as [BW05].

[BW05] , Toposes, triples and theories, Reprints in Theory and Ap-
plications of Categories, no. 12, Theory and Applications of Cat-
egories, Mount Allison University, 2005, originally published as
[BW84].

[CGRW95] I. Claßen, M. Große-Rhode, and U. Wolter, Categorical concepts for
parameterized partial specifications, Math. Struct. in Comp. Science
5 (1995), no. 2, 153–188.

[Coc90] J.R. Cockett, List-arithmetic distributive categories: Locoi, Journal
of Pure and Applied Algebra 66 (1990), 1–29.

[Joh82] P.T. Johnstone, Stone spaces, Cambridge Studies in Advanced
Mathematics, no. 3, Cambridge University Press, 1982.

[Joh02a] , Sketches of an elephant: A topos theory compendium, vol.
1, Oxford Logic Guides, no. 44, Oxford University Press, 2002.

[Joh02b] , Sketches of an elephant: A topos theory compendium, vol.
2, Oxford Logic Guides, no. 44, Oxford University Press, 2002.

[Joy05] A. Joyal, The Gödel incompleteness theorem: a categorical approach,
Cahiers de Topologie et Géométrie Différentielle Catégorique 16
(2005), no. 3, Short abstract of the talk given at the International
Conference Charles Ehresmann: 100 ans, Amiens, 7-9 October
2005.

[JT84] A. Joyal and M. Tierney, An extension of the Galois theory of
Grothendieck, Memoirs of the American Mathematical Society 309
(1984).

33

[LS86] J. Lambek and P.J. Scott, Introduction to higher-order categorical
logic, Cambridge University Press, 1986.

[Mai05] Maria Emilia Maietti, Modular correspondence between dependent
type theories and categories including pretopoi and topoi, Mathemat-
ical Structures in Computer Science 15 (2005), no. 6, 1089–1149.

[Mai10a] , Joyal’s arithmetic universe as list-arithmetic pretopos, The-
ory and Applications of Categories 24 (2010), no. 3, 39–83.

[Mai10b] , Subspaces of arithmetic universes via type theory, Available
via http://www.math.unipd.it/~maietti/, 2010.

[PV07] Erik Palmgren and Steven Vickers, Partial Horn logic and cartesian
categories, Annals of Pure and Applied Logic 145 (2007), no. 3,
314–353.

[Sam03] Giovanni Sambin, Some points in formal topology, Theoretical Com-
puter Science 305 (2003), 347–408.

[Sam11] G. Sambin, The Basic Picture. Structures for constructive topology,
Oxford University Press, 2011?, To appear.

[Str76] Ross Street, Limits indexed by category-valued 2-functors, Journal
of Pure and Applied Algebra 8 (1976), 149–181.

[Tay05] Paul Taylor, Inside every model of Abstract Stone Duality lies an
arithmetic universe, Proceedings of the 10th Conference on Cate-
gory Theory in Computer Science (CTCS 2004) (L. Birkedal, ed.),
Electronic Notes in Theoretical Computer Science, vol. 122, Else-
vier, 2005, pp. 247–296.

[Vic99] Steven Vickers, Topical categories of domains, Mathematical Struc-
tures in Computer Science 9 (1999), 569–616.

[Vic07a] , Locales and toposes as spaces, Handbook of Spatial Log-
ics (Marco Aiello, Ian E. Pratt-Hartmann, and Johan F.A.K. van
Benthem, eds.), Springer, 2007, pp. 429–496.

[Vic07b] , Sublocales in formal topology, Journal of Symbolic Logic 72
(2007), no. 2, 463–482.

[VT04] S.J. Vickers and C.F. Townsend, A universal characterization of
the double powerlocale, Theoretical Computer Science 316 (2004),
297–321.

34

