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Topos approaches to quantum foundations are describedrifi@duway by means of spectral bun-
dles, where the base space is a space of contexts and eadhitbspectrum. Differences in variance
are due to the bundle being a fibration or opfibration. Redatimhis structure, the probabilistic pre-
dictions of the Born rule in finite dimensional settings drert described as a section of a bundle of
valuations. The construction uses in an essential way tbengtric nature of the valuation locale
monad.

1 Introduction

Two topos approaches to quantum foundationss, [7] and[[BR][describe a quantum system given al-
gebraically (as von Neumann algebra or C*-algebra respaygjias a topos combined with a space
defined internally “in” the topos. However, toposes preseaty difficulties to the beginner: their basic
definitions are non-trivial, and many important parts ofasheory relate only indirectly to the basic
definitions. The aim of this paper is to describe the toposagghes — both existing and prospective —in
terms of “spectral bundlespy: ~ — B[ we shall refer to the base poirsin B ascontextsor (to use a
phrase of([7]) “classical points of view”, and each fild& = p~1{C} as thespectrunof C, also written

>c = Spe¢C). Itis a “classical state space” from point of vi@v As we shall see below, a canonical
realization of this in a quantum situation is wh€eepresents a commuting set of observables and then
the state space is the set of their common eigenspaces. E#uh observables can be diagonalized
with respect to those eigenspaces, and then the diagomesenbe corresponding eigenvalues, are the
measured values, while the resulting state is got by pliagtd the corresponding eigenspace.

In the topos approaches, the topos is the top@ of sheaves oveB and the bundle corresponds
to something internal in that topos: either an object or afgivee topological space (locale). Since our
aim is to replace the language of toposes by that of spacesnaght wonder if there is still any need
at all for topos theory in this topos approach. The key insigthat the study obundles over Bs
equivalent to the study afpaces internal in”BA In other words, the study of bundles is just a version
of topology, but different from ordinary classical topojogince it has to be adapted to the non-classical
internal mathematics of toposes. As we shall see, undeginddgical constraints afjeometricitythis
becomes equivalent to treating bundles as “fibrewise tgydJoordinary topology but sprinkled with
base point paramete@from B.

1We shall use the word “bundle” in a very general sense, ofrantyimap between two topological spaces (more precisely,
the spaces need to be point-free, but the naive reader galyfagnore this issue). If “bundle” just means the same aag’m
one might wonder why we should waste a second word on the satimmnHowever, they will carry different connotations. A
bundlep: X — Biis to be thought of as a family of spaces (the fibped ({b})) parameterized by base polmtThis is exactly
the view one has of, for example, the tangent bundle ovelferdiftiable manifold.

2«3pace” here implicitly means point-free.
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82 Born rule in spectral bundles

In the present paper this is the key to our description of themBule. We use a construction that,
for any spaceX, gives avaluation spaceldX whose points are the valuations (regular measuresj.on
Since this is geometric, it can be applied fibrewise to anydlmip : X — B to give a valuation bundle
g:YeX — B. A valuation on a fibre of the spectral bundle, in other wordslaation on the spectrum
of some context, turns out to be exactly the kind of probghbilistribution that is expressed in the Born
rule. It is topos theory — more precisely, the understandifitihe logic of topos-internal mathematics
and of the geometricity constraints — that gives us acceisddibrewise valuation space and allows us
to infer that it has good properties.

For other treatments of the Born rule in the topos approaehi=5&] .

1.1 States

Classical physics: Let us be clear about the notionsstétethat will concern us. In classical physics,
it is assumed that (given a selection of observakleshere is a sek of (classically)pure stateghat
determine the values of all the observables. Thus eachaiselO is realized mathematically as a
function O : = — R. To measureD in statex is then to discover the valud(x). In practice, as for
instance in thermodynamics, we often do not have accessetexaict pure states and are reduced to
using probabilistic distributions. We shall writg (X) for the space of probability valuations (regular
measures with total mass 1) & assuming thak has appropriate structure (specificali:will be a
point-free topology). In that cas@is also realized a&i? (O) : ¥ (2) — VM (R), takingmixed states
(points of UM (2)) to distributions of reals (points a8Y(R)). In other words, oncen € BM(3) is
given,® becomes aandom variable Although in practice the mixed states of this probabiistpproach
may be the best we can do, it is nonetheless assumed thatdheysd as probability distributions of
pure states.

Quantum physics: In quantum physics, on the other hand, an obsen@bigay be realized as a self-
adjoint operato@ on some Hilbert space?’, which we assume, for simplicity, is of finite dimension
n. The spectral theorem then tells us tiat= S, AiR where theA;s are the eigenvalues & and
theRs form a complete (they sum to 1) set of mutually orthogonajgutors (self-adjoint idempotents),
projecting onto the corresponding eigenspaces.qUiamtumpure states are now taken to be the non-zero
vectors|@) € ., modulo scalar multiplication (in other words the states xdimensional subspaces,
orrays in 2’). To measur® in state|() is probabilistic. Its measured result is one of the eigaresl
Aj, with probability % according to the Born rule, and with resulting stBp) according to the
Luders Principle. Quantum mixed states (probabilistitridiutions over quantum pure states) are still of
use, but now even the pure states have a probabilistic nature

This raises the question of whether there mightlassicallypure states out of which the quantum
pure states are mixed. The answer depends on the observéibles considerO alone, then we can
take X = {1,...,m} (for the m eigenvalues, taken as distinct). Théxi) = A; and |g) is the mixed
state in whichi has weight%. This extends to the situation where we have any collection o
commuting observables, since they are simultaneouslyodalable and there is a complete set of
orthogonal projector® (1 <i < m) such that eacld can be expressed &3, AiR (although now we
cannot necessarily assume that Algare distinct).

However, the Kochen-Specker Theorem tells us that in gemdran we havenon-commuting ob-
servables there is no possible space of classically putessbat of which the quantum pure states can
be mixed.
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We shall in general take “context” to mean some situatioshsas a family of commuting observ-
ables, in which it is possible to find a classically pure s&giace — the spectrum of the context. A
fundamental aspect (going back[tol[14] and [15]) of the tamm®oach to quantum physics is to work in
a mathematics that works in contexts but in some sense wotkeim all at once. In this mathematics,
though it islogically non-classical, there is some possibility of beptysicallyclassical.

1.2 Toposes and bundles

The big content of topos theory is that it provides a geneatibn of topological spaces, new spaces
whose topological structure must be given by stipulating gheavesnot just the opens. However,
the topos approach to quantum physics as currently cortteises only ungeneralized spaces (though
point-free, as locales), and one of our aims here is to cdrmuadiscussion in terms of those spaces.

What toposes bring is a more conscious use of sheaves, aradtioupar the ability to manipulate
them by interpreting mathematics (subject to construsttigonstraints) as the internal mathematics of
7B.

To get a feel for how this works, think of an opkhof a spaceB as a “continuously varying truth
value”, parametrized by pointsof B. The value is true wheh € U: soU is a generalized truth value
that says notwvhethersomething is true, buwhere There is an asymmetry, “locality of truth”, deriving
from the nature of openness: if the value is truedhen it is true throughout some neighbourhood
of x. The same does not hold for falsehood, and this asymmetnysshp in the associated logic —
negation cannot be a connective. Another way to see thdisituavhich respects this asymmetry, is as
a “continuously varying subsingleton”. If we writefor the unique element of some standard singleton
set, then the subsingleton {$} whereb € U, 0 whereb ¢ U. Thus locality of truth translates into
locality of existence ok. This view is simply that of the inclusiod — B as bundle, since the fibre lat
is exactly the subsingleton described.

Sheaves can be understood as generalizing “continuousjjngasubsingletons” to “continuously
varying sets”. In bundle form, when one incorporates noy dmtality of existence of elements but also
locality of equality between them, one gets the notiofool homeomorphism X» B, the fibres being
the continuously varying sets. (Note that the definitionliegpthat the fibres, as subspaceoall have
the discrete topology.)

The topos of sheaves ovBris (equivalent to) the topos of local homeomorphisms witdlarpain
B. Many mathematical constructions can also be carried tiiran sheaves, and this interpretation
gives aninternal mathematicsf the topos. For reasons such as the locality of truth, isdwe obey all
reasoning principles of classical logic and set theorynbuetheless it is intuitionistic. The methodology
of manipulating sheaves by reasoning intuitionisticals Iproved an effective one. Moreover, there is
a particularly importangeometricfragment comprising those constructions that work fibrevas the
local homeomorphisms. For these the intuitionistic feeglare less obtrusive.

The final step is to move to general bundles as “continuouatying spaces”. Just as local homeo-
morphisms are (by definition) “sets” in the internal math&osa we should also like general bundles to
be spaces there. This idea works well, with two provisosstHine spaces need to be point-free, and, sec-
ond, the logic needs to be geometric in order for it to workdiiise, so that the whole construction varies
continuously with the base points. Getting the mathematiagork within the geometricity constraints
is non-trivial, and the present work provides a case studynmore general geometrization programme.
However, it has the beneficial effect of enabling point-dasasoning for point-free topology.

The key result is what we shall call th@calic Bundle Theorer({8], [18]), which states that frames
in the internal mathematics of a topos are dual equivalelaiciic geometric morphisms with that topos
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as codomain. Restricted to the case where the topos is thheates over a local these are equivalent
to locale maps with codomaiB, in other words localic bundles ovBr

This has an important consequences for constructions atelclf the construction is topos-valid
then it can be applied to internal frames in toposes of siseand hence gives a construction on localic
bundles. We shall be particularly interested in constamsithat areyeometricin the sense that, when
applied to bundles, are preserved by pullback, since thii@sthat they work fibrewise.

To summarizeln this work we shall be working with bundles, and with coanstions on spaces that
can be applied fibrewise to the bundles. Although the detdilde largely hidden, the justification for
the fibrewise construction, and for choosing the appraopriapology on the bundle space, will be that
the constructions work point-free in a way that is toposevahd moreover geometric. This perspective
on geometric logic is summarized in [23].

1.3 Bundles as fibrations and opfibrations

Given a bundlep : Z — B one can ask how the fibres interact with specialization oamheongst the
base points: iIC C D, is there a corresponding map, in either direction, betwaerfibresC*Z and
D*>? In general there is no such map, but there are special slagseindles, known as fibrations and
opfibrations, for which there are. The general thepry [21jksdan an arbitrary 2-category and has been
examined in[[16] in the 2-category of toposes. Our own irgei® in the restriction to the 2-category
of locales, where the category enrichment is in fact ordeickement, the specialization order on each
homset: iff,g: X — Y thenf C gif f*V <g*V for all V open inY.

For a fibrationp, for C C D in B there is a map contravariantly between the fibBeg, — C*Z, while
for an opfibration it is covariant. Moreover, in both casesfibre maps are characterized universally in
a way that determines them uniquely. We shall describe thisway that deals with the poin&C D
generically, allowing for generalized points. As we shal $ater, these notions provide a fundamental
explanation for the difference in variance seen in two tagmsroaches to quantum theory.

Such pairsC C D are classified by the exponential loc&e whereS is the Sierpinski locale with
points | C TH Givenf:S—>B, a point of B%, we havef (L) C f(T) in B, and this gives two maps
1, C 7ir : BS — B. They are generic. For any oth@_ D : W — B, there is a uniqué : W — B® such
thatC = 11, o f andD = 7&r o f. This allows us to understand the point$6fas the pair€ C D. Because
of this we don't ask about fibre maps for arbitrary p&irs D, but just for the generic paim, C 777 A
fibre map found there can then be pulled back for arbitéry D.

OverB® we have two bundles ¥ and7z: %, and so far there is no reason why there should be a map
between them. However, we do have a span over them from thideoph: =5 — BS. For example, the

commutative square

> T 5

p° Ip
BS — B

gives us amap, : =% — 1, = overB®. Similarly, for T we get a map\+ : =5 — 1% overB°.

Definition 1 With the notation as above, p isférationif A+ has a right adjointor over B, with its
counit an equality, and is aopfibrationif p, has a left adjointA | over B, with its unit an equality.

3potentially it has other points too, but they arise only intassical mathematics.
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To say thatpr is right adjoint of At is to say that Igs T pr o At (the unit) andAt o pr C ldp s
(the counit), and similarly fop, andA . In these two cases we get fibre maps. For a fibration we get,
contravariantlyp o pr : 1t X — 11} X, while for an opfibration we get, covarianty; oA | : M X — 7 %,

AL At
-=> —
S
M 2 o T2
pL PT

Theorem 2 Let p: ~ — B be a bundle as above.

1. If pis a local homeomorphism, thus corresponding to aectpf.”B, then it is an opfibration.

2. If p corresponds to a compact regular locale #iB, then it is a fibration.

Proof. [16] O

1.4 Valuation locales

Standard measure theory works badly in toposes, sufferimg fleep set-theoretic problems. For many
purposes a satisfactory replacement can be found by raglaceasurable spaces and measures by lo-
calesX andvaluations mon them. Such amis a Scott continuous map from the frame of op€ns

to the lower reals{m, satisfying themodular law nfU vV) +mU AV) =m(U) +m(V) and also
m(0) = 0. (Thelower reals differ constructively from the Dedekind reals in lgeapproximable from
below but not from above. For present purposes it is best denstand them as being given the Scott
topology instead of the usual Hausdorff topologyrpbability valuationsare those for whicim(X) = 1.

For every localeX there can be constructed/aluation localelX whose points are the valuations on
X; it has a sublocal@i®X whose points are the probability valuations. These wered@gned in [10],
following ideas of the probabilistic powerdomain of [17hdawere further developed in [22] arid [4]. In
particular the results of [4] were central in the quantunatimeent of [12].

More recent work([24] has shown thtandU(Y are the functor parts of monads, localic analogues
of the Giry monad in measure theory [9] and the distributiconad of [1]. The monads are commutative,
meaning that product valuations exist and a Fubini Theorelalsh

[24] also describes in some detail the geometricit@iofand likewiseZ3(V)), and this will be key to
our development here. The topos-validityXdtells us that for any bundlp: ~ — B we can also construct
a bundleq : UgZ — B, by applying®l to an internal locale in the topos of sheaves d¥got using the
Localic Bundle Theorem. BUY is also geometric, and this tells us that the bundle cortstrugvorks
fibrewise: in other words, each fibté%gl)i =g %({b}) is homeomorphic t&5M) (b*Z). We shall not
need to dwell on the topos theory here, but it is the toposrihiat tells us how the valuation locales of
the fibres ofp can be bundled together, with an appropriate topology oitinelle space, to male

Remark 3 In general, to define a valuation on X involves defining itaigalfor allopensof X, or at
least for a generating lattice of opens. However, in theipatar case where X is discrete and moreover
has decidable equality, it is enough to define the valueslfgr@nts (The issue is similar to that well
known for Lebesgue measure, where the points all have nefsut opens have non-zero measure.)
The frame of opens, the powers#tX, is the ideal completion of the Kuratowski finite powergeX .
Each S .7 X is afinite disjoint union of singletons (we need decidgbdf equality to remove duplicates
and hence achieve disjointness), and so its measure isdieied by that of the singletons.
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2 Spectral and related bundles

We briefly summarize some topos approaches and how theyddashtles. For convenience we shall
refer to thelmperial approach of Isham and Butterfield [14], [15] and subsequéddring and Isham
[7]; and theNijmegenapproach of Heunen, Landsman and Spitlers [12] (seelal}p [11

Both Imperial and Nijmegen start with a C*-algehb#a (or, more specifically in the Imperial case,
a von Neumann algebra; in the finite dimensional case thesensocare equivalent) and then take a
“classical point of view” (to use the Imperial phrase) to bmanmutative C*-subalgebi@. By Gelfand-
Naimark duality,C is isomorphic to the algebra of continuous maps— C whereZ: is the spectrum,
and it follows that¢ provides a classically pure state space for the self-adgbiments o€, considered
as observables. They are all represented as Haps R. ThusC is a context in which the physics of
those observables is classical.

Let us write%’'(«7) for the poset of commutative C*-subalgebras (or, for Imgleef commutative
von Neumann subalgebras). The base space of the bundlesiswedgad out ofs’ (<), and the fibre over
a contexiC is its spectrum. A significant difference between the tworagphes lies in how those fibres
are topologized.

For Imperial, the topos is the category of contravariant functors fféfwy) to Set(i.e. presheaves
over¢'(«7)). For a correct point-free approach one should take the $gseeB to be 1d(€ («/)°P),
the space of filters o (<), with its Scott topology. However, for many purposes it @i to consider
only theprincipal filters, of the form{D € ¢ (/) | C C D} for someC. The Imperial workers seek the
spectrum as aabjectof the topos, i.e. a sheaf, corresponding to a bundle thdbisshhomeomorphism
over Idi(¢’(A)°P), and so the fibres are all discrete.

By Theoreni 2 the spectral bundle is therefore an opfibragjimmg fibre maps covariant with respect
to the specialization order. Since the fibre maps are of sggesontravariant with respect to context
inclusion (by a “coarse-graining” argument), it followsatithe specialization order is the opposite of
context inclusion. This is achieved inl[7] by taking the bapace to be the filter completion of the
context poset, and its sheaves are then presheaves — em@ind\set-valued functors — on the context
poset. Any approach that seeks a spectral object, a disgpae internally, will be subject to this
argument, so it is a consequence of using point-set topatagynally.

For Nijmegen the topos is the category of covariant functors fréifr/) to Setand the correspond-
ing base spac® is IdI% (<), the space of ideals of'(<7), with its Scott topology. The Nijmegen
workers seek the spectrum as an internal compact regulauallgc completely regular — space in the
topos, as expected from the Gelfand-Naimark duality. It they can construct an internal commutative
C*-algebra (for which the fibre ove is justC itself) and then use a topos-valid version [2] of Gelfand-
Naimark duality to get an internally compact regular speutrin the corresponding bundle the fibres are
all compact regular. Now by Theordr 2 the spectral bundidilsration, and the same reasoning shows
that the specialization order will agree with context irsotun. This is achieved in [11] by taking the base
to be the ideal completion of the context poset, and the &seane the covariant set-valued functors on
the context poset.

Note how the Nijmegen approach had to adopt a point-freeoagprto topology in order to use the
topos-valid form of Gelfand-Naimark. Whereas a point-ggiraach always gives an opfibration, the
change to point-free does not in itself bring any consege®ihar the variance because a general bundle
need be neither fibration nor opfibration. However, any ag@tdhat seeks a compact, regular, point-free
spectrum will get a fibration with the same variance as fonggen.

Although these two approaches are the best worked out sthé&y,are not the only possible. As
we shall see in Sectidd 3, in finite dimensional systems ditise base and bundle spaces have natural
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manifold structure and can therefore be given non-dis¢detesdorff topologies. Our bundle description
is intended to allow a wide range of such possibilities, wtlescribed point-free.

2.1 Valuation bundles and Born sections

Supposep : £ — B is our spectral bundle, giving rise to a probability valaatbundleq : Q]él)z — B.

For the Nijmegen situation this was discussed_in [12] (réfgrto the development in[4]), and the
paper proves (their Theorem 14) that its global points — tlebal sections ofj — are equivalent to
quasistates of the*Galgebra. Thus in particular each pure stiate gives a global section af, and it
is continuous. This is already interesting, since Kochpaeger tells us that global sectionsw$hould
normally be impossible. If we try to extract external matladios from the topos internal by taking
global sections, then the spectrymoses all its points, but the valuation spageetains points and we
are familiar with them through quantum pure states.

Once a sectiow is given forg, we can infer the probabilities that arise in the Born rutged alsa [5],
[6] for some other discussions of the Born rule.) Supfosga context, a point 0B, and for simplicity
consider the simple case whdEds a commutative subalgebra (rather than a filter or ideat)e fibre
C*X is the Gelfand spectrum Sp€), and any self adjoint i€ is represented as a m&p: C*< — R.

Using geometricity to se@*mg)z ~ 95(IC*3, we can then get the probabilistic result of observihg
in state|y) as the probabilistic valuatiots™)(O)(a(C)) onR, a random variable. The core probability
is determined byC and |¢), and all that remains is to allow for the way the observabl&bels the
eigenstates (i€*X) with real numbers.

Our next step is to generalize the stage. In the finite dimensional case it corresponds to a projector
|w) (Y| of rank 1 and it is possible to generalize to higher rank mtojes by summing over basis states.
Thus for each contexd, the elements dD*Z can play a role similar to that of statgg). However, we
do not attempt to normalize — to do so presents problems wienirzg for refinement of the context
D — and so we no longer have probability valuations in gendrals we get sections of: Ug% — B.
Bundling these together we postulatBarn sectiorof the bundlelg.>? — B2. For each pai(D,C) of
contexts it gives a valuatioBornpc of D*XZ x C*Z.

At present we have the Born sections defined only in finite dsr@nal situations. Nonetheless, the
formal notion makes sense more generally and would appdavi® a good phenomenological footing
in that it describes probabilities. We therefore hope thatstructure of bundle together with Born maps,
appropriately axiomatized, will prove a good foundationtfipos-based contextual physics.

3 Finite dimensional quantum systems

3.1 Bundles for finite dimensional quantum systems

In the following we propose a fibrational bundle in which tipasesB and X contain manifolds. This
contrasts with the original Imperial and Nijmegen condiares, where the topology oB arises solely
from the order structure o#’ (<), though it accords with the use of flag manifolds(in [3]. We fix a
algebrae = My(C) and all constructions are relative to this algebra. Any catative sub-C-algebra
C is also finite dimensiorfdland so, by Gelfand-Naimark duality, isomorphic as unit&la@@ebra to
C™ for somem. It hasm indecomposable projectors (self-adjoint idempote@t)orresponding up to

4Constructively this is not quite true. But we shall constroar bundle in terms of the subalgebras thg finite dimen-
sional.
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isomorphism to the elements @f" that have a 1 in a single component, 0 elsewhere, and thesésare
projectors ine/ becaus€ is a sub-C-algebra. They are orthogon&liC; = 0if i # j) and complete (they
sum to 1). Note also that the trace of each is a positive integgial to the rank, since the eigenvalues
are Oor 1. _

We call a complete orthogonal sequen@eof projectors grojector systemand define itdypeto be
the sequence of traces of the projectors, an ordered partifin. Generally we are only interested in the
setof projectors (because this is what characterizes the gebalC) and the set of traces as type; but
for setting up the bundle it is useful to remember the autg@miems. With this in mind, we define —

Definition 4 Let (ui)!:1 and (v,-)rj‘”:1 be two partitions of n. Aefinementfrom V to ﬁ is a function
r:{L...,1} = {1,...m} such thatv; = 3, _; 1 for every j. (Note that the reindexing function is in
the opposite direction to the refinement.)

For each partitionﬁ we define the space P(&f ) of projector systems of typﬁ. This can clearly
be done localically, since it is defined as a subspac&"Sf wherel is the length of if, by a system
of equations. We also have a trivial bundle over it, Pﬁ)j x| — Proj(ﬁ). Each fibre has exactly
elements, which is the Gelfand spectrum for all subalgebfagpe ﬁ For any refinement : V= ﬁ
we now have a map Pr@) : Proj(ﬁ) — Proj(7) given by Pro{r)(é)j = ¥r(i)=jCi- This extends
to a bundle map using Pr(mj)(é,i) = (Proj(r)(é),r(i)). We thus have a diagram of bundles, whose
shape is the opposite of the category of partitions and mfms. Our bundl& — B is now defined
as a lax colimit of this diagram. More precisely, it has inagé all the spaces Pl(oj?), subject to
Proj(r)(C) C € and(Proj(r)(C),r(i)) C (C.i).

The imposition of this specialization order has two effedike first, and perhaps less obvious one,
is with regard to invertible refinements. These permute leealaes in partitions, and the effect of the
imposed specialization is to make two projector systemsleifithey generate the same subalgebra —
because they have the same projectors, but permuted. ThésBia space of contexts as required. After
that, the specialization agrees with context inclusionegglired for a fibrational bundle. The action on
the bundle spaces ensures that states are kept track aftborneder permuting of the matrices.

To define the Born section, we define it first for projector eyst, and show that the definition
respects refinements. Supp@eandﬁ> have typesﬁ and 'V, of lengthsl andm. At this level (before
imposing the specialization) the spectra are finite disongth decidable equality, cardinalitiémandm,
and so by Remarkl 3 a valuation on the product can be definedebyatbes on its elements, j). We
define

Bzg(i,j) =Tr(GDj),
a non-negative real, and then Btrncp be the image 0Bz in Vg2(22). Now supposf C 8’ and
5 C 3’, with refinements : @ — {’ ands: V — V. Then
rin=i s(J)=j r(in=s(j’")=]

and soBzg = T (Proj(r) x Proj(s)) (Bz,g,); it follows thatBorncp E Bornepr.
In the case wher€; has trace 1 it is of the forfy) (| for some unit vectofy) (an eigenvector for
eigenvalue 1). Then

Tr(GD;j) = Tr([¢)(@[D;j) = Tr((¢|Dj|y)) = (YIDj|¢)

and so the probability agrees with that obtained from thenBole for statgy). More generallyC; is a
sumy . |gx) (x| for orthonormal vectors, anBlorncp(i, j) is the sumy  (Wi|Dj|gi)-
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3.2 Bundles for the qubit

The qubit Hilbert space” is C2, and the C-algebra is the full matrix algebra7 = M»(C). The
commutative context-subalgebras come in two typé®) (dimension 1) and1,1) (dimension 2). The
sole type (2) algebra is the centt®, which we denote by ; Proj(2) is the 1-point space. The 2-
dimensional subalgebras are generated by two proje€of% such thatC; +C, = 1 and T(C;) = 1.
ProjectorsP of trace 1 are in bijection with self-adjoint unitarigs= 2P — 1 of trace 0, and such unitary
can be written as a real linear combinatiaywy + a,0y + a,0; of the Paulis such that + a2 + a2 = 1.
(Any self-adjoint is a real linear combination of the Pawisd 1; for trace 0 the coefficient of 1 is O;
and the further condition says that the matrix is an involuli Since eacly; is determined by the other,
it follows that Proj1,1) is the 2-spheré — this is the Bloch sphere. In the context sp&cantipodes
will be identified, giving the real projective plarigP?, and L is adjoined as a bottom point in the
specialization order. ThuBis RP? lifted, ¥ is & lifted.

For both Imperial and Nijmegen (but see also [20]), bBttandRP? are given their discrete topolo-
gies. For Imperial, the trivial points are adjoinaldovethe rest in the specialization order as a p
so that each trivial point is open. For Nijmegen they areiadfbbelowas a bottoml, so that the only
open containing a trivial point is the whole space.

An interesting consequence of using the natural, manifgpa@logies, is that the bundle has no con-
tinuous cross-sections. As |14] have pointed out, for disimrs 3 or more the lack of cross-sections
for the Imperial bundle is a manifestation of the Kochen<kpe Theorem [19]. That theorem does not
apply directly to dimension 2, and indeed the correspontimagerial bundle has many cross-sections, al-
beit discontinuous with respect to the manifold topologiessentially the Kochen-Specker Theorem as
normally formulated is a combinatorial one, relying on mgvsufficient complexity in the order struc-
ture amongst the contexts. In the 2-dimensional case tlogr @tructure (one trivial point related to
everything, all other points incomparable with each otetpo simple.
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