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Topos approaches to quantum foundations are described in a unified way by means of spectral bun-
dles, where the base space is a space of contexts and each fibreis its spectrum. Differences in variance
are due to the bundle being a fibration or opfibration. Relative to this structure, the probabilistic pre-
dictions of the Born rule in finite dimensional settings are then described as a section of a bundle of
valuations. The construction uses in an essential way the geometric nature of the valuation locale
monad.

1 Introduction

Two topos approaches to quantum foundations, [7] and [12][13], describe a quantum system given al-
gebraically (as von Neumann algebra or C*-algebra respectively) as a topos combined with a space
defined internally “in” the topos. However, toposes presentmany difficulties to the beginner: their basic
definitions are non-trivial, and many important parts of topos-theory relate only indirectly to the basic
definitions. The aim of this paper is to describe the topos approaches – both existing and prospective – in
terms of “spectral bundles”p : Σ→ B.1 We shall refer to the base pointsC in B ascontexts, or (to use a
phrase of [7]) “classical points of view”, and each fibreC∗Σ = p−1{C} as thespectrumof C, also written
ΣC = Spec(C). It is a “classical state space” from point of viewC. As we shall see below, a canonical
realization of this in a quantum situation is whereC represents a commuting set of observables and then
the state space is the set of their common eigenspaces. Each of the observables can be diagonalized
with respect to those eigenspaces, and then the diagonal entries, the corresponding eigenvalues, are the
measured values, while the resulting state is got by projecting to the corresponding eigenspace.

In the topos approaches, the topos is the toposS B of sheaves overB and the bundle corresponds
to something internal in that topos: either an object or a point-free topological space (locale). Since our
aim is to replace the language of toposes by that of spaces, one might wonder if there is still any need
at all for topos theory in this topos approach. The key insight is that the study ofbundles over Bis
equivalent to the study ofspaces internal inS B.2 In other words, the study of bundles is just a version
of topology, but different from ordinary classical topology since it has to be adapted to the non-classical
internal mathematics of toposes. As we shall see, under certain logical constraints ofgeometricitythis
becomes equivalent to treating bundles as “fibrewise topology”, ordinary topology but sprinkled with
base point parametersC from B.

1We shall use the word “bundle” in a very general sense, of arbitrary map between two topological spaces (more precisely,
the spaces need to be point-free, but the naive reader can largely ignore this issue). If “bundle” just means the same as “map”
one might wonder why we should waste a second word on the same notion. However, they will carry different connotations. A
bundlep : X→ B is to be thought of as a family of spaces (the fibresp−1({b})) parameterized by base pointb. This is exactly
the view one has of, for example, the tangent bundle over a differentiable manifold.

2“Space” here implicitly means point-free.

http://dx.doi.org/10.4204/EPTCS.95.8


82 Born rule in spectral bundles

In the present paper this is the key to our description of the Born rule. We use a construction that,
for any spaceX, gives avaluation spaceVX whose points are the valuations (regular measures) onX.
Since this is geometric, it can be applied fibrewise to any bundle p : X→ B to give a valuation bundle
q : VBX→ B. A valuation on a fibre of the spectral bundle, in other words avaluation on the spectrum
of some context, turns out to be exactly the kind of probability distribution that is expressed in the Born
rule. It is topos theory – more precisely, the understandingof the logic of topos-internal mathematics
and of the geometricity constraints – that gives us access tothis fibrewise valuation space and allows us
to infer that it has good properties.

For other treatments of the Born rule in the topos approach see [5, 6] .

1.1 States

Classical physics: Let us be clear about the notions ofstatethat will concern us. In classical physics,
it is assumed that (given a selection of observablesO) there is a setΣ of (classically)pure statesthat
determine the values of all the observables. Thus each observable O is realized mathematically as a
function Õ : Σ→ R. To measureO in statex is then to discover the valuẽO(x). In practice, as for
instance in thermodynamics, we often do not have access to the exact pure states and are reduced to
using probabilistic distributions. We shall writeV(1)(X) for the space of probability valuations (regular
measures with total mass 1) onX, assuming thatX has appropriate structure (specifically:X will be a
point-free topology). In that caseO is also realized asV(1)(Õ) : V(1)(Σ)→V

(1)(R), takingmixed states
(points ofV(1)(Σ)) to distributions of reals (points ofV(1)(R)). In other words, oncem∈ V

(1)(Σ) is
given,Õ becomes arandom variable. Although in practice the mixed states of this probabilistic approach
may be the best we can do, it is nonetheless assumed that they do arise as probability distributions of
pure states.

Quantum physics: In quantum physics, on the other hand, an observableO may be realized as a self-
adjoint operatorÔ on some Hilbert spaceH , which we assume, for simplicity, is of finite dimension
n. The spectral theorem then tells us thatÔ = ∑m

i=1 λiPi where theλis are the eigenvalues of̂O and
thePis form a complete (they sum to 1) set of mutually orthogonal projectors (self-adjoint idempotents),
projecting onto the corresponding eigenspaces. Thequantumpure states are now taken to be the non-zero
vectors|φ〉 ∈H , modulo scalar multiplication (in other words the states are 1-dimensional subspaces,
or rays, in H ). To measureO in state|ψ〉 is probabilistic. Its measured result is one of the eigenvalues
λi , with probability 〈ψ |Pi|ψ〉

〈ψ |ψ〉 according to the Born rule, and with resulting statePi|ψ〉 according to the
Lüders Principle. Quantum mixed states (probabilistic distributions over quantum pure states) are still of
use, but now even the pure states have a probabilistic nature.

This raises the question of whether there might beclassicallypure states out of which the quantum
pure states are mixed. The answer depends on the observables. If we considerO alone, then we can
take Σ = {1, . . . ,m} (for the m eigenvalues, taken as distinct). ThenÕ(i) = λi and |ψ〉 is the mixed
state in whichi has weight〈ψ |Pi |ψ〉

〈ψ |ψ〉 . This extends to the situation where we have any collection of
commuting observables, since they are simultaneously diagonalizable and there is a complete set of
orthogonal projectorsPi (1≤ i ≤ m) such that eacĥO can be expressed as∑m

i=1 λiPi (although now we
cannot necessarily assume that theλis are distinct).

However, the Kochen-Specker Theorem tells us that in general when we havenon-commuting ob-
servables there is no possible space of classically pure states out of which the quantum pure states can
be mixed.
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We shall in general take “context” to mean some situation, such as a family of commuting observ-
ables, in which it is possible to find a classically pure statespace – the spectrum of the context. A
fundamental aspect (going back to [14] and [15]) of the toposapproach to quantum physics is to work in
a mathematics that works in contexts but in some sense works in them all at once. In this mathematics,
though it islogically non-classical, there is some possibility of beingphysicallyclassical.

1.2 Toposes and bundles

The big content of topos theory is that it provides a generalization of topological spaces, new spaces
whose topological structure must be given by stipulating the sheaves,not just the opens. However,
the topos approach to quantum physics as currently conceived uses only ungeneralized spaces (though
point-free, as locales), and one of our aims here is to conduct our discussion in terms of those spaces.

What toposes bring is a more conscious use of sheaves, and in particular the ability to manipulate
them by interpreting mathematics (subject to constructivist constraints) as the internal mathematics of
S B.

To get a feel for how this works, think of an openU of a spaceB as a “continuously varying truth
value”, parametrized by pointsb of B. The value is true whenb∈U : soU is a generalized truth value
that says notwhethersomething is true, butwhere. There is an asymmetry, “locality of truth”, deriving
from the nature of openness: if the value is true atx then it is true throughout some neighbourhood
of x. The same does not hold for falsehood, and this asymmetry shows up in the associated logic –
negation cannot be a connective. Another way to see the situation, which respects this asymmetry, is as
a “continuously varying subsingleton”. If we write∗ for the unique element of some standard singleton
set, then the subsingleton is{∗} whereb ∈ U , /0 whereb /∈ U . Thus locality of truth translates into
locality of existence of∗. This view is simply that of the inclusionU →֒ B as bundle, since the fibre atb
is exactly the subsingleton described.

Sheaves can be understood as generalizing “continuously varying subsingletons” to “continuously
varying sets”. In bundle form, when one incorporates not only locality of existence of elements but also
locality of equality between them, one gets the notion oflocal homeomorphism X→ B, the fibres being
the continuously varying sets. (Note that the definition implies that the fibres, as subspaces ofX, all have
the discrete topology.)

The topos of sheaves overB is (equivalent to) the topos of local homeomorphisms with codomain
B. Many mathematical constructions can also be carried through on sheaves, and this interpretation
gives aninternal mathematicsof the topos. For reasons such as the locality of truth, it does not obey all
reasoning principles of classical logic and set theory, butnonetheless it is intuitionistic. The methodology
of manipulating sheaves by reasoning intuitionistically has proved an effective one. Moreover, there is
a particularly importantgeometricfragment comprising those constructions that work fibrewise on the
local homeomorphisms. For these the intuitionistic features are less obtrusive.

The final step is to move to general bundles as “continuously varying spaces”. Just as local homeo-
morphisms are (by definition) “sets” in the internal mathematics, we should also like general bundles to
be spaces there. This idea works well, with two provisos. First, the spaces need to be point-free, and, sec-
ond, the logic needs to be geometric in order for it to work fibrewise, so that the whole construction varies
continuously with the base points. Getting the mathematicsto work within the geometricity constraints
is non-trivial, and the present work provides a case study ina more general geometrization programme.
However, it has the beneficial effect of enabling point-based reasoning for point-free topology.

The key result is what we shall call theLocalic Bundle Theorem([8], [18]), which states that frames
in the internal mathematics of a topos are dual equivalent tolocalic geometric morphisms with that topos
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as codomain. Restricted to the case where the topos is that ofsheaves over a localeB, these are equivalent
to locale maps with codomainB, in other words localic bundles overB.

This has an important consequences for constructions on locales. If the construction is topos-valid
then it can be applied to internal frames in toposes of sheaves and hence gives a construction on localic
bundles. We shall be particularly interested in constructions that aregeometricin the sense that, when
applied to bundles, are preserved by pullback, since this implies that they work fibrewise.

To summarize:In this work we shall be working with bundles, and with constructions on spaces that
can be applied fibrewise to the bundles. Although the detailswill be largely hidden, the justification for
the fibrewise construction, and for choosing the appropriate topology on the bundle space, will be that
the constructions work point-free in a way that is topos-valid and moreover geometric. This perspective
on geometric logic is summarized in [23].

1.3 Bundles as fibrations and opfibrations

Given a bundlep : Σ→ B one can ask how the fibres interact with specialization orderamongst the
base points: ifC ⊑ D, is there a corresponding map, in either direction, betweenthe fibresC∗Σ and
D∗Σ? In general there is no such map, but there are special classes of bundles, known as fibrations and
opfibrations, for which there are. The general theory [21] works in an arbitrary 2-category and has been
examined in [16] in the 2-category of toposes. Our own interest is in the restriction to the 2-category
of locales, where the category enrichment is in fact order enrichment, the specialization order on each
homset: if f ,g : X→Y then f ⊑ g if f ∗V ≤ g∗V for all V open inY.

For a fibrationp, for C⊑D in B there is a map contravariantly between the fibres,D∗Σ→C∗Σ, while
for an opfibration it is covariant. Moreover, in both cases the fibre maps are characterized universally in
a way that determines them uniquely. We shall describe this in a way that deals with the pointsC⊑ D
generically, allowing for generalized points. As we shall see later, these notions provide a fundamental
explanation for the difference in variance seen in two toposapproaches to quantum theory.

Such pairsC ⊑ D are classified by the exponential localeBS whereS is the Sierpinski locale with
points⊥ ⊑ ⊤.3 Given f : S→ B, a point ofBS, we havef (⊥) ⊑ f (⊤) in B, and this gives two maps
π⊥ ⊑ π⊤ : BS→ B. They are generic. For any otherC⊑ D : W→ B, there is a uniquef : W→ BS such
thatC= π⊥◦ f andD= π⊤◦ f . This allows us to understand the points ofBS as the pairsC⊑D. Because
of this we don’t ask about fibre maps for arbitrary pairsC⊑ D, but just for the generic pairπ⊥ ⊑ π⊤. A
fibre map found there can then be pulled back for arbitraryC⊑ D.

OverBS we have two bundlesπ∗⊥Σ andπ∗⊤Σ, and so far there is no reason why there should be a map
between them. However, we do have a span over them from the bundle pS : ΣS→ BS. For example, the
commutative square

ΣS π⊥−→ Σ
pS ↓ ↓ p

BS −→
π⊥

B

gives us a mapρ⊥ : ΣS→ π∗⊥Σ overBS. Similarly, for⊤ we get a mapλ⊤ : ΣS→ π∗⊤Σ overBS.

Definition 1 With the notation as above, p is afibration if λ⊤ has a right adjointρ⊤ over BS, with its
counit an equality, and is anopfibrationif ρ⊥ has a left adjointλ⊥ over BS, with its unit an equality.

3Potentially it has other points too, but they arise only in non-classical mathematics.
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To say thatρ⊤ is right adjoint ofλ⊤ is to say that IdΣS ⊑ ρ⊤ ◦ λ⊤ (the unit) andλ⊤ ◦ ρ⊤ ⊑ Idπ∗⊤Σ
(the counit), and similarly forρ⊥ andλ⊥. In these two cases we get fibre maps. For a fibration we get,
contravariantly,ρ⊥◦ρ⊤ : π∗⊤Σ→ π∗⊥Σ, while for an opfibration we get, covariantly,λ⊤◦λ⊥ : π∗⊥Σ→ π∗⊤Σ.

π∗⊥Σ
λ⊥
99K

←−
ρ⊥

ΣS

λ⊤−→
L99
ρ⊤

π∗⊤Σ

Theorem 2 Let p: Σ→ B be a bundle as above.

1. If p is a local homeomorphism, thus corresponding to an object ofS B, then it is an opfibration.

2. If p corresponds to a compact regular locale inS B, then it is a fibration.

Proof. [16] �

1.4 Valuation locales

Standard measure theory works badly in toposes, suffering from deep set-theoretic problems. For many
purposes a satisfactory replacement can be found by replacing measurable spaces and measures by lo-
calesX andvaluations mon them. Such anm is a Scott continuous map from the frame of opensΩX

to the lower reals
−−−→
[0,∞], satisfying themodular law m(U ∨V) +m(U ∧V) = m(U) +m(V) and also

m( /0) = 0. (Thelower reals differ constructively from the Dedekind reals in being approximable from
below but not from above. For present purposes it is best to understand them as being given the Scott
topology instead of the usual Hausdorff topology.)Probability valuationsare those for whichm(X) = 1.

For every localeX there can be constructed avaluation localeVX whose points are the valuations on
X; it has a sublocaleV(1)X whose points are the probability valuations. These were first defined in [10],
following ideas of the probabilistic powerdomain of [17], and were further developed in [22] and [4]. In
particular the results of [4] were central in the quantum treatment of [12].

More recent work [24] has shown thatV andV(1) are the functor parts of monads, localic analogues
of the Giry monad in measure theory [9] and the distribution monad of [1]. The monads are commutative,
meaning that product valuations exist and a Fubini Theorem holds.

[24] also describes in some detail the geometricity ofV (and likewiseV(1)), and this will be key to
our development here. The topos-validity ofV tells us that for any bundlep : Σ→B we can also construct
a bundleq : VBΣ→ B, by applyingV to an internal locale in the topos of sheaves overB got using the
Localic Bundle Theorem. ButV is also geometric, and this tells us that the bundle construction works
fibrewise: in other words, each fibreb∗V(1)

B Σ = q−1({b}) is homeomorphic toV(1)(b∗Σ). We shall not
need to dwell on the topos theory here, but it is the topos theory that tells us how the valuation locales of
the fibres ofp can be bundled together, with an appropriate topology on thebundle space, to makeq.

Remark 3 In general, to define a valuation on X involves defining its values for allopensof X, or at
least for a generating lattice of opens. However, in the particular case where X is discrete and moreover
has decidable equality, it is enough to define the values for all points. (The issue is similar to that well
known for Lebesgue measure, where the points all have measure 0 but opens have non-zero measure.)
The frame of opens, the powersetPX, is the ideal completion of the Kuratowski finite powersetFX.
Each S∈FX is a finite disjoint union of singletons (we need decidability of equality to remove duplicates
and hence achieve disjointness), and so its measure is determined by that of the singletons.



86 Born rule in spectral bundles

2 Spectral and related bundles

We briefly summarize some topos approaches and how they lead to bundles. For convenience we shall
refer to theImperial approach of Isham and Butterfield [14], [15] and subsequently Döring and Isham
[7]; and theNijmegenapproach of Heunen, Landsman and Spitters [12] (see also [11]).

Both Imperial and Nijmegen start with a C*-algebraA (or, more specifically in the Imperial case,
a von Neumann algebra; in the finite dimensional case these notions are equivalent) and then take a
“classical point of view” (to use the Imperial phrase) to be acommutative C*-subalgebraC. By Gelfand-
Naimark duality,C is isomorphic to the algebra of continuous mapsΣC→ C whereΣC is the spectrum,
and it follows thatΣC provides a classically pure state space for the self-adjoint elements ofC, considered
as observables. They are all represented as mapsΣC→ R. ThusC is a context in which the physics of
those observables is classical.

Let us writeC (A ) for the poset of commutative C*-subalgebras (or, for Imperial, of commutative
von Neumann subalgebras). The base space of the bundle is constructed out ofC (A ), and the fibre over
a contextC is its spectrum. A significant difference between the two approaches lies in how those fibres
are topologized.

For Imperial, the topos is the category of contravariant functors fromC (A ) to Set (i.e. presheaves
over C (A )). For a correct point-free approach one should take the basespaceB to be Idl(C (A )op),
the space of filters ofC (A ), with its Scott topology. However, for many purposes it suffices to consider
only theprincipal filters, of the form{D ∈ C (A ) |C⊆ D} for someC. The Imperial workers seek the
spectrum as anobjectof the topos, i.e. a sheaf, corresponding to a bundle that is alocal homeomorphism
over Idl(C (A)op), and so the fibres are all discrete.

By Theorem 2 the spectral bundle is therefore an opfibration,giving fibre maps covariant with respect
to the specialization order. Since the fibre maps are of necessity contravariant with respect to context
inclusion (by a “coarse-graining” argument), it follows that the specialization order is the opposite of
context inclusion. This is achieved in [7] by taking the basespace to be the filter completion of the
context poset, and its sheaves are then presheaves – contravariant set-valued functors – on the context
poset. Any approach that seeks a spectral object, a discretespace internally, will be subject to this
argument, so it is a consequence of using point-set topologyinternally.

For Nijmegen, the topos is the category of covariant functors fromC (A ) to Setand the correspond-
ing base spaceB is IdlC (A ), the space of ideals ofC (A ), with its Scott topology. The Nijmegen
workers seek the spectrum as an internal compact regular – actually, completely regular – space in the
topos, as expected from the Gelfand-Naimark duality. In fact, they can construct an internal commutative
C*-algebra (for which the fibre overC is justC itself) and then use a topos-valid version [2] of Gelfand-
Naimark duality to get an internally compact regular spectrum. In the corresponding bundle the fibres are
all compact regular. Now by Theorem 2 the spectral bundle is afibration, and the same reasoning shows
that the specialization order will agree with context inclusion. This is achieved in [11] by taking the base
to be the ideal completion of the context poset, and the sheaves are the covariant set-valued functors on
the context poset.

Note how the Nijmegen approach had to adopt a point-free approach to topology in order to use the
topos-valid form of Gelfand-Naimark. Whereas a point-set approach always gives an opfibration, the
change to point-free does not in itself bring any consequences for the variance because a general bundle
need be neither fibration nor opfibration. However, any approach that seeks a compact, regular, point-free
spectrum will get a fibration with the same variance as for Nijmegen.

Although these two approaches are the best worked out so far,they are not the only possible. As
we shall see in Section 3, in finite dimensional systems partsof the base and bundle spaces have natural
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manifold structure and can therefore be given non-discreteHausdorff topologies. Our bundle description
is intended to allow a wide range of such possibilities, whendescribed point-free.

2.1 Valuation bundles and Born sections

Supposep : Σ→ B is our spectral bundle, giving rise to a probability valuation bundleq : V(1)
B Σ→ B.

For the Nijmegen situation this was discussed in [12] (referring to the development in[4]), and the
paper proves (their Theorem 14) that its global points – the global sections ofq – are equivalent to
quasistates of the C∗-algebra. Thus in particular each pure state|ψ〉 gives a global section ofq, and it
is continuous. This is already interesting, since Kochen-Specker tells us that global sections ofp should
normally be impossible. If we try to extract external mathematics from the topos internal by taking
global sections, then the spectrump loses all its points, but the valuation spaceq retains points and we
are familiar with them through quantum pure states.

Once a sectionσ is given forq, we can infer the probabilities that arise in the Born rule. (See also [5],
[6] for some other discussions of the Born rule.) SupposeC is a context, a point ofB, and for simplicity
consider the simple case whereC is a commutative subalgebra (rather than a filter or ideal). The fibre
C∗Σ is the Gelfand spectrum Spec(C), and any self adjoint inC is represented as a map̃O : C∗Σ→ R.

Using geometricity to seeC∗V(1)
B Σ ∼=V

(1)C∗Σ, we can then get the probabilistic result of observingO
in state|ψ〉 as the probabilistic valuationV(1)(Õ)(σ(C)) onR, a random variable. The core probability
is determined byC and |ψ〉, and all that remains is to allow for the way the observableO labels the
eigenstates (inC∗Σ) with real numbers.

Our next step is to generalize the state|ψ〉. In the finite dimensional case it corresponds to a projector
|ψ〉〈ψ | of rank 1 and it is possible to generalize to higher rank projectors by summing over basis states.
Thus for each contextD, the elements ofD∗Σ can play a role similar to that of states|ψ〉. However, we
do not attempt to normalize – to do so presents problems when allowing for refinement of the context
D – and so we no longer have probability valuations in general.Thus we get sections ofq : VBΣ→ B.
Bundling these together we postulate aBorn sectionof the bundleVB2Σ2→ B2. For each pair(D,C) of
contexts it gives a valuationBornDC of D∗Σ×C∗Σ.

At present we have the Born sections defined only in finite dimensional situations. Nonetheless, the
formal notion makes sense more generally and would appear tohave a good phenomenological footing
in that it describes probabilities. We therefore hope that the structure of bundle together with Born maps,
appropriately axiomatized, will prove a good foundation for topos-based contextual physics.

3 Finite dimensional quantum systems

3.1 Bundles for finite dimensional quantum systems

In the following we propose a fibrational bundle in which the spacesB andΣ contain manifolds. This
contrasts with the original Imperial and Nijmegen constructions, where the topology onB arises solely
from the order structure onC (A ), though it accords with the use of flag manifolds in [3]. We fix an
algebraA = Mn(C) and all constructions are relative to this algebra. Any commutative sub-C∗-algebra
C is also finite dimensional4 and so, by Gelfand-Naimark duality, isomorphic as unital C∗-algebra to
C

m for somem. It hasm indecomposable projectors (self-adjoint idempotents)Ci corresponding up to

4Constructively this is not quite true. But we shall construct our bundle in terms of the subalgebras thatare finite dimen-
sional.
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isomorphism to the elements ofCm that have a 1 in a single component, 0 elsewhere, and these arealso
projectors inA becauseC is a sub-C∗-algebra. They are orthogonal (CiCj = 0 if i 6= j) and complete (they
sum to 1). Note also that the trace of each is a positive integer, equal to the rank, since the eigenvalues
are 0 or 1.

We call a complete orthogonal sequence
−→
C of projectors aprojector system,and define itstypeto be

the sequence of traces of the projectors, an ordered partition ofn. Generally we are only interested in the
setof projectors (because this is what characterizes the subalgebraC) and the set of traces as type; but
for setting up the bundle it is useful to remember the automorphisms. With this in mind, we define –

Definition 4 Let (µi)
l
i=1 and (ν j)

m
j=1 be two partitions of n. Arefinementfrom −→ν to −→µ is a function

r : {1, . . . , l} → {1, . . .m} such thatν j = ∑r(i)= j µi for every j. (Note that the reindexing function is in
the opposite direction to the refinement.)

For each partition−→µ we define the space Proj(−→µ ) of projector systems of type−→µ . This can clearly
be done localically, since it is defined as a subspace ofC

ln2
, wherel is the length of−→µ , by a system

of equations. We also have a trivial bundle over it, Proj(−→µ )× l → Proj(−→µ ). Each fibre has exactlyl
elements, which is the Gelfand spectrum for all subalgebrasof type−→µ . For any refinementr : −→ν →−→µ
we now have a map Proj(r) : Proj(−→µ ) → Proj(−→ν ) given by Proj(r)(

−→
C ) j = ∑r(i)= j Ci. This extends

to a bundle map using Proj(r)(
−→
C , i) = (Proj(r)(

−→
C ), r(i)). We thus have a diagram of bundles, whose

shape is the opposite of the category of partitions and refinements. Our bundleΣ→ B is now defined
as a lax colimit of this diagram. More precisely, it has images of all the spaces Proj(−→µ ), subject to
Proj(r)(

−→
C )⊑

−→
C and(Proj(r)(

−→
C ), r(i)) ⊑ (

−→
C , i).

The imposition of this specialization order has two effects. The first, and perhaps less obvious one,
is with regard to invertible refinements. These permute equal values in partitions, and the effect of the
imposed specialization is to make two projector systems equal if they generate the same subalgebra –
because they have the same projectors, but permuted. This makesB a space of contexts as required. After
that, the specialization agrees with context inclusion as required for a fibrational bundle. The action on
the bundle spaces ensures that states are kept track of correctly under permuting of the matrices.

To define the Born section, we define it first for projector systems, and show that the definition
respects refinements. Suppose

−→
C and

−→
D have types−→µ and−→ν , of lengthsl andm. At this level (before

imposing the specialization) the spectra are finite discrete with decidable equality, cardinalitiesl andm,
and so by Remark 3 a valuation on the product can be defined by the values on its elements(i, j). We
define

β−→
C
−→
D
(i, j) = Tr(CiD j),

a non-negative real, and then letBornCD be the image ofβ−→
C
−→
D

in VB2(Σ2). Now suppose
−→
C ⊑

−→
C ′ and

−→
D ⊑

−→
D ′, with refinementsr :−→µ →−→µ ′ ands :−→ν →−→ν ′. Then

Tr(CiD j) = Tr( ∑
r(i′)=i

C′i′ ∑
s( j ′)= j

D′j ′) = ∑
r(i′)=i,s( j ′)= j

Tr(C′i′D
′
j ′)

and soβ−→
C
−→
D
=V(Proj(r)×Proj(s)) (β−→

C ′
−→
D ′
); it follows thatBornCD ⊑ BornC′D′ .

In the case whereCi has trace 1 it is of the form|ψ〉〈ψ | for some unit vector|ψ〉 (an eigenvector for
eigenvalue 1). Then

Tr(CiD j) = Tr(|ψ〉〈ψ |D j) = Tr(〈ψ |D j |ψ〉) = 〈ψ |D j |ψ〉

and so the probability agrees with that obtained from the Born rule for state|ψ〉. More generally,Ci is a
sum∑k |ψk〉〈ψk| for orthonormal vectors, andBornCD(i, j) is the sum∑k〈ψk|D j |ψk〉.
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3.2 Bundles for the qubit

The qubit Hilbert spaceH is C
2, and the C∗-algebra is the full matrix algebraA = M2(C). The

commutative context∗-subalgebras come in two types,(2) (dimension 1) and(1,1) (dimension 2). The
sole type (2) algebra is the centreC1, which we denote by⊥; Proj(2) is the 1-point space. The 2-
dimensional subalgebras are generated by two projectorsC1,C2 such thatC1+C2 = 1 and Tr(Ci) = 1.
ProjectorsP of trace 1 are in bijection with self-adjoint unitariesU = 2P−1 of trace 0, and such unitary
can be written as a real linear combinationaxσx+ayσy+azσz of the Paulis such thata2

x +a2
y +a2

z = 1.
(Any self-adjoint is a real linear combination of the Paulisand 1; for trace 0 the coefficient of 1 is 0;
and the further condition says that the matrix is an involution.) Since eachCi is determined by the other,
it follows that Proj(1,1) is the 2-sphereS2 – this is the Bloch sphere. In the context spaceB antipodes
will be identified, giving the real projective planeRP2, and⊥ is adjoined as a bottom point in the
specialization order. ThusB is RP

2 lifted, Σ is S2 lifted.
For both Imperial and Nijmegen (but see also [20]), bothS2 andRP2 are given their discrete topolo-

gies. For Imperial, the trivial points are adjoinedabovethe rest in the specialization order as a top⊤,
so that each trivial point is open. For Nijmegen they are adjoinedbelowas a bottom⊥, so that the only
open containing a trivial point is the whole space.

An interesting consequence of using the natural, manifold topologies, is that the bundle has no con-
tinuous cross-sections. As [14] have pointed out, for dimensions 3 or more the lack of cross-sections
for the Imperial bundle is a manifestation of the Kochen-Specker Theorem [19]. That theorem does not
apply directly to dimension 2, and indeed the correspondingImperial bundle has many cross-sections, al-
beit discontinuous with respect to the manifold topologies. Essentially the Kochen-Specker Theorem as
normally formulated is a combinatorial one, relying on having sufficient complexity in the order struc-
ture amongst the contexts. In the 2-dimensional case that order structure (one trivial point related to
everything, all other points incomparable with each other)is too simple.
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