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Aim: dependent type theory in which —

> type = space

> space = point-free topological space
> ... even in generalized sense (topos)
> dependent type = bundle

Will be an unusual type theory

Arrow types cannot be part of the logic (because category of spaces
not cartesian closed).

2-cells important, and can belong to analogues of identity types;
but not invertible in general, and no path transport in general.

.. discuss informally — no ready-made model available.
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Paradigm: sets

Syntax Semantics

Terms belong to types Elements belong to sets
Terms can depend on other terms Dependency is a function
Types can also depend on terms Dependency is a bundle

What is a bundle?
1. Family of sets Y(x) indexed by elements x € X
2. Function Y (=][,.x Y(x)) = X
The sets Y(x) are the fibres of the function, ie inverse images of
points.
DTT syntax is (1): construction Y(x) with parameter x.

Semantically, (2) makes general sense in categories, but (1) relies
on set theory.
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Categorically — use generalized elements

Element of object X at stage W = morphism x: W — X.
Usual, global, elements are at stage 1.

Given a bundle p: Y — X:

Fibre Y(x) is pullback x*Y" Y(x)=xY — Y

It is not a set, but another bundle: X*pl lp

sets are bundles over 1. W X
X

A bundle is equivalent to specifying all its fibres

— at all the generalized elements.

But that's a bit of a cheat.
There's a generic element, identity Idx: X — X.
Its fibre is Y, and is enough to determine all the others.
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Bundles as dependent types

Syntactically

dependent type = assignment x — Y(x),
base point — fibre.

Categorical semantics agrees!

But in a trivial way: define generic fibre, then all others are
pullbacks.

We'd prefer syntax of Y(x) to capture construction over all
generalized elements,

— without having to comprehend the entire category.

Some solutions are well known
Use construction of X as type, + its universal properties.
eg for elementary toposes cf. Kripke-Joyal semantics
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Topologizing

Syntax

Terms belong to types
Terms can depend on terms
Types can depend on terms

Semantics

Points belong to spaces
Dependency is a (continuous) map
Dependency is a bundle

For the same reasons as before,
Point of space X at stage W = map x: W — X.

What is a bundle?

1. Family of spaces Y(x) indexed by points x:X
2. Map Y (=3, xY(x) =X

Can we restore meaning to (1) —

. without resorting to categorical trivialities?
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Example: tangent bundle of sphere S2
Embed in R3.
Define tangent spaces
» Suppose x:X = 52. x = (xg, x1, X2) with x.x = 1.
> Tangent space Y(x) is space of y:R3 such that

(y—x)x=0

How to make tangent bundle?
Solution in point-set topology — non-trivial!
> Form disjoint union of sets |Y[ =[], x  |Y(x)|, where |X] is
the set of global points of X.

» Define an appropriate topology on | Y.
» Prove that projection | Y| — | X] is continuous.

In essence, proving that x — Y(x) is “continuous” enough.
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Topologized DTT: Desiderata

1. All term dependencies must be continuous.
2. So too must type dependencies.
What can (2) mean?
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Point-free spaces

Point = model of a geometric theory T
Think of T as the type, terms denote models.

Categorical semantics

Work in (2-)category of Grothendieck toposes.*

Semantics: Type T denotes classifying topos S[T]

— rather than some collection of models.

Points at stage W

= geometric morphisms S[W] — S|[T]

= models of T in S[W] (universal characterization of classifying
toposes)

Points of S[T] = models of T (at every stage).

'= bounded S-toposes for some given base S.
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Dependency x — t(x) or x — Y(x)

Say X is theory T

» x denotes generic model in S[T]

» t(x), Y(x) then describe constructions in S[T]

» Model a of T (in S[W]) = geometric morphism
a: S[W] — S[T]

» Substitution a for x in t(x) is a*t(x). Similarly for Y.

» Construction must be geometric in order to be preserved by
every a*.

» That includes colimits, finite limits, free algebras; excludes
exponentials, powerobjects.
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Defining terms

Declare: Let x be a model of T
. working geometrically ...
Construct all ingredients of t(x), model of some theory T'.

Outside the scope of the declaration, —
Have constructed a map (geometric morphism) S[T] — S[T].

Need syntax for geometric constructions
Will return to this later.
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How to define types? What is an internal space?

Space = geometric theory

» Can always manipulate into the form of a site (C, T). Models
of the theory = flat, continuous functors on the site.

» It has a classifying topos Shs(C, T) — S of sheaves.

v

Thus we get a bundle, as desired.

> As a geometric morphism it is bounded. Every bounded
geometric morphisms can be obtained this way. We take
“bundle” to mean bounded.

Internal space = internal site = bundle
Apply the above principle to S[T].
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Localic case

These correspond to “ungeneralized” point-free spaces, with various
representations available.

» Frames: [JT84] shows the equivalence between internal frames
and localic bundles. Unfortunately, frame structure is not
geometric, so frames are not useful for us.

» Frame presentations: These are geometric, so we can use them
to construct spaces geometrically. See [Vic04].

» Propositional geometric theories: are equivalent to frame
presentations.

» Formal topologies
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Geometric theories a la Elephant [Joh02, B4.2.7]

Geometric theory built up from trivial theory 1 in finite number of
primitive extension steps:
Extending theory Ty to T,
The following primitive steps are available.
1. Adjoin a sort.

2. Simple functional extension: Adjoin a function between two
geometric constructs (of “sets”, ie objects of toposes, ie
discrete spaces) on ingredients of Ty.

3. Simple geometric quotient: Adjoin an inverse to an existing
function between two geometric constructs.

14 /23



Important advantage!

» Elephant style provides a flexible means to build up towers of
theories, with forgetful maps between them, without having to
force them into the first-order format of geometric theories at
each stage.

» Forgetful map S[T1] — S[To] defines an internal space in
S[To]. It is x — Y(x), where x is a model of Ty, and Y(x) is
the theory of the extra stuff needed to make a model of Tj;.

» Extension steps are how you build dependent types.
> The extended theories are ) -types. eg Ty is >, .p, Y(X).
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What is a geometric construct?

Note these are geometric constructions of “sets”, ie discrete spaces,
ie objects of toposes, and their functions.

Depends on S!

S describes the infinities that can be used in “arbitrary” colimits
and infinite disjunction.

Provided S has nno, that's enough to construct free algebras.

A useful approximation is provided by the coherent fragment (finite
colimits, finite limits) + parametrized list objects.

This is enough to construct free algebras, and does not depend on
choice of S.

See [Vicl9, Vicl7] using arithmetic universes.

Combine this with previous slide

Then have convenient way to describe useful range of geometric
theories in finitary way, and without depending on S.
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Example: space of reals R

Theory is localic (propositional), but it's convenient to use the
constructed sort Q in a first-order form.

Then can present theory of Dedekind sections directly using
predicates L and R on Q. See eg [Vic07].

Mathematical development much more natural

— than, eg, a purely logical one with propositional theories.
[NV22] shows how to construct real exponentiation and logarithms
point-free in this style.
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Example: tangent bundle of S?

Need general purpose constructions of spaces
eg products, equalizers

Now we have R:
1. Can construct R3.
2. Construct two maps R® — R, x — x.x and x — 1.

3. Define 52 as equalizer.

Internally in SS2

Let x be a point of S2.
1. Construct two maps R* = R, y ++ (y — x).x and y ~ 0.
2. Define tangent space T,(S?) as their equalizer.

Externally, get tangent bundle T(52) = o Tx(S?) — S2.
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Example: tangent bundle of S?

v

We have extended the theory for S? to get a theory for T(5?)
Points of T(S2) are pairs (x,y) with x:52 and y: T,(S?).
In terms of simple extension steps it would be quite

complicated, but it is packaged up in a mathematically natural
way to make use of known geometricities.

It is the geometricity that makes it enough to define the fibres.
No topologies to define, no continuity proofs.
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Concluding remarks

v

Basic idea works for any logic for which classifying categories
exist.

For geometric logic we have classifying toposes.
Complicated by the infinitary connectives.

Elephant-style geometric theories, and geometric sort
constructors, work well for towers of dependent types.
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