Dependent type theory of point-free topological spaces

Steve Vickers

School of Computer Science University of Birmingham

May 2023

Some background in [\[Vic22\]](#page-22-0).

Aim: dependent type theory in which $-$

 \blacktriangleright type = space

- \triangleright space = point-free topological space
- \blacktriangleright even in generalized sense (topos)
- \blacktriangleright dependent type $=$ bundle

Will be an unusual type theory

Arrow types cannot be part of the logic (because category of spaces not cartesian closed).

2-cells important, and can belong to analogues of identity types; but not invertible in general, and no path transport in general.

 \therefore discuss informally – no ready-made model available.

Paradigm: sets

Syntax

Terms belong to types Terms can depend on other terms Types can also depend on terms

What is a bundle?

Semantics

Elements belong to sets Dependency is a function Dependency is a bundle

1. Family of sets $Y(x)$ indexed by elements $x \in X$

2. Function Y $($ $=$ $\coprod_{x \in X}$ $Y(x)$ \rightarrow X

The sets $Y(x)$ are the fibres of the function, ie inverse images of points.

DTT syntax is (1): construction $Y(x)$ with parameter x. Semantically, (2) makes general sense in categories, but (1) relies on set theory.

$Categorically - use generalized elements$

Element of object X at stage $W =$ morphism $x: W \rightarrow X$. Usual, global, elements are at stage 1.

```
Given a bundle p: Y \rightarrow X:
```
Fibre $Y(x)$ is pullback x^*Y : It is not a set, but another bundle: sets are bundles over 1.

A bundle is equivalent to specifying all its fibres at all the generalized elements.

But that's a bit of a cheat.

There's a *generic* element, identity $\mathsf{Id}_X \colon X \to X$. Its fibre is Y , and is enough to determine all the others.

Bundles as dependent types

Syntactically

```
dependent type = assignment x \mapsto Y(x),
base point \mapsto fibre.
```
Categorical semantics agrees!

But in a trivial way: define generic fibre, then all others are pullbacks.

We'd prefer syntax of $Y(x)$ to capture construction over all generalized elements,

— without having to comprehend the entire category.

Some solutions are well known

Use construction of X as type, $+$ its universal properties. eg for elementary toposes cf. Kripke-Joyal semantics

Topologizing

Syntax

Terms belong to types Terms can depend on terms Types can depend on terms

Semantics

Points belong to spaces Dependency is a (continuous) map Dependency is a bundle

For the same reasons as before,

Point of space X at stage $W = \text{map } x: W \rightarrow X$.

What is a bundle?

- 1. Family of spaces $Y(x)$ indexed by points $x:X$
- 2. Map Y ($=\sum_{x\in X} Y(x)) \rightarrow X$

Can we restore meaning to (1) –

... without resorting to categorical trivialities?

Example: tangent bundle of sphere S^2

Embed in \mathbb{R}^3 .

Define tangent spaces

- Suppose $x:X = S^2$. $x = (x_0, x_1, x_2)$ with $x.x = 1$.
- Tangent space $Y(x)$ is space of $y:\mathbb{R}^3$ such that

$$
(y-x).x=0
$$

How to make tangent bundle?

Solution in point-set topology - non-trivial!

- ▶ Form disjoint union of sets $|Y| = \coprod_{x \in |X|} |Y(x)|$, where $|X|$ is the set of global points of X .
- \blacktriangleright Define an appropriate topology on $|Y|$.
- ▶ Prove that projection $|Y| \rightarrow |X|$ is continuous.

In essence, proving that $x \mapsto Y(x)$ is "continuous" enough.

Topologized DTT: Desiderata

1. All term dependencies must be continuous. 2. So too must type dependencies.

What can (2) mean?

Point-free spaces

Point $=$ model of a geometric theory $\mathbb T$ Think of T as the type, terms denote models.

Categorical semantics

Work in (2-)category of Grothendieck toposes.¹

Semantics: Type $\mathbb T$ denotes classifying topos $S[\mathbb T]$

- rather than some collection of models.

Points at stage W

= geometric morphisms $S[\mathbb{W}] \to S[\mathbb{T}]$

= models of $\mathbb T$ in $\mathcal S[\mathbb W]$ (universal characterization of classifying toposes)

Points of $S[T] =$ models of T (at every stage).

 $^{-1}$ = bounded $\cal S$ -toposes for some given base $\cal S$.

Dependency $x \mapsto t(x)$ or $x \mapsto Y(x)$

Say X is theory $\mathbb T$

- \triangleright x denotes generic model in $S[T]$
- If t(x), $Y(x)$ then describe constructions in $S[T]$
- \triangleright Model a of \mathbb{T} (in $\mathcal{S}[\mathbb{W}]) =$ geometric morphism a: $S[\mathbb{W}] \rightarrow S[\mathbb{T}]$
- Substitution a for x in $t(x)$ is $a^*t(x)$. Similarly for Y.
- \triangleright Construction must be geometric in order to be preserved by every *a**
- \blacktriangleright That includes colimits, finite limits, free algebras; excludes exponentials, powerobjects.

Defining terms

Declare: Let x be a model of $\mathbb T$

... working geometrically ...

Construct all ingredients of $t(x)$, model of some theory \mathbb{T}' .

Outside the scope of the declaration,

Have constructed a map (geometric morphism) $\mathcal{S}[\mathbb{T}]\to \mathcal{S}[\mathbb{T}'].$

Need syntax for geometric constructions Will return to this later.

How to define types? What is an internal space?

$Space = geometric$ theory

- \blacktriangleright Can always manipulate into the form of a site $(\mathcal{C},\mathcal{T})$. Models of the theory $=$ flat, continuous functors on the site.
- It has a classifying topos $\mathsf{Sh}_{\mathcal{S}}(\mathcal{C},\mathcal{T}) \to \mathcal{S}$ of sheaves.
- \blacktriangleright Thus we get a bundle, as desired.
- \triangleright As a geometric morphism it is bounded. Every bounded geometric morphisms can be obtained this way. We take "bundle" to mean bounded.

Internal space $=$ internal site $=$ bundle Apply the above principle to $S[T]$.

Localic case

These correspond to "ungeneralized" point-free spaces, with various representations available.

- \triangleright Frames: [\[JT84\]](#page-20-0) shows the equivalence between internal frames and localic bundles. Unfortunately, frame structure is not geometric, so frames are not useful for us.
- \triangleright Frame presentations: These are geometric, so we can use them to construct spaces geometrically. See [\[Vic04\]](#page-21-0).
- \triangleright Propositional geometric theories: are equivalent to frame presentations.
- \blacktriangleright Formal topologies

Geometric theories à la Elephant [\[Joh02,](#page-20-1) B4.2.7]

Geometric theory built up from trivial theory $\mathbb I$ in finite number of primitive extension steps:

Extending theory \mathbb{T}_0 to \mathbb{T}_1

The following primitive steps are available.

- 1. Adjoin a sort.
- 2. Simple functional extension: Adjoin a function between two geometric constructs (of "sets", ie objects of toposes, ie discrete spaces) on ingredients of \mathbb{T}_0 .
- 3. Simple geometric quotient: Adjoin an inverse to an existing function between two geometric constructs.

Important advantage!

- \blacktriangleright Elephant style provides a flexible means to build up towers of theories, with forgetful maps between them, without having to force them into the first-order format of geometric theories at each stage.
- ▶ Forgetful map $S[T_1] \rightarrow S[T_0]$ defines an internal space in $S[T_0]$. It is $x \mapsto Y(x)$, where x is a model of T_0 , and $Y(x)$ is the theory of the extra stuff needed to make a model of \mathbb{T}_1 .
- \blacktriangleright Extension steps are how you build dependent types.
- The extended theories are \sum -types. eg \mathbb{T}_1 is $\sum_{x:\mathbb{T}_0} Y(x)$.

What is a geometric construct?

Note these are geometric constructions of "sets", ie discrete spaces, ie objects of toposes, and their functions.

Depends on $S!$

 S describes the infinities that can be used in "arbitrary" colimits and infinite disjunction.

Provided S has nno, that's enough to construct free algebras.

A useful approximation is provided by the coherent fragment (finite $collmits, finite limits) + parametrized list objects.$

This is enough to construct free algebras, and does not depend on choice of S .

See [\[Vic19,](#page-21-1) [Vic17\]](#page-21-2) using arithmetic universes.

Combine this with previous slide

Then have convenient way to describe useful range of geometric theories in finitary way, and without depending on S .

Theory is localic (propositional), but it's convenient to use the constructed sort $\mathbb Q$ in a first-order form. Then can present theory of Dedekind sections directly using predicates L and R on $\mathbb Q$. See eg [\[Vic07\]](#page-21-3).

Mathematical development much more natural

 $-$ than, eg, a purely logical one with propositional theories. [\[NV22\]](#page-20-2) shows how to construct real exponentiation and logarithms point-free in this style.

Example: tangent bundle of S^2

Need general purpose constructions of spaces eg products, equalizers

Now we have R:

- 1. Can construct \mathbb{R}^3 .
- 2. Construct two maps $\mathbb{R}^3 \to \mathbb{R}$, $x \mapsto x.x$ and $x \mapsto 1$.
- 3. Define S^2 as equalizer.

Internally in SS^2

Let x be a point of S^2 .

- 1. Construct two maps $\mathbb{R}^3 \to \mathbb{R}$, $y \mapsto (y x)$. x and $y \mapsto 0$.
- 2. Define tangent space $\mathcal{T}_\mathsf{x}(\mathcal{S}^2)$ as their equalizer.

Externally, get tangent bundle $T(S^2) = \sum_{x:S^2} T_x(S^2) \rightarrow S^2$.

Example: tangent bundle of S^2

- \blacktriangleright We have extended the theory for S^2 to get a theory for $\mathcal{T}(S^2)$
- ▶ Points of $T(S^2)$ are pairs (x, y) with $x: S^2$ and $y: T_x(S^2)$.
- \blacktriangleright In terms of simple extension steps it would be quite complicated, but it is packaged up in a mathematically natural way to make use of known geometricities.
- It is the geometricity that makes it enough to define the fibres. No topologies to define, no continuity proofs.

Concluding remarks

- \blacktriangleright Basic idea works for any logic for which classifying categories exist.
- \blacktriangleright For geometric logic we have classifying toposes.
- \blacktriangleright Complicated by the infinitary connectives.
- \blacktriangleright Elephant-style geometric theories, and geometric sort constructors, work well for towers of dependent types.

Bibliography I

- [Joh02] P.T. Johnstone, Sketches of an elephant: A topos theory compendium, vol. 2, Oxford Logic Guides, no. 44, Oxford University Press, 2002.
- [JT84] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Memoirs of the American Mathematical Society 51 (1984), no. 309, $vi+71$.
- [NV22] Ming Ng and Steven Vickers, Point-free construction of real exponentiation, Logical Methods in Computer Science 18 (2022), no. 3, 15:1-15:32, DOI 10.46298/lmcs-18(3:15)2022.

Bibliography II

[Vic04] Steven Vickers, The double powerlocale and exponentiation: A case study in geometric reasoning, Theory and Applications of Categories 12 (2004), 372422, Online at [http://www.tac.mta.ca/tac/index.html#vol12.](http://www.tac.mta.ca/tac/index.html#vol12)

- [Vic07] _______, Locales and toposes as spaces, Handbook of Spatial Logics (Marco Aiello, Ian E. Pratt-Hartmann, and Johan F.A.K. van Benthem, eds.), Springer, 2007, pp. 429-496.
- [Vic17] , Arithmetic universes and classifying toposes, Cahiers de topologie et géométrie différentielle catégorique 58 (2017), no. 4, 213-248.
- [Vic19] ______, Sketches for arithmetic universes, Journal of Logic and Analysis 11 (2019), no. FT4, 1-56.

[Vic22] _______, Generalized point-free spaces, pointwise, [https://arxiv.org/abs/2206.01113,](https://arxiv.org/abs/2206.01113) 2022.