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Abstract

A “bundle endofunctor preserving proneness” for a cartesian cate-
gory C is an endofunctor T• of the arrow category C↓, the identity on
codomains, that preserves the property of morphisms of being pullback
squares. Such a T• is “slicewise strong”, restricting to a strong endofunc-
tor T• on every slice C/B, and with that structure preserved by pullback
between slices.

In the other direction, a strong endofunctor T on C extends to a bundle
endofunctor T• on C, which preserves proneness if T preserves coreflexive
equalizers.

If a bundle endofunctor T• preserving proneness also preserves core-
flexive equalizers, then it is naturally isomorphic to the T• arising from
T = T1.

Combining these, bundle endofunctors for C preserving proneness and
coreflexive equalizers are equivalent to strong endofunctors on C preserving
coreflexive equalizers; this latter structure is inherited by all slices and
preserved by pullback between them.

The results extend to situations where T• and T are monads.
We propose that the structure of bundle endofunctor preserving prone-

ness is a satisfactory categorical abstraction of the notion of geometric
construction when C is the category Loc of locales. The powerlocales
give rise to bundle monads on Loc preserving proneness and coreflexive
equalizers; likewise for the covariant powerobject monad on any topos.

1 Introduction

The Localic Bundle Theorem, as we shall call it, is an important means by
which topos theory gives applications in topology: it says that bundles are
equivalent to spaces internal in the topos SB of sheaves over the base space B.
Here “bundle” just means any map (for us the term “map” will always imply
continuity), but viewed as a variable space – the fibre – parametrized by the
base space point it lies over. To make it work, an important proviso is that
spaces should be understood point-free, as locales: then Loc/B ∼= LocSB . The
theorem is proved in [JT84, FS79].

This implies that any topos-valid construction on locales can also be under-
stood as a construction on bundles. However, in practice we are particularly

1



interested in constructions that work fibrewise. Since the fibres can be got by
pulling the bundle back along base space points (as maps from 1), a sufficient
condition for this, and one that sits more comfortably with the point-free nature,
is that the construction is (up to isomorphism) pullback stable. This property,
known as “geometricity”, has been proved for various powerlocales [Vic04] and
valuation locales ([Vic11]; see also [Vic08, CS09]).

Though geometricity is important, its characterization as “pullback stable up
to isomorphism” begs coherence questions – how do the different isomorphisms
for different changes of base relate to each other? The purpose of this paper is
to supply a strengthened geometricity structure, that includes data for change
of base and covers the coherence questions by providing canonical isomorphisms
for the pullback stability. We also give sufficient conditions for obtaining this
strengthening. We prove our results in the generality of an arbitrary cartesian
category C in place of the category Loc of locales.

The strengthened structure is that of “bundle endofunctor preserving prone-
ness”. It expands on the structure of slicewise constructions by being defined
as an endofunctor on the arrow category C↓, 1 of C, whose objects are bundles
and whose morphisms are commutative squares. Thus it contains not only the
constructions on the bundles but also the information about change of base.
By “bundle endofunctor” we mean that it is over the codomain bifibration
cod : C↓ → C, and so restricts to each slice C/B, and “preserving proneness”
says that its morphism part preserves pullback squares, and implies the pull-
back stability. The coherence questions are now answered in its functoriality.

To see more concretely how the morphism part of this bundle endofunctor
will arise, suppose we have a pullback-stable, slicewise endofunctor. In other
words, for each object B of C we have an endofunctor TB of the slice category
C/B, and for each morphism f : B → B′ and each bundle p′ : E′ → B′ we have
an isomorphism TBf

∗E′ ∼= f∗TB′E
′ over B.

We shall extend this from the separate slices to the whole of C↓, which
contains all the slices as fibres of cod. Given a morphism as on the left below, we
can factorize g via a morphism g′ : E → f∗E′ and define a composite morphism
Tfg over f as on the right:

E
g
//

p

��

E′

p′

��
B

f // B′

TBE
TBg

′
//

$$

Tfg

,,
TBf

∗E′ ∼=
//

��

f∗TB′E
′
p′∗f

//

xx

TB′E
′

��
B

f // B′

.

Thus we have defined the data for the object and morphism parts of an endo-
functor T• of C↓. Clearly, T• will preserve pullback squares, because then g′ is
an isomorphism.

We shall require T• to be an endofunctor on C↓, which in effect embodies
coherence conditions on the isomorphisms used for the pullback stability.

1It would be more usual to write this as C→, but we use the downward arrow to emphasize
that the objects are being viewed as bundles.
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Because the bundle endofunctor contains so much structure, it is hard to
define directly. We show how, in the surprisingly common case where the con-
struction preserves coreflexive equalizers, the whole of T• can be recovered –
up to natural isomorphism – from its global part T1 on C/1, together with a
strength whose existence is guaranteed by “preservation of proneness”.

Central to this is the observation that any bundle p : E → B can be expressed
as a coreflexive equalizer in C/B, using

E
〈p,E〉

// B × E
B×〈p,E〉//

∆×E
// B ×B × E .

(The coreflexivity morphism is π13 : B × B × E → B × E.) If T preserves
coreflexive equalizers and is stable under pullback, then we obtain an equalizer
diagram

TBE // TB(B × E)
∼= // B × T1E

B×T1〈p,E〉//
// B × T1(B × E)

∼= // T1(B ×B × E) .

The lower, unlabelled morphism is not of the form B × · · · , but does have the
right type to come from a strength on T1, and in Section 4.3 we use this idea
to recover a bundle endofunctor from a strong endofunctor on C/1.

Our main result (Theorem 63) is that bundle endofunctors that preserve
both proneness and coreflexive equalizers are equivalent to strong endofunctors
on C that preserve coreflexive equalizers. We also show how the equivalence lifts
to monads. Finally, we apply the result to the motivating geometric examples
from locale theory, such as the powerlocales.

We shall frequently us “tangle diagrams”, a 2-dimensional calculus in which
vertical lines represent functors, composed horizontally from right to left, and
“coupons”, nodes in the diagram, represent natural transformations, composed
from top to bottom. Most coupons are rectangles, though other shapes are
possible. In particular, some, depicted as giant “=” signs, represent equality
between functors. Areas in the diagram represent categories, though they are
not labelled as such. Thus n-cells in the 2-category of categories are represented
by (2 − n)-dimensional parts of the tangle diagram. The paper [FV14], while
not the origin of these ideas, provides a detailed discussion of this particular use
of tangle diagrams.

2 Remarks on the arrow category

Throughout the paper we shall take C to be a cartesian category. By this we
mean that each finite diagram has a canonical limit cone, although we make no
further assumptions about them.

We shall write C↓ for the arrow category, whose objects are morphisms
p : E → B in C, and in which a morphism f from p to p′ is a commutative
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square

E
f //

p

��

E′

p′

��
B

f
// B′

. (1)

Thus f and f denote the “upstairs” and “downstairs” parts of f , got by

applying the domain and codomain functors dom, cod : C↓ → C. We shall occa-

sionally write an object X as X
X↓ // X . In particular, a functor F : D → C↓

is equivalent to a morphism F↓ : F→ F in [D, C].
As is well known, the codomain functor cod : C↓ → C is a bifibration. We

shall frequently use the universal properties of the associated prone and supine
morphisms.2 Recall that, given a functor F : D → C, a morphism g : Y → Z in
D is prone (with respect to F) if for every h : X → Z in D, and factorization
Fh = (Fg)f ′ in C, there is a unique factorization h = gf in D such that Ff = f ′.
Similarly, f : X → Y is supine if for every h : X → Z, and factorization Fh =
g′(Ff), there is a unique factorization h = gf such that Fg = g′. We shall also
say that f : X → Y is vertical if Ff is an identity morphism. If C is cartesian
and F is cod : C↓ → C, then it is well known that the prone morphisms in C↓ are
those for which (1) is a pullback square.

Proposition 1 The supine morphisms f in C↓ are those for which f is an
isomorphism.

Proof. (⇐): Given

π1

��

f

//

h

))//

π2

��
π3

��

h

55
f

//
g

//

then the unique fillin is h f
−1

.
(⇒): Let k be the fillin for

π1

��

f

//
k

//

π2

��
π2f

��

f

55
f

//

.

2 We follow Paul Taylor’s terminology. They are usually known as cartesian and cocarte-
sian.
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Then kf = Id. But, also, fk and Id are equal because they both serve as fillin
for

π1

��

f

//

f

))//

π2

��
π2

��

f

55
f

//

.

Hence f has inverse k.
Now suppose D is another category, giving a functor cod : [D, C↓] → [D, C].

It is easy to see that a morphism α : F → G in [D, C↓] is prone or supine with
respect to cod if all the morphisms α(X) (for X an object of D) are prone or
supine in C↓.

Definition 2 The categories Opspan and Comp are defined as pullbacks:

Opspan
π2 //

π1

��

C↓

cod

��

Comp
π2 //

π1

��

C↓

cod

��
C↓

cod
// C C↓

dom
// C

.

We think of the objects of Opspan and Comp as (f1, p) and (f1, p1), representing

E

p

��
B1

f1

// B

and E1

p1

��
B1

f1

// B

.

In other words, the first component f1 will often play the role of change of base.

Definition 3 The functor pb : Opspan→ Comp is defined on objects by pb(f1, p) =
(f1, f

∗
1 p), with the obvious extension to morphisms.

The natural transformation κ : π2 pb→ π2 is defined by taking κ(f1, p) to be
the pullback square

f∗1E

f∗1 p

��

p∗f1 // E

p

��
B1

f1

// B

.

Definition 4 The functor Σ: Comp→ Opspan is defined on objects by Σ(f1, p1) =
(f1, f1p1), with the obvious extension to morphisms.
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The natural transformation λ : π2 → π2Σ is defined by taking λ(f1, p1) to be
the commutative square

E1

p1

��

E1

f1p1

��
B1

f1

// B

.

Proposition 5

1. If F : E → Opspan is a functor, then κF is prone with respect to cod.

2. If F : E → Comp is a functor, then λF is supine with respect to cod.

Proof. By our earlier remarks κ is prone and λ supine, and likewise κF or λF.

2.1 Notation for change of base

Many of our arguments will depend on chasing bundles around some diagram
by changing the base. Corresponding to a diagram shape will be a category D
of diagrams in C with that shape, and our calculations will be over D, using
pullbacks against C↓, Opspan or Comp. We introduce a systematic notation for
this, and illustrate it using diagrams of the shape f1 : B1 → B. The correspond-
ing diagram category is, of course, C↓, but we shall write it in the more normal
notation of C→ to emphasize that we treat the objects as morphisms for base
change, not as bundles.

We shall treat the labels in the diagram as canonical, and use them to denote
functors such as B1 : C→ → C and f1 : C→ → C↓ (which is just the identity).

We also systematically subscript the labels to denote pullbacks involving the
diagram category. First, if X is a node of the diagram, then C↓X denotes the
pullback of X : D → C against cod : C↓ → C. Its objects are diagrams augmented
with a bundle over X. We define the functor π : C↓X → C↓ as the projection.

Now suppose e : X → Y is an arrow in the diagram. We can form the
pullback Opspane of e : D → C↓ against π1, but it is clearly isomorphic to

C↓Y . Similarly Compe
∼= C↓X . We shall use these isomorphisms in conjunction

with functors and natural transformations related to Opspan and Comp. For
example, pbe : C↓Y → C

↓
X corresponds to

D ×C↓ pb : D ×C↓ Opspan→ D ×C↓ Comp

and likewise for natural transformations.
Thus in our example we have C↓B1

∼= Comp, C↓B ∼= Opspan, and, modulo
these isomorphisms, pbf1

and Σf1 correspond to pb and Σ.
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For applications of the following proposition, which is a manifestation of the
fact that Σ a pb over (first projections to) C↓, we define

π

λe

π Σe

=

π

λ

π Σe

π2

π2 ∼=

π2 Σ

Here the isomorphism is C↓X ∼= Compe, and the rightmost π2 is the projection
Compe → Comp. By Proposition 5, λe is supine.

Similarly we can define κe, and it is prone by Proposition 5.

Proposition 6 Let e : X → Y be an arrow in a diagram as above, and let
F : E → C↓X and G : E → C↓Y be functors that agree when projected down to the
diagram category D. Then the following structures are equivalent.

1. A natural transformation α : ΣeF→ G over Y .

2. A natural transformation β : F→ pbeG over X.

3. A natural transformation γ : πF→ πG over e.

“Over Y ” means that codα is the identity, and likewise for “over X”. “Over e”
means that cod γ has each component equal to the morphism got by composing
F (or G) with the projection to D and the functor e : D → C↓.

Proof. We get from (1) to (3) by taking α to

π F

γ

π G

=

π F

λe

α

π G

Σe

Supineness of λe shows that the transformation is invertible.
Similarly we get from (2) to (3) by composing at the bottom with κe, and

use its proneness.
Roughly speaking, the role of this proposition is as follows. Without π we

can use functors such as pbe to move bundles from one base to another, but
each natural transformation is over a given base. With π and κe or λe we lose
the underlying diagram category but gain the flexibility of dealing with change
of base in the natural transformations.
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Proposition 6 embodies an adjunction Σe a pbe over D. Its unit η and counit
ε are characterized by

π ηe

κe

π Σe

pbe

=

π

λe

π Σe

and

π pbe

λe

εeπ
Σe

=

π pbe

λe

π

. (2)

In fact, the standard “yanking” equations relating η to ε are immediate from
this.

Let us now use this notation in examining the functoriality of Σ and pb. We
define the category CT to be that whose objects are commutative triangles in
C, with shape

B1
f1

//

f

((
B2

f2

// B3 (3)

Proposition 7
Σf2

Σf1
= Σf .

Proof. This is straightforward calculation, using associativity of composition
in C.

The following proposition is of course well known as an isomorphism f∗1 f
∗
2E
∼=

(f2f1)∗E; we show how to characterize the isomorphism using the algebra of
proneness.

Proposition 8
pbf1

pbf2
∼= pbf .

Proof. Using the proneness of κe, we define ∼= as the unique natural transfor-
mation over B1 such that

π pbf1
pbf2

∼=

κf

π

pbf =

π pbf1
pbf2

κf1

κf2

π

π

If we compose at the top with a formal inverse of ∼=, we get an equation that
defines a natural transformation ∼=−1. (More carefully, proneness of κf2

gives

us α : π pbf → π pbf2
over f1 such that

(
α
κf2

)
= κf1

, and then proneness of

κf1
gives us ∼=−1 such that

(
π ∼=−1

κf1

)
= α.) The two equations then allow us to

prove that ∼=−1 is indeed an inverse of ∼=.
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2.2 The Beck-Chevalley condition

We must also examine the Beck-Chevalley condition for pullback squares.

Definition 9 The category PB has as objects the pullback squares

C

g1

��

g2 //

g

''

B2

f2

��
B1

f1

// B

in C, with the obvious diagram morphisms.

The Beck-Chevalley condition says that if you start with a bundle over B2

in the pullback square, and shift it to a bundle over B1 via two different routes
round the square, then the results are isomorphic.

In the rest of this subsection, we work over PB.

Definition 10 The Beck-Chevalley transformation BC : Σg1 pbg2
→ pbf1

Σf2 is
defined as being over PB and such that

π pbg2

λg1

BC

κf1

π Σf2

π

Σg1

pbf1

=

π pbg2

κg2

λf2

π Σf2

π .

The definition combines Propositions 6 and 7. The natural transformation on
the right is over g and gives rise to a natural transformation from Σf1

Σg1
pbg2

=
Σg pbg2

to Σf2 , and this in turn gives rise to the natural transformation BC.

Proposition 11 BC is a natural isomorphism.

Proof. An object of C↓B2
is pullback diagram in C equipped with a bundle

p : E → B2 in C. The component of BC at that object is a square

(B1 ×B B2)×B2
E //

��

B1 ×B E

��
B1 B1

where the top arrow is well known to be an isomorphism.
For the following lemma we work over a diagram comprising three morphisms

f1 : B1 → B, f2 : B2 → B and p : E → B. We write Opspan3 for its diagram
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category. This enables us to work over PB via the functor from Opspan3 that
completes the pullback square for f1 and f2, giving a functor from Opspan3 to

C↓B .

Lemma 12 The canonical isomorphism (B1×B B2)×B E ∼= B1×B (B2×B E)
is provided by the natural transformation

Σg pbg

∼=−1

BC

Σf1
pbf1

Σf2
pbf2

Σg1 pbg2 ,

where ∼= is that of Proposition 8.

Proof. Leaving out Σf1
, we can take the canonical isomorphism over B1 and

we then see that it is characterized by the diagram

(B1 ×B B2)×B E

��

π2×BE

,,

(B1 ×B B2)×B E
∼= //

��

B1 ×B (B2 ×B E) //

��

B2 ×B E

��
B1 ×B B2 g1

//

g2

,,

B1 B1
f1

// B

B2 ×B E

��
B2

f2

;;

Here the leftmost and rightmost squares in the top line are λg1
and κf1

, and
the curved square lower right is λf2 . The curved square on the lower left is a

natural transformation κg/f2
over g2 characterized by

(
κg/f2

κf2

)
= κg. To show

that the canonical isomorphism is as stated, we calculate

π pbg

λg1
∼=−1

BC

κf1

π Σf2
pbf2

π

Σg1
pbg2

pbf1

(1)
=

π pbg

∼=−1

κg2

λf2

π Σf2
pbf2

pbg2

π

(2)
=

π pbg

κg/f2

λf2

π Σf2
pbf2

π

Here equation (1) follows from Definition 10, and equation (2) from Proposi-
tion 8.
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3 Bundle endofunctors

Definition 13 Let C be a cartesian category.
A bundle endofunctor on C is an endofunctor T• of C↓ that restricts to the

identity on bases (i.e. via the codomain fibration cod).
A bundle monad on C is a monad (T•, η•, µ•) on C↓ in which all three com-

ponents restrict to the identity on bases.

The “•” is used to indicate the fact that a bundle endofunctor or monad
restricts to an endofunctor or monad on each slice category C/B, notated by
replacing the • by B. Applying T• to the square (1) will give us the square

TBE
Tff //

��

TB′E
′

��
B

f
// B′

. (4)

Definition 14 Let T• be a bundle endofunctor on C, and suppose we work over
a diagram f1 : B1 → B. Using proneness of κf1

TB (Proposition 5), we define
ψf1

: TB1
pbf1

→ pbf1
TB over B1 by

π TB1
pbf1

ψf1

κf1

π TB

pbf1 =

π TB1
pbf1

κf1

π TB

T•

π

π

. (5)

Definition 15 Let T• be a bundle endofunctor on C, and suppose we work over
a diagram f1 : B1 → B. Using supineness of λf1TB1 (Proposition 5), we define
φf1 : Σf1TB1 → TBΣf1 over B by

π TB1

λf1

φf1

π TB Σf1

Σf1 =

π TB1

λf1

π TB Σf1

T•

π

π

. (6)
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Lemma 16 Working over the diagram category CT, with shape (3), we have

TB1
pbf1

pbf2

ψf1

ψf2

∼=
pbf TB3

pbf1

TB2

pbf2

(1)
=

TB1
pbf1

pbf2

∼=

ψf

pbf TB3

pbf and

Σf2
Σf1 TB1

φf1

φf2

TB3
Σf

TB2

Σf1

Σf2

(2)
=

Σf2
Σf1 TB1

φf

TB3
Σf

Σf

.

Proof. Compose on the left with π and (1) below with κfTB3
, or (2) above

with λf1
TB1

and λf2
Σf1

TB1
; it is then a straightforward calculation.

Lemma 17
Σf1 TB1

ηf1

ψf1

εf1 TB Σf1

pbf1

pbf1

=

Σf1 TB1

φf1

TB Σf1

.

Proof. Composing with π and λf1
, the calculation reduces to

π TB1
ηf1

λf1
ψf1

εf1π TB Σf1

pbf1

Σf1
pbf1

=

Σf1 TB1
ηf1

ψf1

κf1

π TB Σf1

pbf1

pbf1

=

Σf1 TB1

ηf1

κf1

π TB Σf1

pbf1

T•

π

π

=

Σf1 TB1

λf1

π TB Σf1

T•

π

π

=

Σf1 TB1

λf1

φf1

π TB Σf1

Σf1 .
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Lemma 18

Σg1 TC pbg2

ψg2

BC

φf2

pbf1 TB Σf2

pbg2

TB2

Σf2

=

Σg1 TC pbg2

φg1

BC

ψf1

pbf1 TB Σf2

TB1

Σg1

pbf1

Proof. Since everything is over PB, it remains to show that the expressions
are equal when composed with π on the left, and with λ and κ top and bottom.
Then –

LHS =

π TC pbg2

λg1
ψg2

BC

κf1 φf2

π TB Σf2

π

Σg1
pbg2

TB2

pbf1
Σf2

=

π TC pbg2

ψg2

κg2

λf2

φf2

π TB Σf2

pbg2

TB2
π

Σf2

=

π TC pbg2

κg2

λf2

π TB Σf2

T•

π

π

π

=

π TC pbg2

λg1

BC

κf1

π TB Σf2

T•

π

π

Σg1

pbf1

π

=

π TC pbg2

λg1

φg1

BC

ψf1

κf1

π TB Σf2

π

Σg1

TB1

Σg1

pbf1

pbf1

= RHS.

Lemma 19 Let T• be a bundle monad on C. Then, generically, (pbf1
, ψf1

) is
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a monad functor from (C/B,TB) to (C/B1,TB1). More precisely,

ηB1 pbf1

ψf1

pbf1 TB

TB1
(1)
=

pbf1
ηB

pbf1 TB

and

TB1
TB1

pbf1

µB1

ψf1

pbf1 TB

TB1
(2)
=

TB1
TB1

pbf1

ψf1

ψf1

µB

pbf1 TB

pbf1

TB

TB

.

Proof. For each equation we compose on the left with π and at the bottom
with κf1 . The calculation (1) then reduces to

π ηB1 pbf1

ψf1

κf1

pbf1 TB

TB1

pbf1 =

π ηB1 pbf1

κf1

π TB

TB1

T•

π

π

=

π pbf1

η• κf1

π TB

T• π =

π pbf1

κf1 ηB

π TB

.

For (2) the calculation reduces to

π TB1
TB1

pbf1

µB1

ψf1

κf1

π TB

TB1

pbf1

=

π TB1
TB1

pbf1

µ• κf1

π TB

T• T• π

T• π

=

π TB1 TB1
pbf1

κf1

µB

π TB

T• T•

π

π

TB TB

=

π TB1
TB1

pbf1

ψf1

κf1

µB

π TB

T•

π pbf1

TBπ

TB

=

π TB1 TB1
pbf1

ψf1

ψf1

κf1 µB

π TB

pbf1

TB

pbf1 TB

.

14



Lemma 20 Let T• be a bundle monad on C. Then, generically, (Σf1 , φf1) is a
monad opfunctor from (C/B1,TB1

) to (C/B,TB). More precisely,

Σf1
ηB1

φf1

TB Σf1

TB1
(1)
=

ηB Σf1

TB Σf1

and

Σf1 TB1 TB1

µB

φf1

TB Σf1

TB1
(2)
=

Σf1 TB1
TB1

φf1

φf1

µB

TB Σf1

TB

Σf1

TB

.

Proof. Combine Lemmas 19 and 17.

3.1 Slicewise strengths

First, we recall the definition of strong endofunctors and monads.

Definition 21 Let C be a category with binary products and T : C → C an endo-
functor. Then a strength on T is a natural transformation given by morphisms
t(X,Y ) : X × TY → T (X × Y ) for each X,Y ∈ Ob(C) such that the following
diagrams both commute.

1× TY
t(1,Y )//

∼=
��

T (1× Y )

T (∼=)

��
TY TY

(7)

and

(X1 ×X2)× TY
t(X1×X2,Y ) //

∼=
��

T ((X1 ×X2)× Y )

∼=
��

X1 × (X2 × TY )
X1×t(X2,Y )

// X1 × T (X2 × Y )
t(X1,X2×Y )

// T (X1 × (X2 × Y ))

(8)
We say that T , thus equipped, is a strong endofunctor.

Note that by composing (7) with a naturality square for t, we get a commu-
tative triangle

X × TY
t(X,Y )//

π2

&&

T (X × Y )

T (π2)

��
TY

(9)
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that generalizes (7) to the case with X instead of 1.
It is important to note that this definition of strength for an endofunctor is

different from that of strength for a monad ([Koc72].

Definition 22 Let T be an endofunctor on C with strength t, and suppose in
addition T is a monad with unit η and multiplication µ. Then t is a strength
for the monad if the following diagrams commute.

X × Y

X×η
��

η

,,
X × TY

t(X,Y ) // T (X × Y )

X × T 2Y
t(X,TY )

//

X×µ

OO

T (X × TY )
T (t(X,Y ))

// T 2(X × Y )

µ

OO

. (10)

The strength is a natural transformation between two functors out of C ×C,
and using the isomorphism of this with Comp1 we can view the strength t as
a natural transformation t! : Σ! pb! T1 → T1Σ! pb!. We can generalize this to a
strength for an endofunctor T of a slice C/B, replacing ! : B → 1 by f1 : B1 → B.
Our aim in the present subsection is to do this for generic f1.

Definition 23 Let T• be a bundle endofunctor on C. Then a slicewise strength
for T• is a natural transformation between two endofunctors of Opspan,

t• : Σ pbT• → T•Σ pb

over π1 : Opspan → C→. (We are writing T• for the induced endofunctor on
Opspan over C→.) The • indicates that t• will restrict to a strength tB for TB
on each slice C/B.

t• will usually appear with subscript notation for change of base: so if we
treat Opspan as C↓B over a diagram f1 : B1 → B, then t• is tf1 : Σf1 pbf1

TB →
TBΣf1 pbf1

. (Thinking slicewise, this tf1 is really tB(B1,−).)
We require t• to satisfy the following two equations.

Σf1
pbf1 TB

tf1

εf1TB

Σf1
pbf1

=
Σf1

pbf1 TB

εf1 TB
(11)

16



Σf1
Σg1

pbg2
pbf2 TB

∼=

tg

∼=−1

TB Σf1 Σg1
pbg2

pbf2

Σg pbg

Σg
pbg

=

Σf1
Σg1

pbg2
pbf2 TB

BC

tf2

tf1

BC−1

TB Σf1
Σg1

pbg2
pbf2

pbf1

Σf2

TB

Σf2

pbf1

(12)

If in addition T• is the functor part of a bundle monad, then t• is a strength
for the monad if it also satisfies the following two conditions.

Σf1
pbf1

ηB

tf1

TB Σf1
pbf1

TB

= ηBΣf1 pbf1
(13)

Σf1
pbf1 TB TB

µB

tf1

TB Σf1
pbf1

TB =

Σf1
pbf1 TB TB

tf1

tf1

µB

TB Σf1
pbf1

TB

Σf1
pbf1

TB

. (14)

It is not hard to see that when the generic f1 : B1 → B is specialized to ! : B → 1,
these conditions become those expressed in diagrammatic form in Definitions 21
and 22. (Use Lemma 12 for condition (8).)

Although slicewise strength naturally expresses the strength conditions, we
shall commonly also need the following property.

Definition 24 Let T• be a bundle endofunctor and let t• be a natural transfor-
mation with the right type for a slicewise strength. Then t• has the ψ-φ-condition
if

Σf1 TB1
pbf1

ψf1

tf1

TB Σf1
pbf1

pbf1 TB =

Σf1 TB1
pbf1

φf1

TB Σf1
pbf1

.
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The following lemma shows something of the power of the ψ-φ-condition.
For, in the case (Section 5) where ψ is invertible, it is already enough to show
equation (12).

Lemma 25 Let T• be a bundle endofunctor on C, and let t• be a natural trans-
formation, of the type needed for a slicewise strength, that satisfies the ψ-φ-
condition. Then, working over PB, we have the following.

1. t• satisfies equation (11) composed at the top with Σf1
ψf1

.

2. t• satisfies equation (12) composed at the top with

Σf1 Σg1 TC pbg2
pbf2

ψg2

ψf2

Σf1 Σg1
pbg2

pbf2 TB

TB2 .

3.
Σg1 TC pbg1

pbf1

ψg1

ψf1

∼=

∼=−1

BC

tf2

pbf1 TB Σf2
pbf2

pbg1

TB1

pbf1

TB

pbg

pbg2

pbf2

Σf2

=

Σg1 TC pbg1
pbf1

ψg1

tg1

∼=

∼=−1

BC

ψf1

pbf1 TB Σf2
pbf2

pbg1
TB1

TB1

Σg1

pbg1

pbg

pbg2

pbf1

.

Proof. (1) After applying the ψ-φ-condition, the result is immediate from
Lemma 17.

(2) Composing also at the bottom with TBΣf1
BCpbf2

, we have

RHS
(1)
=

Σf1
Σg1 TC pbg2

pbf2

φg1

BC

ψf1

tf1

TB Σf1
pbf1

Σf2
pbf2

TB1

Σg1

pbf1

TB pbf1

(2)
=

Σf1
Σg1 TC pbg2

pbf2

φg1

φf1 BC

TB Σf1
pbf1

Σf2
pbf2

TB1 Σg1

18



(3)
=

Σf1
Σg1 TC pbg2

pbf2

∼=

φg

∼=−1

BC

TB Σf1
pbf1

Σf2
pbf2

Σg

pbg

Σg

Σg1 pbg2

(4)
=

Σf1
Σg1 TC pbg2

pbf2

∼=

ψg

tg

∼=−1

BC

TB Σf1
pbf1

Σf2
pbf2

Σg

pbg

pbg TB

Σg
pbg

Σg1 pbg2

(5)
= LHS.

Equation (1) comes from the ψ-φ-condition and Lemma 18, equation (2) from
the ψ-φ-condition, equation (3) from Lemma 16 part (2), equation (4) from the
ψ-φ-condition and equation (5) from Lemma 16 part (1).

For part (3), we have

LHS
(1)
=

Σg1 TC pbg1
pbf1

∼=

∼=−1

ψg2

BC ψf2

tf2

pbf1 TB Σf2
pbf2

pbg

pbg2

pbf2

pbg2
TB2

Σf2
pbf2 TB

(2)
=

Σg1 TC pbg1
pbf1

∼=

φg1
∼=−1

BC

ψf1

pbf1 TB Σf2
pbf2

pbg

TB1

Σg1
pbg2

pbf1

(3)
= RHS.

Here equation (1) follows by applying Lemma 16 twice, equation (2) by the
ψ-φ-condition and Lemma 18, and equation (3) by the ψ-φ-condition.

Lemma 26 Let T• be a bundle monad on C, and let t• be a natural transforma-
tion, of the type needed for a slicewise strength, that satisfies the ψ-φ-condition.
Then, working over CT, we have the following.

1. t• satisfies equation (13).

2. t• satisfies equation (14) composed at the top with

Σf1 TB1
TB1

pbf1

ψf1

ψf1

Σf1
pbf1 TB TB

pbf1

.
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Proof. The proof is a straightforward calculation that is conceptually the same
in both cases. We describe it for part (2). First, Lemma 19 is used to move
any ψs at the top down to below the µ (or the η in part (1)). Next, apply the
ψ-φ-condition. Next, use Lemma 20 to move the φ up, giving two φs above the
µ. Finally, apply the ψ-φ-condition to those φs.

4 Constructing some bundle endomorphisms

4.1 The bundle monad U•

Let us define categories Comp1 and Opspan1 as the subcategories of Comp and
Opspan in which B = 1. Then we have an isomorphism ρ : C↓ → Comp1 whose
inverse is π. We shall use our usual subscript notation, replacing f1 : B1 → B
by ! : B → 1.

Now it is easy to see that we have a bundle monad

U• = π pb! Σ!ρ

on C, with unit and multiplication defined by

ηU• =
η!

π pb! Σ! ρ
and µU• =

π pb! Σ! ρ π pb! Σ!ρ

ε!π pb! Σ!ρ

.

An important use of U• will be to express each bundle as a coreflexive equal-
izer – that is to say, an equalizer expressed as that of a pair fi : X → Y (i = 1, 2)
for which there is a map g : Y → X with g ◦ fi = IdX . Given the existence of
binary products, any equalizer of a pair fi : X → Y can be expressed as a
coreflexive equalizer, by replacing fi by 〈fi, X〉 : X → Y ×X.

The following proposition states that the monad U• has the equalizer prop-
erty.

Proposition 27 The following coreflexive diagram of functors is an equalizer
at every object of C↓.

Id
ηU• // U•

U•η
U
• //

ηU• U•

//
U2
•

µU•oo .

Proof. For a bundle p : E → B, the diagram appears more concretely in C↓ as

E
〈p,E〉 //

p

��

B × E
B×〈p,E〉 //

∆×E
//

π1

��

B ×B × E

π1

��
B B B

.

A generalized element of the equalizer is a pair (b, e) such that (b, pe, e) =
(b, b, e), i.e. b = pe. Such pairs are equivalent to elements e of E.

20



4.2 From T to T ′•

Definition 28 Let T be a strong endofunctor on C, t its strength. We define a
bundle endofunctor

T ′• = π pb! T1Σ!ρ.

(We are writing T also for the endofunctor of C/1 that arises from the isomor-
phism with C. T1 is then the corresponding endofunctor of Comp1 using our
suffix notation.) As an analogue of µU• , we also define a natural transformation
γ• : U•T

′
• → T ′• as

U• T ′•

ε!π pb! T1Σ!ρ

Σ!

ρ π

pb!
.

Similarly we define γ• : T ′•U• → T ′•.

Lemma 29
T ′•ηU•

γ•

T ′•

U•

=

T ′•

T ′•

.

Proof. Simple calculation.

Proposition 30 Let (T, η, µ) be a monad on C. Then (T ′•, η
′
•, µ
′
•) is a bundle

monad, with unit and multiplication defined as

ηU•

η1

π pb! T1 Σ!ρ

and

T ′• T ′•

ε!

µ1

π pb! T1 Σ!ρ

T1

Σ!

ρ π

pb!

T1 .

Proof. Routine calculation.

4.3 From strong T to T•

We now turn our central construction of a bundle endofunctor T• from a strong
endofunctor T , which will be used in our main results.
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Definition 31 Let T be a strong endofunctor on C, with strength t. We define
β• : T ′• → T ′•U• as

T ′•

η!

t!

T ′• U•

π

pb! T1

Σ!ρ

pb!

Σ!

T1Σ! pb!
ρ π

.

(t! here is really t(B,−).)

Proposition 32 The natural transformations T ′•η
U
• , β• : T ′• → T ′•U• form a

coreflexive pair, with coreflexivity morphism γ•.

Proof. For T ′•η
U
• we have a simple yanking. For β• we have, using the first

strength condition,

π pb! T1 Σ!ρη!

t!

ε!π pb! T1 Σ!ρ

Σ!

Σ1 pb1ρπ

=
π pb! T1Σ!ρη!

ε!π pb! T1Σ!ρ
Σ! = T ′•.

Definition 33 Let T be an endofunctor on a cartesian category C, and let t be
a strength for it. We define a bundle endofunctor T• over C as the equalizer
(constructed objectwise)

T•
e• // T ′•

T ′•η
U
• //

β•

// T
′
•U• .

Since the equalizer diagram is all over cod, we can and will define e• also to
be over cod. Thus the whole diagram restricts to each slice C/B, with TB etc.
Since the equalizer is constructed objectwise, it is also an equalizer on the slice.

Proposition 34 On a bundle p : E → B, then T•(p) is the morphism TBE →
B where TBE is the equalizer of two morphisms

B × TE
T 〈p,E〉π2//

tBE
// T (B × E) .
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In other words, the (generalized) elements of TBE are the pairs (b, u) ∈ B×TE
such that t(b, u) = T 〈p,E〉(u).

Proof. T ′•(p) and T ′•U•(p) are B × TE and B × T (B × E), both as bundles
over B by the first projection. In terms of generalized elements, T ′•η

U
• (b, u) =

(b, T 〈p,E〉(u)) and β•(b, u) = (b, tBE(u)). Since both are over B, we get the
same equalizer if we project down to T (B × E).

We next examine the case B = 1. We shall write T equally for the endo-
functor on C and that on C/1 derived from the isomorphism, but distinguish
them from the endomorphism T1 on C/1 obtained by restricting T•. To void
confusion with our suffix notation for change of base, we shall write (T )1 and
(T1)1.

Proposition 35 The transformations T ′1η
U
1 and β1 are equal.

Proof. The transformation ε!Σ!ρ is invertible on C/1, hence so also is the
coreflexivity morphism γ1 (Proposition 32).

Corollary 36 The transformation e1 : T1 → T ′1 is an isomorphism.

Definition 37 The natural isomorphism e′ : T → T ′1 is defined in diagram-
matic form with components as on the left here, or in tangle form on the right
(restricted to C/1).

TE
〈!,TE〉 //

��

1× TE

��
1 1

T

η!

π pb! (T )1 Σ! ρ

ρ

Σ!

Using equation (2), and noting that λ!ρ is equality when restricted to C/1,

we see that

(
e′

κ!(T )1Σ!ρ

)
is the equality between T and π(T )1Σ!ρ.

Definition 38 Because e′ is an isomorphism, so too is its factorization via T1,
which we shall write as ∼=: T → T1.

Definition 39 We define the natural transformation ζ from IdOpspan1
to Σ!ρπ

(restricted to Opspan1) to have components

B //

��

1 Eoo

1 1 Eoo

.

Lemma 40 (1) π(T )1ζ is equality, and (2) ζΣ!ρ = Σ!ρ

(
ηU•
κ!Σ!ρ

)
.

23



Proof. Both easily calculated.

Lemma 41

π (T )1

∼=1

e•

κ!

π (T )1Σ!ρπ

(T1)1

T•

π

T ′•

π pb!

(1)
=

π(T )1

π(T )1Σ!ρπ

, and

π pb! (T )1

κ! ∼=1

e•

T ′• π

π (T1)1

T•

(2)
=

π pb!(T )1 ζ

π pb!(T )1 Σ!ρπ
.

Proof. (1) If we write i : C/1→ C↓ for the obvious inclusion, then we find that

the ∼=1 and e• can be brought together as i

(∼=
e1

)
π = ie′π. We can now use the

tangle characterization of e′.
(2) Compose at bottom with κ, then use part (1) and properties of ζ.
The following proposition will have an analogue in Definition 53.

Proposition 42

T•

e•

T ′•

=

T• ηU•

ψ!

∼=−1
1

π pb! (T )1 Σ!ρ

π
pb!

(TB)B

(T1)1

Proof. Using the fact that κ! is prone and e• is monic, it suffices to compose
below with the tangle on the left in Lemma 41 (2). Then –

RHS
(1)
=

T• ηU•

e• κ!

T ′• π Σ!ρ

π pb! (2)
=

T•

e•

ζ

pb!(T )1 Σ!ρπ Σ!ρ

T ′• (3)
= LHS.

Here equation (1) uses the definition of ψ, (2) uses Lemma 40 (2) and (3) uses
Lemma 41 (2).

Although we lack a slicewise strength for T•, the following proposition pro-
vides the analogue of the ψ-φ-condition at C/1.
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Proposition 43

Σ! (TB)B pb!

ψ!

∼=−1
1

t!

∼=1

(T1)1 Σ! pb!

pb!

(T1)1

(T )1

(T )1

=

Σ! (TB)B pb!

φ!

π(T1)1 Σ! pb!

Proof. It suffices to prove the equation when composed on the left with π, on
the right with Σ!ρ, and at top and bottom with

(top)

T• ηU•

λ!

π Σ! (TB)B pb! Σ!ρ

π

π
and (bottom)

π (T1)1

e•

κ!

π (T )1

T•

π

T ′•

π pb!

(T )1Σ!ρπ

π

.

At the top this uses the supineness of λ! and the fact that ηU• can be yanked
out. At the bottom it uses the fact that e• is mono and κ! is prone. We now
calculate

LHS
(1)
=

T•

e•

λ!

t!

π (T )1 Σ!ρ

T ′•

π

pb!(T )1

Σ!

(2)
=

T•

e•

β•

κ!

π (T )1Σ! pb! Σ!ρ

T ′•

T ′• U•

π pb! ρ π

(3)
=

T•

e•

κ! η!

π (T )1Σ! pb! Σ! ρ

T ′•

π pb!
.
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Here, equation (1) uses Proposition 42 and Lemma 41, equation (2) uses Defi-
nition 31, and equation (3) uses the equalizer property of e• and the definition
of ηU• . On the other hand,

RHS
(1)
=

T• ηU•

λ!

φ!

e•

κ!

π (T )1 Σ! pb! Σ!ρ

π

π

(TB)B

π

Σ!

(T1)1

T•

π
T ′•

π pb!

(T )1Σ!ρ

π

(2)
=

T•

e•

κ! λ! η!

π (T )1 Σ! pb! Σ! ρ

T ′•

π pb!

(T )1Σ!ρ

π

π π

.

Here, equation (2) has used the definitions of φ and ηU• .
Now it suffices to prove the equation without the e• or the κ!, i.e.

π(T )1Σ! ρη!

π(T )1Σ! pb! Σ! ρ
=

π(T )1Σ!ρ

λ! η!

π (T )1 Σ! pb! Σ! ρ

π

π .

Both sides can be calculated as having (upstairs) T 〈p,E〉 : TE → T (B ×E).

4.4 From strong monad T to T•

In this subsection we assume that (T, η, µ) is a strong monad, with strength t.
We show that T• is the functor part of a bundle monad (T•, η•, µ•).

Lemma 44 Let (T, η, µ) be a strong monad on C, with strength t. Then each
of the following diagrams commutes in the two evident ways.

1.

Id

η′•
��

ηU• //

ηU•

// U•

η′•U•
��

T ′•
β•

//

T ′•η
U
• //

T ′•U•

.
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2.

T ′•T
′
•

µ′•
��

β•T
′
•

//

T ′•T
′
•η
U
•

--
T ′•U•T

′
•

T ′•γ•

// T ′•T
′
•

T ′•β•

// T ′•T
′
•U•

µ′•U•

��
T ′• β•

//

T ′•η
U
•

,, T ′•U•

.

Proof. In each part, commutativity of the upper square is obvious. It remains
to discuss the lower squares, involving β•.

(1):

(
η′•
β•

)
is the left-hand side of the following equation, which then uses

one of the monad laws for the strength t!.

η! η!

η1

t!

π pb! T1Σ! ρπ pb! Σ! ρ

Σ! pb!

T1
=

η! η!

η1

π pb! T1 Σ! ρπ pb! Σ! ρ

The right-hand side then equals
η′• ηU•
T ′• U•

=

(
ηU•
η′•U•

)
.

(2): First note that by yanking the η! in β• against the ε! in µ′•, we obtain

(
T ′•β•
µ′•U•

)
=

π pb! T1 Σ! ρπ pb! T1 Σ!ρ

t!

µ1

π pb! T1 Σ! ρπ pb! Σ!ρ

T1

.

Next, note that β• and γ• can both be decomposed horizontally, as β• = πβ′Σ!ρ
and γ• = π pb! γ

′T1Σ!ρ. It follows that the β′ can be slipped down past the γ′,
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and its equality cancels the upper equality in the above diagram. We obtain


β•T

′
•

T ′•γ
T ′•β•
µ′•U•

 =

π pb! T1 Σ! ρπ pb! T1 Σ!ρ

η!

t! ε!

t!

µ1

π pb! T1 Σ! ρπ pb! Σ!ρ

Σ!

T1

Σ! pb!

T1

=

π pb! T1 Σ! ρπ pb! T1 Σ!ρ

ε!

η! µ1

t!

π pb! T1 Σ! ρπ pb! Σ!ρ

Σ!

=

(
µ′•
β•

)

Here the second equation uses one of the monad laws for the strength t!.

Definition 45 We define natural transformations η• : C↓ → T• and µ• : T•T• →
T• over C by using the following equations.

(
η•
e•

)
(1)
=

η′•

T ′•
and

(
µ•
e•

)
(2)
=

T• T•

e• e•

µ′•

T ′•

T ′• T ′• .

Note that by definition this will make e• a monad morphism.

Lemma 46 η• and µ• are well defined.

Proof. Using Lemma 44, it suffices to show that the identity transformation
(for η•) or e•e• (for µ•) composes equally with the transformations in the upper
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pair of the appropriate diagram. For η• this is obvious. For µ• we have

T• T•

e• e•

β•

γ

β•

T ′• T ′• U•

T ′•

T ′•

U•

T ′•

=

T• T•

e• ηU• e•

γ

β•

T ′• T ′• U•

U• T ′•

T ′•

=

T• T•

e• e•

β•

T ′• T ′• U•

T ′• =

T• T•

e• e• ηU•

T ′• T ′• U•

.

Here we have used the equalizer property twice, and Lemma 29 once.

Theorem 47 Suppose (T, η, µ) is a monad on C, strengthened by t. Then
(T•, η•, µ•) is a bundle monad. The isomorphism T ∼= T1 is an isomorphism of
monads.

Proof. The monad laws for η• and µ• are easily proved: compose them at the
bottom with e•, use the definitions to move e• to the top, apply the laws for η′•
and µ′•, and bring e• back down to the bottom.

To show that the isomorphism is one of monads, it suffices to prove the
conditions when composed below with e1 : T1 → T ′1: in other words, we show
that e′ : T → T ′1 is a monad morphism.

For the unit,

ηT
′
1

κ!

π (T )1Σ!ρ

T ′1

π pb! (1)
=

λ!

ηT1

π (T )1 Σ! ρ

π

(2)
=

ηT

λ!

π (T )1 Σ! ρ

T

π

π
(3)
=

ηT

e′

κ!

π (T )1Σ!ρ

T

T ′1

π pb!
.

Equation (1) here expands ηT
′
1 and uses Equation (2) from earlier, and equa-

tion (3) here uses the fact that λ!ρ restricts to equality on C/1.
For the multiplication,

T T

e′ e′

µ
T ′1
1

κ!

π (T )1Σ!ρ

T ′1 T ′1

π pb!

(1)
=

T T

e′

ε!

µT1

π (T )1 Σ!ρ

T ′1

(T )1

Σ!

ρ π

pb!

(T )1

(2)
=

T T

µT1

π (T )1 Σ!ρ

(T )1(T )1 (3)
=

T T

µT

e′

κ!

π (T )1Σ!ρ

T

π pb!

.
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In equation (1), expanding µ
T ′1
1 shows us we can move κ! past it to interact with

the left-hand e′; in equation (2) we yank ε against the other e′.

5 Bundle endofunctors preserving proneness

In this section we introduce our prime notion of geometric construction: a
bundle endofunctor T• that preserves proneness of morphisms (in other words,
if it is applied to a morphism of C↓ that is a pullback square, then the result is
still a pullback square). A fundamental consequence (Theorem 50) is that T• is
slicewise strong.

Clearly, such a T• restricts to an endofunctor TB on each slice C/B in a way
that is pullback-stable. We can make precise the isomorphisms for pullback
stability.

Proposition 48 Let T• be a bundle endofunctor on C. Then T• preserves
proneness iff ψf1

(Definition 14) is invertible.

Proof. (⇒): First, note that, because T• preserves proneness in C↓, T•κf1
F is

prone for any F : E → C↓B . This follows by the same reasoning as in Proposition 5.
Using this, we can define ψ−1 by a diagram analogous to that of (5), and also
prove that it is a 2-sided inverse.

(⇐): If square (1) is a pullback, then invertibility of ψ tells us that TBE →
B ×B′ TB′E′ is an isomorphism.

5.1 Slicewise strength for T•

Throughout this subsection, C is a cartesian category and T• is a bundle endo-
functor that preserves proneness. We shall define a slicewise strength t• for T•
that satisfies the ψ-φ-condition, and clearly that already requires the following
definition.

Definition 49 Let T• be a bundle endofunctor on C that preserves proneness.
The natural transformation t• : Σ pbT• → T•Σ pb is defined as the following
composite.

Σf1
pbf1 TB

tf1

TB Σf1
pbf1

=

Σf1
pbf1 TB

ψ−1
f1

φf1

TB Σf1
pbf1

TB1

Theorem 50 Let T• be a bundle endofunctor on C that preserves proneness.
Then it has a unique slicewise strength t• that satisfies the ψ-φ-condition, and
it is preserved by pullback between slices.
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Proof. For the ψ-φ-condition t• has to be as in Definition 49, and then it is a
strength from Lemma 25, parts (1) and (2), because ψ is invertible.

For preservation by pullback, we work over PB, with f2 being the parameter
of t and pullback being along f1 – so the parameter f2 pulls back to g1. Thus we
wish to show that, up to isomorphism, pbf1

tf2
= tg1

pbf1
. Allowing occurrences

of ψf1 for the preservation of T• itself, the remaining isomorphism is

Σg1
pbg1

pbf1

∼=
∼=−1

BC

pbf1
Σf2

pbf2

pbg

pbg2

.

Once these are inserted, we find that the desired result follows by cancelling
Σg1

ψg1
pbf1

from the top of Lemma 25(3).

Theorem 51 Let T• be a bundle monad, with unit η• and multiplication µ•,
such that T• preserves proneness. Then the bundle monad has a unique slicewise
strength t• that satisfies the ψ-φ-condition. Pullback between slices preserves the
strong monad structure.

Proof. Theorem 50 already covers t• as strength for the endofunctor, and the
monad strength conditions follow from Lemma 26 by cancelling ψs. Preservation
by pullback of the monad structure is the content of Lemma 19.

We now know that T = T1 has a strength t1, and can apply the constructions
of Sections 4.3 and (for a bundle monad T•) 4.4. We show that there is a natural
transformation i• : T• → T•.

Lemma 52 Let T• be a bundle endofunctor that preserves proneness, and let
T = T1. Let α• : T•U• → T ′• be defined as

α• =

T• π pb! Σ!ρ

ψ!

π pb! (T )1 Σ!ρ

(T)B .

Here (T)B is the endofunctor of Comp1 derived from T•, and (T )1 that of
Opspan1 derived from T = T1. ψ! is derived from T•, not T•.
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1.
T• ηU•

α•

κ!

π (T )1Σ!ρ

U•

π pb! =

T•

λ!

π (T )1 Σ! ρ

π

π

2. The two obvious squares in the following diagram both commute.

T•U•

T•U•η
U
• //

T•η
U
• U•

//

α•

��

T•U
2
•

α•U•

��
T ′•

T ′•η
U
• //

β•

// T
′
•U•

. (15)

Proof. (1) is a straightforward calculation.
(2): For the square taking the upper in each pair of transformations, the re-

sult is immediate. For the lower we compose at the bottom with κ and calculate
–

 α•
β•

κ!(T )1Σ!ρU•

 =

T• π pb! Σ!ρ

η! ψ!

κ! t!

π (T )1Σ! ρπ pb! Σ!ρ

π

(T)B

pb! Σ! pb! (T )1

=

T• π pb! Σ!ρ

λ!

φ!

π (T )1 Σ! ρπ pb! Σ!ρ

π

(T)B

Σ!

=

T• U•

λ!

π (T )1 Σ! ρ U•

π

π ,

after which we can use part (1).

Definition 53 Let T• be a bundle endomorphism that preserves proneness. By

Lemma 52(2) we can define i• : T• → T• such that

(
i•
e•

)
=

(
T•η

U
•

α•

)
.
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Proposition 54 Let T• be a bundle monad that preserves proneness, and sup-
pose in addition it is a bundle monad with unit η• and µ•. Then i• : T• → T•
(where T = T1) is a morphism of monads.

Proof. We have equations to check involving

(
η•
i•

)
and

(
η•
i•

)
, but it suffices

to prove them when composed below with the monad morphism e• : T• → T ′•.
This comes down to

η•i•
e•

 =

(
η•η

U
•

α•

)
(1)
=

η′•

T ′•
and

(
µ•
e•

)
=

(
µ•η

U
•

α•

)
(2)
=

T• T•

e• e•

µ′•

T ′•

T ′• T ′• .

For both parts it suffices to check the equations when composed with κ at
the bottom. We shall frequently use part (1) of Lemma 15.

For (1) we have

LHS =

η•

λ!

π T1 Σ! ρ

T•

π

π =

λ!

η1

π T1 Σ! ρ

π

=

η!

κ! η1

π T1 Σ! ρ

π

pb! = RHS.

For (2) we have

LHS =

T2
•

µ• λ!

π T1 Σ! ρ

T•

π

π =

T2
•

λ!

µ1

π T1 Σ! ρ

π

π

T2
1

=

T• T•

e•

κ!

µ1

π T1 Σ!ρ

π pb!

T1π

T1

=

T• T•

e•

λ!

ε!

µ1

π T1 Σ!ρ

π Σ! π

pb!

T1π Σ!

T1

= RHS.
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We now turn to the situation where T• preserves coreflexive equalizers (in
addition to proneness). Our main result is that T• is then naturally isomorphic
to the bundle endofunctor T• got from the strong endofunctor T = T1.

Proposition 55 Let T• be an arrow endofunctor on C↓ that preserves coreflex-
ive equalizers. Then so does each TB on C/B.

Proof. Equalizers in C/B can be calculated in C↓.

Theorem 56 Let C be a cartesian category and T• a bundle endofunctor on it
that preserves proneness and coreflexive equalizers. Then i• is a natural iso-
morphism.

Proof. Since the diagram of Proposition 27 gives a coreflexive equalizer, we
can apply T• and obtain that T•η

U
• gives equalizers of the top line in (15). Now

since α• and α•U• are isomorphisms, we see that

(
i•
e•

)
gives equalizers for the

bottom line.

Theorem 57 Let C be a cartesian category and T• a bundle monad on it that
preserves proneness and coreflexive equalizers. Then i• is a natural isomorphism
of monads.

Proof. Combine Theorem 56 with Proposition 54.

6 Sliceable endofunctors

We have already shown (Section 4.3) how from any strong endofunctor T on
C we can construct a bundle endofunctor T•. We now show that T• preserves
proneness if T preserves coreflexive equalizers: we call such a T “sliceable”.
This holds for the powerlocales and valuation locales.

Definition 58 Let C be a cartesian category.
A sliceable endofunctor on C is an endofunctor on C that is strong and

preserves coreflexive equalizers.
A sliceable monad on C is a monad on C that is strong and whose functor

part preserves coreflexive equalizers.

Throughout the rest of this section C is a cartesian category with sliceable
endofunctor T and strength t. Our main result (Theorem 61) is that the derived
T• preserves proneness and coreflexive equalizers, and that T and t can be
recovered from them. In Section 7 we shall show that the two structures are
equivalent.

Proposition 59 T• preserves coreflexive equalizers.
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Proof. Between Opspan1 and Comp1 we have that pb! preserves finite limits
(because it is a right adjoint) and so does Σ! (by calculation). Hence so does
U•. Since T preserves coreflexive equalizers, so do T ′• and T ′•U•. Now consider
a coreflexive equalizer in C↓. Applying T• gives us the left hand column in a
3 × 3 diagram in which the rows are the equalizer diagrams for 3 applications
of T•, while the middle and right hand columns are equalizers got by applying
T ′• and T ′•U•. A straightforward diagram chase show that the left hand column
too is an equalizer.

Proposition 60 T• preserves proneness.

Proof. Consider the two squares (1) and (4). We must show that if (1) is a
pullback, then so is (4).

First, note that square (1) being a pullback is equivalent to the following
diagram (which is coreflexive, by morphism π13) being an equalizer.

E
〈p,f〉 // B × E′

B×〈p′,E′〉//

〈B,f〉×E′
// B ×B′ × E′

This is because an element of the equalizer is a pair (b, e′) such that (b, p′e′, e′) =
(b, fb, e′).

Given (b, v) ∈ B × TE′ such that (fb, v) ∈ TB′E
′, we want there to be a

unique u ∈ TE such that (b, u) ∈ TBE and Tf(u) = v.
Let r = 〈p, f〉 : E → B × E′. Then Tr is the coreflexive equalizer of

T (B × 〈p′, E′〉), T (〈B, f〉 × E′) : T (B × E′)→ T (B ×B′ × E′)

and so is monic.
Uniqueness: Given a u as required, we have

Tr(u) = T (B × f)T 〈p,E〉(u) = T (B × f)t(b, u) = t(b, Tf(u)) = t(b, v).

Now we show existence.

T (B × 〈p′, E′〉)t(b, v) = t(b, T 〈p′, E′〉(v)) = t(b, t(fb, v)) = t((fb, b), v)

= T (〈f,B〉 × E′)t(b, v).

It follows that there is a unique u ∈ TE such that Tr(u) = t(b, v). Then

Tf(u) = Tπ2Tr(u) = Tπ2(t(b, v)) = v.

To show that (b, u) ∈ TBE we use the fact that T (r ×B) is monic:

T (B × r)T 〈p,E〉(u) = T (∆× E′)Tr(u) = T (∆× E′)t(b, v)

= t((b, b), v) = t(b, t(b, v)) = t(b, Tr(u))

= T (B × r)t(b, u).
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Theorem 61 Let T be a sliceable endofunctor on a cartesian category C. Then
Definition 33 provides a bundle endofunctor T• that preserves proneness and
coreflexive equalizers. Moreover, T and its strength t are naturally isomorphic
to the T1 and t1 got by restricting T• and t• to C/1 ∼= C.

Proof. Preservation of proneness and coreflexive equalizers is done in Proposi-
tions 60 and 59. The isomorphism T ∼= T1 is in Definition 38. Since t• has the
ψ-φ-condition, it follows from Proposition 43 that t1 corresponds to t under the
isomorphism.

Theorem 62 Let T be a sliceable monad on a cartesian category C. Then
Definition 45 makes T• a bundle monad, with t• a slicewise strength. Moreover,
the monad structure on T is isomorphic to that on T1 got by restricting that on
T•.

Proof. After Theorem 61, the rest is covered by Theorems 47 and 51.

7 Summary of results

The results show an interplay between two different kinds of structures on a
cartesian category C: endofunctors T on C, and bundle endofunctors T• – which
give endofunctors on each slice of C, and also embody some information about
change of base between slices.

If T• preserves proneness, that is enough to imply (Theorem 50) that it has
a unique slicewise strength with the ψ-φ-property. (In fact, with preservation of
proneness, the ψ-φ-property for a t of the right type is already enough to show
that t is a slicewise strength.)

That gives us a strong endofunctor T = T1 on C/1, and then Section 4.3
shows us how to construct a bundle endofunctor T• from which T and its
strength can be recovered. Moreover, if we started from T•, then Definition 53
gives us a natural transformation i• : T• → T•.

Theorem 56 tells us that if T• preserves coreflexive equalizers then i• is an
isomorphism. Theorem 61 shows that if T preserves coreflexive equalizers then
T• preserves proneness and coreflexive equalizers.

Putting these ingredients together, we obtain –

Theorem 63 Let C be a cartesian category. Then the following structures are
equivalent.

1. A strong endofunctor T on C that preserves coreflexive equalizers.

2. A bundle endofunctor T• for C that preserves proneness and coreflexive
equalizers.

Combining this theorem with Theorem 50 yields an interesting fact: from a
sliceable endofunctor (strong and preserving coreflexive equalizers) on a single

36



slice C/1, we obtain the same structure on every slice, and it is preserved up to
isomorphism by the pullback functors between slices.

We also discuss situations where T• and T are monads. If T•, preserving
proneness, is a monad then Theorem 51 shows that the monad is slicewise strong,
using the same strength as defined for the endofunctor T•. Theorem 47 shows
that T , being a strong monad, induces monad structure on T•, with T ∼= T1 as
monad. Proposition 54 shows that i• : T• → T• is a morphism of monads, hence
(Theorem 57) an isomorphism if T• preserves coreflexive equalizers. Thus, –

Theorem 64 Let C be a cartesian category. Then the following structures are
equivalent.

1. A strong monad T on C that preserves coreflexive equalizers.

2. A bundle monad for C that preserves proneness and coreflexive equalizers.

8 Examples

Our first example is the covariant powerobject functor P on a topos E . This
is well-known to be a strong monad. In the internal language of E we have
η(x) = {x}, µ(U) =

⋃
U and t(X,Y )(x, U) = {(x, u) | u ∈ U .

Now suppose we have a coreflexive equalizer

X
e // Y

f //

g
//
Z

h
oo . (16)

To show this is preserved by P, suppose we have V ⊆ Y such that Pf(U) =
Pg(U). if y ∈ U then fy = gy′ for some y′ ∈ U , so y = hfy = hgy′ = y′, and it
follows that fy = gy and y ∈ X, so U ∈ PX.

Thus P is a sliceable monad and gives rise to a bundle monad P• that
preserves proneness (and coreflexive equalizers). Categorically this gives a geo-
metric character to P•, covering the coherence issues for the isomorphisms that
arise when the slicewise constructions are pulled back. However, there is one
remaining issue. The good behaviour, with coherent isomorphisms, is for the
slicewise constructions PB calculated as equalizers from the sliceable monad P.
But we thought we already knew how to calculate each PB , for the slice E/B is
also a topos and so has its own powerobject functor. Does this agree with the
PB derived from P? The answer is Yes, and this follows from the fact that the
pullback functors between the slice toposes are logical, and hence preserve (up
to isomorphism) the powerobject construction.

This final issue becomes important in our main motivating examples, the
powerlocales. We shall show for each one – lower, upper, Vietoris and double
– that it is a sliceable monad, and so gives rise to a bundle monad on Loc
preserving proneness. This structure on its own is good, and has been used
(following the ideas of this paper) as the categorical definition of geometricity
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in [FV14]. However, the powerlocale constructions are topos-valid and hence
give rise (by working in SB) to constructions on each Loc/B. Again we must
ask, Do these agree with the slicewise constructions derived from the sliceable
monads? If not, then the sliceable monads are giving us the wrong slicewise
constructions: for we rely on properties of the topos-valid constructions in SB.

Fortunately, the constructions do agree, but this does not come from the
results in this paper. Instead it relies on applying the construction to presenta-
tions of locales, the technique prominent in [Vic04]. As long the construction on
presentations is preserved by the inverse image parts of geometric morphisms,
this is enough to show that the constructions derived from the sliceable monads
are, up to isomorphism, as expected.

Thus the question of geometricity for localic constructions is answered in
two parts. First, the results of this paper show that it is sufficient to have a
sliceable monad (or endofunctor). This provides a bundle monad or endofunctor
with good properties, categorically abstract. Second, the established presenta-
tion techniques are used to show that the topos-valid slicewise constructions are
preserved by pullback, up to incoherent isomorphism. In the following subsec-
tions we deal with the various powerlocales. The paper [Vic11] deals with the
valuation locale.

8.1 The lower powerlocale PL

Definition 65 If X is a locale then its lower powerlocale PLX is defined by

ΩPLX = Fr〈ΩX (qua SupLat) 〉.

If U is an element of ΩX then we shall write ♦U for the corresponding generator
in ΩPLX.

If f : X → Y is a map, then PLf : PLX → PLY is defined by (PLf)∗(♦U) =
♦(f∗U).

The maps η : X → PLX and µ : P 2
LX → PLX are defined by η∗(♦U) = U

and µ∗(♦U) = ♦♦U .

As is well known, and easy enough to prove, these make PL an endofunctor of
Loc, η and µ natural transformations, and (PL, η, µ) a monad. For its strength,
recall that the frame for X × Y is the suplattice tensor of the frames for X
and Y : that is to say, it is generated as a suplattice by symbols U ⊗ V subject
to “suplattice bilinearity” relations that say ⊗ distributes on both sides over
all joins. This suplattice presentation allows us to deduce that ΩPL(X × Y )
is presented as a frame by symbols ♦(U ⊗ V ) subject to suplattice bilinearity
relations such as ♦(U⊗

∨
i Vi) =

∨
i ♦(U⊗Vi). We can now define t(X,Y ) : X×

PLY → PL(X × Y ) by t(X,Y )∗♦(U ⊗ V ) = U ⊗ ♦V . The proofs that this is a
strength are straightforward.

Proposition 66 PL preserves coreflexive equalizers.
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Proof. Consider a coreflexive equalizer as in (16). Then

ΩX ∼= Fr〈ΩY (qua Fr) | f∗W = g∗W (W ∈ ΩZ)〉. (17)

In order to calculate ΩPLX, we must convert this frame presentation into a
suplattice presentation, which we do using the coverage theorem – see [Vic04]
for more details. Now

ΩX ∼= Fr〈ΩY (qua ∧-semilattice) | joins preserved,

f∗W = g∗W (W ∈ ΩZ)〉
∼= SupLat〈ΩY (qua poset) | joins preserved,

f∗W = g∗W (W ∈ ΩZ)〉,

where the final isomorphism follows from the coverage theorem provided that the
relations are meet stable. For the preservations of joins this follows from frame
distributivity in ΩY , while for the other relations it follows from coreflexivity
using f∗W ∧ V = f∗(W ∧ h∗V ) and so on. Hence,

ΩPLX ∼= Fr〈ΩY (qua suplattice) | f∗W = g∗W (W ∈ ΩZ)〉
∼= Fr〈ΩPLY (qua frame) | (PLf)∗W = (PLg)∗W (W ∈ ΩPLZ)〉.

Hence the equalizer is preserved by PL.

8.2 The upper powerlocale PU

The upper powerlocale is broadly similar to the lower, but with suplattice struc-
ture replaced by preframe structure.

Definition 67 If X is a locale then its upper powerlocale PUX is defined by

ΩPUX = Fr〈ΩX (qua preframe) 〉.

If U is an element of ΩX then we shall write �U for the corresponding generator
in ΩPUX.

If f : X → Y is a map, then PUf : PUX → PUY is defined by (PUf)∗(�U) =
�(f∗U).

The maps η : X → PUX and µ : P 2
UX → PUX are defined by η∗(�U) = U

and µ∗(�U) = ��U .

As is well known, and easy enough to prove, these make PU an endofunctor of
Loc, η and µ natural transformations, and (PU , η, µ) a monad. For its strength,
recall from [JV91] that the frame for X × Y is also the preframe tensor of the
frames for X and Y : that is to say, it is generated as a preframe by symbols
U�V subject to “preframe bilinearity” relations that say � distributes on both
sides over finite meets and directed joins. We have U � V = U ⊗ Y ∨ X ⊗ V
and U ⊗ V = U � ∧ � V . This preframe presentation allows us to deduce that
ΩPU (X ×Y ) is presented as a frame by symbols �(U �V ) subject to preframe
bilinearity relations such as �(U �

∧n
i=1 Vi) =

∧n
i=1 �(U � Vi). We can now

define t(X,Y ) : X ×PUY → PU (X × Y ) by t(X,Y )∗�(U � V ) = U ��V . The
proofs that this is a strength are, again, straightforward.
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Proposition 68 PU preserves coreflexive equalizers.

Proof. Consider a coreflexive equalizer as in (16), giving a frame presenta-
tion (17). In order to calculate ΩPUX, we must this time convert the frame
presentation into a preframe presentation, which we do using the preframe cov-
erage theorem of [JV91] – see [Vic04] for more details. Now

ΩX ∼= Fr〈ΩY (qua ∨-semilattice) | finite meets and directed joins preserved,

f∗W = g∗W (W ∈ ΩZ)〉
∼= PreFr〈ΩY (qua poset) | finite meets and directed joins preserved,

f∗W = g∗W (W ∈ ΩZ)〉,

where the final isomorphism follows from the preframe coverage theorem pro-
vided that the relations are join stable. For the preservations of finite meets and
directed joins this follows from frame distributivity in ΩY , while for the other
relations it follows from coreflexivity using f∗W ∨V = f∗(W ∨h∗V ) and so on.
Hence,

ΩPUX ∼= Fr〈ΩY (qua preframe) | f∗W = g∗W (W ∈ ΩZ)〉
∼= Fr〈ΩPUY (qua frame) | (PUf)∗W = (PUg)∗W (W ∈ ΩPUZ)〉.

Hence the equalizer is preserved by PU .

8.3 The Vietoris powerlocale V

The Vietoris powerlocale V originated in [Joh85]. It combines features of the
lower and upper powerlocales (although, historically, the Vietoris powerlocale
came first).

Definition 69 If X is a locale then its Vietoris powerlocale V X is defined by

ΩV X = Fr〈♦U,�U (U ∈ ΩX) | ♦ preserves all joins

� preserves finite meets and directed joins

♦U ∧�V ≤ ♦(U ∧ V )

�(U ∨ V ) ≤ ♦U ∨�V 〉.

If f : X → Y is a map, then V f is defined by combining the clauses for the
lower and upper powerlocales, and likewise for the monad unit and multiplication
η, µ.

[Joh85] proved that these make V an endofunctor of Loc, η and µ natural
transformations, and (V, η, µ) a monad. For its strength, we again combine the
definitions for the lower and upper powerlocales. We must check that the mixed
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relations are respected. For example,

t(X,Y )∗(♦(U1 ⊗ V1) ∧�(U2 � V2))

= (U1 ⊗ ♦V1) ∧ (U2 ��V2)

= (U1 ⊗ ♦V1) ∧ (U2 ⊗ V Y ∨X ⊗�V2)

= (U1 ∧ U2)⊗ ♦V1 ∨ U1 ⊗ (♦V1 ∧�V2)

≤ (U1 ∧ U2)⊗ ♦V1 ∨ U1 ⊗ ♦(V1 ∧ V2)

= t(X,Y )∗♦((U1 ∧ U2)⊗ V1 ∨ U1 ⊗ (V1 ∧ V2))

= t(X,Y )∗♦(U1 ⊗ V1 ∧ U2 � V2).

It is then straightforward to check that it is a strength.

Proposition 70 V preserves coreflexive equalizers.

Proof. Consider a coreflexive equalizer as in (16), giving a frame presenta-
tion (17). The frame ΩV X is presented by two sets of generators ♦U and
�U (for U ∈ ΩX) subject to the Vietoris relations; and then the calcula-
tions in Propositions 66 and 68 show that these can be replaced by genera-
tors ♦V and �V for V ∈ ΩY , subject to the Vietoris relations together with
♦f∗W = ♦g∗W and �f∗W = �g∗W for W ∈ ΩZ. These last ones can be
replaced by (V f)∗W = (V g)∗W for W ∈ ΩV Z, which now tells us that V X is
the desired equalizer.

The fact that V is preserved by pullback is remarked on in [Vic09].

8.4 The double powerlocale

The double powerlocale monad PX is defined in [Vic04] as the composite PLPUX ∼=
PUPLX; this relies on the fact that the lower and upper powerlocale monads
distribute over each other. That paper also proves that it is preserved by pull-
back. Its strength is defined in [VT04]. The fact that it preserves coreflexive
equalizers follows immediately from Propositions 66 and 68.

9 Conclusions

The work leading to this paper started with a less ambitious aim: to show how
to use the strength of an endofunctor T on Loc, together with preservation
of coreflexive equalizers, to construct a strong endofunctor TB on each slice
Loc/B using an equalizer as in Proposition 34, with the structure preserved by
pullback. This formed a natural part of Townsend’s programme of finding an
axiomatic description of structure for Loc. Already the slice endofunctors raised
the question of coherence, and exploring this gradually led to a feeling that the
slice endofunctors TB needed somehow to act between slices as well as within
them, and hence to the idea of bundle endofunctor, preserving proneness.

Later, the work leading to [FV14] investigated preservation of fibrations and
opfibrations in Loc by geometric constructions. Again this started as a purely
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localic investigation, but it quickly led to techniques of abstract category theory
and so raised the question of how to formulate geometricity in an abstract way.
The notion of bundle endofunctor preserving proneness then turned out to give
our required results in a satisfactorily abstract way.

The experience there motivated the work of the present paper to explore
the bundle endofunctors more carefully under various conditions. It seems,
particularly in the light of [FV14], that preservation of proneness is the decisive
property. Its good behaviour is illustrated by the fact that it is sufficient to
imply slicewise strength. However, the total structure is complex, and the role
of preservation of coreflexive equalizers seems to be to ensure that the bundle
endofunctor can be reconstructed from its action on C/1 (and the strength
there). We have shown that the original motivating examples of the powerlocales
can be handled this way, and [Vic11] does the same for the valuation locale.

We also introduced other properties of bundle endofunctors, namely slicewise
strength and the ψ-φ-condition. These are certainly useful for proving what we
need on the slices, though it is less clear how independently useful they are in
their own right without preservation of proneness.

As mentioned before, the treatment of pullback stability of the powerlocales
in [Vic04] relied on assuming that each locale came along with a presenta-
tion, and it was in terms of the presentations that a uniform homeomorphism
f∗(PY (Zg)) ∼= PX(f∗Zg) was given. It would be interesting to show this more
explicitly in the example of the category of formal topologies. The reduction
to presentations is a valuable technical tool. However, it would be difficult to
make it a part of an abstract categorical account of Loc. This is the programme
of 3, with the aim of elucidating categorically the reasoning principles underly-
ing constructive locale theory and – one may hope also – constructive analysis.
It is also analogous to the ASD programme of Taylor4. In the axiomatization
presented here one is able to express the pullback stability (or geometricity) of
powerlocale constructions without relying on the extra-categorical structure of
presentations.
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