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Abstract

This paper analyses the notion of a positivity relation of Formal Topology from
the point of view of the theory of Locales. It is shown that a positivity relation
on a locale corresponds to a suitable class of points of its lower powerlocale. In
particular, closed subtopologies associated to the positivity relation correspond
to overt (that is, with open domain) weakly closed sublocales. Finally, some
connection is revealed between positivity relations and localic suplattices (these
are algebras for the powerlocale monad).
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Introduction

Much of the theory of locales can be developed in a fully predicative way
provided that “bases” are assumed as given data. Of course, this makes no
difference within an impredicative setting where any locale has a base. Also
predicatively, however, requiring bases does not appear as a real restriction, for
there seems to be no other way to define a locale but presenting it by generators
(hence at least a subbase) and relations (in a suitable sense). In Formal Topology
(that is, predicative pointfree Topology) a presentation of a locale usually takes
the form of a “cover relation” on a set. In [7] the name formal topology was given
to a cover relation with a unary positivity predicate: this corresponds to the
case of overt (or open) locales. In [9] a new definition, called positive topology,
is proposed in which a binary relation replaces the positivity predicate. This
positivity relation is used to define formal closed subsets, which give a suitable
notion of closed subtopologies.

The main aim of this paper is to characterize positivity relations in a base-
independent way (at the cost of introducing some impredicativity). In other
words, we find the unknown value x in the proportion: formal topology is to
overt locale as positive topology is to x.
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We show that each formal closed subset is “splitting” (it has inhabited inter-
sections with all covers of its elements) and that a positivity relation corresponds
to a sub-suplattice of the suplattice of all splitting subsets. This leads to a num-
ber of characterizations of what a positivity relation on a locale is. In particular,
it follows that each formal closed subset is a point of the lower powerlocale and
thus corresponds to an overt weakly closed sublocale.

Further, we show some connections between positivity relations and localic
suplattices, as introduce in [6], which are algebras for the powerlocale monad.
Classes of points of localic suplattices give rise to positivity relations (and vice
versa with classical logic).

A positivity relation on a locale L can also be read as a condition for selecting
a class of points of L. This idea becomes particularly clear when the positivity
arises from localic sub-suplattice of the lower powerlocale PLL.

To make the paper as general as possible, we begin from positivity relations
on suplattices (with reversed morphisms). This is essentially the category of
basic topologies [9].

1. Suplattices

We start by summarizing some of the impredicative facts about suplattices
(complete join semilattices) and suplattice homomorphisms (join-preserving maps).
Most of these are well known.

If L and M are suplattices, then so is SupLat(L,M), the set of suplattice
homomorphisms L → M , with joins calculated argumentwise: ϕ ≤ ψ when
ϕ(x) ≤ ψ(y) for all x ∈ L.

For 1 = {∗}, let Ω
def
= Pow(1), the powerset of 1. In topos theory, this

is the subobject classifier. Ω is the free suplattice over {∗}, with injection of
generators ∗ 7→ {∗} – in fact, for any set I, the powerset Pow(I) is the free
suplattice over I. It follows that elements of a suplattice L are equivalent to
suplattice homomorphisms Ω→ L.

Because a suplattice L also has all meets – though we do not require homo-
morphisms to preserve them – it follows that Lop is also a suplattice. Moreover,
a suplattice homomorphism f : L → M has a right adjoint g, which preserves
all meets and hence is a suplattice homomorphism Mop → Lop. This provides
a self-duality L ↔ Lop on the category of suplattices. It follows that elements
of Lop, equivalent to suplattice homomorphisms Ω → Lop, are also equivalent
to suplattice homomorphisms L→ Ωop.

However, we shall be particularly interested in suplattice homomorphisms
L → Ω. Classically, with Ωop ∼= Ω, these are again equivalent to elements of
Lop. More generally they are different.

We obtain two functors SupLat(−,Ω),Ω− : SupLatop → SupLat acting
on morphisms by composition, and with a natural transformation from the first
to the second.

Since arbitrary maps ϕ : L → Ω are equivalent to subsets ϕ−1(1) of L, we
should identify which subsets correspond to the suplattice homomorphisms.
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Definition 1.1. Let L be a suplattice. A subset Z ⊆ L is splitting if

Z 3 x ≤
∨
Y =⇒ Z G Y for every x ∈ L and every Y ⊆ L,

where, following Sambin, by X G Y we mean that X ∩Y is inhabited. We write
Split(L) for the collection of all splitting subsets of L .

Splitting subsets can be characterized also by the following two conditions

1. if x ∈ Z and x ≤ y, then y ∈ Z (upward closed)

2. if (
∨
Y ) ∈ Z, then y ∈ Z for some y ∈ Y (completely prime)

and so they can as well be called completely-prime upsets. More succinctly, they
can be characterized by a single condition that (

∨
Y ) ∈ Z if and only if Y G Z

– the “if” direction gives the upward closedness.
It is easy to check that any union of splitting subsets is splitting and so

Split(L) is a suplattice – in fact, a sub-suplattice of Pow(L). We get two functors
Split,Pow : SupLatop → SupLat, acting on morphisms by inverse image and
with a natural transformation from the first to the second.

Proposition 1.2. There exists a natural isomorphism between SupLat(−,Ω)
and Split.

Proof For every set L, there is a bijection between functions ϕ : L→ Ω and
subsets of L, with ϕ corresponding to Zϕ = ϕ−1(1), and then ϕ(x) ∈ Ω is the
truth value of “x ∈ Zϕ”. Now if L is a suplattice, then ϕ is a homomorphism
iff for all Y ⊆ L we have (

∨
Y ) ∈ Zϕ iff (∃y ∈ Y )y ∈ Zϕ, in other words iff

Y G Zϕ, from which we gain the isomorphism. Naturality follows from that
between Pow and Ω−. q.e.d.

1.1. Suplattice presentations

A presentation of a suplattice by generators and relations comprises a set S
of generators, and a set �0 of cover relations, each of the form a �0 U where
a ∈ S and U ⊆ S and denoting the relation a ≤

∨
U .

The theory of suplattice presentations (S,�0) is very similar to the theory
of inductively generated formal topologies [5]. In fact, the latter is essentially
about how to present frames as suplattices, but with added complexity to take
care of the finite meets. From �0 we can inductively generate the full cover �

by the rules
a ∈ U
a� U

and
a�0 V � U

a� U

(where V � U means v � U for every v ∈ V ). By induction on proofs (of
a � U) it is easy to see that � is transitive: if a � U � V then a � V . Now,
impredicatively, we find that the partial order Pow(S)/� is a suplattice, and
indeed is the suplattice freely generated by S subject to the relations in �0. To
see this, let L be a suplattice and f : S → L a function respecting the relations
in �0. By induction on proofs we find that if a�U then f(a) ≤

∨
u∈U f(u), and
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from this we deduce that the unique suplattice homomorphism Pow(S) → L
given by freeness of Pow(S) factors uniquely via Pow(S)/�.

Note that each element of Pow(S)/� has a canonical representative, namely
the greatest. In other words, if U ⊆ S represents an element of Pow(S)/�, then
�U = {a ∈ S | a � U} is the greatest subset in the same equivalence class as
U .

We now look at suplattice homomorphisms from (S2,�0) to (S1,�0). (Note
the direction; note also that we use the same symbol for both cover relations.
In practice it will always be clear which one is being referred to.) Let L2 and L1

be the suplattices presented. By the universal property of presentations, a ho-
momorphism f : L2 → L1 is equivalent to a function f0 : S2 → L1

∼= Pow(S1)/�
such that if b �0 V in S2 then f0(b) ≤

∨
v∈V f0(v). We define a relation

R ⊆ S1 × S2 by aRb if a is in the canonical (greatest) representative of f0(b).
The functions f0 are equivalent to relations R satisfying that

if a�0 U ⊆ R−b then aRb. (1)

f0 then respects covers if R also has the property that

if aRb�0 V then a�R−V . (2)

In summary, we define a category SLP (suplattice presentations) as follows.
An object is a pair (S,�0) where �0 ⊆ S×Pow(S). A morphism from (S1,�0)
to (S2,�0) is a relation R ⊆ S1×S2 satisfying the two conditions (1),(2) above.
The identity morphism on (S,�0) is the relation a Id b if a� {b}. Composition
is given by

a(R2 ◦R1)c if a�R−1 R
−
2 {c}.

Then the transformation of (S,�0) into the presented suplattice gives a
contravariant functor SLP → SupLat that is full, faithful and essentially sur-
jective, thus making SLP dual equivalent to SupLat. (The contravariance is
built in solely to match later applications with formal topologies.)

Applying this to the case where S2 is S and S1 is {∗} with the empty cover
relation, we see that suplattice homomorphisms L → Ω, when described as
relations from 1 to S, are equivalent to splitting subsets of S. Thus splitting
subsets of L can equivalently be described as subsets Z of S that split �0, in
the sense that if a�0 U and a ∈ Z then U G Z. We shall write the set of such
as Split(S,�0): thus

Split(S,�0) ∼= SupLat(L,Ω).

Because of the reversal of morphisms for presentations, we find that Split be-
comes a covariant functor from SLP to SupLat. If R : (S1,�0) → (S2,�0) in
SLP, then

Split(R) : Split(S1,�0)→ Split(S2,�0)

is defined by direct image of R,

Split(R)(Z) = R+(Z) = {b ∈ S2 | (∃a ∈ Z)aRb}.
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The same formula allows us to define a covariant powerset functor Pow : SLP→
SupLat, (S,�0) 7→ PowS, with a natural transformation from Split to Pow.

The argument earlier shows that Split is naturally isomorphic to SupLat(−,Ω)
composed with the dual equivalence SLP ∼= SupLatop.

2. Positivity relations

We recall the basic theory of positivity relations [8], with the slight change
that we assume a cover base �0 rather than the full cover �. The details are
little changed, and the essential point to note is that it is enough to check that
basic covers are split.

If L is a suplattice, we say that S ⊆ L is a base if every x ∈ L can be written
as a join of elements in S.

Definition 2.1 (Sambin [9]). Let (L,≤,
∨

) be a suplattice presented by (S,�0).
A positivity relation is a predicate n ⊆ S × Pow(S) such that:

1. if an U , then a ∈ U
2. if an U and U ⊆ V , then an V

3. if an U , then an {x ∈ S | xn U}
4. if a�0 U and an V , then un V for some u ∈ U (compatibility)

for all a ∈ S and U, V ⊆ S. The triple (S,�0,n) is called a basic topology.
When L is a frame, then (S,�0,n) is called a positive topology.

For every U ⊆ S, we put nU def
= {x ∈ S | x n U}. Rules (1)-(3) say

precisely that this makes n an interior operator on Pow(S), that is, a monotone,
idempotent operator such that nU ⊆ U for any U . The compatibility rule (4)
says that the subsets of S of the form nU for some U ⊆ S are all splitting
subsets for (S,�0). We call the sets nU formal closed sets; equivalently, they
are the fixed-points of n as operator on Pow(S).

Let us write FC(S,�0,n) for the collection of all formal closed sets of the
basic topology (S,�0,n).

Lemma 2.2. For every basic topology (S,�0,n), the collection FC(S,�0,n)
is a sub-suplattice of Split(S,�0).

Proof Let {Vi}i∈I be any family of formal closed sets. For any x ∈ S, assume
x ∈

⋃
i∈I Vi. Then x ∈ Vi for some i ∈ I and so x n Vi because Vi is formal

closed. Therefore xn
⋃

i∈I Vi and hence
⋃

i∈I Vi is formal closed as well. q.e.d.

Note that a positivity relation can be reconstructed from the suplattice of
its formal closed sets. In fact, it is easy to check that a n U if and only if
a ∈ V ⊆ U for some formal closed set V .

Theorem 2.3. Let L be a suplattice, presented by (S,�0). Then there is a
bijection between positivity relations on L with respect to S and sub-suplattices
of Split(S,�0).
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Proof Every n determines, and is determined by, the suplattice of its for-
mal closed subsets FC(S,�0,n) as sub-suplattice of Split(S,�0). It therefore
remains only to show that each sub-suplattice F of Split(S,�0) comes from a
unique positivity in this way.

We consider the relation nF defined by

anF U
def⇐⇒ (∃Z ∈ F)

(
a ∈ Z ⊆ U

)
for a ∈ S and U ⊆ S. We claim that nF is a positivity relation – actually, this
happens for F any subfamily of Split(S,�0). Trivially, a nF U yields a ∈ U .
Also anF V follows from anF U and U ⊆ V . The proof of anF U ⇒ anF {x ∈
S | x nF U} is as follows. Take a splitting subset Z such that a ∈ Z ⊆ U .
It is sufficient to show that Z is contained in {x ∈ S | x nF U}, that is, that
x ∈ Z ⇒ xnFU holds; this follows from Z ⊆ U . To prove compatibility, assume
a �0 U and a nF V , that is, a ∈ Z ⊆ V for some Z ∈ F ; then U G Z because
Z is splitting; hence there exists u ∈ U such that u ∈ Z ⊆ V , that is, unF V .

We now check that the correspondence just described is in fact a bijec-
tion. We have already noted that any positivity n is equal to nF where
F = FC(S,�0,n). It remains to prove that, for any sub-suplattice F , we
have F = FC(S,�0,nF ). First of all, the definition of nF yields that Z is
formal closed for every Z ∈ F . Vice versa, let V be a formal closed set with
respect to nF . Thus

V = nFV =
⋃
{Z | Z ∈ F & Z ⊆ V }.

Since F is closed under joins, we have V ∈ F . q.e.d.

This result has a couple of interesting consequences. First of all, from
now on we can imagine a basic topology (S,�0,n) as just a presentation of
the pair (L,F) where F is the sub-suplattice of Split(L) that corresponds to
FC(S,�0,n) as sub-suplattice of Split(S,�0). Alternatively, using the isomor-
phism Split(L) ∼= SupLat(L,Ω), we can view it as a pair (L,Φ) where Φ is a
sup-suplattice of SupLat(L,Ω).

A second corollary is that the collection of all possible positivity relations on
L (with respect to S) is a suplattice. In particular, it must have both a bottom
n⊥ and a top nmax. The relation n⊥, which corresponds to the trivial sub-
suplattice of Split(L), is such that an⊥ U never holds. It has one and only one
formal closed set, namely ∅.

More interestingly, the greatest positivity on L (with respect to S) is char-
acterized by

anmax U ⇐⇒ (∃Z ∈ Split(L)) (a ∈ Z ⊆ U)

for all a ∈ S and U ⊆ S. Also one has FC(S,�0,nmax) = Split(S,�0). Follow-
ing [4], we give the following

Definition 2.4. Basic topologies of the form (S,�0,nmax) are called satu-
rated.
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2.1. Positivity relations on a topological space

We now look at situations where the suplattice under consideration is a
frame, initially the frame τ of opens for a topological space (X, τ). We shall
assume it also has a given base S ⊆ τ .

As discussed earlier, the suplattice homomorphisms τ → Ωop are equivalent
to the elements of τop, and hence – taking order into account – to the closed
subsets of X. This is taking “closed” in the sense of complement of open. Even
constructively, that notion of closed is still important, since an open sublocale
for a (got by imposing the cover 1 � a) has a closed complement as sublocale,
got by imposing the cover a� ∅.

However, that notion of closed diverges from another, classically equivalent:
closed as containing all its closure (or adherent) points. We shall see now that
that other notion is related to the splitting subsets of τ , the suplattice homo-
morphisms τ → Ω. Thus the constructive difference between the two notions of
closed is related to the constructive failure of the isomorphism between Ω and
Ωop. From now on, “closed” will be taken in this second sense.

Recall that a point is in the closure of a set if all its basic neighbourhoods,
hence all its open neighbourhoods, have inhabited intersection with the given
set, and a set is closed if it equals its closure. To analyse this notion, let us
define, following [9], two maps

D 7→ {a ∈ S | a G D} def
= ♦D and U 7→ {x ∈ X | ♦{x} ⊆ U} def

= restU

for D ⊆ X and U ⊆ S.
First, note that

D ⊆ restU ⇔ ♦D ⊆ U .

This is because both conditions are equivalent to

(∀x ∈ X, a ∈ S) (x ∈ a ∩D → a ∈ U) .

Categorically, this means that ♦ is left adjoint to rest, and this restricts to an
equivalence between the fixed points of ♦rest and those of rest♦.

Second, note that rest♦D is the closure of D, so the fixed points of rest♦ are
the closed sets, and these are equivalent to the fixed points of ♦rest.

Third, note the obvious fact that every set ♦D is splitting.
Classically, every splitting set Z is equal to ♦restZ – in other words, we have

Z ⊆ ♦restZ. For suppose a /∈ ♦restZ. Then for every x ∈ a we have x /∈ restZ,
and so there is some bx ∈ S with x ∈ bx but bx /∈ Z. Now a ⊆

⋃
x∈a bx, and

it follows from the fact that Z is splitting that a /∈ Z. Thus, classically, the
splitting sets are the fixed points of ♦rest and so are equivalent to closed sets.

Constructively, the fixed points of ♦rest form a sub-suplattice of τ and so
we can describe them using a positivity relation. It is obtained by putting
anX V if a ∈ ♦restV , i.e. whenever there exists a point x ∈ a such that all basic
neighbourhoods of x belong to V (see [9]). From our preliminary remarks it is
now clear that nX is a positivity on τ , and that FC(S,�,nX) is the lattice of
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fixed points of ♦rest and hence is isomorphic to the lattice of closed sets. (Of
course, the join of a family of closed sets is given by the closure of their union.)

Note that FC(S,�,nX), being isomorphic to the lattice of closed sets of τ ,
depends neither on the base S, nor on the positivity nX , but on the topology
only.

For every point x, the subset ♦{x} ⊆ S is formed by all basic neighbourhoods
of x. Note that one can rewrite a nX U as (∃x ∈ X)(a ∈ ♦{x} ⊆ U). An
argument similar to that above proves the following, more general result.

Proposition 2.5. Let (X, τ) be a topological space with a base S. For every
subset Y ⊆ X, the relation

anY U
def⇐⇒ (∃ y ∈ Y )(a ∈ ♦{y} ⊆ U)

is a positivity relation on ΩX (with respect to S). Moreover

FC(S,�,nY ) = {♦(D ∩ Y ) | D ⊆ X closed}

and hence FC(S,�,nY ) is isomorphic to the lattice of closed sets in the subspace
topology on Y .

Proof We see that anY U iff Y ∩a∩ restU is inhabited, and so nY U = ♦(Y ∩
restU). From this, the proof that nY is a positivity relation is straightforward.

It follows that the formal closed sets, of the form nY U , are those of the form
♦(Y ∩D) where D is closed. q.e.d.

2.2. Maps that respect positivity

Definition 2.6 (Sambin). Let (Si,�0,ni), i = 1, 2, be two basic topologies,
and let the relation R ⊆ S1 × S2 be a morphism from (S1,�0) to (S2,�0). R
respects positivity when the following holds

if aRb and an1 U , then bn2 R
+U

for all a ∈ S1, b ∈ S2 and U ⊆ S1.

This condition says precisely that b ∈ R+n1U implies b ∈ n2R
+U for all

b ∈ S2 and U ⊆ S1. In other words, R respects positivity if and only if R+n1U ⊆
n2R

+U for all U ⊆ S1. We shall refer to this last condition as

R+n1 ⊆ n2R
+. (3)

Proposition 2.7 (Sambin). In the notation of the previous definition, R re-
spects positivity if and only if Split(R) maps FC(S1,�0,n1) to FC(S2,�0,n2).

Proof Assume that R respects positivity. If U ⊆ S1 is a formal closed set,
then R+U = R+n1U ⊆ n2R

+U . Thus Split(R)(U) = R+U is formal closed, as
claimed.
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Conversely, if Split(R) maps formal closed sets to formal closed sets, then
R+n1U = n2R

+n1U holds for every U ⊆ S1, because n1U is formal closed.
In particular, R+n1U ⊆ n2R

+n1U and hence R+n1U ⊆ n2R
+U because

n1U ⊆ U and both R+ and n2 are monotone. q.e.d.

Recall (from section 1.1) that Split(R) is a suplattice homomorphism from
Split(S1,�0) to Split(S2,�0). Consequently, ifR respects positivity, then Split(R)
automatically restricts to a suplattice morphism between FC(S1,�0,n1) and
FC(S2,�0,n2). In other words, “R respects positivity” expresses the fact that
the suplattice morphism Split(R) can be restricted to the sub-suplattices of for-
mal closed sets.

Split(S1,�0)
Split(R)

// Split(S2,�0)

FC(S1,�0,n1)
?�

OO

// FC(S2,�0,n2)
?�

OO

In the light of Proposition 2.3, we thus see the following interpretation of
respecting positivity.

Proposition 2.8. Let (Si,�0,ni) (i = 1, 2) be two basic topologies presenting
pairs (Li,Fi) and let R ⊆ S1×S2 be a SLP morphism from (S1,�0) to (S2,�0)
corresponding to a suplattice homomorphism f : L1 ← L2. Then R respects
positivity if and only if f−1 : Split(L1) → Split(L2) restricts to a map from F1

to F2.

In this way, the following result from [9] comes to have a very straightforward
proof.

Proposition 2.9. Basic topologies and presentation morphisms which respect
positivity form a category, called BTop, with respect to the usual identities and
composition of functions.

It is equivalent to the category whose objects are pairs (L,F), with L a
suplattice and F a sub-suplattice of Split(L), and whose arrows (L1,F1) →
(L2,F2) are join-preserving maps f : L1 ← L2 such that f−1 maps F1 to F2.

It follows that, impredicatively, we can dispense with bases, in the following
sense.

Corollary 2.10. Let L be a suplattice with two presentations (Si,�0). Let ni

be a positivity relation on each (Si,�0), giving equal sub-suplattices of Split(L).
Then the basic topologies (Si,�0,ni) are isomorphic.

Given two basic topologies (L1,Φ1) and (L2,Φ2), it is immediate from the
definition of SupLat(−,Ω) on morphisms that a map f ∈ SupLat(L2, L1)
respects positivity if and only if whenever ϕ ∈ Φ1 then ϕ ◦ f ∈ Φ2. The follow-
ing synoptic table summarizes three different ways of conceiving of positivity
relations and, consequently, of the category of basic topologies.
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Objects

(S,�0,n) (L,F) (L,Φ)

(S,�0) cover L suplattice

n positivity relation F ↪→ Split(L) Φ ↪→ SupLat(L,Ω)

Formal closed subset Z ∈ F ϕ ∈ Φ

Morphisms

R between covers s.t. f : L1 ← L2 join-preserving s.t.

R+n1 ⊆ n2R
+ f−1(F1) ⊆ F2 Φ1 ◦ f ⊆ Φ2

And one gets from one notion to the others as follows:

{a ∈ S | an U} 7→ {x ∈ L | an U for some a ∈ S with a ≤ x} ∈ Split(L),

F 3 Z 7→
(
x 7→ {∗ | x ∈ F}

)
∈ SupLat(L,Ω) and

Φ 7→
{

(a, U) ∈ S × Pow(S) | a ∈
(
S ∩ ϕ−1(1)

)
⊆ U for some ϕ ∈ Φ

}
.

From a purely categorical point of view, a positivity on L is just a suplattice
monomorphism to SupLat(L,Ω). Accordingly a morphism from (L1,m1) to
(L2,m2), with m1 : Φ1 ↪→ SupLat(L1,Ω) and m2 : Φ2 ↪→ SupLat(L2,Ω), is an
f : L1 ← L2 such that there exists a (necessarily unique) morphism from Φ1 to
Φ2 which makes the following diagram commute.

SupLat(L1,Ω)
◦f // SupLat(L2,Ω)

Φ1

m1

OO

// Φ2

m2

OO

We end this section with a quick look to what happens to the category of basic
topologies when classical logic is assumed (this is what the label CLASS stands
for).

Proposition 2.11 (CLASS). Let (L,Φ) be a basic topology. Then there exists
a suplattice quotient L�M such that Φ ∼= SupLat(M,Ω).
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Proof Classically Ωop ∼= Ω and so SupLat(X,Ω) ∼= SupLat(Ωop, Xop) ∼=
SupLat(Ω, Xop) ∼= Xop for any suplattice X. Now put M = Φop. Since Φ is
a sub-suplattice of SupLat(L,Ω) ∼= Lop, it follows that M is a quotient of L.
Moreover, SupLat(M,Ω) ∼= Mop = Φ. q.e.d.

This result gives another possible description of BTop in the classical case.
Objects are suplattice quotients p : L � M and the corresponding positivity
can be recovered as SupLat(M,Ω) ◦ p. A morphism from p1 : L1 � M1 to
p2 : L2 � M2 is now a suplattice homomorphism f : L2 → L1 such that p1 ◦ f
can be (uniquely) factorized through p2.

2.3. On saturated basic topologies

Some results on saturated basic topologies (definition 2.4) have been ob-
tained in [4]. In terms of the suplattices, a saturated basic topology is one of
the form (L,SupLat(L,Ω)), and it is easy to see that:

every suplattice homomorphism f : L1 ← L2 is automatically a morphism
of basic topologies (L1,Φ) → (L2,SupLat(L2,Ω)) for every positivity Φ
on L1.

So the full subcategory of saturated basic topologies can be identified with
SupLatop, the opposite of the category of suplattices. It is easy to check that
the assignments (L,Φ) 7→ (L,SupLat(L,Ω)) and f 7→ f define a functor which
is left adjoint to the inclusion functor. In other words SupLatop embeds in
BTop as a reflective subcategory.

The category BTop has a terminal object 1 given by the saturated basic
topology on Ω, namely (Ω,SupLat(Ω,Ω)) ∼= (Ω,Ω). So it makes sense to
consider (global) elements/points of a basic topology.

Proposition 2.12. Let (L,Φ) be a basic topology and let f : L → Ω be a su-
plattice homomorphism. Then SupLat(Ω,Ω) ◦ f ⊆ Φ (that is, f is a morphism
(Ω,SupLat(Ω,Ω))→ (L,Φ) of basic topologies) precisely when f ∈ Φ. In sym-
bols, BTop(1, (L,Φ)) ∼= Φ.

Proof One direction is trivial. For the other, we have to check that f ∈ Φ
implies α ◦ f ∈ Φ for all α ∈ SupLat(Ω,Ω). For each a ∈ Ω we have

a = {∗ ∈ 1 | ∗ ∈ a} =
∨
{b ∈ Ω | b = a = 1}.

Translating this to SupLat(Ω,Ω) ∼= Ω (where 1 = Id, and α = 1 iff α(1) = 1)
we have α =

∨
{β ∈ SupLat(Ω,Ω) | β = Id, α(1) = 1}, and so

α ◦ f =
∨
{β ◦ f | β = Id, α(1) = 1} =

∨
{ϕ ∈ Φ | ϕ = f , α(1) = 1} ∈ Φ

q.e.d.
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3. Positivity and locales

Recall that a frame is a suplattice in which binary meet distributes over
arbitrary joins. A morphism between frames is a suplattice homomorphism
which, in addition, preserves finite meets. The opposite of the category of
frames is Loc, the category of locales. If L is a locale, then we write ΩL for
the corresponding frame. Similarly, for f : L1 → L2 a morphism of locales,
Ωf : ΩL2 → ΩL1 is the corresponding morphism of frames. Also recall that a
sublocale is a(n isomorphism class of) regular monomorphisms in Loc, and that
f is regular mono if and only if Ωf is surjective.

In view of the discussion in the previous section, a positive topology (defini-
tion 2.1) can be seen as a pair (L,Φ) where L is a locale and Φ ↪→ SupLat(ΩL,Ω)
is a positivity predicate on ΩL. The following is trivial.

Proposition 3.1. Positive topologies and morphisms f between locales such
that Ωf respects positivity form a category, called PTop.

More explicitly, a morphism f : (L1,Φ1)→ (L2,Φ2) between positive topolo-
gies is a morphism f : L1 → L2 of locales such that ϕ ◦Ωf ∈ Φ2 for all ϕ ∈ Φ1.

3.1. Formal closed = overt, weakly closed

The category Loc has a terminal object 1. Its corresponding frame is Ω =
Pow(1). As usual, we write ! for the unique morphism from L to 1. So, for
p ∈ Ω, we have Ω!(p) =

∨
{y ∈ ΩL | y = 1 & p = 1}.

A locale is overt (or open) when Ω! has a left adjoint, say ∃. When the
elements of Ω are regarded as propositions, ∃ becomes a predicate over ΩL. In
this case, it is usually written Pos and called a positivity predicate. Recall also
(see [12] and [14]) that L′ ↪→ L is a weakly closed sublocale of L if it is obtained
by imposing on L some “axioms” of the form x ≤ Ω!(p) with x ∈ ΩL and p ∈ Ω.

It is well-known [3] that overt, weakly closed sublocales of L can be identified
with the elements of SupLat(ΩL,Ω). The correspondence is as follows. To
every morphism ϕ : ΩL → Ω one can associate the weakly closed sublocale
i : Lϕ ↪→ L characterized by x ≤ Ω!

(
ϕ(x)

)
for all x ∈ ΩL. This is overt

with Pos(Ωi(x)) = ϕ(x). In other words, Lϕ is the largest sublocale of L for
which ϕ acts as a positivity predicate. Vice versa, every overt (weakly closed)
sublocale i : L′ ↪→ L gives a suplattice morphism ϕL′ : ΩL → Ω defined by
ϕL′(x) = Pos(Ωi(x)). So (see also [14]):

each formal closed set in a positive topology can be identified with an
overt, weakly closed sublocale (of the locale presented by the cover).

Every positivity on a locale L is a sub-suplattice of SupLat(ΩL,Ω). However,
its join operation does not corresponds to the join of sublocales. Actually,
it is not difficult to see that taking a union of elements in SupLat(ΩL,Ω)
corresponds to defining the least overt, weakly closed sublocale which contains
(as a sublocale) all the given ones.
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3.2. Points of a positive topology

The category PTop has a terminal object given by the saturated positive
topology (1,SupLat(Ω,Ω)) where 1 is the terminal locale. So it is natural to
consider morphisms from (1,SupLat(Ω,Ω)) to (L,Φ) as points for the positive
topology (L,Φ). This is in fact Sambin’s definition [9].

Definition 3.2. Let (L,Φ) be a positive topology. A(n ideal) point of (L,Φ) is
a morphism from (1,SupLat(Ω,Ω)) to (L,Φ) in PTop.

In other words, a point of (L,Φ) is given by a (global) point p of L such that
α ◦ Ωp ∈ Φ for all α ∈ SupLat(Ω,Ω). In view of proposition 2.12, we have:

Proposition 3.3. The (ideal) points of a positive topology (L,Φ) are the points
of L (as a locale) whose corresponding frame morphisms belong to Φ.

PTop
(
1PTop, (L,Φ)

)
= {p ∈ Loc(1Loc,L) | Ωp ∈ Φ}

We write Pt(L,Φ) for the collection of all (ideal) points of the positive topol-
ogy (L,Φ) and Pt(L) for the points of the locale L. Therefore, we have Pt(L)
= Pt(L,SupLat

(
ΩL,Ω)

)
but also, by a little abuse of notation,

Pt(L,Φ) = Φ ∩ Pt(L) .

This result suggests that a positivity relation on locale, besides being a way for
selecting a suplattice of overt weakly closed sublocales, is also a tool for choos-
ing some points of the locale, that is, a subspace. This idea has already been
discussed in [10]. For every family of points of L, one can define a positivity
by taking the sub-suplattice of SupLat(ΩL,Ω) generated by those points. The
ideal points of such a positive topology include all (and, under extra assump-
tions [10], only) the points in the given family. In particular, every sublocale L′
of L gives a positive topology

(
L,SupLat(ΩL′,Ω)

)
each of whose ideal points

is a point of L′ as well.

3.3. Relating PTop to Loc and Top

The notion of a saturated basic topology extends also to positive topologies.
So a saturated positive topology is one of the form

(
L,SupLat(ΩL,Ω)

)
. The

facts discussed in section 2.3 remain valid when basic topologies are replaced
by positive topologies (and, accordingly, sup-preserving maps are replaced by
morphisms of frames). In particular we obtain an embedding of categories
Loc ↪→ PTop which sends L to

(
L,SupLat(ΩL,Ω)

)
(and is the identity on

morphisms). Moreover Loc can be identified with a reflective subcategory of
PTop. Unfortunately this adjunction between Loc and PTop cannot be com-
posed with the usual one between Top and Loc (which would be possible if
Loc were a co-reflective subcategory of PTop). However, it is possible to ob-
tain an adjunction between Top and PTop by mimicking the usual adjunction
between Top and Loc, as we are now going to sketch. What follows is essen-
tially a rephrasing of some results in [9]. As we saw in section 2.1, there exists
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a natural way to associate a positive topology to a topological space. Given a
topological space (X, τ) and a base S for the topology, one defines a positivity
nX on τ by requiring

anX U ⇐⇒ a G restU ⇐⇒ (∃x ∈ X)(a ∈ ♦{x} ⊆ U)

for a ∈ S and U ⊆ S (we use the same notation as in section 2.1). By following
the arguments in section 2.2, one realizes that the suplattice morphisms τ → Ω
corresponding to nX are precisely all those of the form

A 7−→ A G C

for C a closed set (provided that “closed” is defined via adherent points). In
this view, a continuous map between topological spaces automatically gives
a morphism of positive topologies because the composition B 7→ f−1(B) 7→
f−1(B) G C gives the same results as B 7→ B G cl(f(C)) where cl is the
topological closure in Y (in the sense of adherent points). Consequently one
can define a functor from Top to PTop. This functor has a right adjoint whose
object part sends each positive topology to its space of points. We refer to [9]
for a detailed proof.

This adjunction between Top to PTop suggests a new, actually weaker,
notion of sobriety for topological space. In our notation, a space (X, τ) is
sober when it coincides with Pt(τ,nmax) = Pt(τ), while it is weakly sober if
X = Pt(τ,nX). The difference between the two is that nX corresponds to
those suplattice homomorphisms τ → Ω that have the form A 7→ A G C for
C a closed set. With classical logic, every suplattice homomorphism ϕ : τ → 2
is seen to have this form by choosing C to be the complement of the largest
open set U such that ϕ(U) = 0. In [2] it is shown that every Hausdorff space is
weakly sober, though not sober, in general.

4. Positivities and the lower powerlocale

For any locale L, the lower powerlocale PLL is constructed according to the
following two steps: first, we make an isomorphic copy of the suplattice ΩL in
which a new symbol �x corresponds to each x ∈ ΩL – so �

∨
i∈I xi =

∨
i∈I �xi;

second, consider the frame freely generated by the �x’s subject to preservation
of all the joins, and define PLL as the corresponding locale. A base for ΩPLL
is therefore given by all objects of the form �x1 ∧ · · · ∧ �xn with n a non-
negative integer. Our interest for lower powerlocales comes from the following
well-known result [3]. Recall that f v g holds of two locale maps from X to Y
if Ωf(y) ≤ Ωg(y) for all y ∈ ΩY .

Proposition 4.1. Given a locale L, let Pt(PLL) be the poset of all points of the
lower powerlocale PLL equipped with the specialization order v. Then Pt(PLL)
is a suplattice isomorphic to SupLat(ΩL,Ω).
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Proof By the very definition of PLL, the function � : ΩL → ΩPLL that
maps x to �x is a suplattice homomorphism. So, if p : 1 → PLL is a point
of PLL, then Ωp ◦ � : ΩL → Ω is a suplattice homomorphism. Conversely,
given ϕ in SupLat(ΩL,Ω), the map �x 7→ ϕ(x) extends uniquely to a frame
homomorphism ϕ̃ from ΩPLL to Ω, that is, a point of PLL. Clearly, ϕ̃ ◦ � =

ϕ and Ω̃p ◦ � = Ωp, and this bijective correspondence between Pt(PLL) and
SupLat(ΩL,Ω) is order-preserving. q.e.d.

4.1. Localic suplattices

One way to describe suplattice structure on a poset L is to consider the
function ↓ : L → Down(L) where Down(L) is the poset (with respect to set-
theoretic inclusion) of down-closed subsets of L and ↓x is the principal downset
of x. Then L is a suplattice if and only if ↓ has a left adjoint, which then
calculates the joins of downsets. [6] proposes a localic form of this in which
posets are replaced by locales (with the specialization order v on morphisms)
and Down is replaced by PL. The function ↓ : L → PLL then corresponds to the
unique frame homomorphism which sends �x to x, for every x ∈ ΩL. (Note that
such a frame morphism is surjective; so L is a sublocale of PLL.) [6] defines a
localic suplattice to be a locale L equipped with a morphism

⊔
: PLL → L left

adjoint to ↓, that is,
⊔
↓ v IdL and IdPLL v ↓

⊔
.

For instance, every lower powerlocale is a localic suplattice.
Localic suplattices are algebras for a monad whose functor part is just PL

[6]. As such, they are objects of a category (the Eilenberg-Moore category of the
monad) in which morphisms are commutative diagrams of the following form.

PLX
PLf //

⊔
��

PLY⊔
��

X
f

// Y

In this situation, we say that X is a localic sub-suplattice of Y if X is a sublocale
of Y (that is, f is regular mono in the category of locales).

The fact that points of a lower powerlocale form a suplattice (proposition
4.1) extends to any localic suplattice.

Proposition 4.2. Let X be a localic suplattice. Then Pt(X) is a suplattice,
ordered by specialization order v.

If f : X → Y is a morphism of localic suplattices, then Pt(f) : Pt(X) →
Pt(Y ) is a suplattice homomorphism.

Proof Let pi (i ∈ I) be a family of global points of X and consider
∨

i Ωpi ∈
SupLat(ΩX,Ω). This corresponds to a point of PLX, say P . We claim that⊔
◦P is the least upper bound of the pi’s in Pt(X). Suppose q is a global

point of X. By the adjunction,
⊔
◦P v q is equivalent to P v ↓ ◦ q. This

means that ΩP (y) ≤ Ωq(Ω↓(y)) for all y ∈ ΩPLX, which holds precisely when
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ΩP (�x) ≤ Ωq(Ω↓(�x)) for all x ∈ ΩX. By unfolding definitions, this becomes∨
i Ωpi(x) ≤ Ωq(x) for all x, that is, (∀i ∈ I)(pi v q). This shows that

⊔
◦P is

the desired least upper bound.
The second part is an immediate consequence of how the joins are calculated,

bearing in mind that composition with Ωf preserves joins in SupLat(ΩX,Ω).
q.e.d.

Note that, in the special case X = PLL and in view of proposition 4.1, the
least upper bound constructed above has to coincide with the usual point-wise
join in SupLat(ΩL,Ω) because joins are unique.

Corollary 4.3. Let L be a locale. If X is a localic sub-suplattice of PLL, then
Pt(X) is a positivity on L.

Proof By proposition 4.2, Pt(X) is a sub-suplattice of Pt(PLL), which is
isomorphic to SupLat(ΩL,Ω). q.e.d.

As we already know, a positivity on a locale L is a way to select some of
its points. This fact can be clearly seen now, at least when the positivity arises
as the collection of points Pt(X) of localic sub-suplattice m : X → PLL. For,
in that situation, we can consider the intersection of the two sublocales L and
X of PLL, namely the pullback L ×PLL X of m along ↓ : L → PLL. So the
points of the positive topology

(
L,Pt(X)

)
, that, as we know, are essentially

given by Pt(L) ∩ Pt(X), are nothing but the points of L×PLL X. This says, in
particular, that every positive topology of the kind

(
L,Pt(X)

)
, with X a localic

sub-suplattice of PLL, has the same ideal points of
(
L,SupLat(ΩL′,Ω)

)
for a

suitable sublocale L′ of L.
Now we want to investigate the converse to the previous corollary, namely

whether any positivity on a locale L arises as the family of points of a localic
sub-suplattice of PLL. We are going to show that the answer is positive provided
that classical logic is assumed.

In [6], also a contravariant functor M 7→ M̂ is constructed from suplattices to

localic suplattices, where ΩM̂ is the free frame over M (qua suplattice). Thus

for a locale L, we have Ω̂L = PLL. The points of M̂ can be identified with
suplattice homomorphisms from M to Ω; in symbols: Pt

(
M̂
) ∼= SupLat(M,Ω).

Proposition 4.4 (CLASS). Let (L,Φ) be a positive topology. Then there ex-
ists a localic sub-suplattice X of PLL such that Φ = Pt(X).

Proof Let M be the quotient of ΩL obtained as in proposition 2.11. By
[6], M̂ is a subobject of PL(L) in the category of localic suplattices. Moreover,

Pt(M̂) = SupLat(M,Ω) = Φ. q.e.d.

In particular, within a classical setting, every positivity Φ on L is the set of
points of a sublocale of PLL, that is, a sober subspace of Pt(PLL).

Apparently, these last results do not hold intuitionistically. In particular,
we suspect that the positivity nX associated to a spatial locale X (section 2.1)
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cannot be presented constructively as Pt(Y ) for some localic sub-suplattice Y
of PLX. (Recall that nX is classically – but not intuitionistically – equal to
nmax which, on the contrary, can be presented as Pt(PLX).)

5. Conclusions

The basic topologies of [9] have much appeal in their formal symmetries,
but there remains the question of how to exploit them mathematically. Our
impredicative version as pairs (L,Φ) involving suplattices, as a start, provides
an alternative mathematical view of what the basic topologies are.

If one considers that many suplattices are constructed impredicatively, there
are at least two approaches to seeking a predicative account. The first is to
work instead with suplattice presentations instead of the concrete suplattices,
and – as we have seen – that essentially was Sambin’s starting point. Note,
however, that the positivity relation may be constructed impredicatively, using
coinduction principles. The maximum positivity relation nmax is a typical
example.

The second approach is to use a locale whose points are the elements of the
suplattice under consideration. Formal topology then provides ways to make the
locales predicative, using presentations of frames. In section 4.1 we developed
ideas from [6] to deal with suplattices of the form SupLat(L,Ω), where L is
given by a presentation. This uses the lower powerlocale, which itself should
be considered part of the toolkit of predicative formal topology in that it can
be constructed predicatively on frame presentations. (More precisely, the lower
powerlocale is geometric [13].)

We therefore propose a predicative (and geometric) framework in which a
basic topology is a pair (L,Φ) where L is a presented suplattice, and Φ is a

localic sub-suplattice of L̂ (represented as a formal topology).
However interesting this may be as a technical reworking, it still leaves open

the question of how such pairs (L,Φ) may be be used mathematically. Perhaps
some clues are already present in [6] in its use of both kinds (presented and
localic) of suplattice. A particular achievement there was to give a geometric
account, in terms of localic surjections, of the highly classical completeness
theorems of [1].
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