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Abstract

Höhle has identified fuzzy sets, valued in a frame (complete Heyting al-
gebra) Ω, with certain sheaves over Ω: the subsheaves of constant sheaves
More general sheaves can be got as quotients of the fuzzy sets. His prin-
cipal approach to sheaves over Ω, and topos-theoretic constructions on
them, is via complete Ω-valued sets.

In this paper we show how the geometric fragment of those construc-
tions can be described in a natural “stalkwise” manner, provided one
works also with incomplete Ω-valued sets.

Our exposition examines in detail the interactions between different
technical expressions of the notion of sheaf, and highlights a conceptual
view of sheaf as “continuous set-valued map”.
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1 Introduction

In his two papers [H0̈7a] and [H0̈7b], Ulrich Höhle has shown how frame-valued
fuzzy sets may be considered as particular kinds of sheaves over the correspond-
ing locale. There are two particular insights that underly this treatment. The
first is that, of the various equivalent different ways of expressing the notion of
sheaf, the one most relevant to fuzzy sets is that of the “frame-valued set” (i.e.
set with frame-valued equality). The second is that fuzzy sets are then seen as
subsheaves of the “constant sheaves” that correspond to standard sets, and that
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the general sheaf can then be got as a quotient of a fuzzy set. From this point
of view, fuzzy set theory is mathematically deficient in that it does not include
quotienting, and when quotienting is added one obtains sheaf theory.

As is well known, the category of sheaves over a locale is a topos and so sup-
ports categorical operations corresponding to those of (intuitionistic) set the-
ory. These include products (cartesian products), pullbacks (fibred products),
coproducts (disjoint unions), coequalizers (quotients), exponentiation (function
sets), the subobject classifier (set of logical truth values) and power objects
(powersets). In [H0̈7a] these are described concretely in terms of the frame-
valued set structure of the sheaves.

The purpose of this paper is to publicize a certain class of operations that are
particularly well behaved. These are the geometric operations, and are known
from topos theory as those operations that are preserved by the inverse image
functors of geometric morphisms between toposes. Although they omit some of
the topos-valid (intuitionistic) operations, they have an inherent continuity that
makes it useful to restrict oneself to the geometric operations where possible.
When sheaves are viewed as local homeomorphisms, the geometric operations
have the important property that they can be calculated stalkwise. At first
sight this approach would seem to be useful only when the locale is spatial (so
that there are enough points and hence enough stalks)1, but in fact it can be
made sense of for general locales.

The geometric constructions provide a key to treating locales as spaces of
points, and locale maps as geometric transformations of points. In fact, there
is a sense in which continuity is just geometricity. From this point of view a
sheaf is a continuous assignment of stalks to points – something which can be
intuitively felt in the definition of local homeomorphism, but which has a more
profound expression in topos theory.

A technical point that arises is in regard to the completeness of the frame-
valued sets. In general, quite different frame-valued sets can present isomorphic
sheaves. However, any frame-valued set can be completed to give a canonical
representative, from which the presheaf can be easily extracted. Höhle describes
his constructions in terms of the complete frame-valued sets, but the geometric
operations can be described in particularly simple ways as constructions on the
uncompleted frame-valued sets and we shall describe examples of these.

Little of the technical content of the present paper is actually new. Our aim
is to present established results in a way that brings out a particular view of
sheaves as applied to fuzzy sets: that they are continuous set-valued maps.

The recommended introduction to sheaves from a topos point of view is
[MLM92]. [Gol79] is less deep, but shows well how logic and set theory trans-
late into category theory. The ultimate comprehensive reference is [Joh02a],
[Joh02b], but is not for the beginner. [Vic07] develops in more detail the re-
lationship between continuity and geometricity, and sheaves as continuous set-
valued maps.

1Indeed, Höhle’s account describes the local homeomorphism view but consistently restricts
to the spatial case.
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2 Sheaves over spaces

Sheaves are the central theme of this paper. Specifically we are interested in the
point-free theory of sheaves over locales, but it will be helpful first to describe
sheaves over spaces. A big conceptual difficulty is that they have a variety of
different but equivalent technical expressions. The two best known definitions
are as local homeomorphisms and as pasting presheaves. In addition, Höhle’s
connection with fuzzy sets is via a lesser known, and quite different, notion,
that of frame-valued set ; and this comes in two different flavours, complete and
incomplete.

We shall review the four kinds here, partly to see how bad the problem is.
The four really are different, and choosing one rather than another can make
a big difference to ease of calculation – but different calculations can require
different choice of sheaf style.

It is usual to take the word “sheaf” to mean explicitly the representation
as pasting presheaves. We shall use it more ambiguously, for any of the four
representations, modulo interconversion.

However, there is a more fundamental conceptual base: a sheaf over a space
X is a continuous set-valued map X → Set. This cannot be made precise
by topologizing the class of sets in the ordinary way – in fact, Grothendieck’s
idea of topos as “generalized topological space” is what is needed to define
suitable topological structure on “the space of sets”. (See Section 7 for an
outline of the technical details.) Instead, starting with local homeomorphisms,
we shall explain how sheaves can be seen as the technical expression of a natural
concept (continuous set-valued map) that cannot be derived from the ordinary
topological definition of continuity. We shall eventually connect it to geometric
logic.

On a matter of notation, if X is a topological space we write ΩX for its
topology, its lattice of open sets. Throughout the paper, the word map will
always be taken to imply continuity.

2.1 Local homeomorphisms

The first definition is that a sheaf over X is a local homeomorphism with X as
codomain.

Definition 1 (See Figure 1.) A map p : Y → X between topological spaces is
a local homeomorphism if each y ∈ Y has an open neighbourhood V for which
the image p(V ) is open and p homeomorphically maps V to p(V ). The domain
Y is the display space or espace étalé for the sheaf. For each x ∈ X, the fibre
p−1(x) is the stalk at x.

If p : Y → X and q : Z → X are two local homeomorphisms over X, then
a morphism between them is a map f : Y → Z such that q ◦ f = p. This final
condition is equivalent to saying that f maps stalks to stalks: for each x, f will
map p−1(x) into q−1(x).
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Figure 1: A local homeomorphism.

Proposition 2 If p : Y → X is a local homeomorphism then the subspace
topology on each stalk is discrete.

Proof. Let x ∈ X and let y be in the stalk at x, i.e. p(y) = x. Let V be as
in the definition. It is open in Y . Since p is 1-1 on V , we get V ∩ p−1(x) = {y},
and so {y} is open in the subspace topology on p−1(x).

This says that the stalk is a set in a strong way – we are not neglecting a
topology. Our contention is that the assignment of stalks to points of X is a
“continuous set-valued map” on X. Intuitively, continuity of f : X → Y says
that for certain “qualities”, if they hold for the result f(x), then they hold for all
f(x′) with x′ in some neighbourhood of x. In the usual definition of continuity,
these “qualities” are membership of open sets. Here they are existence and
equality of elements of the stalks.

For existence, if y ∈ p−1(x) then the definition of local homeomorphism
might be read as saying y “exists” throughout the neighbourhood p(V ) of x,
with V giving a continuous choice of stalk elements corresponding to y as x
varies.

For equality, suppose we have two such neighbourhoods V and V ′ of y. Then
V ∩ V ′ is also a neighbourhood of y, and p restricted to either V or V ′ maps it
to a neighbourhood of x. Hence we might say that equality of stalk elements at
x extends over a neighbourhood p(V ∩ V ′) of x.
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The following interesting characterization of local homeomorphism was used
by [JT84] to provide a localic definition (see Section 3.2). Here Y ×X Y denotes
the pullback of p against itself, i.e. the fibred product {(y1, y2) ∈ Y ×Y | p(y1) =
p(y2)} (with subspace topology inherited from Y × Y ). Recall also that a map
is open if direct image preserves openness.

Proposition 3 Let p : Y → X be a map of spaces. Then p is a local home-
omorphism iff both p itself and the diagonal inclusion ∆ : Y ↪→ Y ×X Y are
open.

Proof. First, note that ∆(Y ) is open in Y ×XY iff every (y, y) ∈ ∆(Y ) has a
basic open neighbourhood in Y ×X Y that is contained in ∆(Y ), in other words
we can find neighbourhoods V1 and V2 of y such that (V1 × V2) ∩ (Y ×X Y ) ⊆
∆(Y ). By restricting to V1∩V2 we might as well assume V1 = V2 = V (say). The
condition (V ×V )∩ (Y ×X Y ) ⊆ ∆(Y ) says that if y1, y2 ∈ V with p(y1) = p(y2)
then y1 = y2: in other words, p is 1-1 on V . We can deduce that ∆ is open iff
every y ∈ Y has an open neighbourhood V on which p is 1-1.
⇐: If y ∈ Y , choose V as above. p is a continuous bijection from V onto

p(V ), and since p is open, we deduce that this bijection is a homeomorphism.
⇒: Let W be open in Y . If y ∈ W , then we can find Vy playing the role of

V in Definition 1, and p(W ∩ Vy) is open. p(W ) is the union of these open sets
p(W ∩ Vy) and hence is open. Hence p is an open map. Openness of ∆ follows
from what we have already said.

Remark 4 It is worth considering the case X = 1, with p the unique map
! : Y → 1. From the definition one can see that ! is a local homeomorphism
iff Y is discrete. Then the proposition gives an alternative characterization of
discreteness, that ! and the diagonal ∆ : Y → Y × Y are both open.2

2.2 Pasting presheaves

The second technical expression of sheaf is via the notion of presheaf. If p is
a local homeomorphism, then for each open U in X one can consider the set
Sectp(U) of local sections of p over U , maps σ : U → Y such that p ◦ σ is
the identity on U , so for x in U , σ continuously selects σ(x) ∈ p−1(x). (See
Figure 2.)

In fact, these local sections correspond exactly to those opens V that are
mentioned in the definition of local homeomorphism.

Proposition 5 Let p : Y → X be a local homeomorphism. Then there is a
bijection between local sections of p, and opens V of Y that are mapped homeo-
morphically by p to opens of X.

Proof. If V is as stated, then the inverse of the homeomorphism is a local
section on p(V ). Conversely, if σ : U → Y is a local section then we need to show

2Actually, ! is open for every space Y . But the corresponding result for locales is false
constructively.
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Figure 2: Local sections.

that σ(U) is open. If y = σ(x), then we can find V as in the definition of local
homeomorphism. By intersecting with p−1(U), we can assume without loss of
generality that V ⊆ p−1(U), and then it follows that V ∩ p−1(σ−1(V )) ⊆ σ(U):
for if y′ ∈ V and σ ◦p(y′) ∈ V then p(y′) = p◦σ ◦p(y′), so y′ = σ ◦p(y′) ∈ σ(U).
Hence σ(U) is open.

If U ⊆ U ′ then there is a restriction map from Sectp(U
′) to Sectp(U) and

this makes Sectp a pasting presheaf according to the following definition.

Definition 6 A presheaf on X is a functor F : (ΩX)op → Set.3 If U ⊆ U ′

and σ ∈ F (U ′), we write σ|U for F (U ⊆ U ′)(σ), the restriction of σ to U .
If F and G are presheaves, then a sheaf morphism from F to G is a natural

transformation – that is to say, for each U ∈ ΩX a function θU : F (U)→ G(U)
such that if U ⊆ U ′ and σ ∈ F (U ′) then θU (σ|U) = θU ′(σ)|U .

F is a pasting presheaf if it has the following “sheaf pasting” condition.
Suppose Ui (i ∈ I) is a family of opens in X, and suppose we have a family
of elements σi ∈ F (Ui) such that for each pair (i, j), σi and σj have the same
restriction to Ui ∩ Uj. Then there is a unique σ ∈ F (

⋃
i Ui) that restricts to

every σi.

It is well known that pasting presheaves F : (ΩX)op → Set are equivalent

3More generally, for any category C, a contravariant functor from C to Set is called a
presheaf on C.
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Figure 3: An ΩX set.

to local homeomorphisms over X. We have already seen how a local homeomor-
phism p gives rise to a pasting presheaf Sectp. In the opposite direction, from
a pasting presheaf F we get a local homeomorphism in which the stalk at x is
the colimit of the F (U)s as U ranges over the open neighbourhoods of x.

2.3 Frame-valued sets

The definition of sheaf over X that was exploited by Höhle is that of ΩX-valued
set. (To speak of these in generality, without specifying a particular X, we refer
to “frame-valued sets”. This anticipates the notion of frame as in Definition 13,
of which the topology ΩX is an example.) These originated in unpublished work
by Higgs, and his work was subsequently described in [Lou79] and [Sco79].

Definition 7 Let A be a set. An ΩX-valuation on A is a function E : A×A→
ΩX satisfying E(a, b) = E(b, a) and E(a, b) ∧ E(b, c) ≤ E(a, c).

This is the simplest of all the definitions of sheaf. Its relationship to the
others is seen mostly clearly by describing the stalks. If x is a point of X, then
we can define a partial equivalence relation (symmetric and transitive, but not
necessarily reflexive) ∼x on A by a ∼x b if x in E(a, b), and so we get a set
A/ ∼x of equivalence classes. If x ∈ E(a, a), let us write [a]x for the equivalence
class of a modulo ∼x. Taking these sets A/ ∼x as stalks, their disjoint union is
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the display space Y , with the evident map p : Y → X, [a]x 7→ x. If we write
[a] for {[a]x | x ∈ E(a, a)}, then E(a, a) describes the region on which [a] is
defined, and E(a, b) the region on which [a] and [b] are defined and equal. Note
that [a] ∩ [b] = [a] ∩ p−1(E(a, b)).

To topologize Y , we take as a subbase the sets [a] and the sets p−1(U)
(U ∈ ΩX): then the sets [a] ∩ p−1(U) form a base. p restricted to [a] is then a
homeomorphism onto E(a, a), and it follows that p is a local homeomorphism.
We also write [a] for the corresponding local section over E(a, a), x 7→ [a]x.

Although the definition of sheaf as ΩX-valued set is very simple, the corre-
sponding definition of morphism is more complicated.

Definition 8 Let A and B be two ΩX-valued sets. Then a morphism θ : A→
B is a function θ : A×B → ΩX satisfying the following conditions.

θ(a, b) ⊆ E(a, a) ∩ E(b, b)

E(a′, a) ∩ θ(a, b) ∩ E(b, b′) ⊆ θ(a′, b′)
θ(a, b) ∩ θ(a, b′) ⊆ E(b, b′)

E(a, a) ⊆
⋃
b∈B

θ(a, b)

Proposition 9 Let A and B be two ΩX-valued sets, with corresponding local
homeomorphisms p : Y → X and q : Z → X. Then there is a bijection between
maps f : Y → Z over X and ΩX-valued set morphisms θ : A→ B.

Proof. A function f : Y → Z over X is equivalent to a family of stalk
functions

fx : p−1(x) ∼= A/ ∼x → q−1(x) ∼= B/ ∼x .

Each stalk function is equivalent to a relation θx ⊆ A×B, with aθxb iff a ∼x a
and fx([a]x) = [b]x. An arbitrary relation θx corresponds to a stalk function in
this way iff

aθxb =⇒ a ∼x a ∧ b ∼x b
a′ ∼x a ∧ aθxb ∧ b ∼x b′ =⇒ a′θxb

′

aθxb ∧ aθxb′ =⇒ b ∼x b′

a ∼x a =⇒ (∃b)aθxb

Here the first condition says that the relation θx relates elements only if their
equivalence classes exist (strictness), the second that it relates entire equivalence
classes (extensionality), and the third and fourth that it is single-valued and
total.

If we define θ : A×B → PX by θ(a, b) = {x | aθxb}, then the four conditions
above correspond to the four in the definition of morphism. Hence it remains
only to show that f is continuous iff every θ(a, b) is open. For the ⇐ direction,
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note that

f−1([b]) = {[a]x | x ∈ E(a, a) ∧ f([a]x) = [b]x)}
= {[a]x | x ∈ θ(a, b)}

=
⋃
a∈A

([a] ∩ p−1(θ(a, b))).

Hence if every θ(a, b) is open, so is f−1([b]) and it follows that f is continuous.
For ⇒, suppose x ∈ θ(a, b), i.e. x ∈ E(a, a) and [a]x ∈ f−1([b]). Then we can
find a basic open [a′] ∩ p−1(U) (a′ ∈ A and U ∈ ΩX) with

[a]x ∈ [a′] ∩ p−1(U) ⊆ f−1([b]).

The left hand part of this says that x ∈ E(a, a′) ∩ U . The right hand part says
that E(a′, a′) ∩ U ⊆ θ(a′, b), hence

x ∈ E(a, a′) ∩ U ⊆ E(a, a′) ∩ θ(a′, b) ⊆ θ(a, b).

It follows that θ(a, b) is open.
It can also be calculated that the identity morphism on A is E : A×A→ ΩX,

and composition of θ : A→ B with φ : B → C is defined by

(φ ◦ θ)(a, c) =
⋃
b∈B

θ(a, b) ∩ φ(b, c).

2.4 Complete frame-valued sets

In an ΩX-valued set A, each a ∈ A gives rise to a local section [a] over E(a, a).
These are by no means all the local sections, though they are enough to cover
all the points of the display space. In some respects it is advantageous to go to
complete ΩX-sets, in which all the local sections are of the form [a].

To see how this works, we analyse the local sections for an arbitrary ΩX-
valued set A. An open embedding U ↪→ X is itself a local homeomorphism,
corresponding to the valuation EU on {∗} such that EU (∗, ∗) = U . It follows
from Proposition 9 that sections on U are equivalent to morphisms θ from
({∗}, EU ) to (A,E). Defining s(a) = θ(∗, a), we find that sections on U are
equivalent to those singletons (defined as follows) for which U =

∨
a∈A s(a).

Definition 10 For an ΩX-valued set A we say that a function s : A→ ΩX is
a singleton if it satisfies

s(a) ≤ E(a, a) (s is strict)

s(a) ∧ E(a, b) ≤ s(b) (s is extensional)

s(a) ∧ s(b) ≤ E(a, b).

(Actually, the third condition implies the first. But we separate them out in
order to make explicit the properties of strictness and extensionality.)

9



If a ∈ A then we can calculate the singleton ã for the section [a] as follows.
As a family (θx) of relations, we have ∗θxb iff [b]x = [a]x, i.e. iff x is in E(a, b).
Hence ã(b) = E(a, b).

Definition 11 A is complete if for every singleton s there is a unique a ∈ A
such that s = ã.

For complete ΩX-valued sets, morphisms can be defined more simply: this
is because a morphism θ : A → B defines, for each a ∈ A, a singleton θ(a,−)
and hence an element of B. In fact, the morphisms are equivalent to functions
ψ : A→ B such that E(a, a′) ≤ E(ψ(a), ψ(a′)) and E(a, a) = E(ψ(a), ψ(a)).

The equivalence between pasting presheaves F and complete ΩX-valued sets
A is quite straightforward: A is the disjoint union of the sets F (U). If ai ∈ F (Ui)
(i = 1, 2), then

E(a1, a2) =
∨
{V ∈ ΩX | V ⊆ U1 ∩ U2, a1|V = a2|V }.

Every ΩX-valued set can be completed by taking the set of all singletons,
and this respects the morphisms. The valuation is then given by E(s1, s2) =∨
a∈A s1(a) ∧ s2(a).

There are some advantages in completing. The morphisms are simpler, and
in addition it gives a canonical representation of the sheaf: two complete ΩX-
valued sets are isomorphic as sheaves iff they are structurally isomorphic as
ΩX-valued sets, whereas incomplete ΩX-valued sets can be structurally quite
different but still give isomorphic sheaves. However, the completion process
itself is non-trivial. In the light of Section 4, it is non-geometric. In Section 6
we shall see how for uncompleted ΩX-valued sets the geometric constructions
are simple to describe.

2.5 Direct and inverse image functors

We shall write SX for the category of sheaves over X. This is ambiguous, since
we have four different definitions of sheaf, and we get four equivalent but non-
isomorphic categories. Nonetheless, we shall work with the ambiguous notation,
leaving it to be interpreted according to one’s current favourite definition.

If f : X → Y is a map, then we get from it two functors between SX and
SY , forming an adjoint pair. The left adjoint f∗ : SY → SX is the inverse
image functor, and the right adjoint f∗ : SX → SY is the direct image functor.
An important property of f∗ is that it preserves not only colimits (as does any
left adjoint) but also finite limits. (Such an adjoint pair is a geometric morphism
from SX to SY .) A key part of our discussion here will be of the “geometric”
constructions, those that are preserved by every f∗.

It turns out that the ease of constructing f∗ and f∗ depends on which defi-
nition of sheaf one is using.

For pasting presheaves, f∗ is easy. If F : (ΩX)op → Set is a pasting presheaf,
then f∗(F ) is got by composing with f−1 : ΩY → ΩX. Explicitly, f∗(F )(V ) =
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F (f−1(V )). From the way a complete frame-valued set A comprises the local
sections in a pasting presheaf, f∗ can also be easily calculated for these as a
pullback along f−1.

f∗(A) = {(a, V ) ∈ A× ΩY | E(a, a) = f−1(V )}

E((a1, V1), (a2, V2)) =
∨
{V ≤ V1 ∧ V2 | f−1(V ) ≤ E(a1, a2)}.

On the other hand, f∗ is harder for these, as it involves a completion step (or
“sheafification” for the presheaves).

For local homeomorphisms, f∗ is easy, constructed as a pullback

f∗(Z) −→ Z
f∗p ↓ ↓ p
X −→

f
Y

This uses the following result.

Proposition 12 The local homeomorphism property is preserved under pull-
back.

Proof. From Proposition 3, we can deduce by purely categorical arguments
that if open maps are preserved under pullback then so are local homeomor-
phisms. To prove the property for open maps, suppose that in the diagram
above p is open. To show that f∗p is open, it suffices to consider the direct
image of basic opens (U ×W ) ∩ f∗(Z) where U and W are opens in X and Z.
But

(f∗p)((U ×W ) ∩ f∗(Z)) = {x ∈ U | (∃z ∈W )f(x) = p(z)}
= U ∩ f−1(p(W )),

which is open.
Note that stalks are a special case of these pullbacks. A point of Y is a map

y : 1→ Y , and the stalk at y is y∗(Z). Now consider a point x of X. The two
pullbacks fit together to make another pullback:

x∗(f∗(Z)) −→ f∗(Z) −→ Z
↓ f∗p ↓ ↓ p
1 −→

x
X −→

f
Y

It follows that the stalk of f∗p at x is isomorphic to the stalk of p at f(x),
and hence f∗ matches the idea of sheaf as continuous set-valued map: from this
point of view, f∗ is just composition with f .

Finally, f∗ is easy for frame-valued sets (not necessarily complete). If
(B,EY ) is an ΩY -valued set, then f∗(B) is B again, with ΩX-valuation

EX(b1, b2) = f−1(EY (b1, b2)).
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Note how this matches the stalks. The stalk B/ ∼x of (B,EX) over x is iso-
morphic to the stalk B/ ∼f(x) of (B,EY ) over f(x), since

b1 ∼f(x) b2 ⇔ f(x) ∈ EY (b1, b2)⇔ x ∈ f−1(EY (b1, b2)) = EX(b1, b2)

⇔ b1 ∼x b2.

3 Locales

3.1 Background on locales

Standard references for frames and locales are [Joh82], [Vic89] and [Pul03]. For
the topos-theoretic account of constructive locales see [JT84].

Definition 13 A frame is a complete lattice in which binary meet distributes
over arbitrary joins. A frame homomorphism is a function between frames that
preserves finite meets and arbitrary joins. We write Fr for the category of frames
and frame homomorphisms. We generally write > and ⊥ for the top and bottom
elements of a frame.

Frames embody the idea of “point-free topology”. A frame is intended to
be a “lattice of opens”, except that these opens are not specified as subsets of
a given set of points. Points of frames are nonetheless defined, but for some
frames there are not enough of them to distinguish between all the opens –
frames need not be spatial.

Example 14 A typical example is the frame of regular opens of the reals R.
This is the image of ΩR under a frame homomorphism that maps U ∈ ΩR to
the interior of its closure, which we may denote by ¬¬U . (Note that to calculate
joins in this frame we must apply ¬¬ to the union.) A point would be a real
number x such that for every open U of the reals, if x is in ¬¬U then it is
already in U . But this is not possible – consider U = (x− 1, x) ∪ (x, x+ 1), for
which ¬¬U = (x− 1, x+ 1).

One might wonder therefore what virtue there is in the point-free approach
to topology: not only does it obfuscate the topology by converting it to lattice
theory, it does not even capture the established theory. However, it turns out
that in constructive mathematics (for example, in the topos-valid mathematics
one can obtain by replacing sets by sheaves) it gives a theory that is better
behaved than point-set topology, retaining classical theorems such as Heine-
Borel and Tychonoff that otherwise are lost.

We shall use the language of locales. For present purposes, we may think
of a locale as “a frame pretending to be a topological space” and define the
category Loc of locales to be the opposite of the category of frames. That
is to say, the objects are the same, but a morphism (a continuous map, or
just map) f : X → Y between locales is a frame homomorphism (the inverse
image function) in the opposite direction. We shall write ΩX for the frame
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corresponding to X, and Ωf : ΩY → ΩX for the frame homomorphism. The
purpose of this duplication of notation is to allow us to use a language that
supports spatial intuitions in point-free topology.

The Ω may seem otiose if the locale X just “is” the frame ΩX. However,
it makes it immediately apparent what kind of morphisms are being used. f :
X → Y is a locale map, f : ΩX → ΩY is a function between frames, and
f : X → ΩY is a type error.

It is usual to define a point of a locale X to be a map 1 → X, where Ω1
(or just Ω, the same notation as for the subobject classifier in a topos) is the
frame of truth-values. However, we shall generalize this: a point at stage W
(sometimes emphasized as a generalized point) is a map W → X. Then the
ordinary points (at stage 1) are called global points.

The idea that an arbitrary map into X should be considered a “generalized
point” of X may seem reckless at first. Of course, there are other, quite different,
ways to view maps – for example, when one views a local homeomorphism
p : Y → X as a set (the stalk) parameterized by a point of X. The view as
generalized point matches the fact (developed in Section 4.1) that points of a
locale X are models of a logical theory (in propositional geometric logic). When
the models are sought in the internal logic of sheaves over W , it turns out that
they are equivalent to maps W → X.

Composition with a map f : X → Y transforms points of X to points of
Y , just as with an ordinary continuous map. Can one still go in the opposite
direction, from point transformer to locale map? If one just considers global
points here, then there is a problem from non-spatiality. That is to say, the
action on global points does not in general define the locale map. This is clearest
in those locales that are non-trivial, but have no global points at all.

However, composition with f also transforms points at any given stage W .
Now, we do have enough points. In fact, consider the generic point, the identity
map Id : X → X, which is a point at stage X. Transforming this immediately
gives f , as a point of Y at stage X. An additional property of this point
transformation is that it respects change of stage. Suppose we have α : W1 →
W2. Then composition with α transforms points at stage W2 to points at stage
W1. Associativity of composition, i.e. f ◦ (x ◦ α) = (f ◦ x) ◦ α, says that the
point transformer f commutes with change of stage.

In general, suppose we have a point transformer that commutes with change
of stage. More precisely, –

1. For each stage W , we have a function FW that transforms points x : W →
X of X to points FW (x) : W → Y of Y (both at stage W ).

2. If α : W1 →W2, then FW2
(x) ◦ α = FW1

(x ◦ α).

Let f = FX(Id) : X → Y . Then if x : W → X we have

FW (x) = FW (Id ◦x) = FW (Id) ◦ x = f ◦ x.

From this it follows that morphisms are equivalent to “generalized point
transformers that commute with change of stage”.
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This is in fact not at all deep. It is a completely general argument that
applies in any category, and derives from the notion of “generalized element”
in categorical logic. For locales, however, we shall later see how the logical
principle of “geometricity” can provide a guarantee that a point transformer
commutes with change of stage.

To illustrate already some of the usefulness of generalized points, consider
as an example pullbacks (fibred products).

Y ×X Z → Z
↓ ↓ g
Y →

f
X

For spaces, the points of Y ×X Z are those pairs (y, z) ∈ Y × Z such that
f(y) = g(z), and then the topology is the coarsest such that the projections to
Y and X are both continuous. For locales, the frame-theoretic description of the
pullback is complicated. But it does exist, and the universal characterization
of pullback then says precisely that, at any stage W , the points of Y ×X Z
are those pairs (y, z) such that f ◦ y = g ◦ z where y, z are points of Y and Z
respectively. Note that there is no need to mention the topology explicitly – it
is enough to describe the points. For example, the projection maps to Y and
Z are defined as the pair of points at stage Y ×X Z that corresponds to the
generic point of Y ×X Z. They are automatically continuous, because all locale
maps are.

3.2 Sheaves over locales

Let X be a locale. Clearly the presheaf and ΩX-valued set definitions of sheaf
transfer directly from spaces to locales, since they are expressed in terms of
the frame ΩX and do not mention points. The same goes for the morphisms
between sheaves in those styles, and for the interconversion between the styles.

It is less clear that the local homeomorphism definition also transfers, and
one might be tempted to give up on them – surely, three different definitions
of sheaf are already more than adequate. But the local homeomorphisms are a
rather interesting case because of our intuition that the stalk map is a “contin-
uous set-valued map”. Fortunately, there is a good localic definition based on
Proposition 3. This relies on having a localic definition of open map. A good
development of these ideas can be found in [JT84]; we have sketched proofs in
order to provide some acquaintance with the techniques underlying these key
ideas of locale theory.

Definition 15 A locale map p : Y → X is open if Ωp has a left adjoint ∃p :
ΩY → ΩX satisfying the Frobenius condition

∃p(V ∧ Ωp(U)) = ∃p(V ) ∧ U .

p is a local homeomorphism if both p and the diagonal ∆ : Y ↪→ Y ×X Y
are open.

14



If p : Y → X and q : Z → X are two local homeomorphisms over X, then a
morphism between them is a map f : Y → Z such that q ◦ f = p.

Though the definition of open map looks abstract, it turns out that it is
equivalent to the property that direct images of open sublocales are open. ∃p
describes the direct images of opens. The adjunction ∃p a Ωp is equivalent to
Ωp(∃p(V )) ≥ V and ∃p(Ωp(U)) ≤ U for all V ∈ ΩY , U ∈ ΩX.

Remark 16 Open inclusions into X are equivalent to opens of X. (A map p
is an inclusion if Ωp is surjective. These are also known as sublocales of X.)
If i : U ↪→ X is an open inclusion, then the corresponding open is ∃i> ∈ ΩX.
Given U ∈ ΩX, it can be made into a locale by defining ΩU to be the downset
↓ U of U in ΩX, and defining i : U ↪→ X by Ωi(U ′) = U ∧ U ′, ∃iU ′′ = U ′′. As
we shall see (Proposition 21), open inclusions are also local homeomorphisms
and (Corollary 22) correspond to subsheaves of 1.

The following two propositions are of central importance, as can be seen
from [JT84]. They are the localic analogues of Remark 4 and Proposition 12.

Proposition 17 A locale X is discrete (i.e. its frame is isomorphic to a pow-
erset) iff the unique map ! : X → 1 is a local homeomorphism.

Proof. We sketch a proof. A more detailed proof is given for Theorem 29,
which deals with local homeomorphisms with arbitrary codomain.
⇒: Suppose ΩX = PA. (We might as well assume equality here.) The

functions ∃! : PA→ Ω and ∃∆ : PA→ PA⊗ PA ∼= P(A× A) are expected to
give direct images, so they are defined by

∃!(S) = true if S is inhabited

∃∆(S) = ∆(S) = {(a, a) | a ∈ S}.

⇐: Since the topology is supposed to be discrete, one must identify those
opens that are singletons. Thinking spatially, we seek opens a ∈ ΩX such that
if x, y ∈ a then x = y: in other words, a× a ≤ ∃∆>. These are to be the opens
with at most one element. On the other hand, the opens with at least one
element, in other words the “positive” opens, are those opens a satisfying ∃!a.
(The fact that ∃! : ΩX → Ω serves as a positivity predicate on ΩX is brought out
well in [Joh84] and is also a standard feature in predicative formal topology.)
We define A to be the set of opens a satisfying both those conditions. It remains
to show that every open U is uniquely expressible as a join of elements of A.

Proposition 18 The open property of locale maps is preserved under pullback.
In other words, if p in the following pullback diagram is open, then so is f∗p.

f∗(Z) = X ×Y Z
p∗f−→ Z

f∗p ↓ ↓ p
X −→

f
Y
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Moreover, the diagram satisfies the following Beck-Chevalley condition, that for
every W ∈ ΩZ

∃f∗p(Ωp∗f(W )) = Ωf(∃p(W )).

Proof. 4By analogy with the proof of Proposition 12, we should like to
define

∃f∗p(U ⊗W ) = U ∧ Ωf(∃p(W )), (1)

where U ⊗W denotes the image of U ×W in Ω(X×Y Z). The function ∃f∗p, as
a left adjoint, is expected to preserve all joins, but not necessarily finite meets.
There is therefore a non-trivial technical question about how to define this
function from the frame pushout Ω(X ×Y Z). Equation 1 suffices to determine
∃f∗p on the whole of Ω(X×Y Z), since an arbitrary element is a joins of ones of
the form U ⊗W ; but there is still the question of whether it is well-defined. It
turns out that Ω(X ×Y Z), a pushout with respect to frame homomorphisms,
is a tensor product with respect to join-preserving functions. To check the well-
definedness of Equation 1 it suffices to check (i) it preserves joins in U , (ii) it
preserves joins in W , and (iii) it gives the same answer for (U ∧Ωf(V ))⊗W as
for U ⊗ (Ωp(V )∧W ). (These should be familiar from the analogous conditions
for the tensor products of vector spaces.) For a justification see [JT84]. It can
also be derived as a consequence of Johnstone’s description [Joh82] of the frame
of C-ideals, given a site.5

Once we know that ∃f∗p is well defined, it is readily checked that it has
the properties needed to give openness of f∗p. The Beck-Chevalley condition
follows from

∃f∗p(Ωp∗f(W )) = ∃f∗p(>⊗W ) = > ∧ Ωf(∃p(W )).

Proposition 19 The local homeomorphism property of locale maps is preserved
under pullback.

Proof. Just as in the spatial case (Proposition 3), we can deduce by purely
categorical arguments that if open maps are preserved under pullback then so are
local homeomorphisms. Let us be explicit about these categorical arguments this
time. Suppose we have a pullback diagram as in the statement of Proposition 18
with p a local homeomorphism. By Proposition 18, f∗p is open. We still want
∆ : f∗(Z)→ f∗(Z)×X f∗(Z) to be open; but it is obtained from a pullback

X ×Y Z
p∗f−→ Z

∆ ↓ ↓ ∆
(X ×Y Z)×X (X ×Y Z) −→

p∗f×p∗f
Z ×Y Z

4There is a more geometric proof using powerlocales, i.e. localic hyperspaces. It is based on
a result in [Vic95], that the unique map ! : X → 1 is open iff the lower powerlocale PLX has
a top point in a suitably strong sense. Using the hyperspace nature of PLX, this top point
corresponds to X as sublocale of itself. The idea is explained further in other papers such as
[Vic04] and [Vic09].

5The technology is developed extensively for other kinds of functions beyond those that
preserve joins; see e.g. [Vic04].
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so that openness of the left-hand ∆ follows from that of the right-hand ∆.
Proving that this is a pullback can be done by categorical diagram chasing,

but it is illuminating to do it by considering generalized points as mentioned
in Section 3.1. A point of X ×Y Z is a pair (x, z) of points of X and Z, such
that f(x) = p(z); then a point of (X ×Y Z)×X (X ×Y Z) is a triple (x, z1, z2)
such that f(x) = p(z1) = p(z2). (Actually, we get two X-components, but they
are required to be equal.) Now a point of the pullback we are calculating is
a quadruple (x, z1, z2, z) such that (x, z1, z2) is in (X ×Y Z) ×X (X ×Y Z), z
is in Z, and (z1, z2) = ∆(z) = (z, z). Hence z1 = z = z2 and the points are
equivalent to pairs (x, z) in X ×Y Z.

With the localic definition, local homeomorphisms are again equivalent to
pasting presheaves. In one direction, from local homeomorphism p to pasting
presheaf Sectp, the construction follows the spatial idea. If U ∈ ΩX, then by
Remark 16 the open U corresponds to an open inclusion U ↪→ X, and we define
the local sections over U to be the locale maps σ : U → Y such that p ◦ σ is the
inclusion. Sectp(U) is the set of local sections over U .

The elegant argument that completes the proof that local homeomorphisms
are equivalent to pasting presheaves can be found in [JT84]. First, it relies
on the standard topos-theoretic result that SX, understood specifically as the
category of pasting presheaves over X, is a topos. That gives access to the abil-
ity to internalize mathematics in SX, provided the mathematics is conducted
intuitionistically. In particular that gives an internal treatment of frames and
locales, and it turns out that an internal locale in SX is equivalent to an external
locale map with codomain X (a “locale over X”). They give an intuitionistic
proof that internally discrete locales are equivalent to external local homeomor-
phisms. But “discrete” means the frame is isomorphic to a powerset (this is
where the importance of Proposition 17 comes in), and it follows that internally
discrete locales are equivalent to objects of SX, i.e. pasting presheaves.

In Section 5 we shall give a more direct proof of the equivalence between
local homeomorphisms over X and ΩX-valued sets.

Change of base functors can be calculated using formulae analogous to those
in Section 2.5. Suppose f : X → Y is a locale map. For pasting presheaves, f∗ is
got using composition with Ωf , explicitly f∗(F )(V ) = F (Ωf(V )). For complete
frame-valued sets A, f∗ can be calculated as a pullback along Ωf :

f∗(A) = {(a, V ) ∈ A× ΩY | E(a, a) = Ωf(V )}

E((a1, V1), (a2, V2)) =
∨
{V ≤ V1 ∧ V2 | Ωf(V ) ≤ E(a1, a2)}.

For local homeomorphisms (see Section 3.2), and making use of Proposi-
tion 19, f∗ is a pullback

f∗(Z) −→ Z
f∗p ↓ ↓ p
X −→

f
Y

Finally, for frame-valued sets (not necessarily complete), if (B,EX) is an ΩY -
valued set, then f∗(B) isB again, with ΩX-valuation EX(b1, b2) = Ωf(EY (b1, b2)).
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3.3 Key results on local homeomorphisms

We summarize here some miscellaneous and well known facts about sheaves over
locales, especially when considered as local homeomorphisms.

Proposition 20 1. Any homeomorphism is a local homeomorphism.

2. The identity map IdX : X → X is a terminal object in the category of
local homeomorphisms over X.

3. The composite of two local homeomorphisms is again a local homeomor-
phism.

4. The locale pullback of two local homeomorphisms over X is again a local
homeomorphism over X.

5. Let q : Z → X and p : Y → X be local homeomorphisms, and f : Z → Y
a map over X. Then f is a local homeomorphism.

Proof. (1), (2) are easy.
(3): Let q : Z → Y and p : Y → X be maps. It is not hard to verify

that if they are both open, then so is p ◦ q. Now suppose they are both local
homeomorphisms. The diagonal ∆ : Z → Z ×X Z is a composite of ∆ : Z ↪→
Z ×Y Z, which is open by hypothesis, and the map (q ×X q)∗∆, which is open
as a pullback of an open.

Z ×Y Z −→ Y
(q ×X q)∗∆ ↓ ↓ ∆

Z ×X Z −→
q×Xq

Y ×X Y

(To see that the diagram is a pullback, consider generalized points. A point of
the pullback is a triple (z1, z2, y) such that p(q(z1)) = p(q(z2)) and (q(z1), q(z2)) =
(y, y), and this is equivalent to a pair (z1, z2) such that q(z1) = q(z2).)

(4): Consider the pullback

Y ×X Z
q∗p−→ Z

p∗q ↓ ↓ q
Y −→

p
X

The map from Y ×X Z to X is the composite p ◦ (p∗q). Using Proposition 19,
both of these are local homeomorphisms; hence, by part (3), so is the composite.

(5): We can decompose f as a composite of local homeomorphisms,

Z ∼= Z ×Y Y
Z×Y ∆−→ Z ×Y Y ×X Y ∼= Z ×X Y

p∗q−→ Y .

We can see these compose to f by considering (generalized) points,

z 7−→ (z, f(z)) 7−→ (z, f(z), f(z)) 7−→ (z, f(z)) 7−→ f(z).
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Note that ∆ : Y → Y ×X Y is a local homeomorphism. It is open from the fact
that p is a local homeomorphism, and we have Y ×(Y×XY ) Y ∼= Y ×X Y .

The following proposition is vital for analysing subsheaves.

Proposition 21 Let p : Y → X be a local homeomorphism (considered as sheaf
over X). Then subsheaves of p are equivalent to opens of Y .

Proof. From Remark 16 we know that opens of Y are equivalent to open
inclusions i : V ↪→ Y . Inclusions are monic, so by considering the pullback
square that defines V ×Y V we can deduce that the two projections pi : V ×Y V →
V are equal to each other and inverse to ∆ : V → V ×Y V . Hence ∆, being a
homeomorphism, is a local homeomorphism. Hence i is a local homeomorphism.
The locale map i thus gives a morphism of local homeomorphisms over X, from
p ◦ i to p. Since i is an inclusion as locale map, it must also be monic in the
category of local homeomorphisms over X. Hence we have a subsheaf of p.

Now let q : Z → X be a local homeomorphism with a monic sheaf morphism
i : Z → Y over X. By Proposition 20 (5), i is a local homeomorphism (and
hence open). The pullback diagram

Z ×Y Z
p2−→ Z

p1 ↓ ↓ i
Z −→

i
Y

is also a pullback diagram of sheaves over X, and so by sheaf monicity of i we
deduce that p1 = p2. Now from Proposition 18 (the Beck-Chevalley condition
and Equation 1) we see

Ωi(∃i(W )) = ∃p1(Ωp1(W )) = ∃p1(W ⊗>) = W ∧ Ωi(∃i(>)) = W

and it follows that Ωi is surjective, so i is an inclusion.

Corollary 22 Let X be a locale. Then subsheaves of the terminal sheaf over
X are equivalent to opens of X.

3.4 Sheaves as set-valued maps

Now let us return to the idea that a sheaf over X (in the form of local homeo-
morphism) is a set-valued map on X. If p : Y → X is a local homeomorphism
(between locales) and x : 1 → X is a global point of X, then we can construct
the stalk p−1(x) using a pullback

p−1(x) −→ Y
x∗p ↓ ↓ p

1 −→
x

X

By Proposition 19 x∗p is a local homeomorphism, and then by Proposition 17
p−1(y) is a discrete locale. Thus again the stalks provide an assignment of sets
to points of X.
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Since X might not have enough global points, it by now seems less plausi-
ble that a sheaf can be sensibly viewed as a continuous set-valued map. The
above argument for a global point x also works for generalized points, but only
provided that we think of “sets at stage W” as the sheaves over W . Each point
x : W → X gives us by pullback a “generalized stalk” x∗p : W ×X Y → W .
Although in this generalized sense the stalk is not a set in the standard sense,
as a local homeomorphism it plays the role of “set” in the internal mathematics
of sheaves over W .

However, so far the argument is completely circular: we try to present the
intuition that a sheaf over X is a map from points of X to sets; yet when
it comes to the generalized points x : W → X (which we need because the
possible non-spatiality means there might not be enough global points) we find
that “set” has to be interpreted as sheaf over the stage W . Hence in order
to motivate sheaves as set-valued maps, we apparently have to presuppose a
technical definition of sheaf in order to explain the generalized notion of set.
Since an important generalized point is the generic point IdX : X → X at stage
X, we end up using sheaves over X in order to explain sheaves over X.

The central subtlety lies in how we should think of a “set-valued map”. It is
wrong to think of it extensionally as somehow listing, for each point (whether
global or generalized), what the corresponding set is. With that approach, if
we just use global points then we may have too few, while if we use generalized
points then we beg the question of what generalized sets are. Instead we should
think of a set-valued map intensionally, as providing a uniform description of
how the set is constructed from the point.

Every point of a locale X can be described as a certain structure of sets.
For example, a point of the locale R of reals (as described, for example, in
[Joh82]) can be described as a pair of subsets of the rationals Q, satisfying
properties to constrain them to form a Dedekind cut. (See, e.g., [Vic07] for a
detailed discussion of this.) From these two sets one can construct other sets
in a uniform way. If this is done formally, one ends up with the category of
“sets that can be constructed out of a generic real number”.6 This, then, is the
idea of set-valued map: a sheaf over X is, modulo equivalence, a formal way of
constructing sets out of points of X.

To make this precise, the central question is what set constructions are
allowed. They are the “geometric” constructions examined in the following
section (and specifically Section 4.2).

6Note that the formality referred to here is not that of set theory, with a logical account
of ∈ as a binary relation on the universe of sets. Rather, our manipulation of sets uses
mathematical constructions such as product, disjoint union, etc. that are characterized up to
isomorphism by universal properties. It is formalized using category theory rather than set
theory.
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4 Geometric logic

The geometric constructions mentioned at the end of the previous section are
best approached though a particular “geometric” logic, to which we now give
an introduction. For fuller details, see [MR77], [Joh02b] or (for a conceptual
overview) [Vic07].

Geometric logic is a positive logic matched to topological structure. For ex-
ample, the logical connectives in its propositional fragment are finite conjunction
and arbitrary disjunction, matching the finite intersections and arbitrary unions
with which one can combine open sets. A far-reaching consequence of having
arbitrary disjunctions is that the logic goes along with a certain notion of “ge-
ometric type construction” (Section 4.2), and our claim here is that this is the
essence of continuity. For locales at least, a continuous map X → Y is a geo-
metric construction of points of Y out of points of X. This is surprising for two
reasons. First, no continuity proof is needed. The geometricity constraints mean
that geometric constructions are intrinsically continuous. In a sense, obeying
those constraints means foregoing the ability to construct discontinuous func-
tions. Second, it applies even though there might not be enough points. We
then generalize this to the situation where we might be constructing not points
of a locale but more elaborate set-based structures, and this will include the
notion of sheaf as continuous set-valued map.

Let us outline the main argument of this section.
In Section 4.1 we describe propositional geometric theories. These are equiv-

alent to presentations of frames by generators and relations (see, e.g., [Vic89]),
and each open (in the frame) may be seen as a way to transform the ingredients
of a point geometrically – using joins and finite meets – into a truth value (or,
equivalently, a subsingleton set).

In Section 4.2 we generalize to predicate geometric theories and describe how
out of the logic we also obtain a notion of geometric type constructors.

In Section 4.3 we outline the notion of classifying topos. This is central to
our argument, because it generalizes the idea of presenting a frame. The frame
comprises the formal ways to construct a subsingleton set geometrically out of
a point; in the classifying topos this is generalized to constructing arbitrary
sets geometrically, using the geometric type constructors. It is fundamental to
topos theory that for any propositional geometric theory, the classifying topos
is equivalent to the topos of sheaves over the frame presented. Thus sheaves
become ways to construct sets out of points.

In Section 4.4 we bring this to bear on constant sheaves, and Höhle’s iden-
tification of their subsheaves with fuzzy sets.

4.1 Propositional geometric logic

Let Σ be a propositional signature, i.e. a set of propositional symbols. A geo-
metric formula is built out of them using finitary conjunction (∧) and arbitrary
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disjunction (
∨

).7 We shall not go into the logical rules here, but they include
distributivity of ∧ over

∨
and are enough to ensure that each formula is equiv-

alent to one expressed as a disjunction of finite conjunctions of propositional
symbols.

Compared with ordinary classical logic, geometric logic lacks implication
(→) as a connective in formulae and so cannot be presented in the Hilbert style.
A geometric theory is a set not of sentences (formulae with no free variables),
as in classical logic, but of geometric sequents of the form φ→ ψ, where φ and
ψ are geometric formulae. A geometric theory is a pair (Σ, T ) where Σ is a
signature and T a set of sequents – or we say that T is a theory over Σ.

The notion of model will be important here. A model first requires each
propositional symbol in Σ to be interpreted as a truth value. That interpretation
can then be extended to arbitrary formulae φ in an obvious way, and then the
interpretation is a model of (Σ, T ) if, for every sequent φ → ψ in T , if φ is
interpreted as true then so is ψ.

In fact a geometric theory (Σ, T ) is structurally the same as a presentation
Fr〈Σ | T 〉 of a frame algebraically using generators (the propositional symbols
in the signature Σ) and relations (the sequents in the theory T ). A model of the
theory (Σ, T ) is exactly what is required to define a frame homomorphism from
Fr〈Σ | T 〉 to Ω (by a function Σ→ Ω that respects the relations), and so is the
same as a global point of the locale [Σ, T ] defined by Ω[Σ, T ] = Fr〈Σ | T 〉. Hence
one can think of a locale as “the space of models for a propositional theory”.

The notion of model can be generalized. A standard model interprets propo-
sitional symbols as truth values, in Ω. But this still makes sense if the symbols
are interpreted in any other frame ΩW , and for each sequent φ → ψ in T the
interpretation of φ (as element of ΩW ) is below that of ψ. Then the models of
(Σ, T ) in ΩW are the same as frame homomorphisms Ω[Σ, T ]→ ΩW , i.e. locale
maps W → [Σ, T ], i.e. generalized points of [Σ, T ] at stage W .

Hence we can say in generality that the points of the locale [Σ, T ] are the
models of (Σ, T ).

An important generalized model of (Σ, T ) is the generic point, at stage
[Σ, T ] (see Section 3.1). As locale map, this is the identity map on [Σ, T ], and
it corresponds to the injection of generators Σ→ Ω[Σ, T ].

Let us now look more carefully at the opens. The following definition will
be important.

Definition 23 The Sierpiński locale S is presented by the geometric theory with
one generator P and no relations.

It has (in classical mathematics) two global points, got by interpreting P as
either true or false, and three opens, ⊥ (bottom), P and > (top). A point of S
at stage W (a map W → S), in other words a model of the theory in ΩW , is just
an open of W . That is equivalent to a subsheaf of 1 over W , or, in the internal
mathematics of sheaves over W , a subsingleton set. But truth values φ are also

7[MLM92] do not allow for infinitary disjunctions. What they define as geometric logic is
not the full generality, but coherent logic.
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equivalent to subsingleton sets {∗ | φ} ⊆ {∗}, and this equivalence is still valid
in the intuitionistic mathematics of sheaves. (Truth values are elements of the
subobject classifier, and they are equivalent to subobjects of 1.) Thus quite
generally we may think of the points of S as being truth values, or subsets of 1.

Now the opens of Ω[Σ, T ] are built up from the generators using joins and
finite meets: they are the geometric formulae modulo provable equivalence.
(Logically, the frame is the Lindenbaum algebra for the theory.) The generators
are the ingredients that define a point (as model of (Σ, T )), so we may think of
the opens as formal geometric constructions of truth values – i.e. subsingleton
sets – out of points, thus partially fulfilling the ambitions set out in Section 3.4.
This seems to match well an intuition that opens, as maps W → S, map points
of W to points of S, i.e. subsingleton sets. In fact, this is an instance of a very
general principle.

Consider maps [Σ1, T1]→ [Σ2, T2]. These are models of (Σ2, T2) in Ω[Σ1, T1].
But all the ingredients of such a model are made geometrically (i.e. using ∧
and

∨
) from the symbols of Σ1 and one deduces that maps are equivalent

to geometrically defined transformations of models of (Σ1, T1) into models of
(Σ2, T2). To define a map of locales f : X → Y we declare “let x be a point
of X” (technically this is then going to be the generic point of X) and then,
geometrically, define a point f(x) of Y . Maps can be defined pointwise, even if
X does not have enough global points, and no continuity proof is needed!

Comparing this with what was said in Section 3.1, we see that the geometric-
ity provides a guarantee that the point transformation commutes with change
of stage. This is because the stage changes α correspond to applying Ωα, which
preserves the geometric connectives.

Conceptually, therefore, –

• a locale is the “space of models” of a propositional geometric theory, and

• a map is a geometric transformation of models.

To summarize it as a slogan, continuity is geometricity.
There is a subtle issue concerning the role of geometricity. A frame is a

complete Heyting algebra, and has intuitionistic but non-geometric structure
such as the Heyting arrow and negation. Suppose we say “let x be a point
of X”, and then, non-geometrically, define a point f(x) of Y . We can apply
this to the generic point, the identity map on X, and thus get a point of Y at
stage X, in other words a map X → Y . However, in terms of the discussion in
Section 3, the non-geometricity means this does not commute with change of
stage. This is because change of stage for α is achieved by applying the frame
homomorphism Ωα, and non-geometric operations are not preserved by frame
homomorphisms.

Example 24 Consider the point transformer F that transforms points of S to
points of S by applying Heyting negation ¬ in frames. At stage W , the points
of S are the elements of ΩW , and we define FW (U) = ¬U . The generic point
Id : S→ S, as element of ΩS, is the generator P , and in ΩS we have ¬P = ⊥.
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The corresponding frame homomorphism takes > to >, and P and ⊥ both to
⊥. When we use composition with this to give a point transformer, we find it
always takes any open U of W to ⊥, and not to ¬U as intended. It just happens
that for the generic point P , we have that ¬P and ⊥ are equal.

4.2 Predicate geometric logic and geometric type con-
structions

There is also predicate geometric logic. For this, we allow the signature Σ to
include sorts, and function symbols and predicates together with their arities
(including the sorts of the arguments and results). Then terms can be built
from sorted variables and the function symbols in the usual way, and geometric
formulae are built from terms and predicate symbols using not only ∧ and

∨
,

but also equality = and existential quantification ∃. Then a geometric sequent is
of the form (∀xyz · · · )(φ→ ψ), where “xyz · · · ” is a finite list of sorted variables,
and φ and ψ are geometric formulae in which every free variable is in the list
xyz · · · . A geometric theory is again a set of sequents.

The infinitary disjunctions make this an unusual logic, with a natural type
theory (type constructions) associated with it. They give us the power within
geometric theories to characterize certain sorts up to isomorphism. Suppose,
for example, we want to characterize a sort N as the natural numbers. We can
do this with a constant 0, a successor map s, and sequents

(∀n)(s(n) = 0→ false)

(∀mn)(s(m) = s(n)→ m = n)

(∀n)(true→
∨
i∈N

n = si(0))

(Here, the exponent i in si(0) is not part of the logical syntax, but is meant to
suggest an inductive definition of formulae φi in which φ0 is the formula n = 0,
φ1 is n = s(0), φ2 is n = s(s(0)) and so on.)

Because of this ability, which is impossible in finitary logic, geometric logic
embodies a “geometric type theory”. The geometric type constructions include
finite limits (products, pullbacks, equalizers, ...), arbitrary colimits (coproducts,
quotients, ...) and also all free algebra constructions.

Because these type constructions can already be characterized within the
logic, it makes no difference to the expressive power of the logic if we treat them
as being freely available. As we shall see in Section 4.3, this has a radical effect
on how we deal with geometric theories and their models in the predicate case.
It takes in the geometric construction of new types and moves from a pure logic
to a “geometric mathematics”. Some explicit applications of this to predicate
geometric logic and toposes can be found in [Vic99] and [Vic07].
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4.3 Geometric logic of sheaves

The geometric type constructions can be built up using finite limits and arbi-
trary colimits, at least if these are assumed to be “geometrically well behaved”
in a way that matches the rules of geometric logic.8 This therefore suggests the
following process, of using a geometric theory (Σ, T ) (still propositional here,
but influenced by the consideration of predicate theories) to generate a “cat-
egory of formal geometric sets” in an analogous way to how we generate the
frame Ω[Σ, T ] of “formal geometric truth values”. This category is the classify-
ing topos, but it turns out to be equivalent to the category S[Σ, T ] of sheaves.

Consider the nature of a point x of [Σ, T ]. It comprises a set of subsingleton
sets, one for each element of Σ, or, equivalently, a subset of Σ (containing those
elements P ∈ Σ for which the subsingleton set is inhabited). Either way, the
axioms of T must be respected.

Remark 25 How T needs to be structured, and what “respecting the axioms”
then means, is examined in detail in the (G,R,D)-systems of [Vic04]. Tech-
nically, a (G,R,D)-system comprises three sets G, R and D, equipped with
functions

λ : R→ FG
ρ : D → FG
π : D → R

where F denotes the finite powerset. The system represents a theory (G,R) in
which each r ∈ R corresponds to a geometric sequent∧

λ(r)→
∨

π(d)=r

∧
ρ(d).

Once one has the point x of [Σ, T ], as subset of Σ, one can start constructing
finite limits and arbitrary colimits of its constituents. Suppose this is done in
a formal way, making no assumptions about x other than that it is a point,
and ensuring that everything is geometrically well behaved. This is analogous
to generating the frame Ω[Σ, T ], but more general. The frame restricts itself to
constructing subsingleton sets (truth values) out of x. The process can be made
precise in categorical logic, and generates what is called the classifying topos of
the theory (Σ, T ). One may write it S[Σ, T ].

From this point of view, the objects of the classifying topos can be quite
naturally understood as maps from points to sets: from a point, and the sets
that it comprises, each object provides a construction that yields another set.

On the other hand, two very fundamental results of topos theory relate
classifying toposes to sheaves.

1. For any propositional geometric theory (Σ, T ), the classifying topos S[Σ, T ]
is equivalent to the topos of sheaves over the locale [Σ, T ]. (Note that our

8Categorically, it means that we are working in a Grothendieck topos.
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notation here for classifying toposes, modulo equivalence, thus matches
our earlier notation of SX for the category of sheaves over X.)

2. Given two theories (Σ1, T1) and (Σ2, T2), maps f : [Σ1, T1]→ [Σ2, T2] are
equivalent to geometric morphisms (f∗, f∗) from S[Σ1, T1] to S[Σ2, T2].
(See Section 2.5.) Under the equivalence with categories of sheaves they
agree with the geometric morphisms (f∗, f∗) defined before.

The proofs are present in standard texts of topos-theory, such as [MLM92].
In [Vic07] there is an exposition more carefully adapted to the point of view de-
scribed here. In one direction, the equivalence works by generalizing the notion
of model from sets to sheaves, in the same way as for propositional theories it
was generalized from truth values to opens. Sorts are interpreted as sheaves,
function symbols as sheaf morphisms from a sheaf product to another sheaf, and
predicates as subsheaves of sheaf products. Once that is done, terms can be in-
terpreted as sheaf morphisms and formulae as subsheaves. Specific categorical
structure in the category of sheaves is needed for this; for instance, equalizers
are needed in order to interpret =. In fact, all can be done using finite limits
and arbitrary colimits. Moreover, particular properties of the way these limits
and colimits interact with each other ensure that the rules of geometric logic
are valid in the sheaf interpretations. This gives a functor from the classifying
topos to the topos of sheaves, but it takes somewhat more work to show that
the functor is an equivalence.

Once we know that sheaves are equivalent to objects of the classifying topos,
this now provides the deepest sense in which a sheaf is a set-valued map: a sheaf
is equivalent to a geometric recipe for constructing sets out of points.

Note how this works for local homeomorphisms. The inverse image functors
f∗, which act by pullback, preserve finite limits and all colimits, and hence
all geometric constructions. (For other geometric constructions, such as free
algebra constructions, preservation by the f∗s can also be proved directly.) But
for a global point x, we know that x∗(S) constructs the stalk of S at x, as well
as preserving the point-to-set recipe by which S was specified; hence the sets
that the recipe constructs are the stalks. A sheaf can be presented as a uniform,
geometric recipe for constructing the stalks. If we are willing to extend the
notion in Section 4.1 that “continuity is geometricity”, then a sheaf becomes
a “continuous set-valued map”.9 This is given some technical substance in
Section 7.

The same argument also applies to sheaf morphisms: to describe one, it
suffices to give a uniform geometric description of its action on stalks.

9The technique in Section 4.1 for defining a locale map f : X → Y as a geometric trans-
formation of points can often be fruitfully broadened from opens to sheaves, using the fact
that every open is a subsheaf of 1. The geometric set constructions can also be legitimately
used in transforming points of X to points of Y . [Vic07] illustrates this with examples from
the real numbers.
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4.4 Constant sheaves as geometric constructions

Let us examine in more detail the constant sheaves, since they are in some
ways the starting point. The geometric constructions include arbitrary colimits,
“arbitrary” here meaning that the colimit diagram is small – its nodes and
arrows are indexed by elements of sets. Hence for any set A we can form a
coproduct

∐
a∈A 1 of an A-indexed family of copies of the terminal object 1. In

ordinary sets this characterizes A (as a disjoint union of its singletons), and by
this means A can be represented in any context in which we have the geometric
constructions. In sheaves overX, the construction is got by taking the coproduct
construction of A in ordinary sets, and translating it to a sheaf construction by
the inverse image !∗X where !X : X → 1 is the unique map. Hence we shall write
it as !∗XA

In the context of sheaves over X, we should think of this construction “stalk-
wise” as a construction of set from point. But the recipe

∐
a∈A 1 for performing

the construction makes no reference to the point x and hence is independent of
it. For this reason, !∗XA is a constant sheaf. Consequently, calculating the stalk
for any global point x always gives A, regardless of x. For a generalized point
x : W → X, it gives the !∗WA appropriate to W , regardless of the map x.

In terms of local homeomorphisms, the general topos results tell us that
inverse image functors are applied by taking pullback. Hence !∗XA is the pro-
jection p : X × A → X, got by pulling back A → 1 along !X : X → 1. (See
Propositions 17 and 19.)

In a constant sheaf it is the stalks that are constant. By contrast the pasting
presheaf is almost never a constant functor; recall that for any pasting presheaf
F we have F (∅) a singleton. In the case of a constant sheaf p : X ×A→ X, the
pasting presheaf Sectp can be calculated as follows. If U is an open in X then
a section over U is a map U → X ×A such that the first component is just the
inclusion, and these are equivalent to maps U → A.

We now prove a result that establishes the importance of ΩX-valued fuzzy
sets (functions from a set A to ΩX) in two different ways. They provide a useful
concrete representation of opens of X × A, but also capture exactly the sub-
sheaves of constant sheaves. This result will be used pervasively in Section 6.10

(After this proposition, it is a simple exercise to verify directly that X × A is
the locale coproduct of A copies of X.)

Theorem 26 Let X be a locale and A a set. Then the following are in order-
preserving bijection.

1. Opens of X × A. (Here, A is understood as the corresponding discrete
locale, with ΩA the powerset PA.)

2. Functions A→ ΩX.

3. Subsheaves of !∗XA.

10One of the referees has remarked that in the fuzzy community (ΩX)A is interpreted as the
X-fuzzy powerset of A, and the inverse image function Ωp of the projection map p : X×A→ X
plays an important role in fuzzy topology, as in the work of R. Lowen.
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If p : X ×A→ X is the projection map then the inverse image function Ωp
takes U ∈ ΩX to the constant function a 7→ U – because U×A =

∨
a∈A U×{a}.

Proof. Proposition 21 gives us the equivalence between (1) and (3).
Suppose a ∈ A. By pulling back a : 1→ A we get !∗Xa : 1→!∗XA

∼=
∐
a′∈A 1,

and it is the corresponding coproduct injection. For any subsheaf Y ↪→!∗XA we
get pullbacks

[a ∈ Y ] −→ Y
↓ ↓
1 −→

!∗Xa
!∗XA

and in fact Y can be expressed as a coproduct
∐
a∈A[a ∈ Y ]. (This property of

the interaction between coproducts and pullbacks, which is true in Sets, is also
true in any Grothendieck topos.) It follows that the subsheaves Y are equivalent
to the assignments a 7→ [a ∈ Y ], a subsheaf of 1. By Corollary 22 subsheaves of
1 are equivalent to opens of X, so such assignments are equivalent to functions
from A to ΩX.

5 The local homeomorphism of an ΩX-valued
set

Let (A,E) be an ΩX-valued set. Höhle defines the frame P (A,E) to have as its
elements the strict, extensional functions A→ ΩX (see Definition 10). We shall
use the notation P (A,E) for the locale rather than the frame. It is the display
locale for the sheaf. Höhle shows that if X is spatial then so is P (A,E), and the
display map pt(P (A,E)) → ptX is a local homeomorphism corresponding to
the sheaf for (A,E). We shall now show how to define the local homeomorphism
even in the non-spatial case.

Following Höhle’s notation we write E for the top strict extensional function,
Ea = E(a, a), and (U ∧ E) for the one defined by (U ∧ E)(a) = U ∧ E(a, a).
Recall also (Section 2.4) the singleton ã, defined by ã(b) = E(a, b).

For any strict extensional s we have

s =
∨
a∈A

(s(a) ∧ E)∧ã, (2)

in other words s(b) =
∨
a∈A s(a) ∧ E(b, b) ∧ E(a, b) =

∨
a∈A s(a) ∧ E(a, b) for

all b ∈ A. The ≥ direction follows from extensionality, while the ≤ direction
follows from strictness, taking a = b.

Note also that
s ∧ ã = (s(a) ∧ E) ∧ a, (3)

for on applying both sides to b the equation becomes s(b) ∧ E(a, b) = s(a) ∧
E(a, b).

In the following lemma, note how the generators correspond to the subbasic
opens used to topologize the display space Y in Section 2.3. The lemma is also
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a generalization of the first part of Theorem 26, which covers the case of the
crisp valuation on A. This is because the frame PA can be presented by formal
generators {a}, subject to relations > ≤

∨
a∈A{a} and {a}∧{b} ≤

∨
{> | a = b}.

Lemma 27 ΩP (A,E) can be presented by generators and relations as

Fr〈ΩX (qua frame), [a] (a ∈ A) | > ≤
∨
a∈A

[a]

[a] ∧ [b] ≤ E(a, b)

E(a, b) ∧ [b] ≤ [a]〉.

Proof. Let us write F for the frame presented as stated. To define a
homomorphism α : F → ΩP (A,E) we must describe its action on the generators
and show that it respects the relations (including that it preserves the frame
structure on ΩX). It will map U ∈ ΩX to (U ∧ E), and the formal generator
[a] to ã. This respects the relations. Next we define β : ΩP (A,E) → F by
β(s) =

∨
a∈A s(a) ∧ [a]. This is easily seen to be a homomorphism, using the

fact that the joins and binary meets on the strict, extensional maps are defined
argumentwise. Finally, it remains to show that α and β are mutually inverse.
The composite α ◦ β is the identity on ΩP (A,E) because of Equation 2. For
β◦α, it suffices to check its action on the generators. If U ∈ ΩX then β◦α(U) =∨
a∈A U ∧ E(a, a) ∧ [a]. From the second relation (and putting b = a) we see

[a] ≤ E(a, a), so it suffices to show U =
∨
a∈A U ∧ [a], which follows from the

first relation. For [a] we have β ◦ α([a]) =
∨
b∈AE(a, b) ∧ [b] and this equals [a]

by the third relation.
The advantage of this is that the generators and relations give us a direct

description of the points at all stages W : a point is a function from the gener-
ators to ΩW that respects the relations. On the generators U this gives us a
point x of X. On the generators [a] we find a subset S ⊆ A (we are working in
the internal mathematics of sheaves over W , so S is actually a subsheaf of !∗WA)
such that (i) S is inhabited, (ii) if a, b ∈ S then x satisfies E(a, b), and (iii) if
x satisfies E(a, b) and b ∈ S then a ∈ S: in other words, S is an equivalence
class for ∼x. Hence a point of P (A,E) can be described geometrically as a pair
(x, u) where x is a point of X and u is an element of its stalk A/ ∼x.

(Actually, the use of the frame ΩX is non-geometric. However, this can be
circumvented by using a presentation of it by generators and relations.)

The projection map p : P (A,E)→ X is defined on points (x, u) by forgetting
u. However, its inverse image function Ωp is also clear enough; it is the inclusion
of generators U , or the function U 7−→ (U ∧ E).

The presentation of P (A,E) by generators and relations also allows us to
calculate the local sections of p very easily. Suppose U is an open of X. A
section of p over U is a map σ : U → P (A,E) such that p ◦ σ is the inclusion
U ↪→ X. On generators of ΩP (A,E), Ωσ must take U ′ ∈ ΩX to U ∧U ′ – this is
because p ◦ σ is the inclusion. On the generators [a], Ωσ determines a function
s : A → ΩX, and the relations tell us that s must be a singleton for which∨
a∈A s(a) = U . Hence the local sections of p are the singletons of (A,E).
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Theorem 28 p : P (A,E)→ X is a local homeomorphism.

Proof. First, we show that p is open. Define ∃p : ΩP (A,E) → ΩX by
∃p(s) =

∨
a∈A s(a). Then

∃p(s) ≤ U ⇔ (∀a)s(a) ≤ U ⇔ s ≤ (U ∧ E)

and so ∃p(s) is left adjoint to Ωp. For the Frobenius condition,

∃p(s ∧ (U ∧ E)) =
∨
a

(s(a) ∧ U ∧ E(a, a)) =
∨
a

s(a) ∧ U = ∃p(s) ∧ U .

Now we show that ∆ : P (A,E) → P (A,E) ×X P (A,E) is open. We define
∃∆(s) =

∨
a∈A((s(a) ∧ E) ∧ ã)⊗ ã. Then

Ω∆ ◦ ∃∆(s) =
∨
a∈A

s(a) ∧ ã ∧ ã = s

by Equation 2. Also,

∃∆ ◦ Ω∆(s⊗ t) =
∨
a∈A

(s(a) ∧ t(a) ∧ E) ∧ ã⊗ ã

=
∨
a∈A

(s(a) ∧ E) ∧ ã⊗ (t(a) ∧ E) ∧ ã

≤
∨
a,b∈A

(s(a) ∧ E) ∧ ã⊗ (t(b) ∧ E) ∧ b̃ = s⊗ t

and it follows that ∃∆ is left adjoint to Ω∆. For Frobenius,

∃∆(s ∧ Ω∆(t⊗ u)) =
∨
a∈A

(s(a) ∧ t(a) ∧ u(a) ∧ E) ∧ ã⊗ ã

=
∨
a∈A

(s(a) ∧ t(a) ∧ E) ∧ ã⊗ (u(a) ∧ E) ∧ ã

=
∨
a∈A

(s(a) ∧ E) ∧ t ∧ ã⊗ u ∧ ã = ∃∆(s) ∧ (t⊗ u).

To complete the standard proof [JT84] of the equivalence between local
homeomorphisms and other forms of sheaf, one uses Proposition 17 interpreted
in the internal mathematics of the topos of sheaves. However, it is perhaps illu-
minating to see directly how to get from a local homeomorphism to a (complete)
frame-valued set. Suppose p : Y → X is a local homeomorphism, with functions
∃p : ΩY → ΩX and ∃∆ : ΩY → Ω(Y ×XY ) the left adjoints needed for openness
of p and ∆. We shall construct from this the complete ΩX-valued set of local
sections. The construction and proof are analogous to Proposition 17, but with
normal truth values (“whether” something is true) replaced by elements of ΩX
(“where” something is true). The function ∃p still plays the role of positivity
predicate, but now says where a local section is defined.
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Theorem 29 Let p : Y → X be a local homeomorphism between locales. We
say an element a ∈ ΩY is subatomic if a ⊗ a ≤ ∃∆> in Ω(Y ×X Y ), and
define A to be the set of subatoms. We also define E : A × A → ΩX by
E(a, a′) = ∃p(a ∧ a′).

1. (A,E) is an ΩX-valued set.

2. Y is homeomorphic to P (A,E) over X.

3. (A,E) is complete.

Proof. Let us first prove some lemmas about the situation; these develop the
ideas that were already present in Proposition 17. Note that by the adjunction
we have Ω∆◦∃∆ ◦Ω∆ = Ω∆; and since Ω∆ is onto (because ∆ is an inclusion),
we deduce that Ω∆ ◦ ∃∆ = IdΩY .

The subatoms cover Y . For we can express ∃∆> as a join
∨
i Vi ⊗ V ′i of

basics, and then > = Ω∆(∃∆>) =
∨
i Vi ∧ V ′i is a join of subatoms.

Using Proposition 18, Equation 1, we see that if p1 : Y ×X Y → Y is the first
projection then ∃p1(V1⊗V2) = V1∧Ωp(∃p(V2)). If V ∈ ΩY , then in Ω(Y ×X Y )
we have

∃∆> ∧ (V ⊗>) = ∃∆(> ∧ Ω∆(V ⊗>)) = ∃∆(> ∧ V ∧ >) = ∃∆V

= · · · = ∃∆> ∧ (>⊗ V ).

Hence, if a is any subatom, then (a ∧ V ) ⊗ a = a ⊗ (a ∧ V ). Applying ∃p1 , we
obtain

a ∧ V = a ∧ Ωp(∃p(a ∧ V )). (4)

If we also have V ′ ∈ ΩY , then

a ∧ V ∧ Ωp(∃p(a ∧ V ′)) = a ∧ V ∧ V ′.

Applying ∃p, and using Frobenius, we obtain

∃p(a ∧ V ) ∧ ∃p(a ∧ V ′) = ∃p(a ∧ V ∧ V ′). (5)

Part 1: Clearly E is symmetric; transitivity follows from Equation 5.
Part 2: We first define α : ΩP (A,E) → ΩY using the presentation in

Lemma 27. For the generators from ΩX we define α to agree with Ωp, which is
given to be a frame homomorphism (i.e. it preserves the frame structure of ΩX,
which is what “qua frame” requires in the presentation). This will suffice to show
that the locale map from α is over X. For the generators ã, corresponding to
subatoms a, we define α(ã) = a. The three relations come down to > ≤

∨
a∈A a

(we have already noted that the subatoms cover Y ), a ∧ b ≤ Ωp(∃p(a ∧ b))
(which follows from the adjunction ∃p a Ωp) and Ωp(∃p(a ∧ c) ∧ c ≤ a for any
subatomics a, c (for which Equation 4 tells us that the left-hand side is a ∧ c).

For β : ΩY → ΩP (A,E), we define β(V ) to be the strict, extensional
function sV : A → ΩX with sV (a) = ∃p(a ∧ V ). Strictness is evident, since
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∃p(a ∧ V ) ≤ ∃pa = E(a, a). Extensionality follows from Equation 5, taking
V ′ = b. We must show that V 7→ sV is a frame homomorphism. Preservation of
joins is immediate from the fact that ∃p and a ∧ − both preserve joins; and s>
is the top element E. For binary meets, sV ∧V ′ = sV ∧sV ′ is just Equation 5. To
show that the corresponding locale map is over X, we need sΩp(U) = (U ∧ E),
i.e. ∃p(a ∧ Ωp(U)) = U ∧ E(a, a), which works out as the Frobenius condition.

Now we must show that α and β are mutually inverse. First,

α ◦ β(V ) = α(sV ) = α(
∨
a∈A

(sV (a) ∧ E) ∧ ã) =
∨
a∈A

Ωp(∃p(a ∧ V )) ∧ a

=
∨
a∈A

(a ∧ V ) (using equation 4)

= V (because the subatoms cover Y )

For β ◦ α, we check the actions on the generators. For those derived from
elements of ΩX, this has already been done when we verified that the maps
were over X. For ã, we have β ◦ α(ã) = sa = ã by definition.

Part 3: We now know that the strict extensionals on A are in bijection
with the elements of ΩY . We show further that amongst those, the singletons
correspond to the subatomic elements of ΩY . Let V ∈ ΩY . Its strict extensional
sV is a singleton iff for all subatoms a and b we have

∃p(a ∧ V ) ∧ ∃p(b ∧ V ) ≤ ∃p(a ∧ b).

If V is subatomic, we know this formula holds – it is transitivity of E. We
prove the converse. The subatoms cover Y , and so V =

∨
a∈A a ∧ V , and

V ⊗ V =
∨
a,b∈A(a ∧ V )⊗ (b ∧ V ). Now for each a, b we have

(a ∧ V )⊗ (b ∧ V ) = (a ∧ Ωp(∃p(a ∧ V ))⊗ (b ∧ Ωp(∃p(b ∧ V )))

(by equation 4)

= (a ∧ Ωp(∃p(a ∧ V )) ∧ Ωp(∃p(b ∧ V )))⊗ b
(elements Ωp(U) can be moved across the ⊗ )

= (a ∧ Ωp(∃p(a ∧ V ) ∧ ∃p(b ∧ V )))⊗ b
≤ (a ∧ Ωp(∃p(a ∧ b)))⊗ b
= (a ∧ b)⊗ b ≤ b⊗ b ≤ ∃∆>.

6 Geometric constructions on ΩX-valued sets

Throughout this section X will be a locale.
[H0̈7a] describes a full range of topos-theoretic constructions on complete

ΩX-valued sets. For some of them, completeness is a very convenient part
of the construction. However, our contention here is that for the geometric
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constructions (which are performed stalkwise on the local homeomorphisms)
there are simpler and more natural constructions that work directly on the
uncompleted ΩX-valued sets and avoid the need to complete.

At the same time, we shall also illustrate the benefits of the geometric rea-
soning. The aim is to give localic validity to pointwise reasoning such as in
Proposition 9, which showed the bijection between sheaf morphisms A → B
and functions θ : A × B → ΩX satisfying certain conditions. The argument
comprised three steps.

1. The stalkwise setting was examined, with a family of stalk functions fx :
A/ ∼x → B/ ∼x corresponding to a family of relations θx ⊆ A × B
satisfying certain conditions.

2. The family (θx) of relations was translated into an external function θ :
A × B → PX, defined by θ(a, b) = {x | aθxb}, and the conditions on θx
translate into certain conditions on θ.

3. It was shown that continuity of f (between the display spaces) corre-
sponded to θ taking its values in ΩX.

We shall examine this example in more detail later, but we can already
use it to illustrate the general pattern. Step (1), the stalkwise reasoning, will
generally be the same as for the spatial analogue. However, care must be taken
to do it geometrically so that it applies to generalized points x. Steps (2) and (3)
are covered by Theorem 26, which implies that subsheaves of constant sheaves
are equivalent to fuzzy sets. The theorem embodies two principles. The first,
corresponding to Step (2), is that a subsheaf Y ↪→ !∗XA can be specified by the
truth values [a ∈ Y ] for the external elements a ∈ A. This is essentially because
Y =

∐
a∈A[a ∈ Y ]. The second, deriving ultimately from Corollary 22, and

corresponding to Step (3), is that each [a ∈ Y ], a subsheaf of 1, corresponds to
an open of X (saying in effect where the stalks are inhabited).

6.1 Constant sheaves and their subsheaves

The constant sheaf !∗XA can be presented as the ΩX-valued set A with crisp
equality, E(a, b) =

∨
{> | a = b}. The set of disjuncts here, {> | a = b}, is a

subset of {>}, so classically there are two possibilities: E(a, b) = > if a = b,
and ⊥ (=

∨
∅) if a 6= b. If a point x is in E(a, b) then it must be in one of the

disjuncts: so a = b and x is in > (which it is anyway). In other words, a ∼x b
iff a = b, so the stalk A/ ∼x is A, as expected. This argument is geometric, so
we do not have to worry about whether there are enough points. We know that
this ΩX-valued set presents the right sheaf.

Note that the equivalence “a ∼x b iff a = b” is interpreted internally. As
an extreme example, at the inconsistent stage W = ∅ (the empty locale, with
no points and one open) the equation a = b takes the value > for all elements
a, b ∈ A, and A/ ∼x ∼= 1. But that does not matter since all sheaves over ∅ are
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isomorphic to 1 and that includes !∗A. As local homeomorphism, the projection
∅ ×A→ ∅ is a homeomorphism.

Let us check how the argument appears for the generic point, in sheaves over
X. We have two constructions of a subsheaf of !∗XA×!∗XA

∼= !∗X(A×A), namely
“x 7→ ∼x” and !∗X(=A). Our argument above purports to show that they are
isomorphic as subsheaves, so that the corresponding subquotients agree. From
Theorem 26 we see that describing a subsheaf of !∗X(A × A) is equivalent to
describing, for each pair (a, b) ∈ A×A, a subsheaf of 1, i.e. an open of ΩX. Since
this is equivalent to a map X → S (see Definition 23), it can be understood as a
geometric transformation from points x to truth values, or subsets of 1 (points
of S). Hence describing a subsheaf of !∗X(A × A) resolves into geometrically
transforming triples (x, a, b) into truth values. The argument was phrased as
though it said, for each x, that the corresponding sets of pairs (a, b) were equal.
That is the “stalkwise” view of it, and it does tell us the actual stalks for global
points x. However, it can be turned round and viewed as a proof that for each
pair (a, b) the open E(a, b) is the constant open corresponding to the equation
a = b.

Theorem 26 shows further that fuzzy sets are subsheaves of constant sheaves.
In order to exploit it, we shall need to examine how internal geometric construc-
tions on the subsheaves correspond to external constructions on the fuzzy sets.
If φ : A→ ΩX is a fuzzy set, then we shall write the corresponding subsheaf of
!∗XA stalkwise as {a ∈ A | x � φ(a)}.11 In the particular case when x is a global
point, this is a literal subset of A and “x � φ(a)” asserts that Ωx(φ(a)) = true.
More generally, if x : W → X is any point of X, then “x � φ(a)” denotes (in
sheaves over W ) the sheaf x∗(φ(a)) where φ(a) is considered as a subsheaf of 1
over X, and the stalk {a ∈ A | x � φ(a)} denotes

∐
a∈A x

∗(φ(a)) as a sheaf over
W .

The “stalkwise reasoning” says that if we manipulate expressions such as
{a ∈ A | x � φ(a)} in a conventional way but restricting to geometric manipula-
tions, then the manipulation can be interpreted as a construction in sheaves over
X and it is preserved by inverse image functors (“taking generalized stalks”).

Lemma 30 Let f : B → A be a function between sets.

1. Unions and finite intersections of subsheaves of !∗XA correspond to argu-
mentwise joins and finite meets of the corresponding fuzzy sets.

2. Let Y be a subsheaf of !∗XA, corresponding to fuzzy set φ : A→ ΩX. Then
the inverse image f−1Y of Y along !∗Xf : !∗XA→ !∗XB corresponds to the
composite φ◦f . Logically, if Y is thought of as an internal predicate Y (a)
on !∗XA, then the inverse image corresponds to substituting the term f(b)
for a.

11The symbol “�” to denote when a point “is in” an open is adopted from [Vic89]. It
circumvents the notational problem in locales that a point, considered as a completely prime
filter of opens, has opens as its elements rather than the other way round.
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3. Let Z be a subsheaf of !∗XB, corresponding to fuzzy set ψ : B → ΩX.
Then the direct image of Z under !∗Xf corresponds to the fuzzy set a 7→∨
f(b)=a ψ(b). Logically, if Z is thought of as an internal predicate Z(b)

on !∗XB, then the image corresponds to (∃b)(f(b) = a ∧ Z(b)).

Proof. 1. Suppose φi : A → ΩX (i = 1, 2) are two fuzzy sets, and let
φ(a) = φ1(a) ∧ φ2(a) be their argumentwise meet. Then

{a ∈ A | x � φ(a)} = {a ∈ A | x � φ1(a) ∧ x � φ2(a)}
= {a ∈ A | x � φ1(a)} ∩ {a ∈ A | x � φ2(a)}.

The argument is similar for unions.
2. A stalk of the inverse image is

{b ∈ B | f(b) ∈ {a ∈ A | x � φ(a)}} = {b ∈ B | x � φ(f(b))}.

3. A stalk of the direct image is

{a ∈ A | (∃b ∈ B)(f(b) = a ∧ x � ψ(b))}

= {a ∈ A | x �
∨

f(b)=a

ψ(b)}.

6.2 Subquotients of constant sheaves

By subquotient, we mean quotient of a subobject. In sets, a subquotient of A is
given by a partial equivalence relation ∼ on A. The subquotient is then A/ ∼,
i.e. the set of equivalence classes. This construction is geometric. The subobject

is got by image factorization (which is geometric) of ∼ ↪→ A × A p1−→ A, and
then the quotient is got by a coequalizer.

Proposition 31 Let A be a set. Then there is a bijection between subquotients
of !∗XA and ΩX-valuations on A.

Proof. Let Y be the subquotient, corresponding to a partial equivalence
relation ∼ on !∗XA and hence, by Theorem 26, to a fuzzy set E : A×A→ ΩX.
Working stalkwise, we see that the stalk x∗Y is given by a partial equivalence
relation ∼x = {(a, b) ∈ A × A | x � E(a, b)} on A. We use Lemma 30 to
show that ∼x is a partial equivalence relation for every point x iff E is an
ΩX-valuation.

We start with transitivity. Taking the inverse image of ∼x along the function
A×A×A→ A×A given by the first two projections, we get {(a, b, c) | a ∼x b}
corresponding to the fuzzy set E1 : A × A × A → ΩX, given by E1(a, b, c) =
E(a, b). Similarly,

{(a, b, c) | b ∼x c} corresponds to E2(a, b, c) = E(b, c)
{(a, b, c) | a ∼x b ∼x c} ¨ E3(a, b, c) = E(a, b) ∧ E(b, c)
{(a, c) | (∃b)a ∼x b ∼x c} ¨ E4(a, c) =

∨
bE(a, b) ∧ E(b, c)
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The last of these is the relational composition ∼x ◦ ∼x, and so transitivity,
∼x ◦ ∼x ⊆ ∼x, is equivalent to E(a, b) ∧ E(b, c) ≤ E(a, c) for all a, b, c. The
rule for symmetry is similar, but simpler.

This kind of translation between internal properties (e.g. stalkwise transi-
tivity) and external (e.g. E(a, b) ∧ E(b, c) ≤ E(a, c)) is quite general, and we
shall use it in future without comment.

6.3 Subsheaves of ΩX-valued sets

If A is a set and E an ΩX-valuation on it, we shall write P (A,E) for the
corresponding subsheaf of !∗XA. This is a mild abuse of the notation of Section 5,
which identified a locale P (A,E) as the display locale for the corresponding local
homeomorphism. The following result shows directly what we could already
deduce from Lemma 27 (and the remarks following it about the points) and
Proposition 21: that the opens of the display locale are the strict extensional
functions.

Proposition 32 Let A be a set and E an ΩX-valuation on it. Then there
is a bijection between subsheaves of P (A,E) and strict, extensional functions
s : A→ ΩX.

The subsheaf is described by an ΩX-valuation E′ on A, E′(a, b) = E(a, b) ∧
s(a); note that E′(a, a) = s(a).

Proof. Let Y be the subsheaf. Stalkwise, each x∗Y is a subset of A/ ∼x
and hence can be represented as a subset Zx of A that is a union of equivalence
classes. This corresponds to two conditions

a ∈ Zx =⇒ a ∼x a
a ∼x b ∈ Zx =⇒ a ∈ Zx

In Theorem 26, let s : A→ ΩX be the fuzzy set corresponding to Z. Then the
two conditions above are equivalent to s being strict and extensional. If ∼′x is
the partial equivalence relation corresponding to E′ then a ∼′x b iff a ∼x b and
a ∈ Zx, so A/ ∼′x ∼= x∗Y as required.

6.4 Morphisms between ΩX-valued sets

We now turn to the localic version of Proposition 9.

Proposition 33 Let A and B be two ΩX-valued sets, with corresponding local
homeomorphisms p : Y → X and q : Z → X. Then there is a bijection between
maps f : Y → Z over X and morphisms θ : A→ B.

Proof. Reasoning stalkwise just as in the spatial case, we get a stalk function
fx : A/ ∼x → B/ ∼x and that is equivalent to a relation θx ⊆ A×B, with aθxb
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iff a ∼x a and fx([a]x) = [b]x. An arbitrary relation θx corresponds to a stalk
function in this way iff

aθxb =⇒ a ∼x a ∧ b ∼x b
a′ ∼x a ∧ aθxb ∧ b ∼x b′ =⇒ a′θxb

′

aθxb ∧ aθxb′ =⇒ b ∼x b′

a ∼x a =⇒ (∃b)aθxb

The θxs define a subobject of the constant sheaf !∗X(A× B) and hence cor-
respond to a function θ : A × B → ΩX, and then the four conditions above
correspond to the four in the definition of ΩX-valued set morphism.

Proposition 34 1. Let θ : A → B and φ : B → C be two morphisms of
ΩX-valued sets. Then their composite is given by

(φ ◦ θ)(a, c) =
∨
b∈B

θ(a, b) ∧ φ(b, c).

2. The identity morphism on an ΩX-valued set A is given by Id(a, a′) =
E(a, a′).

Proof. (1) Let fx and gx be the corresponding stalk functions at point x.
Their functional composite is given by the relational composite of θx and φx.
By a calculation similar to that used in Proposition 31 to calculate ∼x ◦ ∼x, it
is given by the stated formula for φ ◦ θ.

(2) Follows because [a]x = [a′]x iff E(a, a′).

Proposition 35 Let θ : A→ B be a morphism of ΩX-valued sets.

1. θ is monic (all stalk functions fx are 1-1) iff θ(a, b) ∧ θ(a′, b) ≤ E(a, a′)
for all a, a′, b.

2. θ is epi (all stalk functions fx are onto) iff E(b, b) ≤
∨
a θ(a, b).

3. θ is an isomorphism iff both the above conditions hold.

Proof. (1) Monicity is characterized geometrically, so θ is monic if we can
prove geometrically that every stalk function is monic (1-1). Let x be a point
of X. fx is monic iff fx([a]x) = fx([a′]x) ⇒ a ∼x a′, i.e. if x � θ(a, b) ∧ θ(a′, b)
for some b then x � E(a, a′). The result follows.

(2) is a similar argument, and (3) combines the first two.

Proposition 36 Let θ : A → B be a morphism of ΩX-valued sets. Its image
is given by (according to Proposition 32) a strict, extensional function s on B,

s(b) =
∨
a∈A

θ(a, b).
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The epi-mono factorization of θ is then θm ◦ θe where

θe(a, b) = θ (a, b) ,

θm(b, b′) = s(b) ∧ EB(b, b′).

Proof. From the previous results it is now straightforward to check that s is
strict and extensional, that θe : (A,EA)→ (B,E′) and θm : (B,E′)→ (B,EB)
are morphisms, with θe epi and θm mono, and that θ = θm ◦ θe. But it is also
easy to see that they give the image stalkwise.

6.5 Other geometric constructions

We give some more examples to illustrate the techniques. Note that in each
case the construction is close to what is familiar from set theory. This depends
on the fact that we are happy to work with incomplete ΩX-valued sets. If we
had to complete, the constructions would be made much more complicated.

Products: Let A and B be ΩX-valued sets. How can we define the product
as ΩX-set? It would seem natural use the set product A × B, with equality
defined componentwise – (a1, b1) ∼x (a2, b2) = a1 ∼x a2 and b1 ∼x b2. This
gives us the definition of E on A×B, namely

E((a1, b1), (a2, b2)) = E(a1, a2) ∧ E(b1, b2).

To check that that does indeed define the sheaf product, it suffices to check
the stalks. This is because binary product is a geometric construction, so sheaf
product exists and is calculated stalkwise. In other words, we must check (A×
B)/ ∼x ∼= A/ ∼x ×B/ ∼x, which is clear. We also need the product projections
p : A×B → A and q : A×B → B. Clearly we want px([a, b]) = [a′] iff a ∼x a′
(and b ∼x b), which translates into

p((a, b), a′) = E(a, a′) ∧ E(b, b).

One can then check that this is a morphism and gives the correct stalk functions.
Equalizers: Let A and B be ΩX-valued sets and let θ, φ : A → B be mor-

phisms. The equalizer is a subsheaf of A, given by the same set A and a strict
extensional map s. The elements of the corresponding substalk are those [a]
such that θx([a]) = φx([a]), so we get

s(a) =
∨
b

θ(a, b) ∧ φ(a, b).

Again, one must check that this gives the right stalks.
Coproducts: Let (Ai, Ei) (i ∈ I) be ΩX-valued sets. (Note that we can

deal with arbitrary set-indexed coproducts. This is by contrast with the fini-
tary products above, which would not generalize to the infinite case; geometric
constructions include arbitrary colimits but only finite limits.) Let A be the
coproduct (disjoint union)

∐
iAi, and define

E(〈i, a〉, 〈j, a′〉) =
∨
{Ek(a, a′) | i = k = j}.
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The disjunction on the right is set up carefully to be geometric. Classically, one
might have been expecting to split it into cases as Ei(a, a

′) (if i = j), or ⊥ (if
i 6= j). Stalkwise, A/ ∼x ∼=

∐
i(Ai/ ∼x).

Coequalizers: This is a good example of a case where the geometric type
construction is harder to characterize as logic. Let A and B be ΩX-valued
sets, and let θ, φ : (A,EA) → (B,EB) be morphisms. Stalkwise, we need to
calculate the coequalizer as a quotient for a partial equivalence relation ≈x on
B that includes ∼x (though without making any more elements self-related).
≈x is generated by the relation that relates θx([a]x) to φx([a]x) for each a.
(We have abused notation slightly by writing θx, φx as functions as well as
relations.) In order to capture the transitive closure part of this, we need to
consider chains of related links. We find b ≈x b′ iff for some n ≥ 0 there are
sequences b0, . . . , bn ∈ B and a1, . . . , an such that b0 ∼x b, bn ∼x b′, and for
each i (1 ≤ i ≤ n) we have either aiθxbi−1 and aiφxbi, or aiφxbi−1 and aiθxbi.
The appropriate ΩX-valuation on B to give this quotient is

E′B(b, b′) =
∨
n≥0

∨
b0,...,bn∈B

∨
a1,...,an∈A

(EB(b, b0) ∧ EB(bn, b
′)

∧
n∧
i=1

((θ(ai, bi−1) ∧ φ(ai, bi)) ∨ (φ(ai, bi−1) ∧ θ(ai, bi)))).

The proof is essentially standard once one accepts that the geometric con-
struction described above does indeed calculate the symmetric, transitive clo-
sure of ∼x ∪{(b, b′) | (∃a)(aθxb ∧ aφxb′)}. However, it is an interesting exercise
to prove the coequalizer property directly. It comes down to showing that if
ψ : (B,EB) → (C,EC) has ψ ◦ θ = ψ ◦ φ, then the same ψ is also a mor-
phism (B,E′B) → (C,EC). The hardest part is verifying the condition that
E′B(b, b′) ∧ ψ(b′, c) ≤ ψ(b, c). Given n, b0, . . . , bn, a1, . . . , an as in the definition
of E′B(b, b′), one must show that D∧ψ(b′, c) ≤ ψ(b, c) where D is the correspond-
ing disjunct of E′B(b, b′). By induction on n one shows that D∧ψ(b′, c) ≤ ψ(bi, c)
(0 ≤ i ≤ n). This follows from a calculation that

θ(ai, bi−1) ∧ φ(ai, bi) ∧ ψ(bi, c) ≤ θ(ai, bi−1) ∧ (ψ ◦ φ)(ai, ci)

= θ(ai, bi−1) ∧ (ψ ◦ θ)(ai, ci)

=
∨
b′′

θ(ai, bi−1) ∧ θ(ai, b′′) ∧ ψ(b′′, c)

≤
∨
b′′

EB(bi−1, b
′′) ∧ ψ(b′′, c) ≤ ψ(bi−1, c).

List sets: If A is a set, we write A∗ for the set of finite lists of elements of A.
How can we make the analogous construction for ΩX-valued sets A? It would
seem natural to use the set A∗, with (ai)

m−1
i=0 ∼x (bi)

n−1
i=0 if m = n and for each

index i we have ai ∼x bi. This translates into

E((ai)
m−1
i=0 , (bi)

n−1
i=0 ) =

∨
{
m−1∧
i=0

E(ai, bi) | m = n}.
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(Note that the expression on the right evaluates to ⊥ if m 6= n, since the set
of disjuncts is then empty.) This gives the correct stalks. Associated structure,
such as the concatenation operation that, with the empty list as unit, makes
the list set into a monoid, can also be checked stalkwise.

Finite powersets: (Note that the full powerset is not geometric.) The fi-
nite powerset FA can be constructed as a quotient of the list set A∗, using
(ai)

m−1
i=0 ∼x (bi)

n−1
i=0 if for each index i there is some index j with ai ∼x bj , and

vice versa. This translates into

E((ai)
m−1
i=0 , (bi)

n−1
i=0 ) =

m−1∧
i=0

n−1∨
j=0

E(ai, bj) ∧
n−1∧
j=0

m−1∨
i=0

E(ai, bj).

7 The object classifier

We have stressed the idea that a sheaf over a space (or locale) X is a continuous
set-valued map on X, but also that there is no conventional topology on the class
of sets that realizes this idea. Here we briefly explain the topos-theoretic idea
that the object classifier S[U ] expresses the “space of sets”.12 This somewhat
technical section is less relevant to the understanding of fuzzy sets as sheaves.

In the category Loc of locales we have the idea that morphisms W → X
are “points of X at stage W”, with points at stage 1 (the terminal locale)
distinguished as global points. In fact this abstract idea makes sense in any
category, and a fruitful one to generalize to is the category Top of Grothendieck
toposes and geometric morphisms. The reason that this is a generalization
is that Loc embeds fully and faithfully in Top, taking each locale X to the
topos SX of sheaves over X. Locale maps X → Y are equivalent to geometric
morphisms SX → SY , so a geometric morphism should be thought of as a
“continuous map between toposes” and the global points of a topos E are the
geometric morphisms from S1 ' Set to E .

Since Loc embeds in Top, it would be possible to conduct locale theory
entirely in terms of the categories of sheaves, but of course one does not normally
do this – it is much simpler to work in terms of the lattices of opens. What
makes locales localic (as opposed to the more general toposes) is that there are
enough opens. For a general topos there are not enough opens and so sheaves
have to be used instead.

The distinction can also be understood in terms of geometric logic. A topos
in general is “the space of models” for a predicate geometric theory, while for a
locale the theory is propositional – no sorts (so no terms13).

We argued that sheaves over X were to be thought of as continuous maps
from X to “the space of sets”, but with nothing in the usual world of topology
that can serve as this space of sets. Now in the generalized world of toposes,

12The object classifier is a particular topos, and is not to be confused with the subobject
classifier Ω, a particular object in each topos.

13Actually, it does not matter if the geometric type constructions are used to make “constant
types” such as N and Q (for the natural numbers and the rationals), and their terms are used.
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it seems we must seek a topos E such that sheaves over X are equivalent to
geometric morphisms from SX to E . Our E is the object classifier S[U ]. It is
a topos generalization of the Sierpiński locale S (Definition 23), which classifies
subsingleton sets.
S[U ] is defined to be the functor category [Setf ,Set], where Setf is the

category of finite sets. In other words, the objects of S[U ] are the functors from
Setf to Set, and the morphisms are the natural transformations. But any set is
a filtered colimit of finite sets, and it can be proved that any functor from Setf
to Set can be extended, uniquely up to isomorphism, to a functor from Set
to Set that preserves filtered colimits. “Preservation of filtered colimits” is a
categorical generalization of preservation of directed joins, i.e. Scott continuity.

The key property of S[U ] is that it classifies the geometric theory with one
sort and no functions, predicates or axioms. A model of this theory is simply a
set (the carrier of the single sort), or, in a general topos F , an object of F . The
“classifier” property is as follows. First note there is a special object of S[U ],
the generic object U : Setf → Set defined by U(S) = S. (Of course, this is
just a fancy name for the inclusion functor.) Now for any Grothendieck topos
F , and for any object X of F , there is a unique (up to isomorphism) geometric
morphism f : F → S[U ] such that f∗(U) = X. We sketch a proof of this;
more details can be found in standard texts such as [MLM92]. First note that
the Yoneda embedding Y : (Setf )op → [Setf ,Set] is a free cocompletion. Any
functor F : (Setf )op → C, where C is cocomplete (i.e. has all small colimits),
factors uniquely (up to isomorphism) as F ◦ Y where F : [Setf ,Set] → C is
cocontinuous (preserves all colimits). Moreover, if F preserves finite limits then
so does F , and in that case, F is the inverse image part of a geometric morphism.
Now given X in F , we can define F : (Setf )op → F by F (S) = X |S|. This
preserves finite limits, and so gives us our geometric morphism. It is easily
calculated that U = Y(1), and so F (U) ∼= F (1) = X1 = X as required.

From this we see that the points of S[U ] at stage F , in other words the
geometric morphisms from F to S[U ], are just the objects of F , and in par-
ticular the global points are just sets (since Sets ' S1). Thus in the world of
Grothendieck toposes we can understand S[U ] as the “space of sets”.

It is interesting to calculate the opens – in other words, the subobjects
of 1 – for S[U ]. We shall do the calculation classically. The terminal object
1 is the functor Setf → Set that takes every finite set S to a singleton 1.
A subobject of this is a functor F that takes every S to a subset of 1, and
(classically, at least) there are only two possible such subsets, namely 1 itself
and the empty set ∅. Clearly there are two constant functors corresponding to
1 and ∅. Also, if F (1) = ∅ then for every S the unique function ! : S → 1
gives F (!) : F (S)→ F (1) = ∅ and it follows that F is constant ∅. Now suppose
F (1) = 1. For every inhabited S there is a function 1→ S, and hence a function
1 = F (1) → F (S), so F (S) = 1. It follows that the only possible non-constant
functor F takes ∅ to ∅, and every inhabited S to 1.

Thus, classically, S[U ] has three opens. As subclasses of the class of sets, they
correspond to the empty class, the class of all sets, and the class of inhabited
sets. Topologically, this cannot be distinguished from the Sierpiński locale S.
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In fact, S is the localic reflection of S[U ], what you get when you try to deal
only with its opens and without using sheaves.

8 Conclusions

Their range of different technical expressions can make sheaves daunting to
the newcomer. However, there is a simple unifying intuition: a sheaf over a
locale X is a continuous set-valued function, the value at a point x being the
stalk. We have described why continuity may be thought of as geometricity
of the construction. Geometric constructions on sheaves, such as finite limits,
arbitrary colimits and free algebra constructions, can be performed stalkwise.
When carried out on ΩX-valued sets, they can often be formulated simply if
one does not require the ΩX-valued sets to be complete, and can be verified by
checking the actions on stalks.

It practice it is not always obvious to a beginner just what constitutes a
geometric type construction. Nonetheless, I hope to have demonstrated three
points.

1. The stalkwise reasoning is intuitively valuable where valid.

2. There is a definite criterion (geometricity) for its validity.

3. Despite appearances, it can provide rigorous arguments even for non-
spatial locales.

We have seen how geometric logic enables us to use spatial language for
frame-valued sets. This works very well, but it should be pointed out that it is
not at all clear how to extend this to sets valued in other kinds of structures. The
techniques deserve further investigation in the setting of quantal sets, particu-
larly where the quantale is the real line (with + as the quantale multiplication).
This relates to generalized metric spaces in the sense of [Law73].
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