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Geometric Theories and Databases

Steven Vickers *

Abstract

Domain theoretic understanding of databases as elements of powerdomains is
modified to allow multisets of records instead of sets. This is related to geometric
theories and classifying toposes, and it is shown that algebraic base domains lead
to algebraic categories of models in two cases analogous to the lower (Hoare)
powerdomain and Gunter’s mixed powerdomain.

Terminology

Throughout this paper, “domain” means algebraic poset — not necessarily with
bottom, nor second countable. The information system theoretic account of
algebraic posets fits very neatly with powerdomain constructions. Following
Vickers [90], it may be that essentially the same methods work for continuous
posets; but we defer treating those until we have a better understanding of the
necessary generalizations to topos theory.

More concretely, a domain is a preorder (information system) (D, =) of
tokens, and associated with it are an algebraic poset pt D of points (ideals of D;
one would normally think of pt D as the domain), and a frame QD of opens
(upper closed subsets of D; 2D is isomorphic to the Scott topology on pt D).

“Topos” always means “Grothendieck topos”, and not “elementary topos’;
morphisms between toposes are understood to be geometric morphisms.

S, italicized, denotes the category of sets.

We shall follow, usually without comment, the notation of Vickers [89],
which can be taken as our standard reference for the topological and localic
notions used here.
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1. Introduction

Gunter [89] gives a powerdomain theoretic account of some aspects of databases
(or, perhaps more fairly, a database account of powerdomains). Let us first
summarize the intuitions in the case of the lower (or Hoare) powerdomain.

The account starts with a domain D in which each real-world object
considered by the database has a semantic value as a point. A record is then a
token of the domain. It can be thought of in two ways:

(1) The token represents a compact point, and hence a possible finite
approximation to the semantic values of objects (which may be more
infinite in some sense).

(i1) The token represents a completely coprime open, and hence an
observable property of points (namely, that they are approximated by
the token’s corresponding compact point; so if t is the token, we shall
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write 1t for this property). Every other open is then a disjunction of
those represented by tokens.

In other words, the token lives both in a straightforward domain theoretic world
as a point, and in a logical world as a property. The logic is an observational
logic, and it is geometric — that is to say, in this propositional case, its connectives
are finite meets and arbitrary joins. It has been argued enough elsewhere (see
Vickers [89]) that these connectives, unlike = and —, have a direct observational
content.

The real world contains more than one object to be described, and in Gunter’s
account a database has a finite set of records to represent a set of objects. One can
refine a database in two ways, either by refining the records (how to do this is
described by the base domain), or by adding new records. These are encapsulated
in the lower preorder on finite sets of tokens,

XzLY < VseX. tEY.sc= t

These finite sets of tokens are themselves the tokens for a new domain, the
lower powerdomain Pp D. Such a set, X, can be seen either as a finite
approximation to a reality comprising possibly infinitely many, possibly non-
compact points, or as a property of that reality — that for each token s in X, there is
a point in reality satisfying it (in the modal logic of powerdomains, X represents
Nsexdo 1's).

There are curiosities here that arise from the use of sets. For instance,
suppose a database has two records that are only partial:

{forename = "John"}
{surname = "Smith"}

In other words, the database has records of — apparently — two people, John and
Smith. If it now turns out that Smith’s forename is John, that record gets refined
to

{forename = "John", surname = "Smith"}

But this record now subsumes the old record for John. The powerdomain
semantics implies that the two databases

{forename = "John"}
{forename = "John", surname = "Smith"}

and

{forename = "John", surname = "Smith"}
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are equivalent, so the computer might as well save space by dropping the record
about John. But that’s odd, because the original John was in fact John Smythe, a
completely different person.

The proposal to be developed here is that the world is full of Johns, all
different, and the database should be prepared to contain distinct copies of the
record {forename = "John"}. In other words, the database is not a set of records,
but a bag. (Many databases do indeed work this way.)

Definition 1.1 Let S be a set. A bag in S is a set X (the base set) equipped with
a function from X to S, written x[3¢ Ixl, the value of x.

It is also possible to define a bag by stating, for each element of S, what its
multiplicity (possibly infinite) is in the bag. But the set X in the definition here
makes concrete the “underlying distinct identities” of the elements of the bag and
makes it easier to define bag morphisms.

Having accepted that a database should be a finite bag of records (tokens from
the base domain), we should now like to extend the domain theory by defining a
“bagdomain”; moreover, this will be a category rather than a domain. One
possible definition of “bagdomain” (“categorical powerdomain”) has been given
by Lehmann [76] and developed by Abramsky [83], but we define a different
notion. The relation between Lehmann’s bagdomain and ours is roughly that
between the upper and lower powerdomains.

Let us look carefully at how one bag, Y, can refine another, X. As before, we
want the addition of extra elements to refine the bag. We also want to be able to
refine a bag by refining its elements, so for each x in X we want some y in Y with
Ix| = lyl. But remember also that the distinct elements of the bag were supposed to
represent distinct objects in reality; so in making the refinement perhaps we should
keep track of which element is which.

Consider —
X = {surname = "Smith"} (object x)
Y = {surname = "Smith", age =0}  (objectyp)
{surname = "Smith"} (object y7)

Obviously Y can refine X, and it is very reasonable to suppose that it is by
mapping X to yp, with y; new. But it could equally well be by mapping x to y;
with y7 new, and these are really two different ways of making the refinement.

Definition 1.2 Let D be a domain, and let X and Y be bags in D (i.e. bags of
tokens, representing compact points). A refinement from X to Y is a function
f:0X0O— Y such that VxEX. Ixl = If(x)l.
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Note a subtle observational implication of this definition. If { is not onto, then
we have refined X by adding new elements. This has already been mentioned. But
if f is not 1-1, then the refinement says that two elements that were thought to be
distinct have now been found to be the same. The idea of making this kind of
observation is quite plausible, but it must be understood that it is a physical
assumption about the systems we are trying to model. Another way of
understanding it is that there must be an observational, intensional meaning to
equality (physical identity of objects, not equality of their values). We shall see
later that this helps to extend the observational content of propositional geometric
logic to the predicate case.

Definition 1.3 Let D be a domain. Then the lower bagdomain over D, By (D), is
the category for which —

* objects are finite bags of tokens from D
* morphisms are refinements.

It is not hard to show that this actually is a category. It is also essentially
small, for it is equivalent to its full subcategory in which the base sets of the bags
are restricted to be finite subsets of the natural numbers, or indeed of any standard
countable alphabet. We shall tacitly replace Bp (D) by this small category
equivalent to it, and use as the “standard countable alphabet” the same one as
supplies the stock of logical variables; this will ease some technical proofs later
on.

Our aim now is to show that this is a good categorical extension of
powerdomain theory. The analogy is as follows.

* The category By (D) is a categorical information system. Its objects are
tokens and its morphisms are refinements.

* The categorical “ideal completion” (the analogy of pt D) is the ind-
completion (see Johnstone [82]), whose objects are filtered diagrams in the
base category. We shall show that for By (D), the objects of the ind-
completion are the arbitrary bags of possibly non-compact points of D,
with refinements as morphisms.

* The observational theory for P (D) is a propositional geometric theory,
generated by propositions (nullary predicates) ¢a (a € QD). For By (D)
this is replaced by a predicate geometric theory with unary predicates a(x)
(a € QD). Abstracting away from its presentation, a propositional
geometric theory can be identified with a frame, its geometric Lindenbaum
algebra; but for a predicate theory one must instead use the more
complicated classifying topos. (For a propositional theory, the classifying
topos is the topos of sheaves over the corresponding locale.) We shall
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show that the classifying topos for the theory here is equivalent to the
functor category SBL(D) (where we write S for the category of sets). This
is analogous to the localic proof with P (D) that the locale whose frame is
presented with generators <a (i.e. given by a theory presentation with
those as primitive propositions) is homeomorphic to the algebraic poset
whose compact points are represented by finite sets of compact points of D
under the lower preorder.

2. Geometric logic

We summarize here the principal ideas of geometric logic and topos theory that we
shall use. For fuller references, see Johnstone [77] and Makkai and Reyes [77];
for another introduction for computer scientists see Fourman and Vickers [85].

A geometric theory is presented by —

* sorts

 primitive predicate and function symbols, each with an arity specifying the
number and sorts of its arguments and (for a function) the sort of its result

e axioms of the form ¢ F vy, where ¢ and 1 are geometric formulas,
constructed using the primitive symbols, sorted variables and the
geometric connectives A (and true), V/ (including infinite disjunctions), =
(sorted) and 3.

Note the special case of a propositional theory, i.e. one with no sorts. The
only primitive symbols are the nullary predicates (propositions), there can be no
variables, and = and 3 have no role to play. Such a presentation is exactly a
presentation of a frame.

Formulas as sets

The crucial intuition is that a formula is a parametrized set, the parameter being a
model. In other words, for a given theory there is a pairing Models x Formulas —
Sets. It pairs a model M with a formula ¢ to give the extent of ¢ in M, the set of
ways in which the free variables of ¢ can be instantiated in M to make ¢ true.

We write this extent as {Ml¢} (the notation was suggested by Dirac’s [47]
bras and kets). This can be thought of as {x € M | ¢(x)}, though x is really a
vector of all the free variables in ¢, so that {Ml¢} is a set of tuples of elements of
the appropriate carriers of M. (Remember that the theory may be many-sorted.)
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A formula with no free variables has an extent that is a subset of MO, which is
a singleton set {*}. Classically, either M satisfies the formula, in which case the
extent is all of {*}, or it doesn’t, and the extent is @. Also, a sort can be
represented by the formula x=x; {Mlx=x} is the carrier of M for the sort of x.

For both models and formulas, we have a notion of morphism and the pairing
{Ml¢} is functorial in both arguments.

For models, the morphisms are homomorphisms in an obvious sense (with
functions mapping carriers to carriers, and preserving the operations and
predicates). Then for a homomorphism from M to N we get for each ¢ a
corresponding function from {Ml¢} to {Nlp} because ¢ is geometric.* (To see an
example where this breaks down for non-geometric formulas, consider ¢ =
Vy.(x'y = y'x) in the theory of monoids. This states that x is central (commutes
with all other elements), so {Ml¢} is the centre of M; but homomorphisms of
monoids do not necessarily map centres to centres.)

For formulas, once we have agreed that they are sets, the morphisms should
be functions; the idea is to use their graphs. If ¢(x) and y(y) are formulas (x and y
here may be vectors of variables), then a function from ¢ to vy is a formula 0(x,y)

satisfying —
e 0(x,y) F ¢x) A YP(y) (¢ and p are the source and target of
0)
* O(x,y) AOB(x,y) F y=y' (single-valuedness)
e ¢(x) F Ay. 6(x, y) (totality)

When we parametrize by (take extents in) a model M, these conditions ensure that
{MI0} is the graph of a function from {MI¢} to {Mhp}.

The category of formulas, the syntactic category of the theory, has as objects
the formulas (actually, formulas modulo relabelling of variables) and as
morphisms the function formulas (actually modulo provable equivalence).

Because the formulas are parametrized sets, one can imagine applying set
constructions to them, such as products, equalizers, unions, etc. Some of these
can be done just using the logical connectives. For instance, Cartesian product and
intersection can both be constructed using conjunction:

Mip(x)} N {MIp(x)} = {Mlp(x) A §(x)}
Mip(x)} x {MIp(x)} = {MIp(x) A d(y)}

* This also holds when infinite conjunctions are used in the construction of ¢, though we shan’t

use this.
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Others can not. Some, such as complements and function spaces, are essentially
non-geometric. But some, notably disjoint union, are geometric in flavour and can
be added. In the next section, we shall describe more precisely, though in
categorical terms, what are “geometric set constructions”.

Although the syntactic category does not contain all the geometric set theory,
its logical structure is very convenient for reasoning with. This is illustrated in our
main Theorems, 3.1 and 4.2, where in order to interpret certain geometric theories
in terms of other ones, it suffices to define functors into the syntactic category.

“Giraud frames”

Makkai and Reyes [77] use the phrase “Giraud toposes” temporarily as a
description of categories E satisfying the following conditions (see Johnstone [77]
p. 17 for more details) —

e FEhas all finite limits

e [ has all small colimits, and they are universal (preserved under pullback)

e Coproducts in E are disjoint, i.e. the injections pull back pairwise to the
initial object @

» Epimorphisms out of an object are equivalent to “equivalence relations” on
that object

e [Eis locally small, i.e. each “hom-set” is indeed a set

e [ has a set of generators, i.e. a set G of objects such that if f and g are
distinct morphisms from X to Y, then there is some h: G — X with Gin G
such that h;f = h;g

The last two conditions are size conditions, needed to construct a small site
for which the Giraud topos can be the category of sheaves. The first four are the
categorical embodiment of “geometric set theory”: so the constructions wanted are
finite limits (which can already be done by logic, in the syntactic category), and all
small colimits (which cannot).

Makkai and Reyes use their term “Giraud topos” only while they are proving
Giraud’s theorem, that Giraud toposes and (Grothendieck) toposes are the same —
the corollary to this, that every Giraud topos is an elementary topos, is somewhat
remarkable, for nowhere in the definition are mentioned Cartesian closedness or
subobject classifiers.

Let us try to give a more permanent usefulness to the notion of Giraud topos
by making the same distinction as there is between frames and locales: the
morphisms go in opposite directions. We therefore rename Giraud toposes as
Giraud frames: categories E satisfying the conditions given above. A
homomorphism of Giraud frames will then be a functor that preserves this
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geometric structure of finite limits and all colimits; or, rather, let us express the
preservation of colimits by the possession of a right adjoint, so that a
homomorphismOof Giraud frames from E to F is an adjoint pair (f*,0Ofx), {*: E —
F and f«: F — E such that f* preserves finite limits. f* (the inverse image) is the
primary part, the structure-preserving functor, and in fact we shall often talk as
though f* is the Giraud frame homomorphism.

Note that these homomorphisms do not necessarily preserve other structure of
elementary toposes, such as exponentials and subobject classifiers. An exact
analogue (the propositional case) is with frames: frames are, as it happens,
complete Heyting algebras, but frame homomorphisms are only required to
preserve joins and finite meets and do not necessarily preserve the Heyting arrow.

Now a locale is a frame “pretending to be a topological space”, and this
pretence is maintained in part by the morphism reversal. The same can be done
with toposes. Grothendieck says that a topos is a generalized topological space.
More precisely, a topos is a generalized locale, and in a directly generalized way it
too pretends to be a space, its “space” of models — to aid the pretence, the set-
theoretic models are called points of the topos. The reason that this can only be a
pretence is that we do not identify toposes on the mere grounds that they have the
same space of points — for instance, some non-trivial toposes don’t have any
points at all. Again, to maintain the pretence, the appropriate morphisms between
toposes, the geometric morphisms, are defined to be homomorphisms of Giraud
frames, but in the opposite direction. We can now say with precision that toposes
(and geometric morphisms) are to locales as Giraud frames (and homomorphisms)
are to frames.

The classifying topos

Let us first recall the definition of the classifying topos, and then try to elucidate it.

Let T be a geometric theory. A topos S[T] is a classifying topos for T iff —

e S[T] has a specified model of T, the generic model, and
* if E is any other topos with a model of T, then there is a unique (up to
equivalence) geometric morphism f from E to S[T] such that f* maps the

generic model to the given model in E.

Fact Every geometric theory has a classifying topos (unique up to equivalence).
Proof See Makkai and Reyes [77]. (Johnstone [77] gives a proof for coherent

theories, i.e. geometric theories in which no infinite disjunctions are used in the
axioms). ]

S[T] is to be the Giraud frame freely generated by the primitives of T (as sets
and functions) subject to the relations expressed in the axioms in T. To say that
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we have interpreted the primitives in S[T] (sorts as objects, predicates as

subobjects of products of sort objects, functions as morphisms) and satisfied the
axioms is precisely to say that we have a model of T in S[T]. To say that this is

done freely is to imply a universal property, that if we have a model of T in any

other Giraud frame FE, then there is a unique (up to equivalence here)
homomorphism from S[T] to E that preserves the generators, and in the language

of toposes and geometric morphisms this is as stated in the Definition.

2.1 Flat functors and Diaconescu’s Theorem

Consider a domain D. A point is an ideal of D, but it can be viewed another way:
it is a function f from D to 2 = @ ({*}), mapping s to {*} iff s is in the ideal, and
this function is antitone and satisfies

{*} = U{f(u):u e D}
f(s) N f(t) = U {f(u): s = u, t = u} (s,tED)

The first of these says that there is some u such that * € f(u), i.e. the ideal is non-
empty. The second says that if * € f(s) and * € f(t), i.e. s and t are both in the
ideal, then they have some upper bound in the ideal: in other words, the ideal is
directed.

These translate directly into the localic presentation of 2D (see Vickers [90];
ub(S) is the set of upper bounds of S):

QD =Fr ( 1{s} s €D) I Ases 1{s} = Vueuns) {u} (S Skin D))

so that the points of the locale are exactly the ideals of D.

Our aim now is very quickly to present the categorical version of this idea.
Throughout this discussion, let D be a small category.

First, the ind-completion, Ind-D, is the analogue of the ideal completion of a
poset. A very good account is given in Johnstone [82]. Its objects are filtered
diagrams in D, considered as formal representatives of their colimits. The
morphisms are defined between the diagrams in such a way as to represent
morphisms between colimits.

Now the Yoneda embedding from D into SP°P (where S is the category of
sets) extends to Ind-D and in fact gives an equivalence between Ind-D and a full
subcategory of SPP. Johnstone describes this as the category of “filtered colimits
of representable functors”, but that is for the sake of technical simplicity. There is
an alternative characterization (see Johnstone [77]) of these functors as flat.

Definition 2.1
(1) Let G be a category. G is filtered iff every finite diagram in G has a
cocone over it, 1.e.

10
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* G is nonempty.

e Given any two objects X and Y in G, there can be found a third
object Z and morphisms f: Y = Z,g: Y — Z.

* Given two morphisms f, g: X — Y, there can be found a third
morphism h: Y — Z with f;h = g;h.

(i1) Let D be a category, and let F: DOP — § be a functor.
The Grothendieck construction on F, Groth F, is the category in which

* anobject is a pair (x, X) where X is an object of D and x € F(X)
e a morphism from (x, X) to (y, Y) is a morphism f: X — Y in D
such that x = F(f)(y)

F is flat iff Groth F is filtered.

Example 2.2 Let D be a poset. Then flat functors F: DOP — § are equivalent to
ideals of D.

Proof Let F be flat. First, note that F(X) is a singleton for all X in D, for suppose
X, y € F(X). Consider the objects (x, X) and (y, X) in Groth F. By flatness,
there is an object (z, Z) and morphisms f and g from (x, X) and (y, X)
respectively to (z, Z). But we must have f = g in D, so then x = F(f)(z) = F(g)(z)

=y. Let I be the set of X in D such that F(X) = @. Again by flatness, it follows
that I is an ideal. ]

The next step is to observe that flatness is geometric.

Definition 2.3 The geometric theory Flat(D) has —

sorts: for each object X of D, a corresponding sort

functions: for each morphism f: X — Y in D, a corresponding function
f1Y—=X

axioms: F Id(x) = x
F (f;2)(z) = f(g(z)) EX—=Y,g2Y—=ZinD)

F Vxep Ix:X. x =x
FV7zep V{AzZ. x=fz2) Ay=g(2):f: X —=Z,2:Y = Zin D}
f(y)=g(y) F Vzep V{3zZ. (y =h(z)): h: Y = Z, f;h = g:h}
(f,g: X—=Y inD)
A model of Flat(D) in § is precisely a flat functor from D°P to S. The object
part is described by the carriers, and the morphism part by the interpretation of the

functions. The first two axioms say that it is a (contravariant) functor, and the
remaining three that it is flat.

Theorem 2.4 (Diaconescu’s Theorem)

11
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Let D be a small category. Then the classifying topos for Flat(D) is SP.

The generic model is the Yoneda embedding of D contravariantly into SP.
Proof In other words, for any topos F there is an equivalence between models of
Flat(D) in F and geometric morphisms from F to SD. This is Theorem 4.34 in
Johnstone [77]. To see why, first note that Johnstone covers not just
Grothendieck toposes but more generally toposes “defined over” an elementary
topos E. We are interested in the case where E = S, the category of sets. The
geometric morphism f: F — § has for its inverse image part the functor f*: § — E
that maps a set X to the coproduct in F of IXI copies of 1; f* maps the small
category D, an internal category in S, to an internal category f*D in F. Now
Johnstone shows that geometric morphisms from F to SP are equivalent to “flat
internal presheaves on f*D”, so there is a gap: we ought to show that flat internal
presheaves on f*D, which are defined categorically, are equivalent to the models
in F of Flat(D), which are defined more in logical terms.

This is a gap of exposition rather than of real mathematics. A development of
topos theory using the Mitchell-Bénabou language would naturally define the flat
internal presheaves in terms similar to Definition 2.3. Johnstone took a
deliberately categorical approach, and presented the “obvious” categorical
formalization of the logical ideas. Nonetheless, once the treatments — logical and
categorical — have diverged it seems a non-trivial exercise to show that
corresponding points on them are genuinely equivalent.

The basic trick here is that because coproducts are preserved by pullback in a
topos, and because we are interested in flat internal presheaves over the category
f*D whose object and morphism families are copowers of 1, the objects used in
the course of defining “flat internal presheaves” can be decomposed as coproducts

indexed by structures from the external category D. (Recall also that in a Giraud
frame colimits are universal, i.e. preserved by pullback.) ]

2.2 Geometric logic as observational logic

In Abramsky [87] and Vickers [89], it is argued that disjunction and finitary
conjunction, the connectives of propositional geometric logic, have observational
content in that observability of properties is preserved by these connectives. The
notion of “observability” is not formally defined, but it is intended to capture these
two ideas:

* positivity: if an observable property holds, then it is possible to observe it;
but if it fails, there need not be any way of ever discovering that.

* serendipity: one is told how to know in retrospect when one has observed
something, but not any method that’s guaranteed to result in the
observation whenever possible.

12
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(Serendipity perhaps represents the distinction between this notion of
observability and semi-decidability.) We wish here to extend these intuitions to
full predicate geometric logic. Although this section is necessarily informal, we
hope that it helps to answer the question “What use is geometric logic in the real
world?”

In the framework outlined above, {Ml¢} (when ¢ is a proposition) is a subset
of the singleton {*}. Hence observing ¢ is equivalent to discovering an element of
this subset. We should like to extend this to predicate logic by the notion of
“apprehending” elements of the sets {Ml$} (for general ¢), i.e. observing the
existence of elements and moreover getting some kind of grasp on them so that
they can be related to others. We also want to be able to observe equality between
elements, though this is an intensional equality — two twin elements may be
indistinguishable in all respects, but still not equal.

We therefore propose the idea of “observability set”, specified by two
methods (both interpreted positively and serendipitously):

* how to apprehend elements of it
* how to observe equality between two elements of it

Equality (i.e. possibility of observing equality) must be an equivalence relation.

This idea is actually not very different from Bishop’s (Bishop and Bridges
[85]) account of sets as “the totality of all mathematical objects constructed in
accordance with certain requirements ... endowed with a binary relation = of
equality,” though in generalizing “construction” to “apprehension” (one can
plausibly apprehend an element by constructing it, though not necessarily the
other way round) we are trying to be more neutral about the physical reality.

Similarly, we drop Bishop’s constructional or operational import from the
notion of function.” A function f: X — Y is simply its graph, a subset of XxY, a
retrospective way of observing that for two elements x and y we have “y=f(x)”.
(To apprehend an element of f you apprehend a pair (x,y) and observe that
“y=f(x)”; to observe that (x,y) = (x',y') you observe that x = x' and y = y'. We
shall preserve the quotes round “y=f(x)” to make it plain that this is not an
instance of the the equality observation.) Of course, this method must be
extensional (with respect to =), single-valued and total, though these are matters
for proof rather than observation.

It is now possible to justify the first four conditions in the definition of
Giraud frame in terms of observability sets, to reason informally that observability

* For this reason, we believe that geometric logic has a role to play in specification of computer

programs.
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sets are preserved under finite limits and small colimits and that they satisfy the
properties relating these.

For instance, consider how one could construct the equalizer of two functions
f, g2 X —= Y. We must describe the equalizer E, the function h: E — X, and the
mediating functions as observability sets, and we must also prove that these
satisfy the right properties.

To apprehend an element of E, apprehend elements x and y of X and Y, and
observe that “y=f(x)” and “y=g(x)”. To observe that (x,y) = (x',y'), just observe
that x = x' (though it will follow from single-valuedness of f and g that it is then
possible to observe thaty = y").

To observe (having apprehended x', x and y) that “x'=h(x, y)”, observe that
x' = x. One can then prove that h is a function. Moreover, h;f = h;g: for suppose it
is possible to observe “y'=(h;f)(x,y)”. The construction of composite functions is
that to observe “c=(¢;y)(a)” you must apprehend some b and observe that
“c=(b)” and “b=¢(a)”. In our case, therefore, it is possible to apprehend some x'
and observe that “y'=f(x")” and x' = x. But (x,y) € E, so we already know that
“y=f(x)” and “y=g(x)”. By extensionality and single-valuedness of f, it is possible
to observe that y' = y and hence by extensionality of g that “y'=g(x')”. It follows
that it is possible to observe that “y'=(h;g)(x,y)”. By symmetry it follows that it’s
possible to observe “y'=(h;f)(x,y)” iff it’s possible to observe “y'=(h;g)(x.y)”,
i.e. h;f = h;g.

Now suppose we have a function k: Z — X such that k;f = k;g. We want to
construct the mediating function k': Z — E such that k = k';h. (Note that these
equalities between functions are not themselves observable, since they relate sets,
not elements.) To observe that “(x,y)=k'(z)”, observe that “x=k(z)”. Again, one
can prove that k' is a function, that k = k';h, and that k' is the unique such.

We shall not give the details of the rest of the proofs needed, but restrict
ourselves to describing the constructions of products, coproducts and
coequalizers.

Products: To apprehend an element of XxY, apprehend a pair (x,y) of elements
from X and Y. To observe that (x,y) = (x',y'), observe that x = x' and y = y".
The projections and mediating functions are all obvious. (Note also the nullary
product 1: to apprehend an element of it or to observe two elements equal you
need do nothing. Hence it has a single element that exists of its own accord.)

Coproducts, X = Il ep X): Note that A is not an observability set, but an
ordinary discrete set in which equality and inequality are perfectly known. To
apprehend an element (x,A) of X, apprehend an element x of X; for some A. To

14
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observe (x,A) = (y,A), observe that x =y in X;; if A = u then to observe that
(x,A) = (y,u) is impossible.

Coequalizers: Let f, g X — Y be two functions. We wish to construct the
coequalizer h: Y — C. To apprehend an element of C, just apprehend an element
of Y. To observe that y = y' in C, apprehend elements yo, y1, ..., ynp of Y and
elements xi, ..., X, of X, observe that y = yg and y' = yy, and for each i (1 <1i
<On) observe either that “y;_;=f(x;)” and “yj=g(x;j)” or that “yj_1=g(xj)” and
“yi=f(xj)”.

The thesis, then, is that geometric theories can be satisfactorily used to
formalize informal (or real-world) structures that seem to contain the ingredients
of observability sets. Each sort will then represent (or be interpreted in a real-
world model as) an observability set, each predicate symbol an observability
subset of a product of sort sets, and each function symbol a function as described
above. The axioms — including axioms to specify functionhood of functions — will
be constraints on the admissible models, justifiable on physical grounds for the
physical models that we have in mind. They are not in themselves observable.

The classifying topos will contain not only the observability sets specified in
the theory presentation (the generic model), but also all others that can be derived
using limits and colimits as described above.

The remainder of this paper attempts to apply these intuitions to databases.
The idea is that people in the real world can be considered an observability set. To
apprehend a person, you take a firm grasp of his or her collar and say “’Allo,
"allo, ’allo, what’s going on ’ere, then?” To show that two apprehended people
are equal, you try to knock their heads together and discover that you can’t. In the
examples dealt with, the only other primitive observability sets are subsets of this,
and propositional observations. There are no observations other than equality to
relate different people. This is rather a simple case, but we hope that the same
intuitions can be used in other contexts, and in particular for specifying software
systems.

3. The lower bagdomain

Theorem 3.1 Let D be a domain. Then the theory Flat (By(D)) is equivalent to
the single-sorted theory T presented by:

predicates:  a(x) (a €Q2D)
axioms: a(x) F b(x) (a=<bin D)
Naes a(x) F (Naes a)(x) (S Sfin £2D)

15
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(Vaes a)(x) F Vaes a(x) (S C QD)

Proof We must show that SBL(D) (the classifying topos of Flat (Br(D)), by
Diaconescu) is equivalent to S[T], finding a model of each theory in the other’s
classifying topos in order to describe the geometric morphisms between them.
First, we describe a flat functor F from By (D)°P to S[T]. This automatically
extends to a Giraud frame homomorphism F: SBL(D) — §[T] (i.e. a geometric
morphism from S[T] to SBL(D); F is the inverse image part).
Let X be an object of By (D), a finite bag of tokens of D. Then

F(X) = Nxex (T1xI)(x)

We are assuming here that the stock of elements from which the base sets of the
bags are formed is actually the same as the stock of variables used in the logic. If
x € X then Ixl is a token of D, and 1Ix| is the corresponding open. Note that
because the objects of the syntactic category (formulas) are defined only up to
renaming of variables, we may always rename the base elements of bags to ensure
that base sets are disjoint.

Let f: X — Y be a morphism in By (D), i.e. a refinement; by renaming, we
can assume that X and Y are disjoint. Then F(f) is the function formula

FX) A F(Y) A Nxex (x =1(x))

Note that “f(x)” here is not a composite term, but an actual variable. The
refinement f maps variables to variables. Also, because Ix| = If(x)l, this formula is
equivalent to F(Y) A Ayex (x = f(x)).

The identity morphism is mapped to the identity function. As for
composition, suppose also that g: Y — Z in By ,(D). Then F(f) » F(g) is
dy.(F(f)aF(g)); when this is expanded as a logical formula, it is easily shown to
be equivalent to F(f;g).

Next, we must prove flatness. The first flatness axiom, follows from the
easily verified F 3x: F(@). x = x where @ is the empty bag. (The bold face x
represents the — empty — vector of free variables in F(®).)

For the second flatness axiom, let X and Y be bags of tokens with disjoint
base sets and let Z be a disjoint union of X and Y with injections f: X — Z,
g:0YO— Z. We can assume Z is disjoint from X and Y and write x' = f(x), y'
g(y). Then it suffices to show that in S[T],

FX) A F(Y) F Jz: F(Z). x=1(z) A y = g(z))

For the third flatness axiom, let X and Y be disjoint bags of tokens, with
refinements f, g: X — Y. The left hand side of the axiom is interpreted as

16



VICKERS: GEOMETRIC THEORIES AND DATABASES

Ax.(F(f) A F(g)), which is equivalent to F(Y) A Axex f(x) = g(x). Let ~ be the
equivalence relation on Y generated by the pairs f(x) ~ g(x) (x € X), and let Zy be
Y/~: as a set, this is the coequalizer of f and g. Choose a representative element of
each equivalence class, and let Y( be the set of chosen representatives. Then our
formula is equivalent to

Nyex [(Ny~y TyDE) A Ayy (v = y)]
A Ayey (VT VY. (y~y = Iyl = OD) A Nyy ¢ =Y)]
1V {/\yEYo [(Tty)(¥) A /\y'~y ' =yl
VyEY. Vy'EY. (y'~y = lyl = ty)}
AF V {Ayey (TtyD() A Ayey (v =y): VYEY. Iyl = tiy)}

where we are writing [y] for the equivalence class of y, an element of Z. Given a
family of tokens t; (z € Zo) with all lyl = ty], we can define a bag Z whose
underlying set is Zy and with Izl = t,, and then the projection h: Y — Z is a
refinement with f;h = g;h. Therefore, the LHS of the axiom is a disjunction of
formulas of the form

Nyey (Thy)D(y) A Nyy (v' =)

which is equivalent to 3z: F(Z). y = h(z).

Next, we describe a model for T in SBL(D)  giving a Giraud frame
homomorphism G from S[T] to SBL(D). The single sort is carried by the functor
(object of SBL(D)) that maps each bag X to its base set X, and each refinement to
its underlying function. If a € QD, then G(a(x)) is the subfunctor that takes X to
{xEX: Ixl E a}. If a < b, then clearly a(x) gives a subfunctor of b(x).

Limits and colimits in SBL(D) are computed argumentwise, so it is clear that
the subfunctor corresponding to A\ acs a(x) (the intersection) is {xEX: Va&S. Ixl
E a}, i.e. {xEX: Ixl F Nyes a}, i.e. the subfunctor corresponding to (A aes
a)(x). The other axiom is similar.

We must now show that the two geometric morphisms thus constructed are
the two parts of an equivalence.

First, let X be an object of B (D). Then GF(X) = X, for

GF(X)(Z) = G(Nxex (TIxDx))(2) = [[xex GI(TIxD(x))(2)
= [Txex {z€Z: Ixl = IzI} = BL.(D)(X, Z) = X(Z)

Next, let f: X — Y be a morphism in By (D). GF(f)(Z) is a subset of
GF(Y)(Z)xGF(X)(Z) = BL(D)(Y, Z) x BL(D)(X, Z), and this subset is the graph
of a function. We must show that the function is the same as f(Z), i.e. that (g, h)
€ GF(f)(Z) iff h = f;g. (Some of the notation is a bit condensed here. When we
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write X(Z) to mean By (D)(X, Z), we are identifying X with its image under the
Yoneda embedding; f(Z) is similar.)

GF()(Z) = G(F(X) A F(Y) A Nxex (x =1(x)))(Z)
= {2EZYXZX: Ix| = lzxl, Iyl  Izyl, zx = z§(x)}
= {(g, h) € Y(Z)xX(Z): Vx. h(x) = g(f(x))}
={(g, h) EY(Z)xX(Z): h =f;g}
Hence, F;G is equivalent to the identity on SBL(D),

Let us now consider G;F. First, note that G(a(x)) is the colimit (not just the
union) of the subfunctors G((1s)(x)) for tokens s F a. For suppose we have a
functor U € SBL(D), and natural transformations f5: G((1s)(x)) = U (s k a). If z
€ G(a(x))(Z),i.e. z€Z and Izl F a =V ,01s, then Izl = s for some s F a and z
€ G{(1s)(x))(Z). We wish to define fz(z) = fsz(z), and in fact this is
unambiguous. For if also Izl = s' F a then

Izl E tsals'=V {It:t=s, t=s'}

s0 Izl = some such t, and f3(z) = f5(2) = fSZ'(z).

Next, G((1s)(x)) is isomorphic to the (image in SBL(D) of the) singleton bag
Xs = {x} with Ix| = s. F preserves colimits, so F(G(a(x))) = A (say) is the colimit
of the objects F(Xs) = (1s)(X), s F a, and it remains to show that this colimit is
isomorphic to a(x). The inclusions (1s)(x) — a(x) (s F a) form a cocone over the
diagram; let f: A — a(x) be the mediating morphism. f is epi, because a(x) is the
union of its subobjects (1s)(x). Let R, a subobject of AxA, be the corresponding
equivalence relation. AxA is the colimit of objects (]s)(x) x (1t)(x), and pulling
back to R we get that R is the colimit of objects (1s)(x) N (1)(X) = (s A Tt)(x),
the intersection being taken in a(x). Hence R is a colimit of objects (1u)(x). It
follows from this that we can find an inverse to the reflexivity monic A — R, and

hence that the equivalence relation R is equality and f is an isomorphism.
Hence G;F is equivalent to the identity on S[T]. 1

In view of this Theorem, we can consider the presentations of T and
FlatOBy (D) to be different presentations of the same theory, which we shall write
B (D) (the lower bagdomain theory over D).

Corollary 3.2 The category of models of By (D) is equivalent to

(i) The ind-completion of the category By (D);

(ii) The category whose objects are bags (possibly infinite) of points
(possibly non-compact) of D, and whose morphisms are the
refinements.
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Proof
(i) follows because the theory is Flat By (D).
(1) A model X for the theory as presented in Theorem 3.1 has a carrier (let’s call
that X too) equipped with subsets {Xla}, and the axioms ensure that for each § €
X the map IEl: QD — 2, [El(a) = true iff § € {Xla}, is a frame homomorphism. In
other words, [E| is a point of the locale D; so X is a bag of points of D.

If X and Y are two models, then a homomorphism from X to Y is a function
f: X — Y that maps each {Xla} to within {Yla}. In other words, VEEX.
VaeQD. (€l F a = If(E)l F a), i.e. VEEX. [El = If(E)I, i.e. f is a refinement.

I

The models are fopological systems in the sense of Vickers [89], those
systems E for which QE = QD. However, refinements are not necessarily the
point parts of continuous maps.

Proposition 3.3 B is functorial: if f: D — E is continuous, then there is a
geometric morphism Br(f): B(D) — B(E) (i.e. from the classifying topos of the
theory By(D) to that of B[ (E)).

Proof It suffices to find a model for By (E) in SBL(D); we interpret b(x) (b € QE)
as (Qf(b))(x). Functoriality is clear. ]

Proposition 3.4 There is a natural transformation from By to Py, mapping — on
models — the bag X to CL{|&l: § EX}.
Proof To give a geometric morphism from By (D) to Py (D), we find a model for
PL(D) in By (D). It maps <a (a € QD) to 3x. a(x). Let F be its inverse image part.
Given a model X, let Y be the corresponding point of P (D); it is defined by
{Ylp} = {XIF(¢)} for ¢ € QP (D). (One could modify Dirac’s notation and say
{Yl$} = {XIFlp}, or {Y| = {XIF. ) By the standard theory of the lower
powerdomain, Y can be identified with a closed set of points of D, namely the
complement of V/ {a € QD: Y I <a}. But

Y F ¢a < {XI3x. a(x)} = {YI¢a} = {*} < extent(a) N {x: xEX} = O
Y ¥ ¢a < {Ixl: x € X} C extent(a)°

and the result follows from this. 1

4. The mixed bagdomain

Gunter [89] presents a scheme in which databases have not only the records as we
have described them above, representing actual objects, but also a different kind
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of record describing background assumptions about the objects of the form “all
objects are such and such”. The distinction represents the two modalities in the
localic theory of the Vietoris (Plotkin) powerdomain: <a says “there is some
object satisfying a”, whereas [ a says “all objects satisfy a”.

This new kind of database has two sets of records, called the “flat” part® and
the “sharp” part. If the flat records (tokens) are ry, ..., ry, and the sharp records
are s, ..., Sp, then the database as a whole represents the property

OMri Ao ATt A O(Ts v ... vTIsy))

This says that for each rj there is something in reality that it approximates, and
everything in reality refines at least one of the s;’s.

Although these modalities are best known in connection with the Vietoris
powerdomain, one of the axioms turns out to be inappropriate. It is:

O(avb)<=Oav <¢b

The reason is that it ties the sharp part of the database to the contingencies of what
objects we have found, whereas we should actually prefer to have our background
assumptions holding regardless.

Gunter therefore develops a new powerdomain, the “mixed” powerdomain,
presented localically by

QP\(D) =Fr( ¢a, Da(a€ QD) |
< preserves all joins
O preserves finite meets and directed joins
oa A Obs<<(anb) )

He shows that the usual methods of powerdomain theory work with this one,
giving an information system theoretic construction (i.e. the tokens for the
powerdomain are databases with flat and sharp parts, the flat parts having to
conform with the sharp parts) and an algebraic characterization.

Our aim now is to revise this theory by replacing ¢a by a(x) as before. We
do not change O a; this remains as a proposition. The mixed axiom is replaced by
a(x)AOb F (aab)(x), which is slightly stronger. The old version says that if all
objects satisfy b, and some object satisfies a, then some object satisfies anb. The
new one says that if all objects satisfy b, and some object satisfies a, then that
very same object satisfies anb.

* This use of the word “flat” is by musical analogy, and is quite unconnected with the notion of

flat functor.
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Definition 4.1 Let D be a domain. (As usual, we think of D concretely as the
set of tokens.) The mixed bagdomain over D, Bp(D), is the category for which —

e objects are pairs X = (XP, X#) where XP is a finite bag in D, X* is a finite
subset of D, and X* =y {Ixl: x € Xb} (i.e. for every x € Xb there is some
t € X# such that Ix| = t).
e morphisms from X to Y are refinements from Xb to Yb, provided that
X#Ozy Y*.
In Gunter’s [89] construction, XV is a set. Just as with By, we shall assume that

the base sets for our bags Xb are finite subsets of some standard countable
alphabet used also for logical variables.

Theorem 4.2 Let D be a domain. Then the theory Flat (By(D)) is equivalent to
the single-sorted theory T presented by:

predicates:  a(x), Oa (a €D)

axioms: a(x) F b(x) (a<bin D)
Naes a(x) F (Naes a)(x) (S Cfin £2D)
(Vaes a)(x) F Vaes a(x) (SC QD)
Oa F 0Ob (a <bin QD)
Naes Oa F O(Nges a) (S Cfin £2D)
o(V!9ea) F Ve Oa (S C Q2D directed)
a(x)AOb F (arb)(x) (a, b € Q2D)

Proof First, we describe a flat functor F from By(D) to S[T], extending to a
Giraud frame homomorphism from SBM(D) to S[T].
Let X be an object of Bp(D). Then

F(X) = Axexo (TIxD(x) A O(1XH)

Let f: X — Y be a morphism in Byq(D); by renaming, we can assume that Xb
and YV are disjoint. Then F(f) is the function formula

F(X) A F(Y) A Nxexb (x =1(x))

which is equivalent to F(Y) A Axexb (x = f(x)).
The functorial axioms of Flat(Bpy(D)) are satisfied much as in Theorem 3.1.
The first flatness axiom follows from the fact that in QD,

true = 1D = V1 {1 X#: X# Cg;,, D}
Hencein T,

true 1+ Otrue 1+ V1 {O1X*: X*# Cgip D} F VxepyD) Ix: FX). x =x
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by considering those X for which X? = (.

For the second flatness axiom, let X and Y be objects of By(D), with Xb and
YP? are disjoint. Let Zg be their union, and f: XP — Z, g: Yb — Z the injections,
both refinements. Then in S[T],

F(X) A F(Y) 4} Naezo (MNzh)(z) A T(PXH A 1YH)
A VY {Ngezo (MNzl)(z) A O(MZH): 2# 2y XH*, Z# oy YH)
(because in QD 1 X# A 1 Y#=\/1 {172#. 7# oy X*#, Z# 2y
Y#})

Now

(Mzh)(z) A O(YZH) AF (MNzIANZH)(z) A O (1 ZH#)
F VA @) A O ZH: t, 2 12, t, € 174}

so what we have is a join of formulas of the form A\, ez, (1t,)(z) A O(1Z#),
where t, 2 Izl, t, € 1Z#, Z# oy X* and Z# =y Y*. Let us define Z by taking Zb =
Zo with lzlz = t,, and Z* as we have it already. Then Z is an object in Byg(D), and
f: X = Z, g: Y — Z are morphisms. This is enough to entail the right hand side of
the axiom just as in Theorem 3.1.

For the third flatness axiom, let X and Y be objects of By (D), with
morphisms f, g: X — Y. The argument is the same as in Theorem 3.1, the sharp
parts Z# all being Y*.

Next, we describe a model for T in SBM(D), giving a Giraud frame
homomorphism G from S[T] to SBM(D), The single sort and the predicates are
interpreted as functors that operate on objects Z by applying the method of
Theorem 3.1 to ZP. For instance, G(x=x)(Z) is the set Zb. The axioms just
involving those predicates are respected as in Theorem 3.1.

The proposition Oa is interpreted as the functor

1 ifOVzeZ#.0OlzIOFOa
G(Oa)Z2) =
(O2)(2) {@ otherwise

O preserves finite meets and directed joins for the same reason as in upper
(Smyth) powerdomain theory, and using finiteness of Z#.
As for the mixed axiom,

G(a(x)AOb)(Z) = {zEZD: Izl k a A VZ'EZ#. 7' E b}
= {zEZb: 1zl E (anb) A VZ'EZ#. 7' E b}
(because if z € Zb then z = some z' € Z#)
C {zE7ZD: Izl E (anb)} = G((aab)(x))(Z)
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We must now show that the two geometric morphisms thus constructed are
the two parts of an equivalence.
First, let X be an object of By(D). Then GF(X) = X, for

GF(X)(Z) = G(N\xexb (TIxD(x) A O(TXH))(2Z)

_ [{refinementsOfromOXPOtoOZbOX #0O= yOZ#
(%) otherwise

=Bm(D)(X, Z) = X(Z)

The argument for morphisms is somewhat as in Theorem 3.1, and so F;G is
equivalent to the identity on SBL(D),

Let us now consider G;F. Just as in 3.1, G(a(x)) is the colimit of the
subfunctors G((1s)(x)) for tokens s F a, and so F(G(a(x))) is the colimit of the
F(G((1s)(x)))’s. G((1s)(x)) is the colimit in SBM(D) of the objects X from Byg(D)
for which Xb is the singleton bag X = {x} with Ix| = s, and X* =y {s}; for

G((1s)(X))(Z) = {refinements from X, to Zb} = Byp(D)((Xs, Z#U{s}), Z)

Hence F(G((1s)(x))) is the colimit of the objects F(X) = (1s)(x)A O (1X#),
and because

VA{OUXH: Xt ey {s}} =0 (V {1 X#: X# =y {s}}) = Otrue = true

(the join is directed), it follows that this colimit is (1s)(x). Hence F(G(a(x))) is the
colimit of the objects (1s)(x), and much as in Theorem 3.1 this is a(x). The proof
that F(G(Oa)) = Oa is somewhat similar. ]

Again, what we now have are two presentations of a single theory. Let us call
it BM(D) (the mixed bagdomain theory over D).

Corollary 4.3 The category of models of By(D) is equivalent to

(i) The ind-completion of the category By(D);

(ii) The category whose objects are pairs X = (X0, X*) where X* is a
compact saturated set of points of D and X? is a bag of points from X*;
and whose morphisms from X to Y are refinements from Xb to Yb
provided that Y* C X*.

Proof (i) follows because the theory is Flat By(D). For (ii), the XP part of the
model arises as in 3.2, while X# is a model for the propositions T a (by the
standard theory for the upper, or Smyth powerdomain, using the Hofmann-

Mislove theorem). The mixed axiom specifies that all the values of elements of XP
lie in X#. ]

Proposition 4.4 By, is functorial.
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Proof Given a continuous map f: D — E, we map b(x) to (Qf(b))(x) and Ob to
O(Qf(b)) (b€ QE). ]

Proposition 4.5 There is a natural transformation from By to Pyy. On models,
it maps (X, X*) to (Cl {Ix|: x € X}, X*#).
Proof Much as for Proposition 3.4. ¢a = 3x. a(x), Oa = Oa. ]

5. Further work

5.1 Categorical generalizations

The idea in By (D) of tacking arguments on the propositions generalizes to non-
propositional theories, tacking an extra argument on all the predicates; this has
now been done by Johnstone [91]. Moreover, rather than starting from this
syntactic construction as a definition (which would leave open the question of
presentation independence), he characterizes it universally as a “partial product”.
He also defines a monad on the category of toposes whose functor part is
somewhat analogous to the construction given in Theorem 3.1, and shows — as in
Theorem 3.1 —Othat in the case of algebraic toposes (i.e. those of the form SC for
some small category C) it is equivalent to one analogous to the finite bagdomain
construction.

5.2 Continuous domains
In Vickers [90] it is shown that the method of information systems can also be
applied to continuous posets, not just algebraic ones. A continuous information
system as presented there has a token set with an order < that is transitive and
interpolative: if s < u, then s <t < u for some t. This generalizes the reflexive
axiom of posets. The construction of points and opens out of these tokens is then
really very similar to that of the poset case, but now giving a continuous poset.

I conjecture that the bagdomains preserve continuity just as they do
algebraicity. (The appropriate notion of continuous categories has been
investigated by Johnstone and Joyal [82].)

5.3 More restricted information systems

The information systems used above are of the simplest kind, describing algebraic
posets. By putting extra conditions on, one obtains more restricted kinds of
information system that give more restricted kinds of domains: for instance,
spectral algebraic, strongly algebraic (SFP), Scott domains.
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Spectral algebraic domains can be rationalized as being governed by the desire
to have a coherent theory, i.e. a geometric theory in which infinite disjunctions are
not used in the presentation. This idea still makes sense in the predicate case, and
in fact it is easy to see that if D is spectral algebraic then By (D) and By(D) are
coherent. For instance, it is not hard to show that Byf(D) can be presented using
predicates a(x) and Oa where a is a compact open.

Flat D is equivalent to a coherent theory if, for instance, D satisfies certain
conditions analogous to the “2/3 SFP” conditions for spectral algebraic
information systems, namely that for every finite diagram A in D there is a finite
set S of cocones over A such that every cocone over A factors via one in S. Such
D’s would be a categorical generalization of spectral algebraic domains. There
may be similar generalizations of SFP and Scott domains, expressible by
conditions on information systems, and if so, one can ask whether they are closed
under By, and By.

5.4 Other uses of predicate geometric logic

Although the database ideas here are rather specialized, the methods may turn out
to be useful models for other applications of predicate geometric logic, using the
intuitions described in Section 2.

One interesting possibility that shows some promise is the use of geometric
logic in specification languages. One reason for this may be the ex post facto
nature of the intuition for observations of functions: the specifications tell you
how to observe (or check) when you’ve got the right answer, but not how to
calculate it. More concrete evidence is provided by some recent work of Hodges
[90], who shows that specifications using the Z language can in practice be
restricted to a logic (which he calls =}) that is essentially geometric.

5.5 Dynamic predicate geometric logic

Another feature of the database ideas that may be intrinsic at this stage of
development of the theory is that the databases are describing a static universe.
The only process of change is that by which one refines one’s knowledge of this
universe by refining one’s knowledge of the objects, by discovering new objects,
or by observing equalities. The whole theory falls far short of real databases in its
failure to account for change in the world.

It has been argued in Abramsky and Vickers [90] that in the propositional
case, to take account of change one must introduce a dynamic observational logic
in which the observations form a quantale instead of a frame. The essential
difference is that conjunction aab (observe a and b) must be replaced by a much
more precise temporal composition a-b (observe a then b), with the understanding
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that there may have been a change in the object in connection with the observation
a.

It therefore seems quite likely that in order to model dynamic databases we
should use a theory that combines the dynamic features of quantale logic with the
multiplicity of objects in the predicate logic: we need a predicate quantale logic. I
do not yet understand what this theory would have to be.
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