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Geometric logic (or type theory)

Logic of sets highly restricted
» finite limits
> colimits
» includes natural numbers, free algebras

No exponentials or power objects!

Pervasive need for spaces.

Spaces are point-free, and include toposes as generalized spaces.
» Space = geometric theory (of the points)
> Map = geometric construction of points from points
» Bundle = geometric construction of spaces from points

Everything is topologized and continuous.

Further discussion and details in [Vic22].
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Example: Point-free real analysis
Real line R = geometric theory of Dedekind sections.

[NV22]: real exponentiation and logarithms geometrically
Typical technique: Analyse Dedekind real as a pair, lower real and
upper real, with disjointness and locatedness axioms.

Apply constructions in one-sided cases, then put results together to
get Dedekind result.

[Vic23] calculates their integrals and derivatives

Technique: First prove Fundamental Theorem of Calculus, after
which the calculations are more or less standard.

Point-free accounts of integrals and derivatives are already
available [Vic08, Vic09].

Lower and upper integrals are lower and upper halves of a Dedekind
integral.

Are these constructive?
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Some aspects

Constructive taboos
Some are valid geometrically, but that’s not a problem, because
they are interpreted topologically.

Ontology

Constructivism: “there exists” = “we can construct”.
That's an ontological assertion.

Compare with “serendipitous” ontology for geometric logic.

Point-free surjections

For discrete computations, must be working with disconnected
version of R, with notational redundancy.

Using point-free surjections, reason as if every Dedekind real can be
equipped with disconnecting data.
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Constructive taboos — eg

» Double negation rule =—¢ = ¢

» Law of excluded middle LEM ¢V —¢p =T
Considered inimical to constructive maths: any logic that validates
them is not constructive.

Geometric maths validates both!
— Because the weakness of geometric logic forces us to reinterpret
the rules in a topological way.

That's not inconsistent with the different interpretation in
constructive maths.
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Double negation =—¢ = ¢ — geometrically

¢ a subset of 1, then —¢ is exponential 07.

But exponentiation is not a geometric construction of sets.

>
>
» ¢ still exponentiable (locally compact) as space.
> 0% is not discrete (a set), but a Stone space.

>

Its Boolean algebra of clopens is presented by no generators,
and set of relations {T < L | ¢}.

» Stone spaces are also exponentiable. 0°” turns out to be
discrete, and isomorphic to ¢. (Use Stone duality.)

Moral: arrow types (and [N-types) distort the logic

— when postulated as constructions of sets.

They conflict with the topology. Problem lies in taking “set of
points” of a function space.

6/29



LEM ¢V =¢p = T — geometrically

We need to think of subspaces. Given a space, described by a
geometric theory, a subspace is described by additional geometric
axioms.

> ¢ is not a set, but it is a subspace of 1, described by axiom
ok L.
> ¢ is an open subspace of 1, —¢ is its closed complement.

» V cannot be the usual logical disjunction (of subsets of 1).
Instead it is join in the lattice of subspaces.

» There we find the closed complement is a Boolean
complement.
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Geometric case splitting: Suppose X a space, Y a subspace
To show X = Y want: every x:X isin Y

» Find some open subspace U of X.

» Show (case 1) every x:U isin Y, and ...

» ... (case 2) every x:=U isin Y.

» That's enough! This is frequently used in [NV22].

Limitations

» It's not true that every x:X is either in U or in =U. (No map
from X to U+ —U.)

> Y must be a subspace, defined by geometric axioms.

> It doesn’t work for properties defined by unique structure.
For example, property of a lower real of being Dedekind. That
relies on having the (uniquely defined) structure of the
corresponding upper real.

» These are monics into X, subspaces are regular monics.
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Constructive analysis

The preface to [BIRS23] says —

In constructive mathematics, ‘there exists' is interpreted
strictly as ‘we can find/construct/compute’.

Is geometric mathematics compatible with this?

It's a question of ontology, of how the formalism is meant to
represent what it is supposed to be talking about.
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Serendipitous ontology of observations

Serendipity — The faculty of making happy chance finds.

For propositional geometric logic ( Topology via Logic [Vic89]):
Open (proposition) = observable property of the things you want to
talk about.

A and \/ can be explained in observational terms, = and — can't.
Just because a property is true (of a particular thing), doesn't

mean you will observe it. That might take hard work, and in the
end still come down to luck.
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Serendipitous ontology of observations

Propositional geometric logic:

Axiom (sequent) ¢ I 1) is not observable. It's an assumption about
how one property entails another.

Propositions + axioms = geometric theory = space.

The assumption is that the things you want to talk about can be
abstractly represented as points of the space, defined by which
observations are true for them.

Axioms of the form ¢ - L can act as Popperian falsification. If you
do observe ¢, then the theory, or its interpretation, is wrong — they
don’t accurately describe the thing you are observing.

Can suggest testable questions. eg, does theory of Dedekind reals
accurately represent how physical quantities are observed?
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Serendipitous ontology of observations

Denotational semantics (Abramsky [Abr91] developing Scott):

Domain D, point-free, is observational account of how user
observes program, by watching it run.

Syntax is how coder writes program. For each syntactic type, get a
set (discrete space) P of program fragments of that type.

Semantics [—]: P — D represents each program (fragment) as a
user-observable object. It relates what coder writes to what user
sees.

Important clue to describing constructive content of geometric
structures?
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Serendipitous ontology of observations

For predicate geometric logic [Vic10]:
To describe a set, must prescribe

1. — how to “ascertain that you have apprehended” an element of
the set,

2. — how to ascertain that two apprehended elements are equal.

(cf. Bishop and Bridges [BB85, Chapter 1.1], how to construct an
element and how to prove two elements equal.)

Then existence has clear observational meaning (unlike universals).
To observe an existence Ix.¢(x), we must apprehend an element
and observe ¢ for it.

Prescription doesn’t work for spaces in general!

eg for Dedekind reals it is inequality that is observable. (Inequality
is open subspace of R x R.)
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Serendipitous ontology of observations

For predicate geometric logic [Vicl0]:
What is the meaning of axiom ¢ - Ix.1(x)?

[Vic10] discusses three possibilities.

1. “Already done”
Whatever was done to observe ¢ has already apprehended the x

needed for Ix.1)(x).

This is extremely strong, since it means that validity of such
sequents follows directly from knowing how formulae are
interpreted.

This makes for less flexibility when using theory axioms as
background assumptions.
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Serendipitous ontology of observations

For predicate geometric logic [Vic10]:
What is the meaning of axiom ¢ F Jx.9)7 Three possibilities
[Vic10].

2. “Nearly done”
A well defined program of extra work will yield a suitable x.

This is essentially the constructivist interpretation — “we can
construct”.

3. “Can be done”
There is some suitable x “out there”, though we don’t necessarily
know how to find it.

This is the serendipitous interpretation.

15/29



= in proofs

6 Ixap(x) LI

¢ x
From ¢ deduce 3x.1)(x), then —

Constructively

1. construct x with 1(x),
2. use 1(x) Fx x to deduce y.

Seredipitously

x doesn’t involve x, so knowing that x is “out there somewhere” is
enough to reason as if we already have it.
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Predictive mathematics?

Geometric mathematics makes predictions.

eg: Your theory says your algorithm will terminate (provided your
computer is fast enough and you have the patience),

and when it does you will be able to ...

cf. Scientific theories
They make predictions — which may be experimentally falsifiable.

'Not my phrase, but | can’t track it down
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Categorically

Yo W(x) = Ix.p(x) is epi, and coequalizer of its kernel pair.

X is a subobject of 1, so every map > 1(x) — x factors via

Ix.p(x).
Constructively, we split the epi.

Serendipitously, we reason as if every element of Ix.1)(x) is in the

image of > 1(x).

That was for sets. We can do something similar for surjections of
spaces, but more care is needed.
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Localic surjections p: X — Y

(Locale = “ungeneralized space”, propositional theory)
Frame theoretically — inverse image p* is mono

Not well behaved in that generality.

Open surjections — see Joyal and Tierney [JT84]

p* has left adjoint 35, and a Frobenius condition.

More localically: 3, corresponds to a map Y — P X, y — fibre of
p over y.

Can say [Vic95, Vic21] -

p open (and surjective) iff p fibrewise overt (and positive).
(Recall bundles, slide 2.)
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Open surjection is coequalizer of kernel pair

— because it has effective descent [JT84].

To define y — f(y):

1. Reason as if there is some x with y = p(x). (Not true in
general! And even when it is, can’t make the choice depend
continuously on y unless p splits.)

2. Define f(x).
3. Show that f(x) independent of choice of x.

Similarly for proper surjections [Ver86] and triquotients [Ple97].
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Real analysis

R is connected
No non-constant maps from R to set of computer states or set of
output symbols.

For realistic computation, can use triquotient cover of R to
introduce some disconnectedness.

» Doesn’t matter which.

» Don’t have to define reals as other than Dedekind, just to fit
computational needs.

Disconnectedness appears as redundancy in notation.
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Example: Compact interval covered by Cantor space

N
p: 2% —[-1,1] Think of 2 in 2V as the
S : _
(si)is1 Z 27'1 2-element set {+, —}.
i
p is a proper surjection — key lemma in [Vicl7].

To define map on [-1,1] -

Reason as if every x:[—1, 1] has a sign expansion.

Note redundancy: eg p(+—“) =0 = p(—+v).

For R:

Have triquotient cover by a space of Cauchy sequences [Vic98,
Section 7].

22 /29



Locators (Auke Booij [Boo20])

Dedekind reals x have locatedness axiom:
g<rtgroq<xVx<r

Located reals replace V with BHK + (constructive
disjunction):

g<rtgro(g<x)+(x<r)

Like an ordinary real, but, for each g < r, equipped with
information to choose a case when we have both g < x and x < r.

» Booij develops real analysis for located reals in univalent
mathematics.

» Geometrically there is also a space R® of located reals, and
map R® — R is an open surjection [Vic21].
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s the point-free real analysis of [NV22] etc. constructive?

What would we need in order to extract programs from them?

Suppose “programming language” for constructing reals can be
embodied in a cover of R (such as R®). Then we require proofs at
level of R (eg those in [NV22]) to lift to cover — proof steps lift to
algorithm steps.

Geometric is relative to a base S, elementary topos with nno
S describes the infinities allowed in disjunctions and coproducts.

Presumably constructive = algorithmic reasoning should be
independent of S — which [NV22] is.

Conjecture — to guarantee lifting it suffices to restrict further and
use the base-independent “arithmetic” reasoning of [MV12, Vic19].
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