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Geometric logic (or type theory)

Logic of sets highly restricted

I �nite limits

I colimits

I includes natural numbers, free algebras

No exponentials or power objects!

Pervasive need for spaces.

Spaces are point-free, and include toposes as generalized spaces.

I Space = geometric theory (of the points)

I Map = geometric construction of points from points

I Bundle = geometric construction of spaces from points

Everything is topologized and continuous.

Further discussion and details in [Vic22].
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Example: Point-free real analysis
Real line R = geometric theory of Dedekind sections.

[NV22]: real exponentiation and logarithms geometrically

Typical technique: Analyse Dedekind real as a pair, lower real and
upper real, with disjointness and locatedness axioms.
Apply constructions in one-sided cases, then put results together to
get Dedekind result.

[Vic23] calculates their integrals and derivatives

Technique: First prove Fundamental Theorem of Calculus, after
which the calculations are more or less standard.
Point-free accounts of integrals and derivatives are already
available [Vic08, Vic09].
Lower and upper integrals are lower and upper halves of a Dedekind
integral.

Are these constructive?
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Some aspects

Constructive taboos
Some are valid geometrically, but that's not a problem, because
they are interpreted topologically.

Ontology

Constructivism: �there exists� = �we can construct�.
That's an ontological assertion.

Compare with �serendipitous� ontology for geometric logic.

Point-free surjections

For discrete computations, must be working with disconnected
version of R, with notational redundancy.

Using point-free surjections, reason as if every Dedekind real can be
equipped with disconnecting data.
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Constructive taboos � eg

I Double negation rule ¬¬φ ≡ φ
I Law of excluded middle LEM φ ∨ ¬φ ≡ >

Considered inimical to constructive maths: any logic that validates
them is not constructive.

Geometric maths validates both!
� Because the weakness of geometric logic forces us to reinterpret
the rules in a topological way.

That's not inconsistent with the di�erent interpretation in
constructive maths.
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Double negation ¬¬φ ≡ φ � geometrically

I φ a subset of 1, then ¬φ is exponential 0φ.

I But exponentiation is not a geometric construction of sets.

I φ still exponentiable (locally compact) as space.

I 0φ is not discrete (a set), but a Stone space.

I Its Boolean algebra of clopens is presented by no generators,
and set of relations {> ≤ ⊥ | φ}.

I Stone spaces are also exponentiable. 00
φ
turns out to be

discrete, and isomorphic to φ. (Use Stone duality.)

Moral: arrow types (and Π-types) distort the logic

� when postulated as constructions of sets.

They con�ict with the topology. Problem lies in taking �set of
points� of a function space.
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LEM φ ∨ ¬φ ≡ > � geometrically

We need to think of subspaces. Given a space, described by a
geometric theory, a subspace is described by additional geometric
axioms.

I ¬φ is not a set, but it is a subspace of 1, described by axiom
φ ` ⊥.

I φ is an open subspace of 1, ¬φ is its closed complement.

I ∨ cannot be the usual logical disjunction (of subsets of 1).
Instead it is join in the lattice of subspaces.

I There we �nd the closed complement is a Boolean
complement.
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Geometric case splitting: Suppose X a space, Y a subspace

To show X = Y want: every x :X is in Y

I Find some open subspace U of X .

I Show (case 1) every x :U is in Y , and ...

I ... (case 2) every x :¬U is in Y .

I That's enough! This is frequently used in [NV22].

Limitations

I It's not true that every x :X is either in U or in ¬U. (No map
from X to U + ¬U.)

I Y must be a subspace, de�ned by geometric axioms.

I It doesn't work for properties de�ned by unique structure.
For example, property of a lower real of being Dedekind. That
relies on having the (uniquely de�ned) structure of the
corresponding upper real.

I These are monics into X , subspaces are regular monics.
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Constructive analysis

The preface to [BIRS23] says �

In constructive mathematics, `there exists' is interpreted
strictly as `we can �nd/construct/compute'.

Is geometric mathematics compatible with this?

It's a question of ontology, of how the formalism is meant to
represent what it is supposed to be talking about.
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Serendipitous ontology of observations

Serendipity � The faculty of making happy chance �nds.

For propositional geometric logic (Topology via Logic [Vic89]):

Open (proposition) = observable property of the things you want to
talk about.

∧ and
∨

can be explained in observational terms, ¬ and → can't.

Just because a property is true (of a particular thing), doesn't
mean you will observe it. That might take hard work, and in the
end still come down to luck.
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Serendipitous ontology of observations

Propositional geometric logic:

Axiom (sequent) φ ` ψ is not observable. It's an assumption about
how one property entails another.

Propositions + axioms = geometric theory = space.

The assumption is that the things you want to talk about can be
abstractly represented as points of the space, de�ned by which
observations are true for them.

Axioms of the form φ ` ⊥ can act as Popperian falsi�cation. If you
do observe φ, then the theory, or its interpretation, is wrong � they
don't accurately describe the thing you are observing.

Can suggest testable questions. eg, does theory of Dedekind reals
accurately represent how physical quantities are observed?
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Serendipitous ontology of observations

Denotational semantics (Abramsky [Abr91] developing Scott):

Domain D, point-free, is observational account of how user
observes program, by watching it run.

Syntax is how coder writes program. For each syntactic type, get a
set (discrete space) P of program fragments of that type.

Semantics [[−]] : P → D represents each program (fragment) as a
user-observable object. It relates what coder writes to what user
sees.

Important clue to describing constructive content of geometric
structures?
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Serendipitous ontology of observations

For predicate geometric logic [Vic10]:

To describe a set, must prescribe

1. � how to �ascertain that you have apprehended� an element of
the set,

2. � how to ascertain that two apprehended elements are equal.

(cf. Bishop and Bridges [BB85, Chapter 1.1], how to construct an
element and how to prove two elements equal.)

Then existence has clear observational meaning (unlike universals).
To observe an existence ∃x .φ(x), we must apprehend an element
and observe φ for it.

Prescription doesn't work for spaces in general!

eg for Dedekind reals it is inequality that is observable. (Inequality
is open subspace of R× R.)
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Serendipitous ontology of observations

For predicate geometric logic [Vic10]:

What is the meaning of axiom φ ` ∃x .ψ(x)?

[Vic10] discusses three possibilities.

1. �Already done�

Whatever was done to observe φ has already apprehended the x
needed for ∃x .ψ(x).

This is extremely strong, since it means that validity of such
sequents follows directly from knowing how formulae are
interpreted.
This makes for less �exibility when using theory axioms as
background assumptions.
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Serendipitous ontology of observations

For predicate geometric logic [Vic10]:

What is the meaning of axiom φ ` ∃x .ψ? Three possibilities
[Vic10].

2. �Nearly done�

A well de�ned program of extra work will yield a suitable x .

This is essentially the constructivist interpretation � �we can
construct�.

3. �Can be done�
There is some suitable x �out there�, though we don't necessarily
know how to �nd it.

This is the serendipitous interpretation.
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∃ in proofs

φ ` ∃x .ψ(x) ψ(x)`xχ
∃x .ψ(x)`χ

φ ` χ
From φ deduce ∃x .ψ(x), then �

Constructively

1. construct x with ψ(x),

2. use ψ(x) `x χ to deduce χ.

Seredipitously

χ doesn't involve x , so knowing that x is �out there somewhere� is
enough to reason as if we already have it.
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Predictive mathematics1

Geometric mathematics makes predictions.

eg: Your theory says your algorithm will terminate (provided your
computer is fast enough and you have the patience),

and when it does you will be able to ...

cf. Scienti�c theories
They make predictions � which may be experimentally falsi�able.

1Not my phrase, but I can't track it down
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Categorically

∑
x ψ(x)→ ∃x .ψ(x) is epi, and coequalizer of its kernel pair.

χ is a subobject of 1, so every map
∑

x ψ(x)→ χ factors via
∃x .ψ(x).

Constructively, we split the epi.

Serendipitously, we reason as if every element of ∃x .ψ(x) is in the
image of

∑
x ψ(x).

That was for sets. We can do something similar for surjections of
spaces, but more care is needed.
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Localic surjections p : X → Y

(Locale = �ungeneralized space�, propositional theory)

Frame theoretically � inverse image p∗ is mono

Not well behaved in that generality.

Open surjections � see Joyal and Tierney [JT84]

p∗ has left adjoint ∃p, and a Frobenius condition.

More localically: ∃p corresponds to a map Y → PLX , y 7→ �bre of
p over y .

Can say [Vic95, Vic21] �
p open (and surjective) i� p �brewise overt (and positive).
(Recall bundles, slide 2.)
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Open surjection is coequalizer of kernel pair

� because it has e�ective descent [JT84].

K X Y

Z

p

f
f

To de�ne y 7→ f (y):

1. Reason as if there is some x with y = p(x). (Not true in
general! And even when it is, can't make the choice depend
continuously on y unless p splits.)

2. De�ne f (x).

3. Show that f (x) independent of choice of x .

Similarly for proper surjections [Ver86] and triquotients [Ple97].
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Real analysis

R is connected
No non-constant maps from R to set of computer states or set of
output symbols.

For realistic computation, can use triquotient cover of R to
introduce some disconnectedness.

I Doesn't matter which.

I Don't have to de�ne reals as other than Dedekind, just to �t
computational needs.

Disconnectedness appears as redundancy in notation.

21 / 29



Example: Compact interval covered by Cantor space

p : 2N → [−1, 1]

(si )i≥1 7→
∑
i

si
2i

Think of 2 in 2N as the
2-element set {+,−}.

p is a proper surjection � key lemma in [Vic17].

To de�ne map on [−1, 1] �

Reason as if every x :[−1, 1] has a sign expansion.

Note redundancy: eg p(+−ω) = 0 = p(−+ω).

For R:
Have triquotient cover by a space of Cauchy sequences [Vic98,
Section 7].
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Locators (Auke Booij [Boo20])

Dedekind reals x have locatedness axiom:

q < r `q,r :Q q < x ∨ x < r

Located reals replace ∨ with BHK + (constructive
disjunction):

q < r `q,r :Q (q < x) + (x < r)

Like an ordinary real, but, for each q < r , equipped with
information to choose a case when we have both q < x and x < r .

I Booij develops real analysis for located reals in univalent
mathematics.

I Geometrically there is also a space RL of located reals, and
map RL → R is an open surjection [Vic21].
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Is the point-free real analysis of [NV22] etc. constructive?

What would we need in order to extract programs from them?

Suppose �programming language� for constructing reals can be
embodied in a cover of R (such as RL). Then we require proofs at
level of R (eg those in [NV22]) to lift to cover � proof steps lift to
algorithm steps.

Geometric is relative to a base S, elementary topos with nno

S describes the in�nities allowed in disjunctions and coproducts.

Presumably constructive = algorithmic reasoning should be
independent of S � which [NV22] is.

Conjecture � to guarantee lifting it su�ces to restrict further and
use the base-independent �arithmetic� reasoning of [MV12, Vic19].
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