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INTRODUCTION v

Abstract

The Tychonoff Theorem is discussed with respect to point-free topology,

from the point of view of both topos-valid and predicative mathematics.

A new proof is given of the infinitary Tychonoff Theorem using pred-

icative, choice-free methods for possibly undecidable index set. It yields

a complete description of the finite basic covers of the product.

0.1 Introduction

The Tychonoff theorem says that a product of compact topological spaces is
still compact. (I do not assume Hausdorff separation here. By “compact” I mean
having the finite subcover property, as in the Heine-Borel theorem; Bourbaki calls
this “quasicompact”.) For finitary products this is fairly elementary. Surprisingly,
the result extends to infinitary products, but there is a price—the axiom of choice
has to be assumed. In fact, as is well known, the infinitary Tychonoff theorem is
equivalent to the axiom of choice [Kel50].

This is sometimes offered as a reason for using the axiom of choice: with it,
one can prove many genuinely useful results such as infinitary Tychonoff. There
are more that don’t rely on the full power of the axiom of choice, but still need
classical principles. These include the Heine-Borel theorem (that any bounded
closed interval in the real line is compact) [FG82] and the Hofmann-Mislove
theorem (that for a sober space there is a bijection between compact saturated
subspaces and Scott open filters in the topology) [HM81], [Vic89]. The suggestion
is that the theory of topology is unavoidably impoverished if it cannot call on
all the classical reasoning principles.

It therefore comes as a surprise to discover that in point-free topology, such
theorems can often be proved constructively, at least if stated correctly. In this
paper we illustrate this with the Tychonoff theorem. Its validity is quite un-
equivocal, with no special assumptions. For instance, we do not have to assume
excluded middle either, and the indexing set does not have to have decidable
equality. Neither do we have to use impredicative constructions. Tychonoff is
actually a robust part of constructive topology.

The problem lies not in forsaking choice, but in insisting on a point-set formu-
lation of topology. Three things are jointly incompatible: Tychonoff, constructiv-
ity, and point-set topology. If we wish to keep Tychonoff then we must drop one
of the others. However, it does not have to be the constructivity. The aim of this
paper is to describe how it works if we decide to drop the point-set formulation.

0.1.1 Point-free topology

In the usual point-set topology, a topological space is a set equipped with addi-
tional topological structure that can be axiomatized in various ways, classically
equivalent to each other. Our preferred form here is via the open sets, defin-
ing a topology to be a family of subsets of the set of points, closed under finite
intersection and arbitrary union.

By contrast I shall use the phrase “point-free topology” as a generic label for
approaches that do not start by assuming a set of points of the space. In these
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approaches, a topological space cannot in general be described as a set of points
equipped with extra structure.

In practice, points are not excluded from the “point-free” discussion. Nor-
mally they are at least helpful for keeping in touch with topological intuitions,
and there are tricks of categorical logic by which rigorous arguments can be con-
ducted in terms of points. However, we cannot assume that the totality of all
points can be collected together as a set. A space is something more general than
a set. What is more, when a set of points can be extracted, we cannot assume
that it adequately represents the collection of all points.

There are two main versions of point-free topology that I shall consider,
and they are genuinely different. They amount to the elaboration of point-free
ideas in two radically different foundational settings, namely topos theory and
predicative type theory. (I know more about the topos theory side, so you must
excuse me if sometimes my knowledge of type theory is deficient.)

The first version, used in topos theory, is locales [Joh82]. I shall explain those
first because in many ways it helps to clarify what the second version is achieving.
The second version, used in predicative type theory, is formal topology [Sam87].

0.1.2 Locales

Locale theory is based on the most direct interpretation of the phrase “point-
free topology”. In point-set topology, the topology is the collection of open sets.
The idea is to use this in a point-free way by treating it as an abstract lattice,
forgetting that it was ever a set of subsets of some set of points.

The standard introduction is [Joh82] (or see also [Vic89]), and we give just a
brief overview.

Definition 0.1 A frame is a complete lattice in which binary meet distributes
over arbitrary join.

A frame homomorphism is a function between frames that preserves arbitrary
joins and finite meets.

(Naturally, the arbitrary joins and finite meets here correspond to the arbi-
trary unions and finite intersections of open sets.)

We write Fr for the category of frames and frame homomorphisms, and Loc
for its opposite—the category of locales and (continuous) maps. By this definition
a locale “is” just a frame, but it is best to keep them notationally distinct since
the language for locales is quite different from that for frames. For instance,
products of locales are coproducts of frames; sublocales are quotient frames.
Locales are frames “pretending to be” topological spaces, and it is best to keep
up the pretence. If X is a locale we shall write ΩX for the corresponding frame;
and if f : X → Y then we write f∗ : ΩY → ΩX for the corresponding frame
homomorphism.

Locales, then, are the spaces in this version of point-free topology.
The points of a space X should be the maps from the one-point space 1

to X , and we can implement this with locales. The (discrete) topology on 1 is
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the powerset P1. In the internal language of toposes P1 is just the subobject
classifier Ω, and we shall write it as such. The best way to think of Ω is as
the “set of truthvalues”, which classically is {true, false}. A point x of a locale
X is then a frame homomorphism x∗ : ΩX → Ω. Now any function to Ω is
equivalently described by its true kernel, the inverse image of {true}, and the
function x∗ is a frame homomorphism iff its true kernel is a completely prime
filter, an upper set that is closed under finite meets and inaccessible by arbitrary
joins. (Note that some of the other common characterizations of point ( [Joh82],
[Vic89]) are not constructively equivalent. Some of this is because in the absence
of excluded middle the homomorphism x∗ is not determined by its false kernel
(x∗)−1{false}.)

In topos-valid mathematics, we can construct the set pt(X) of points of X .
However, as we shall see it may be defective. Even classically there may fail to
be enough points to distinguish between the opens, so that ΩX does not embed
in P pt(X).

There are two mismatches between locales and topological spaces.
The first is that locales are intrinsically sober. This just means that the space

contains all the points that can be reconstructed from the topology, and so
must be a feature of any point-free approach. A non-sober topological space may
have distinct elements of the point-set that cannot be distinguished topologically
because they are in the same opens. In other words, the space may fail to be T0.
A non-sober space may also lack points such as the directed joins (with respect to
the specialization order) present in every sober space. For example, a poset with
its Alexandrov topology (the opens are the upper sets) is not sober in general,
and to make it so you have to add directed joins by going to the ideal completion.

That first mismatch is perhaps not so serious. One can argue that all de-
cent spaces should be sober. Alternatively, you can express the duplications and
omissions of points in a non-sober space by a map from a discrete locale X
(ΩX = PX) to another locale. (These are the topological systems of [Vic89].)

The second mismatch is more fundamental, and that is that locales do not
always have enough points—they may fail to be spatial. Indeed, some non-trivial
locales fail to have any points at all. The technical manifestation of this is that
the frame homomorphism ΩX → P pt(X) fails to be 1-1. In classical mathemat-
ics the non-spatial locales are generally pathological, since the axiom of choice
can be used to show the existence of enough points for wide classes of useful
locales. Constructively, however, even necessary locales need not be spatial. A
good example is the real line. The localic real line for which good mathemat-
ics holds—for instance, the Heine-Borel theorem—is the one presented as L(R)
in [Joh82, IV.1.1]. Constructively this can easily be non-spatial [FH79].

Such non-spatiality may seem pathological wherever it occurs. After all, what
kind of topological structure can it be that is not supported by the points?
However, the well-known topological theorems work better with the non-spatial
locales—the purpose of this paper is to illustrate this for Tychonoff, and Heine-
Borel has also been mentioned. Here’s one way to imagine how the points might
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not be the whole story. Often we are interested in other pieces within the space,
for example line elements (maps from [0, 1]). Say a generalized point of X is a
map from some domain Y (the “stage of definition”) to X . Even if there are
insufficient “global” points (stage of definition is 1), there are still plenty of
generalized points. In fact, this comes rather cheaply, since the generic point
(the identity map from X to itself) is enough for most purposes.

It was understood quite early (see e.g. [JT84]) that locale theory is construc-
tive in the topos-valid sense. The notion of internal frame can be defined in
any topos, and the constructions one needs (for example, coproduct of frames
for product of locales) can be carried through. Moreover, there is an extremely
important relativization principle. Suppose X is a locale. There is a topos as-
sociated with it, namely its topos of sheaves which I shall write SX . What are
the internal frames in SX? It turns out they are equivalent to continuous maps
(of locales) with codomain X . Hence a constructive result about locales, inter-
preted in SX , can be turned into a result about maps into X—in other words,
generalized points of X . Thus the topos-valid constructivist discipline delivers a
payoff. It is not merely a claim to moral superiority.

One benefit is that constructive arguments about points can be applied also to
the generalized points (as “points at another stage of definition”). The sufficiency
of these can therefore validate spatial reasoning about point-free topologies. This
is exploited in [Vic99], [Vic04a], which also explain why the more stringent geo-
metric constructivism is needed to ensure that the arguments can be transferred
from one stage of definition to another.

Topos-valid constructivism is completely choice-free. In general it is not even
possible to choose one element out of two. Consider for example the topos of
sheaves over the circle O. If the circle is represented as the complex numbers
of unit modulus, then the squaring function z 7→ z2, the Möbius double cover
of the circle, is a local homeomorphism and hence equivalent to a sheaf. In the
internal language of the topos SO, it is a set X , finite with decidable equality,
satisfying

∃x, y ∈ X. (x 6= y ∧ ∀z ∈ X. (z = x ∨ z = y))

but with no element 1 → X .

0.1.3 Formal topologies

Despite the success of locales in topos-valid mathematics, its use of impredica-
tive constructions troubles some constructivists. These are constructions that
presuppose a collection that already includes what one is trying to construct.
The question often arises in connection with powersets PX , since if one is try-
ing to construct some subset of X it would be impredicative to presuppose that
PX—the set of all subsets including the one being constructed—is already to
hand. In general predicative mathematics would not admit PX as a set.

Unfortunately, many of the constructions of locale theory are impredicative.
This includes the construction of pt(X), though I have already argued that we
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may be able to do without it. More seriously, however, the frames themselves are
impredicative. This is most obvious for discrete locales, whose frames are power-
sets. Then other frames such as ΩL(R) mentioned above, require impredicative
constructions. And the very definition of frame, as complete lattice, describes
joins in A by a function from PA to A.

One way to understand formal topology is that it is obliged to do “locale
theory without the frames”. In fact, techniques for this are already present in
the ordinary practice of locale theory.

The impredicative step is normally in ensuring that all joins (of subsets)
are present. But it is often enough to work with a base of the topology, so
that every open is a join of basic opens, and the base can often be constructed
predicatively. More generally one might use a subbase, so that every open is
a join of finite meets of subbasics. However, this makes no difference to the
predicativity, since the finite powerset construction is inductive. (As elsewhere
in this paper, “finite” means Kuratowski finite. The finite powerset FX can also
be represented algebraically as the free semilattice over X .)

In locale theory this use of bases or subbases appears in algebraic form,
as presenting a frame by generators and relations. In [Joh82] it underlies the
construction of ΩL(R). This is generated by basics (p, q) (p ∈ Q ∪ {−∞}, q ∈
Q ∪ {∞}) subject to relations—

1 = (−∞,∞)

(p, q) ∧ (p′, q′) = (max(p, p′), min(q, q′))

(p, q) ≤ 0 if p ≥ q

(p, s) ≤ (p, r) ∨ (q, s) if p ≤ q < r ≤ s

(p, q) ≤
∨

{(p′, q′) | p < p′ < q′ < q} if p < q

The presentation itself is predicative: the set of generators, the set of rela-
tions and the sets of disjuncts in infinitary joins are all constructed predicatively.
(This idea is explored in great detail in [Vic04a].) Hence, within predicative math-
ematics, the presentation can be used as a surrogate for the frame. This, roughly
speaking, is what a formal topology is. More precisely, this is an inductively
generated formal topology.

One sees many different definitions in formal topology. To give some shape
to the issues involved, I mention three different modes of variation.

1. There are different kinds of structure that can be interpreted as generators
and relations. The different forms of structure tend to come out as different
definitions of formal topology. For example, the site as described in [Joh82,
II.2.11] provides one particular form of generators and relations. The generators
are required to form a meet semilattice, and there are implied relations to say
that the semilattice meet is preserved in the frame.

2. It used to be customary in formal topology to require spaces to be open in
the sense of [JT84], namely that the unique map to 1 should be an open map.
(Classically, all locales are open. But constructively it becomes an important
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issue.) For this a positivity predicate is needed on the basics in order to say in a
positive way which are non-empty [Joh84], [Neg02]. A formal topology without
positivity predicate is often called a formal cover.

3. The original definitions of formal topology required a specification of the
full cover relation C, i.e. to say for each set U of generators which generators a
were to be less than

∨
U . Of course, C is not itself a predicative set. But the

information amounts to describing how proofs of a C U may be constructed.
More recently [CSSV03] showed how to use an axiom set, effectively a set of
relations, to generate the full cover relation C. Such a structure is called an
inductively generated formal cover. Not all formal covers can be inductively
generated.

In what follows, we shall use the following definition of inductively generated
formal cover.

Definition 0.2 A flat site is a structure (P,≤, C0) where (P,≤) is a preorder
(i.e. transitive and reflexive), and C0 ⊆ P × PP has the following flat stability
property: if a C0 U and b ≤ a, then there is some V ⊆ b ↓ U such that b C0 V .

(For subsets or elements U and V , we write ↓U for the down closure of U
with respect to ≤ and U ↓ V for ↓U∩ ↓ V .)

The reason for calling this “flat” is as follows. In category theory there is a
notion of flat functor from C to Set such if C is cartesian (has all finite limits)
then flatness is equivalent to the functor being cartesian (preserves finite limits).
See, e.g., [MLM92]. (This is also related to the notion of flat module in ring
theory, using the idea from enriched category theory that a functor from C to Set
can be considered a kind of module over C.) The notion of ordinary site [Joh82]
is essentially a special case of our flat site in which P is a meet semilattice, i.e.
a cartesian poset. In categorical logic, points of the corresponding locale can be
understood as certain cartesian functors from P to Set, and in the flat site these
generalize to the flat functors from P to Set.

Definition 0.2 is just a rephrasing of the localized axioms sets of [CSSV03].
Their axiom set is an indexed family I(a) set [a : P ] together with a family of
subsets C(a, i) ⊆ P [a : P, i : I(a)]. “Localized” means that for any a ≤ c and
i ∈ I(c), there exists j ∈ I(a) such that C(a, j) ⊆ a ↓ C(c, i). Then our C0

comprises the instances of a C0 C(a, i).
The full formal cover C is generated from this by rules

•
a ∈ U

a C U
(reflexivity)

•
a ≤ b b C U

a C U
(≤-left)

•
a C0 V V C U

a C U
(infinity)

The flat site gives rise to a frame presentation in which the generators are
the elements of P , and the relations are:
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1 ≤
∨

P

a ∧ b =
∨

{c | c ≤ a, c ≤ b}

a ≤
∨

U (a C0 U)

0.2 Compactness

The notion of compactness translates easily from spaces to locales. A locale X
is compact if the top open 1 ∈ ΩX has the property that every cover has a finite
subcover. Alternatively, if a directed subset S has its join equal to 1, then 1 must
already be in S—i.e. {1} is Scott open.

This is straightforward, but notice that compactness of the locale and its
space of points pt(X) become two unrelated properties. Let Ω pt(X) be the topol-
ogy induced on pt(X), the image of the frame homomorphism ΩX → P pt(X),
and let us write F for the filter of ΩX comprising those opens that map to top
in Ω pt(X). If F is not spatial, so ΩX → Ω pt(X) is not 1-1, then F may be
different from {1}. Compactness for pt(X) is equivalent to saying that F is Scott
open—if a directed join

∨
S is in F , then S already has an element in F . Scott

openness of F neither implies nor is implied by Scott openness of {1}.
In fact, this explains something of the gap between spatial Tychonoff (requir-

ing choice in general) and localic Tychonoff (no choice needed). Even for spatial
locales, the product need not be spatial. Hence compactness of the product lo-
cale does not imply compactness of the product space—the two questions are
separate.

Despite the simplicity of the definition of localic compactness, in practice it
is a non-trivial question. This is because it is rare for the frame structure to be
given explicitly in a concrete form. For instance, if the frame is presented by basic
generators and relations it is not in general clear when one open is covered by a
family of basics. The impredicative definition of the cover relation—in effect “the
least frame congruence containing the relations”—is little help. In particular this
is a problem with a product

∏
i Xi of locales, whose coproduct frame is most

easily presented by a “disjoint union” of presentations for the frames ΩXi. This
coproduct frame may also be described as a tensor product of complete join
semilattices, but that is no real help here because—just as with linear tensor
products—the elements cannot be expressed in any canonical form.

A direct predicative approach requires some knowledge of the full cover rela-
tion C.

Let us outline some sharper approaches to the question.

0.2.1 Preframes

A preframe is a poset with finite meets and directed joins, with meet distribut-
ing over directed joins. A preframe homomorphism preserves finite meets and
directed joins.

The importance of preframes lies in the fact that for a subset F of a frame
ΩX , F is a Scott open filter iff its characteristic function to Ω is a preframe
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homomorphism—filteredness and Scott openness correspond to preservation of
finite meets and directed joins respectively. A simple proof of Tychonoff using
preframe techniques was given in [JV91].

This can be expressed neatly within locale theory by the upper powerlocale
PUX (see [Vic97], and also [Vic04a]). By definition its frame ΩPU (X) is gener-
ated as frame by the elements of ΩX , respecting the preframe structure of ΩX .
Hence maps from Y to PU (X) are equivalent to preframe homomorphisms from
ΩX to ΩY and the points of PUX are the Scott open filters of ΩX .

Johnstone’s localic version of the Hofmann-Mislove Theorem—see [Vic97],
deriving from [Joh85]—says that the Scott open filters of ΩX correspond to
compact fitted sublocales of X , where a sublocale is fitted if it is a meet of open
sublocales. (Classically this corresponds to subspaces that are saturated, i.e. up-
per closed under the specialization order.) Hence PUX is indeed a power locale,
its points being certain sublocales of X . The correspondence is order revers-
ing, and a bottom point of PUX corresponds to the greatest possible compact
sublocale of X , namely X itself.

[Vic95] shows that proving compactness of X is equivalent to finding a
bottom point ⊥ of PU (X), in the strong sense that the composite !;⊥ : PUX →
1 → PUX is less than the identity map in the specialization order. This condition
says that ⊥ is not just least amongst the global points 1 → PUX . It is also less
than the generic point id : PUX → PUX , and this makes it least amongst all
generalized points Y → PUX .

All this is impredicative, but it can be made predicative. The “preframe
coverage theorem” of [JV91] shows how to convert presentations of frames by
generators and relations into preframe presentations of the same frames, and
so shows how to convert frame presentations of ΩX into frame presentations of
ΩPUX . This can be made into a predicative construction within formal topology.

Proposition 0.3 Let (P,≤, C0) be a flat site presenting locale X. Then PUX
is presented by the flat site (FP,vL, C0) where FP is the (Kuratowski) finite
powerset of P , vL is the lower order on FP , defined by S vL T iff for every
x ∈ S there is some y ∈ T with x ≤ y, and C0 is given by the following.

Suppose ai C0 Ui (1 ≤ i ≤ n). Let A = {ai | 1 ≤ i ≤ n}. Then for every
S ∈ FP ,

A ∪ S C0 {T ∪ S | T vL

n⋃

i=1

Ui}.

Proof We merely sketch the proof here. ΩX is presented as frame by generators
P and relations as given after Definition 0.2. We can write it as

Fr〈P (qua preorder) |1 ≤
∨

P

a ∧ b ≤
∨

(a ↓ b)

a ≤
∨

U (if a C0 U)〉.



COMPACTNESS xiii

where “qua preorder” indicates extra implicit relations to say the preorder struc-
ture of P is preserved in the frame. The free join semilattice over the preorder
P is FP/ vL, with join represented by union. We can therefore transform the
presentation into an equivalent one,

Fr〈FP/ vL (qua ∨ -semilattice) |1 ≤
∨↑

FP

({a} ∪ S) ∧ ({b} ∪ S) ≤
∨↑

{(T ∪ S) | T vL {a}, T vL {b}}

({a} ∪ S) ≤
∨↑

{(T ∪ S) | T vL U} (if a C0 U, S ∈ FP )〉.

(
∨↑

indicates a join that is known to be directed. We have not distinguished
between on the one hand the elements of FP/ vL, equivalence classes with
respect to the equivalence relation corresponding to vL, and on the other hand
the elements of FP that represent them.)

Here the relations have been put in the join stable form required for the
preframe coverage theorem [JV91], and from that we find that ΩPUX can be
given exactly the same presentation, except that “qua ∨-semilattice” is replaced
by “qua preorder under vL”.

Using some induction on the finite sets, we find that the middle relation
scheme is equivalent to

(A) ∧ (B) ≤
∨↑

{(T ) | T vL A, T vL B}

for A, B ∈ FP . Thus those first two relation schemes are equivalent to the
implicit relations in a flat site on (FP,vL). The final relation scheme does not
satisfy the flat stability condition, but it is equivalent to the relation scheme
given in the statement of the theorem, which does. 2

It follows that the upper powerlocale can also be accessed in predicative
theories. The same compactness criterion—existence of a suitable point of the
powerlocale—can then be expressed. The argument given so far for its correctness
has used the impredicative results about preframes, but [Vic02] gives a direct
predicative proof. After a little simplification, it appears there as

Theorem 0.4 Let (P,≤, C0) be a flat site presenting a locale X. Then X is
compact iff there is a subset F of FP such that—

1. F is upper closed with respect to vL.

2. F is inhabited.

3. If a C0 U and {a} ∪ T ∈ F , then U0 ∪ T ∈ F for some U0 ∈ FU .

4. If S ∈ F then P C S (i.e. ∀g ∈ P. g C S).

In that case, F is necessarily the set of all finite basic covers of X.

We note briefly that it is not only preframe homomorphisms that can be
captured predicatively in this way. So too can arbitrary dcpo morphisms (Scott
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continuous functions) between frames. (A dcpo is a directed complete poset, i.e.
a poset with all directed joins.) This is done using the double powerlocale PX
( [JV91], [Vic04a]), for which the frame ΩPX is the free frame generated by
ΩX and preserving its dcpo structure. The maps from Y to PX are equivalent
to Scott continuous functions from ΩX to ΩY , and PX can be constructed by
predicative constructions on presentations ( [Vic04a], [VT04]). Thus the double
powerlocale can also be defined on inductively generated formal topologies.

0.3 Tychonoff

We can now illustrate the techniques with a proof of Tychonoff that is valid both
in topos theory and in predicative mathematics. It assumes neither finiteness nor
decidability of equality for the indexing set for the locales of which the product
is taken.

In topos-valid locale theory this result appears to be due to Vermeulen
[Ver86]. In formal topology, following an earlier treatment of [Coq92], the infini-
tary Tychonoff was proved in [NV97] without choice but under the assumption
that the indexing set had decidable equality. This arose from the way that basic
opens for the product

∏
i Xi—finite meets of opens taken from the components—

were normalized into elements of
∏

i ΩXi in which all but finitely many compo-
nents are 1. This normalization can only be done effectively if there is decidable
equality for indexes.

Subsequently, [Coq03] gave a simple choice-free predicative proof without
decidable equality. His argument rests on the fact that for any spectral locale X ,
there is a least compact sublocale Y whose fitted hull (= saturation) is the whole
of X . It follows that every sublocale between Y and X is compact. Coquand
shows how to describe a product locale in this way. (Coquand has remarked
separately that the underlying construction is a localic version of the “maximal
spectrum” described spatially in [Joh82, II.3.5].)

Though elegant, Coquand’s proof requires some preparation before it can
be put into effect. It relies on having each locale presented using a distributive
lattice of generators for which the order coincides with the order in the presented
frame, and getting that is non-trivial. We now give a proof that shows how from
general flat sites, the finite covers of the product can be calculated.

Proposition 0.5 Let (Pi,≤, C0) be a flat site for each i ∈ I. Then the product of
the corresponding locales is presented by a flat site (P,≤, C0) defined as follows.

First, let (P ′,≤) =
∑

i∈I Pi be the poset coproduct. As a set it is the disjoint
union, {(i, x) | i ∈ I, x ∈ Pi}, with (i, x) ≤ (j, y) iff i = j and x ≤ y in Pi. Its
elements are subbasics.

Now define P = FP ′ ordered by vU , i.e. A ≤ B iff ∀b ∈ B. ∃a ∈ A. a ≤ b.
Its elements represent finite meets of subbasics. P/ vU is in fact the free meet
semilattice over the poset P ′, meet being represented by union.

Covers are defined as follows:

1. If i ∈ I and B ∈ P , then
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B C0 {{(i, a)} ∪ B | a ∈ Pi}.

2. If i ∈ I, a, a′ ∈ Pi and B ∈ P , then

{(i, a), (i, a′)} ∪ B C0 {{(i, c)} ∪ B | c ≤ a, c ≤ a′}.

3. If i ∈ I, a C0 U in Pi, and B ∈ P , then

{(i, a)} ∪ B C0 {{(i, u)} ∪ B | u ∈ U}.

Proof First note that this is indeed a flat site; in fact it is an ordinary site. (P
is a meet semilattice and the coverage has meet stability.)

The frame for the product is presented by putting together the presentations
for the original frames. For clarity, let us write αi for the injections of generators.
Then the frame is presented as—

Fr〈αi(a) (i ∈ I, a ∈ Pi) |

αi(a) ≤ αi(a
′) (i ∈ I, a ≤ a′ in Pi)

1 ≤
∨

a∈Pi
αi(a) (i ∈ I)

αi(a) ∧ αi(a
′) ≤

∨
{αi(c) | c ≤ a, c ≤ a′} (i ∈ I, a, a′ ∈ Pi)

αi(a) ≤
∨

u∈Uαi(u) (i ∈ I, a C0 U in Pi)〉.

This is isomorphic to

Fr〈P (qua ∧ = ∪ semilattice) |

B ≤
∨

a∈Pi
({(i, a)} ∪ B) (i ∈ I, B ∈ P )

{(i, a), (i, a′)} ∪ B ≤
∨
{{(i, c)} ∪ B | c ≤ a, c ≤ a′} (i ∈ I, a, a′ ∈ Pi, B ∈ P )

{(i, a)} ∪ B ≤
∨

u∈U{(i, u)} ∪ B (i ∈ I, a C0 U in Pi, B ∈ P )〉.

The “qua” notation denotes additional relations to preserve the ∧-semillatice
structure (concretely ∪) of P .

In one direction, the isomorphism takes αi(a) 7→ ({(i, a)}), while in the other
it takes A 7−→

∧
{αi(a) | (i, a) ∈ A}.

To say this predicatively, we are describing two mutually inverse continuous
maps between the corresponding formal topologies.

This second presentation corresponds to the product site described in the
statement. 2

To prove Tychonoff, we use Theorem 0.4. Suppose we have flat sites (Pi,≤
, C0) and are given sets Fi describing compactness for the Pis. We show how to
construct a corresponding set F for the product. The main point of interest is
that F itself can be defined without reference to the full coverage C. The full
coverage and its inductive generation need to be considered only when showing
that every set in F covers the product space; but this is hardly surprising, because
the corresponding facts for the Fis were described in terms of C.
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We must find a way to characterize the finite basic covers. We give an informal
argument as motivation; applying the theorem will confirm its correctness.

Each subbasic (i, a) in P ′ is of the form (spatially) {(xj)j∈I | xi ∈ a}: think
of this as a product of a (at i) ×Pj (everywhere else). A basic in P is a set of
these representing a meet, and that can be thought of as a product of specified
a’s at finitely many specified i’s, times Pj everywhere else. (However, we must
also allow for the fact that some i may occur more than once.)

We want to know when a join of these meets covers the entire product, and
the trick is to use distributivity to change it to a meet of joins. Then every one
of the joins must be the whole product.

By distributivity,
∨

A∈A

∧
A =

∧
γ∈Ch(A)

∨
Im γ

where Ch(A) is the set of choices of A, i.e. [Vic04b] the finite total relations γ
from A to

⋃
A such that if (A, a) ∈ γ then a ∈ A, and Im γ is the image of γ

(under the second projection from A×
⋃
A to

⋃
A).

Now consider a finite join of subbasics
∨

B. This is (it will turn out) a cover
of the entire product iff at some i its components cover Pi. Classically one sees
this as follows. Suppose at every i we have some point xi that is not in any
subbasic b in B. Then the point (xi)i∈I is not in

∨
B. Hence (classically) if

∨
B

does cover the product, then there is some i and some finite cover S of Pi (so
S ∈ Fi) such that {i} × S ⊆ B.

This idea lies behind our definition of F in the Theorem.

Theorem 0.6. (Infinitary Tychonoff) Let (Pi,≤, C0) (i ∈ I) be flat sites for
compact spaces, equipped with sets Fi ⊆ FPi satisfying the conditions of Theorem
0.4. Let the product site P be defined as above.

Let F ⊆ FP be defined such that A ∈ F iff for every γ ∈ Ch(A) there is
some i and some S ∈ Fi such that for every a ∈ S we have (i, a) ∈ Im(γ).

Then F satisfies the conditions of Theorem 0.4 for P , and hence shows that
P is compact.

Proof In the definition of F , we should like to say that for some i, Im γ covers
Pi: or {a | (i, a) ∈ Im γ} ∈ Fi. But we have to be somewhat careful, since if
I does not have decidable equality then {a | (i, a) ∈ Im γ} need not be finite.
Nonetheless, let us abuse language and say “Im γ covers Pi”. Note also that if
some Fi contains ∅, so that Pi gives an empty locale and so does the whole
product, then every A is in F .

We verify the four conditions in Theorem 0.4.
Condition 1, F is upper closed with respect to vL. Suppose A ∈ F and

A vL B. Let δ ∈ Ch(B). If A ∈ A then A vU B for some B ∈ B. There is some
b ∈ B∩ Im δ, and a ≤ b for some a ∈ A. In short, ∀A ∈ A. ∃a ∈ A. ∃b ∈ Im δ. a ≤
b. It follows that there is some γ ∈ Ch(A) such that Im γ vL Im δ. Now because
A ∈ F we deduce that Im γ covers some Pi, and it follows that Im δ covers the
same Pi so B ∈ F .
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Condition 2, F is inhabited. {∅} is vacuously in F , because it has no choices.
Condition 3. There are three parts to check, corresponding to the three axiom

schemes in Proposition 0.5. We use Lemma 0.7, which is proved separately.
For scheme 1, we need that if i ∈ I , B ∈ P and {B} ∪ C ∈ F , then there is

some S′ ∈ FPi such that {{(i, a)} ∪ B | a ∈ S ′} ∪ C ∈ F . In the lemma, take
S = ∅ and φ the whole of Pi. Given T , there is some S ′ such that S′ ∪ T covers
Pi; just choose S′ to be any element of Fi (which is inhabited by hypothesis).

For scheme 2, if i ∈ I , a1, a2 ∈ Pi, B ∈ P and {{(i, a1), (i, a2)} ∪B}∪ C ∈ F ,
then there is some S′ ∈ F(a1 ↓ a2) such that {{(i, a)}∪B | a ∈ S ′}∪C ∈ F . Here
S = {a1, a2} and φ = a1 ↓ a2. If {a1} ∪ T and {a2} ∪ T both cover Pi then so
does ({a1} ∪ T ) ↓ ({a2} ∪ T ) and hence so does some finite subset. This enables
us to find S′.

For scheme 3, if i ∈ I , a C0 U in Pi, B ∈ P and {{(i, a)} ∪B} ∪ C ∈ F , then
there is some U0 ∈ FU such that {{(i, u)} ∪ B | u ∈ U0} ∪ C ∈ F . Here S = {a}
and φ = U . If {a} ∪ T ∈ Fi then by hypothesis U0 ∪ T ∈ Fi for some U0 ∈ FU .

Condition 4, if A ∈ F then P C A. Let us write

B′ = {Im γ | γ ∈ Ch(A)}.

For every γ ∈ Ch(A) we can find S in some Fi such that {i} × S ⊆ Im γ, and it
follows that we can find B ∈ FP such that

• every B in B is {i} × S for some i and S ∈ Fi;

• every B in B is included in some Im γ in B′;

• every Im γ in B′ includes some B in B.

The last two imply that B′ vU B and B′ vL B (recalling that the order used
on P = FP ′ is vU , which includes ⊇).

Now let

C = {Im δ | δ ∈ Ch(B)}.

We show (i) C vL A, and (ii) (∅) C C, and these together imply that (∅) C A.
For the first, take δ ∈ Ch(B). For every γ ∈ Ch(A) we have that Im γ includes

some B ∈ B and so meets Im δ. By the Diagonalization Lemma of [Vic04b] it
follows that A ⊆ Im δ for some A ∈ A. (Classically, if no A ∈ A is included in
Im δ then there is a choice that avoids Im δ. But with these finite sets there is a
constructive proof.)

For the second, we use induction on B. If B = ∅, then it has only one choice,
which is empty, and so C = {∅}. Now suppose it holds for B0; we prove it for
B = B0 ∪ {{i}× S} where S ∈ Fi. We have

C ⊇ {Im δ ∪ {(i, b)} | δ ∈ Ch(B0), b ∈ S}.

By induction,

(∅) C {Im δ | δ ∈ Ch(B0)}.
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By definition of C0 for P ,

Im δ C0 {Im δ ∪ {(i, a)} | a ∈ Pi}.

Since S ∈ Fi, we have a C S for each a ∈ Pi, and a straightforward induction on
the proof of a C S then shows that

Im δ ∪ {(i, a)} C {Im δ ∪ {(i, b)} | b ∈ S}.

We can now use transitivity of C. 2

Now here is the lemma that was promised in proving condition 3.

Lemma 0.7 Under the hypotheses of Theorem 0.6, suppose we have i ∈ I, S ∈
FPi and φ ⊆ Pi with the property that, for every T ∈ FPi, if ∀a ∈ S. {a}∪T ∈ Fi

then there is some S ′ ∈ FPi with S′ ⊆ φ and S′ ∪ T ∈ Fi.
Then if B ∈ P , C ∈ FP and {({i}×S)∪B}∪C ∈ F , there is some S ′ ∈ FPi

with S′ ⊆ φ and {{(i, a)} ∪ B | a ∈ S ′} ∪ C ∈ F .

Proof Suppose B and C are given. Now suppose γ ∈ Ch(C). For every a ∈ S
we have {(i, a)} ∪ Im γ covers some Pj , so there is some S ∈ Fj such that
{j} × S ⊆ {(i, a)} ∪ Im γ. We can deduce that either Im γ covers some Pj , or
{(i, a)} ∪ Im γ covers Pi. We can therefore decompose Ch(C) as a union of finite
sets, D ∪ D′, such that if γ ∈ D then Im γ covers some Pj , and if γ ∈ D′ then
{(i, a)} ∪ Im γ covers Pi for every a ∈ S. If γ ∈ D′ then for each a ∈ S we can
find T ∈ Pi such that {a} ∪ T ∈ Fi and {i} × T ⊆ Im γ, and by taking their
union we can assume that a single T does for all the a’s. Then we can find S ′

with S′ ⊆ φ and S′ ∪T ∈ Fi. By taking the union of the S ′s we can assume that
a single S′ such that ({i} × S′) ∪ Im γ covers Pi for all γ ∈ D′.

We now show that {{(i, a)}∪B | a ∈ S ′}∪C ∈ F . For any choice of {{(i, a)}∪
B | a ∈ S′}∪C, its image contains a set of the form Im γ∪ Im δ, where γ ∈ Ch(C)
and δ ∈ Ch({{(i, a)} ∪ B | a ∈ S ′}). For each a ∈ S′, we have either Im δ
meets B or (i, a) ∈ Im δ. If the former holds for some a, then there is some
choice of {({i} × S) ∪ B} ∪ C whose image is a subset of Im γ ∪ Im δ, and from
{({i}×S)∪B}∪C ∈ F we deduce that Im γ∪Im δ covers some Pj . Alternatively,
suppose {i} × S′ ⊆ Im δ. It suffices then to know that ({i} × S ′) ∪ Im γ covers
some Pj . If γ ∈ D then Im γ covers some Pj , while if γ ∈ D′ then by construction
of S′ we have ({i} × S′) ∪ Im γ covers Pi. In either case we are done. 2

0.4 Synthetic locale theory

We conclude with some remarks on an approach that promises to lay bare many
issues of topology, both point-set and point-free. This is the “synthetic topol-
ogy” of Escardó [Esc04]. It uses the lambda calculus to express maps, and the
Tychonoff theorem (at least, binary Tychonoff) is a good illustration.

Recall that X is compact iff there is a Scott continuous map ∀! : ΩX → Ω
that is right adjoint to the unique frame homomorphism. For sober spaces, all
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continuous maps are Scott continuous (with respect to the specialization order).
Also, the opens of X are equivalent to continuous maps from X to the Sierpinski
space S, so we can identify ΩX with the function space SX . Hence, compactness of
X can be expressed by a map ∀X : SX → S right adjoint to the map S! : S → SX .
We can think of the points of S as being truth values, the top (open) point >
being true, and then ∀(a) is the truth value of “a = X”.

If X and Y are both compact, then the corresponding map for X ×Y can be
expressed very easily as

∀X×Y (u) = ∀Y (λy. ∀X (λx. u(x, y))).

To put it another way, ∀X×Y : SX×Y → S is the composite ∼=; (∀X )Y ; ∀Y :
SX×Y ∼= (SX)Y → SY → S. This is the required right adjoint, and if everything
preserves continuity then we get the required Scott continuity.

But there’s an obvious flaw in the argument! The function space SX only
exists if X is locally compact (this holds for locales as well as spaces). Apparently,
it proves Tychonoff only for locally compact (and sober) spaces.

However, it is possible to get round this by embedding one’s category of spaces
in a larger category in which the exponentials exist. Escardó refers to “real”
spaces (in the original category) and “complex” spaces (in the supercategory). It
then remains only to show that morphisms between the complex function spaces
do indeed give the required Scott continuous functions between frames.

For locales, the requisite results have been proved in [VT04]. There the cat-
egory Loc of locales is embedded (by the Yoneda embedding) in the category

SetLoc
op

of presheaves over Loc. The fundamental lemma then is that presheaf
morphisms (natural transformations) from SX to SY correspond to Scott con-
tinuous functions from ΩX to ΩY . This allows us to use the above construction
of ∀X×Y as a proof of binary Tychonoff.

Despite the set-theoretic difficulties, it is to be hoped that a predicative ar-
gument can also be found to justify such synthetic methods in formal topology.

The infinitary Tychonoff theorem is less well understood from this point
of view, but it seems to play the role of a termination principle for recursive
algorithms.
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