INFORMATION SYSTEMS FOR CONTINUOUS
POSETS

Steven Vickers,
Department of Computing,
Imperial College,

180 Queen’s Gate,
London,

SW72BZ,

England.

email: sjv@doc.ic.ac.uk

Abstract

The method of information systems is extended from algebraic posets to continuous
posets by taking a set of tokens with an ordering that is transitive and interpolative but
not necessarily reflexive. This develops results of Raney on completely distributive
lattices and of Hoofman on continuous Scott domains, and also generalizes Smyth’s
“R-structures”. Various constructions on continuous posets have neat descriptions in
terms of these continuous information systems; here we describe Hoffmann-Lawson

duality (which could not be done easily with R-structures) and Vietoris power locales.



We also use the method to give a partial answer to a question of Johnstone’s: in the

context of continuous posets, Vietoris algebras are the same as localic semilattices.

1. Introduction

When in denotational semantics one chooses the structures to be used as the semantic
domains, various requirements conspire to narrow the choice quite a lot: one wants, for
instance, to be able to model recursive definitions, construct function spaces and solve
domain equations. A frequent choice is to use Scott domains (bounded complete
algebraic cpos).

One aspect of Scott domains [20] is that they can be presented using information
systems: you don’t describe the set of points directly, but present it using an
information system comprising tokens, a selection of points from which the others can
be derived as joins. Moreover, Scott continuous maps between Scott domains can be
described as relations (approximable mappings) involving tokens. The information
systems are crucial when one comes to solving domain equations (Scott [20] and
Larsen and Winskel [14]), essentially because a colimit of a chain of domains (obtained
by iterating the constructor in the domain equation) is constructed by taking the set-
theoretic union of the corresponding information systems.

It is well known that algebraic posets (otherwise known as algebraic dcpos) can be
treated in roughly the same way, using the compact points as tokens; general points are
then ideals (directed, downward closed sets) of tokens. The algebraic poset itself is just
the ideal completion of the poset of compact points, and (Scott) continuous maps
between algebraic posets can be described as “approximable mappings”, certain sets of
pairs of compact points. It is not hard to extend these methods by using a preorder
instead of a poset (this is particularly useful when dealing with powerdomains, for the
orderings on sets of tokens are only preorders).

This is not a direct generalization of Scott’s information systems, because in the
absense of bounded completeness we must give more tokens — enough so that every

point is a directed join of tokens. However, we shall follow Scott’s original



terminology of rokens, information systems, ideals and approximable mappings. What
distinguishes an information system from an ordinary preorder is, of course, the implied
use of approximable mappings as morphisms instead of order preserving functions.

Let us note at this point a fact that is known but less commonly seen: algebraic
posets are easy to treat localically, because the frame of Scott opens of an algebraic
poset IdI(P) (which is isomorphic to the frame of Alexandroff opens of P) can be

presented as (in the notation of Vickers [22])
Fr ( 1{t} t EP) | Nies 1{t} = Veuns) 1{s} S SChinP))

(Here, ub(S) is the set of upper bounds of S.)

An immediate benefit of the information system approach is that power locales can
be treated very easily: from an original information system P, just construct @ fin(P)
with the lower, upper or Egli-Milner preorder; this new information system represents
an algebraic poset which is homeomorphic to the lower, upper or Vietoris power locale
of Id1(P).

Mathematically speaking, it is only a short step from algebraic to continuous posets
(or continuous dcpos; see Gierz et al. [S], or, more conveniently for our purposes,
Johnstone [8]) and these also cover important examples based on the real line. It is the
purpose of this paper to generalize the technique of information systems and use it to
prove results about general continuous posets. An approach to this that has been taken
by, for instance, Smyth [21], is to exploit the fact that every continuous poset is a
retract of an algebraic poset. Hence one might describe an ordinary information system
(giving the algebraic poset) together with extra structure representing the retraction.
More generally, one might try to describe a basis of a continuous poset, i.e. a set of
points such that every other point is a directed join of some of them, and Smyth’s [21]
R-structures (see note 4 at the end of Section 4) use this idea. Our information systems,
which generalize R-structures, go beyond this: the tokens do not form a basis of points,
but are closer to a basis of opens. In Theorem 4.13 it is actually easier to use
R-structures; the main advantage of our information systems seems to come when one

works with Hoffmann-Lawson duality (Section 3.2).



Hoofman [7] has already studied the case of continuous Scott domains,
generalizing Scott’s information systems. Though his applications are somewhat
different from ours, his method of generalization is essentially the same. In a Scott
information system there is an entailment relation + between finite sets of tokens, and
in the passage to continuity one replaces reflexivity (X F X) with a weaker

interpolation property: if X F Zthen X F Y F Z for some Y.

Beware!

In ordinary topology, opens are concretely sets of points, while in pure locale theory
points are concretely sets (actually completely prime filters) of opens. In the
presentation we shall give here, both points and opens are concretely sets of tokens.
Tokens are not faithfully represented either as points or as opens, so both the
topological and the localic standards are inappropriate, even though the continuous
posets constructed are sober spaces or spatial locales. We get round this by using the
language of fopological systems as in Vickers [22], in which points x “satisfy” opens a
(x E a). There are traps for the unwary here. For instance, the intersection of two opens
is their intersection as sets of tokens and is not necessarily itself open. The point set

topological “intersection” is the meet of the opens, and is contained in their intersection.
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2. Continuous information systems

Definition 2.1 A continuous information system (or infosys,; but I'd happily change this

name) is a set D equipped with a relation < that is —

e transitive, le.ifs<tandt<uthens<u



* interpolative, 1.e.if s <u then for somet,s<tandt<u

In short, < ° < = <.

The elements of D are known as tokens.

Note that reflexivity implies interpolativity, so preorders are infosyses. This
corresponds to the algebraic case, where < appears as = on compact points. Some
authors use the symbol | to relate tokens. This corresponds to our >, i.e. s I tiff t <s.

Our aim is to show how infosyses can be used to present continuous posets. We
shall first give a quick localic account that exploits the standard result (see Johnstone
[8]) that continuous posets are Stone dual to completely distributive frames: any
continuous poset (with its Scott topology) is homeomorphic to a locale whose frame is
completely distributive, and vice versa. The localic treatment is very natural, because —
as we shall see — the tokens represent opens rather than points.

Recall that a frame A is completely distributive iff whenever X; € A (A € A, which

may be infinite), we have
FAVIAVAD CYERVEFAVS (19
where f ranges over the functions from A to U Xj, such that f(A) € X;..

Definition 2.2 Let D be an infosys.
If S C D, then the upper closure, 1S, of Sis {t ED:3s €S. s < t}.
If S € D, then S is upper closed iff S = 1S.

The upper closed subsets of D are called the opens of D.

Beware!

* S “upper closed” means not only that if t >s € S then t € S, but also thatif tE S
then s < t for some s € S. Note that if S satisfies just the first of these conditions,
then it contains its upper closure.

e It is convenient to use the abbreviation “1s” for “1{s}”. But we shan’t do this,
because it introduces ambiguities when we come to the power locales.

e The opens of D do not form a topology on the set D. They are not open subsets

of D in any sense.



Some useful properties of | are —

if SCTthen 1SCIT
T(ViS)=Vi1Si
11S=1S

1S is the least upper closed set containing S

Proposition 2.3 Let D be an infosys.

@

(i)

Proof

(Raney [16]) The opens of D form a completely distributive frame QD.
Join is just union (as sets of tokens) and the meet of a family of opens is the
upper closure of the intersection.

QD can be presented as

Fr ( 1{t} t€D) | N\es H{t} =Vseus) s} SSCanD)) ()
where ub(S) = {s€D: VtES. t < s}.

Recall that the notation (1) means the frame generated by formal
symbols 1{t}, subject to the relations (equations) given. In effect, the result
shows a universal property of QD: defining a frame homomorphism from QD
to another frame B is equivalent to interpreting the formal generators 1{t} in
B and showing that this “respects the relations”, i.e. transforms the formal

relations to actual equalities in B. (For further details, see Vickers [22].)

(i) Raney proves this for DOP instead of D. (But note that this requires the axiom of

choice — see the remarks round Definition 2.16.) Raney’s results are considered in more

detail in 2.12 to 2.15.

(i1) Let us write A for the frame presented as in the statement. Note that by taking S to

be a singleton, we have 1 {t} = V¢ 1{s}, so if s >t then 1{s} = 1{t}. Alsoin A,

Nes Mt} =Vgeuns) Vsss' T{s} = Vsetuns) T{s} (*)

There is a frame homomorphism 61: A — QD defined by mapping the symbol 1 {t}

to the open 1 {t}. Conversely, we can define 0,: QD — A by taking a to V{1 {t}: t €



a}. This clearly preserves joins; as for finite meets, first we have true = 1D = 1ub(Q)

maps to true in A. Next, if a and b are opens of D then

02(a) A 02(b) = V{1 {s} A M{t}:sEa, tEb} (by frame distributivity)
=V {1{u}: Av. Is&a, t&b. (u >v, v>s and v>t)}
(by (*) with S = {a, b})
=V{M{u}: ue t(anb)} = H2(arb)

01 and 07 are mutually inverse. 1

The theory of completely distributive frames (see, e.g., Johnstone [8]) tells us

immediately that QD is isomorphic to the frame of Scott opens for a continuous poset;

we shall use 2.3 (ii) to determine what its points are.

Definition 2.4 Let D be an infosys.

An ideal in D is a subset x C D satisfying —

o ifs<t&Exthens&Ex

e if S Cgp X, then S has an upper bound in x

Note that if S is a singleton, this says that whenever t € x then we can find t' € x with
tO< t'.

An ideal of D is called a point of D; we write pt D for the set of points of D.

Note that although each token t gives rise to an open 1 {t}, it need not — by contrast

with the algebraic case — give an ideal | {t}.

Proposition 2.5 Let D be an infosys. Then the points of D correspond bijectively with
the locale points of QD, with x E a (the point x “satisfies” the open a) iff the ideal x
and the upper closed set a have a token in common.

The specialization ordering on pt D is inclusion on ideals of D.
Proof
Proposition 2.3 (ii) tells us that the locale points of QD (that is to say the points of the
locale whose frame of opens is QD, which are in effect frame homomorphisms from

QD to the two-element frame 2) can be considered to be functions from the generators



1{t} to 2 that respect the relations in the presentation. We can describe such a function
by the set
x={teD: 1{t} — true}
and then “respecting the relations” says exactly that x is an ideal (the two clauses in
Definition 2.4 correspond to the two directions = and < in the frame presentation).
xEa=V{MN{t}:t€a}iff x F 1{t} for some t € a, i.e. some t is in xNa.
X = y means that for all tokens t, if x F 1{t},ie.tEX,theny F {t},tE y;ie. x

Cy. 1

Definition 2.6 Let D be an infosys. Then we also use the symbol D to denote the
topological system (Vickers [22]) whose points and opens are the ideals and upper
closed sets as in Definitions 2.2 and 2.4, with x F a iff xNa = . (Note Proposition 2.3
describing the frame structure of QD.)

We shall say that the infosys presents the topological system.

The next Proposition now follows from Proposition 2.5 and the standard theory of

completely distributive frames.

Proposition 2.7 Let D be an infosys. Then D (as a topological system) is

homeomorphic to a continuous poset (with its Scott topology). ]

Examples

@) If D is a preorder, then it is an infosys. Thus infosyses subsume information
systems for algebraic posets. Moreover, for any infosys there is a bijection
between compact points and equivalence classes of tokens under the partial
equivalence relation s ~ t iff s < t and t < s — as we shall see from 2.9 (ii), a
point is compact iff it has the form []|{s} for some s <'s, and | {s} = | {t} iff s
~ t. Therefore, an infosys representing an algebraic poset must contain a copy
of the poset of compact points, the standard information system.

(i1) Let I be the set of dyadic rationals (i.e. of the form m/2") in the closed

interval [0, 1], with < as the strict numerical comparison except that 0 < 0.



Then as topological system, I is the interval [0, 1] with its numerical ordering

and Scott topology.

Completely distributive frames

The theory above relies on the established theory of completely distributive frames.
Since this is somewhat involved in the standard presentation, let us sketch a direct
account of two facts: first, the topological systems described in Definition 2.6 are
continuous posets with their Scott topologies; and, second, every completely
distributive frame arises as the frame of opens for such a system.

First, let us fix an infosys D. The key result is the following:

Lemma 2.8 Let s < t be tokens. Then

1) There is a point x such that s € x and t is an upper bound for x.
(i1) There is an open a such that t € a and s is a lower bound for a.
Proof

(i) Define a sequence of tokens (s;) as follows: sy = s, and sj < sj+1 <t. Let x be
{u:03u < s;}. Then x is an ideal.

(ii) is similar. ]

Lemma 2.9

1) For opens, we have a « b iff there is some S Cyj, b such thata C 1S.

(i1) pt D is a continuous poset, with x « y iff there is some token t € y N ub(x).
Proof

(i) <:Suppose b=V W=U"TW (where the 1 is to indicate that W is directed).
Every element of S is contained in some element of W, so by directedness all of S is
contained in some ¢ € W. Then a < c.

=:Let W={1S:S C, b}. Thenb =1 W, soa=1S for some S Cgp, b.

(i1) <=: Much as in part (i), and using the fact that directed unions of ideals are still
ideals.

=: Let W= {z € pt D: Is€ y. s is an upper bound for z}, which is directed. We show

that y = LITW. Let s' € y, and let s € y with s' < s. By Lemma 2.8 (i) there is a point z



such that s' € z and s is an upper bound for z, so z € W. The rest is now as in part (i).

1

Lemma 2.10 As a topological system, D is spatial and localic.

Proof Proposition 2.5 tells us that D is localic. For spatiality, suppose extent(a) &
extent(b) (where “extent(a)” means {x € pt D: x F a}). If s € a, then we can find t such
that s >t € a. Let x be a point containing t, for which s is an upper bound. Then x F a,

sox F b.Ifu&xMbthens>u,sos&b. Hence a<b. 1

Lemma 2.11 QD is the Scott topology on pt D.
Proof

It is standard, and straightforward, that a base for the Scott topology on a continuous

poset is given by the sets $x ={y: x «y}. But by Lemma 2.9 (ii), y » x <y F Tub(x),

which is open. ]

This completes the proof that as topological system, D is the Scott topology on a
continuous poset.

We next present Raney’s results [16] (adapted to our purposes) as 2.12 to 2.15.
These show how to construct an infosys directly from a completely distributive frame
so that every completely distributive frame is isomorphic to the Scott topology on a

continuous poset. Some of the proofs are sketched in Gierz et al. [5], Exercise 1.2.22.

Definition 2.12 (This is Raney’s anonymous relation “p”.) Let A be a frame, and let a,
b € A. Then a is completely below b, a « b, iff for every W C Aifb<VWthenasc

for some c EW.

Proposition 2.13 Let A be a frame. Then A is completely distributive iff every element

is the join of the elements completely below it. ]

Lemma 2.14 Let A be a completely distributive frame. Then «. on A is transitive and

interpolative. ]

Proposition 2.15 Let A be a completely distributive frame, and let D be the infosys
whose tokens are the elements of A, ordered by s < tiff t «¢ s in A (note the order

reversal). Then A is isomorphic to QD.



Proof
(Let us write a, b, etc. for opens of D, and s, t, etc. for tokens, i.e. elements of A.)

An open for D is a subset of A lower closed under «.. Map QD to A by a —» Va.
This is monotone, and onto by Proposition 2.13. Now suppose VVa < VVb. If s € a, then
we can find s' and s" such that s «¢ ' «. 8" € a. Then s" < VVa <Vb, so s' <t for some t

€ b,so s «c tand s €Eb. Hence a < b. It follows that this map is an order isomorphism.

1

Let us briefly mention a defect in this treatment from a constructivist point of view.
To prove complete distributivity according to the standard definition (before 2.2) we
need a sufficiency of the choice functions f, and this usually requires the axiom of
choice. In particular, choice is needed for Proposition 2.13.

Fawcett and Wood [3] have given a definition of constructive complete
distributivity, classically equivalent to the standard definition but constructively weaker

than it.

Definition 2.16 Let A be a complete lattice, and let V: DA — A be the join map, where
DA is the set of lower closed ( D for “down closed”) subsets of A. Then A is

constructively completely distributive (CCD) iff \/ has a left adjoint.

(Compare this with the definition of continuous poset in Johnstone [8], according

to which a dcpo D is continuous iff V: IdI(D) — D has a left adjoint.)

Proposition 2.17 A complete lattice A is constructively completely distributive iff it is

isomorphic to QD for some infosys D.

Proof The straightforward proof is constructively valid. If A is a CCD lattice and V/

has left adjoint g: A — DA, then A is made into an infosys by defining a <b iff b €
gla). 1

Further results on constructive complete distributivity can be found in Rosebrugh

and Wood [18].

11
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Approximable mappings
It remains to consider the morphisms between infosyses. What we want to do is show
how Scott continuous maps between continuous posets can be described solely in terms
of tokens. The idea is seen most clearly in the algebraic case (when the infosyses are
posets and the tokens represent compact points).

A continuous map from IdI(D) to IdI(E) is equivalent to a monotone map from D to
IdI(E) and hence can be described by a relation f from D to E, s f t iff t € pt f(| {s}).
The constraints on f are that pt f(| {s}) should be an ideal and that it should be

monotone as a function in s:

e sftat=sft (ideals are lower closed)
e sfti(l<sisn)=3dt.(sftandt=1t; (1 =i<n)) (ideals are directed)

e s'asft=s'ft (monotonicity)

These three conditions have their analogues as (3), (4) and (1) in Definition 2.18;
however, direct application of the idea breaks down in the continuous case, because
}{s} isn’t necessarily an ideal. Instead, we define s f t iff s € Qf(1{t}) (1 {t} is open),
which in the algebraic case is equivalent to the definition given above. Proposition 2.20
will show that the following definition characterizes the relations that arise in this way

from continuous maps.

Definition 2.18 Let D and E be two infosyses. An approximable mapping from D to E

is a relation f from D to E such that —

(D) ifs'>sftthens'ft

) if s' ft then s' > s f t for some s

3) ifsft'>tthensft

4) suppose s' >s f tj (1 =1 =<n). Then there is some t' € E such thats' ft' and t' >
tj for all i.

Note the nullary case (n = 0) in (4) (which corresponds to ideals having to be non-

empty): if s' > s then 3t' EE. s' f t'. Of course, n = 0 and n = 2 are the significant cases;

all the others are corollaries.



13

Note also that a dual of (2) follows:

if s' f t then s' ft' >t for some t'
For by (2) we can find s such that s' > s f t, and then by the unary case of (4) we can

find t' as required.

The identity approximable mapping from D to itself is the relation >.

If f: D — E and g: E — F are two approximable mappings, then their composition

f;g (or g ° f) is the relational composition: s (f;g) u iff for some t we have s ft g u.

Proposition 2.19 Infosyses under approximable mappings form a category Infosys.

Proof The hardest part is to show that compositions still satisfy 2.18 (4). Suppose s' > s
f t; g uj. Take s" such that s' > s" > s, then t" such that s" f t" > t;, then t' such that s' f t' >
t" (use the unary case of clause (4)). Then t" g u; for all i, so we can find u' such thatt' g

u' > u;. Then s' (f;g) u' > u;.

s' t
ul
g"
tlY
S
\
t.
1 g
u

Proposition 2.20 The construction of topological systems out of infosyses extends to a
full and faithful functor from Infosys to Topological Systems.
If f: D — E is an approximable mapping, then pt f: pt D — pt E and Qf: QE — QD

are defined by

ptf(x) ={t€E dsex.sft}
Qf(b) ={s€D:dt&b.sft}

Proof
First, pt f(x) is a point of E and Q2f(b) is an open of D, and Qf obviously preserves joins.

As for finite meets, suppose s" € Apex Qf(b), so s" >s'>s with s ft, € b for each b €
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X. Then we can find t' with s' ft' > tp, sot' € M X, and t" with s" ft" >t', so t" € AX

and s" € Qf(N X).

Now it is easy to see that
ptfx) Fb< Is,t. sE x,tEbands ft) < x F Qf(b)

so that pt f and Qf are the two parts of a continuous map between the topological
systems.

It is easy to check that this constructs a functor.

For faithfulness, note that s f t iff s € Qf(]{t}) (the = direction uses the remark
after Definition 2.8) so that f is uniquely determined by Qf.

For fullness, note that the topological systems involved are continuous posets, and
hence localic. Therefore it is only necessary to consider Qf. Given Qf, define f by s f't

iff s € Qf(1{t}). This is an approximable mapping from which Qf is reconstructed. ]

Theorem 2.21 Infosys is equivalent to the category CtsPO of continuous posets under
Scott continuous maps.

Proof

CtsPO can be considered a full subcategory of Topological Systems, so Proposition
2.20 constructs a full and faithful functor from Infosys to CtsPO. It remains to show
that every continuous poset D can be presented by an infosys. Take as tokens, the
points of D; and define s < t iff s « t (the way below relation, which is well-known to be
transitive and interpolative). Now to each element s of the poset, there corresponds a set

of tokens is = {t: t « s}, and by definition of continuous poset this is an ideal of tokens.

Conversely, an ideal of tokens is directed, and hence has a join in the original poset.

Moreover, s = LI \|,\|/ s. Now let x be an ideal of tokens. If t « LIT x, then we can find t «

t' « U' x, and by definition of «, t' < s for some s in x and t « s. Hence t € x, and it

follows that x = &(IJT x). This shows that pt D is order-isomorphic to the original

continuous poset D. 1



3. Examples of constructions using information systems

3.1 Finitary products

We don’t consider infinite products, because they don’t preserve continuity of posets.

Definition 3.1.1 Let D) (A € A) be a finite indexed family of infosyses. Their product,

[ I5. Dy, is the set-theoretic product with the product ordering.

Theorem 3.1.2 Let D) (A € A) be a finite indexed family of infosyses.

@) The infosys product D presents the localic product.
(i1) The projection py: D — Dy, is the approximable mapping
tpys iff 3t t>tandty>s
(ii1) If for each w, fy: E — Dy, is an approximable mapping, then the tupling map
f: E — D is defined by
uf(t)) iff du'. (u>u'and VA. u' f) tp)
@iv) Let E be an infosys. Then the diagonal map 8: E — En is defined by
sd () iff  ds.(s>s'and VA.s'>1)),ie. s E Ny 1{tr}
) Let f): Dy, — Ej (A € A) be approximable mappings. Then the product [ ] fi,
= f (say) is defined by
(syp) f (ty) iff s, By, t) for all A
Proof There are various ways of proving this, but in preparation for Section 4 let us

give a localic proof.

(i) Consider these two frames:
A =Fr (Mt} tED) | N\es Mt} =Vseuns) 1{s} (S Chin D))
Ar=Fr (1 {t} tED,AEA)I
Nies Mt} = Vseuns) 148} (S Srin Dy, AEA))
Ay is the coproduct of the frames QD;. Then A = Ay, the isomorphisms being given

by

012: A = Ag, (RUSFAV R

15
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021: Ay = Aj, Nty = V{NHulu >ty (t€Dy)
To show that 817 respects the relations, suppose S Cgip D. Then

Nes N o) =M Nes o =N V{T{s}:s€ub{tp: tES}}
=V{Ap T{sn}: VA s) €Eub{ty: tES}} = Veuns) N T{sn}

Now for 021, suppose S Ceip Dy, for some w. We wish to show that

Nies 021(1{t}) = Vseuns) 021(1{s})
Note that u € 01(1{t}) iff there is some u' such that u >u' and u'y, > t. Hence

u € Nes 021(1{t}) = Ju", ut (t€S). (u>u" and Vt. (" > ut and uty, > 1))

u € Vseuns) 021(1{s}) < Fu",s. (u>u" and u", >s and VtES. s > t)

u u

To get from the first to the second, interpolate u"' between u" and u, and take s =u"y,.
To get from the second to the first, interpolate u" between u"' and u, and take ut equal to
u" for all t.

By rather similar methods, one shows that 817 and 0 are mutually inverse.

(i1) This is now immediate from the characterization
Upys = u € Qpu(t{s})

(i)  uf (i) = ueQI(T{(t)}) = Q) QLpa(t{n}) = Ax Qi(T{tH.}). The result
1s now immediate.

(iv) and (v)  These follow from (iii). 1

Note that the nullary product is the one-element poset {*}, with u f * iff u > u' for

some u'.
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3.2 Hoffmann-Lawson duality

A good account of Hoffmann-Lawson duality for continuous posets is given in
Johnstone [8]. In domain theory, it is unusual to apply the duality directly to the
domains themselves, but an indirect application is that the Smyth power domain PyD is
the Hoffmann-Lawson dual of the frame €D of Scott open sets.

Recall the basic definition and results:

Definition 3.2.1 Let D be a continuous poset. Then the Hoffmann-Lawson dual of D,
written ]/5, has as its points the Scott open filters in D, i.e. the Scott open, downward

directed sets of points of D.
Theorem 3.2.2 Let D be a continuous poset.

1) f\) is also a continuous poset.
(i1) Qﬁ = (QD)OP (Recall that QD is a completely distributive frame, from which

it follows that so is its opposite lattice.) ]

The duality is very easily representable by infosyses; just turn the token set upside
down.
Theorem 3.2.3 Let D be an infosys. We write B for the infosys with the same tokens
but the opposite order. Then f presents the Hoffmann-Lawson dual of the continuous
poset presented by D.
Proof
We show that Qf = (€2D)°P. If u is an open for f\), in other words a lower closed subset
of D, write u* for | (u®), the upper closure of its complement. Similarly, if a is an open

for D, write a* for | (a€). We show that u** = u.

sEut* = s s<s' Eu* < Is'. (s<s' and -F. (s' >t and t & u))

< ds'. (s<s'and Vt. (s'>t=tEu) < s€&u

(For the last <=, choose s' such that s < s' € u.)
By symmetry, a** = a and so * is a bijection from D to Qﬁ; it is clearly order

reversing. ]



Note that the argument given here is not intuitionistically valid. Rosebrugh and
Wood [18] show that if you conduct your set theory internally in a topos, then the
property that the opposite of any constructively completely distributive lattice is still
constructively completely distributive characterizes Boolean toposes. Hence in general,
Hoffmann-Lawson duality of continuous posets has to be defined by taking the opposite
of the infosys, not of the lattice.

The Hoffmann-Lawson dual is not functorial with respect to continuous maps
(approximable mappings), but there are two other kinds of morphism between infosyses
that give categories of infosyses for which the Hoffmann-Lawson dual is a genuine
duality, contravariantly functorial. In fact on Infosys it is a very good duality, for the
composition of the duality functor with itself is equal to the identity functor.

Let us reconsider the definition (2.18) of approximable mappings. The idea is to
symmetrize the definition so that it can be dualized by simultaneously reversing the
orders and the relation. Under this dualization, clauses (1) and (3) are interchanged, but
(2) and (4) are not. It was remarked after the definition that an approximable mapping
satisfies the dual of (2).

We make one symmetrization (lower semicontinuity) by weakening (4) to the dual
of (2), giving a non-deterministic generalization of approximable mappings, and the
other (Lawson maps) by strengthening (2) to the dual of (4), giving a specialization of

approximable mappings.

Definition 3.2.4 Let D and E be two infosyses.

) A lower approximable semi-mapping from D to E is a relation f from D to E
such that—

(1) ifs'>sftthens'ft

2) if s'ft then s' > s ft for some s

3) ifsft'>tthensft

€)) if s ft' then s ft > t' for some t.

(In short, >;f = f = f;>. (1), (2) and (3) are exactly as for approximable

mappings.)

18



(ii) An approximable mapping f from D to E is a Lawson approximable mapping

iff it satisfies

5) suppose sj ft (1 =i=n)and t>t". Then there is some s € D such that s; > s

foralliand s ft'.

It is straightforward to verify that there are two more categories whose objects are

infosyses:

e Infosysy, has as morphisms the lower approximable semimappings

e Infosysp has as morphisms the Lawson approximable mappings

In each case, the identity is the relation >, and composition is relational composition.
Moreover, each of these categories is antiisomorphic to itself by a functor extending the
Hoffmann-Lawson dual.

Recall that if D and E are locales, then a lower semicontinuous map from D to E is
a continuous map from D to PiE and that these amount to join preserving functions
from QE to QD.

Also, if D and E are continuous posets, then a continuous map g: D — Eisa

Lawson map iff Qg preserves open filters of points (as referred to in 3.2.1).

Theorem 3.2.5 Let D and E be infosyses.

(1) There is a bijection between lower approximable semimappings from D to E,
and lower semicontinuous maps from D to E under which 6: QE — QD
corresponds to the relation {(s,t): s € 6(1{t})}.

(ii) The bijection of (i) restricts to a bijection between Lawson approximable
mappings from D to E, and Lawson maps from D to E (treated as continuous
posets).

Proof

(i) Given a lower semicontinuous map 0, define the relation f by s f t iff s € 0(1{t}).

This is a lower approximable semimapping, and it determines 0. Conversely, given a

lower approximable semimapping f, define 6 by 06(a) = {s: At€a. s f t} € QD; 6
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preserves joins. Now s € 0(] {t}) < s ft' >t for some t', i.e. s f t. Hence we regain f
from 0.

(i1)) We first show that a € QD is a filter (of points) iff it is a filter as a set of tokens, in
other words an ideal of .

Suppose a is a filter in the standard sense, and let S be a finite set of tokens in a.
For each s € S, we can find s' < s with s' € a, and then by Lemma 2.8 a point xg such
that s' € xg and s is an upper bound for xg. We have xg F a, so there is a pointy F a
such that y = x4 for all s € S. Take t € yNa. Then for each s, t € x5, sot<sand tisa
lower bound for S in a.

Now suppose a is an ideal for f\), and let X be a finite set of points of D all
satisfying a. For each x € X, we can find a token sx € xMa. Let t be a lower bound in a
for {sx: x € X}, lett' < t with t' € a, and let (by Lemma 2.8) y be a point with t' € y and
t an upper bound for y. Theny F a; and if u € y then u <t <sx € x, sou € x. Hence y
is a lower bound for X.

Having cleared that hurdle, let’s return to the main result. We must show that if f is
an approximable mapping from D to E, then f is Lawson iff whenever b € QE is a filter
of tokens, then so is Qf(b).

Suppose f is Lawson, b is a filter and S T Qf(b). For each s € S we can find ty €
b such that s f tg; let t be a lower bound in b for the tokens tg, and let t' <t also be in b.
By the Lawson property in 3.2.4, we can find s', a lower bound for S, with s' f t' so that
s' € Qf(b).

Now suppose Qf preserves filters, and suppose s; ft (I =i<n)andt>t. By
Lemma 2.8 applied to f), there is an open filter b' € QE such that t €b' and t' is a lower
bound for b'. s; € Qf(b') for every i, and Qf(b') is an open filter, so we can find a lower
bound s in Qf(b') for the tokens s;. Then s f t" for some t" € b', so t" > t' and sCHt'.

1

Note that the bijection of 3.2.5 (i) also restricts to the bijection (2.20) between

approximable mappings and continuous maps.
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4. The Vietoris power locale

In this section we treat the power domains of continuous posets (though we shall
usually call them power locales, because of our localic viewpoint). The three main
power domains (lower, or Hoare; upper, or Smyth; and convex, Plotkin, or Vietoris) are
used in computer science in the semantics of non-determinism — see Plotkin [15] for the
standard results. We shall also assume some of the technical results in Johnstone [9].
Note that our power locales will always include the empty set as a point, and that for
the Vietoris power locale it is isolated, incomparable with any other point.

There are four main methods of describing power locales, which we describe in
relation to the Vietoris power locale (on which we shall mainly concentrate). For fuller

details on most of these, see Plotkin [15].

1- The localic method is the localic Vietoris constuction of Johnstone [9], in
which subbasic (generating) opens of the power locale are of the form Ca and

<¢a, where a is an open of the original locale:

Q(VD) = Fr(Oa, va(a€ QD) |
< preserves joins
O preserves finite meets

O preserves directed joins
Oa A ¢b = ¢(anb)

O(avb)< Oavob )

One should think of this as a way of building properties of sets out of
properties of points: X F Da iff VXEX. x E a, and X F ¢a iff IxEX. x F a.
But the method is purely localic, and does not depend on points at all. It

applies to arbitrary locales, and we take it as our reference point.

2 - The topological method describes the points of the power space as sets of
points of the original space. For instance, for a spectral locale D (these
include SFP domains), the Vietoris power locale VD is spatial and its points

can be identified with the convex, patch closed sets of points of D.



The information system theoretic method shows how, given an information
system representing the original locale, to construct one for the power locale.
In standard domain theory, one takes finite sets of tokens (compact points),
preorders them appropriately (for the Vietoris locale this is the Egli-Milner
preorder), and takes equivalence classes with respect to the preorder to make

a poset. This is the basis of the power locale.

The algebraic method, in which one specifies the power locale as a free
localic semilattice. This method is standard in domain theory (see, e.g.,
Plotkin [15]), but it is apparently not known for general locales whether the
Vietoris power locale is a free localic semilattice. Johnstone [9] addresses the
problem in the following form. Every algebra for the Vietoris monad is a
localic semilattice; moreover, a localic semilattice structure extends to a
Vietoris algebra structure in at most one way. He asks what conditions on
localic semilattices are sufficient for them to be also Vietoris algebras. When
this happens, the Vietoris power locale is the free Vietoris algebra and hence

the free localic semilattice.

In our treatment here, we describe methods 1, 3 and 4 for infosyses (i.e. general

continuous posets) and prove that they are equivalent. The crux is the proof (Theorem

4.3) that methods 1 and 3 yield homeomorphic locales. We then provide part of an

answer to Johnstone’s question by showing that for any continuous poset, a localic

semilattice structure will always extend to a Vietoris algebra structure; hence method 4

works. It seems that 4 and 3 are closely related, 4 exploiting the fact that the

information system construction uses finite sets of tokens. On the other hand, I do not

know of a nice treatment even for algebraic posets along the lines of the spatial method

2, and I conjecture that the method is really appropriate for stably locally compact

locales. (Johnstone [9] showed that in general the points of a Vietoris power locale VD

can be identified with certain sublocales of D, but that if D is stably locally compact

then these sublocales are spatial.)
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Definition 4.1 Let D be an infosys. The lower, upper and Vietoris power systems P D,
PyD and VD are defined as follows. For each, the tokens are all finite sets of tokens of
D. The corresponding orderings <p, <y and <gpm (all easily shown to be transitive and

interpolative) are defined by —

e S<.T iff Vs&S. ET. s < t
e S<yT iff VIET. Is€S. s < t
e S<gmT iff S<g, TandS<y T

Definition 4.2 We have already defined the Vietoris power locale. If D is a locale, then

the lower (Hoare) and upper (Smyth) power locales are defined by

QP D =Fr(¢a(a € QD) | © preserves joins)

QPyD = Fr(Oa (a€ QD) | O preserves finite meets and directed joins)

Theorem 4.3 Let D be an infosys. Then —

) VD is homeomorphic to the Vietoris power locale on D.
(i1) P1.D is homeomorphic to the lower power locale on D.
(iii) PyD is homeomorphic to the upper power locale on D.
Proof

(i) The method of proof is essentially that outlined in Robinson [17] to prove the
corresponding result for algebraic posets with bottom. We first prove a general result

about the Vietoris construction.

Proposition 4.4 Let D be a locale, and X € QD. Then in the Vietoris locale on D, we

have
OWVX) =V{ONY) A Ney ¢a: Y Gy X}

(The spatial intuition is this. If K is a compact set of points contained in VX, then we
can first (by compactness) replace X by a finite subset Y, and then throw away the
elements of Y from which K is disjoint until we get K € VY and K meets every a in
Y.)

Proof



O preserves V' (where again the arrow is used to indicate that the join is of adirected

set), so O(VX) =V {ONY): Y Cgin X}. Hence it suffices to prove the result for finite
X, which we do by induction on IXI. In the base case, X = @, both sides reduce to

Ofalse.

Now assume IX| = 1. The difficult direction is <.
Lemma 4.4.1 Let X' C X. Then
OVX) = Vpex' Vigycx (OVY) A Naey ©a) v (O(VX) A Npex' ©b)

Proof Again, the difficult direction is =. We use induction on IX'l. The base case, X' =

@, is trivial.

Now suppose IX'l = 1. Pick ¢ € X', and let X" = X"\{c}. By induction on X',
O(VX) = Vpex' Vbgycx (O(VY) A Naey Oa)
v (OV(X\M{c}) v ¢c) A Apex' ©b)
Now for any u and v in QD, O(uvv) = O(uvv) A (Ouv ¢v) =0u v (d(uvv) A OV).
Hence,

OV XMe)) v o) A Apexr ©b = OV (X)) v (VX)) A oc A Apexr ©b)
=Vegyex (OVY) A Naey ©a) v (OVX) A Apex ©b)

using induction on X. Hence we get the required result. ]

We return to the proof of Proposition 4.4. Put X' = X in the Lemma:

OVX) = Veex Vogycx {ONVY) A Naey ¢a} v (O X) A Apex ©b)
=Vycx (OVY) A Nyey ©a) ]

Let us now embark on Theorem 4.3 (i). For the sake of the proof, let us write V;D
for the locale defined using the infosys called VD in Definition 4.1, and VD for the
Vietoris locale on (the continuous poset presented by) D. We show that the frame

Q(VD) (as defined at the start of this section) is isomorphic to —

Q(ViD) =Fr(1{S} (SCsin D) |
Nsex M{S} =Vrewx) 1{T} (X Ctin VD) )

If S Cip D, write
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a(S) = 01SA Nges & 1{s}
If S <gm T, then a(S) = a(T). Also, Proposition 4.4 says that for any a € QD,
O a=V{a(T): T Cxpal

We define a homomorphism 01: Q(ViD) — Q(VD) by 1{S} = a(S). To show
that this respects the relations, suppose that X Cgin VD. Then the difficult direction is to

show that
Nsex a(S) = Vreunx) o(T)
Now,

Nsex o(S) = 0 Ngex 1S A Nseux © 1{s}
= V{aR): R Cin Asex 1S} A Nseux & 1{s}
= V{a(R) A Ngeux ¢ 1{s}: S<yRforall S € X}

We can consider such sets R individually.

aR) A Nseux O 1{s}
= a(R) A Ageux (1 {s}Ar1R) (because a(R) = O1R)

= V{aR) A Nseux ¢ H{ts}: ts€ T{s} A IR s € UX)}

Again, we can consider such families {ts} individually. Let T =R U {t5: s € UX}.
Since ty € 'R, we have 1T = 1R. Hence
a(R) A Aseux © Mt} = OTR A Agr ¢ 1{s} A Ngeux © TH{ts}

= 01T A et © Mt = a(T)

Also, S<gm T for all S € X, i.e. T € ub(X).

This completes the proof that 01 is well-defined.

Next, we define a homomorphism 07: Q(VD) — Q(V;D) mapping, for each a €
QD,

Oa = V{MS}:SCy D, SNa= @B} ={S Cg,y 1D: SNa =D}
Da = V{ 1{S}: S Cfin a} ={S: S Cfip a}



These are both monotone in a.
For the first three relations in the presentation of Q(VD), we must show that if X C

QD, then

e {SGin 1D, SN UX =0} <{S Gp 1D, S Na =@ for some a € X}
¢ if X is directed, then

{S: S Cfjn UTX} = {S: S Gy a for some a € X}
¢ if X is finite, then

MNaex {S: S Giip a} < {S: S G AXF

The first two of these are obvious. For the third, if S' is in the left hand side then S' > S
for some S Cyip, MX, and it easily follows that S' Cgp AX.

Next, we must show that if a, b € QD, then

o {S:SCgpavb} ={T: T Cgpa} v {RCgp 1D: RNb = @}
e {S:SCipa}y A {T G 1D: TNb = B}
< {R Cg, 1D: RNaNb = @}

The first is obvious. The second is also true, and easier to see, if we replace A by
M; and this suffices to prove what we want.

This completes the proof that 0 is well-defined.
Next, we show that 81 and 07 are mutually inverse.

0201(1{S})) ={R: R Ctin 1S} A Nes {T Shin 1D: T N 1{s} = B}
={R:R>y S} A {T Cfip 1D: T>L S}

={R:R>gm S} = 1{S}

01(02(0a)) = V{a(S): S Cfip a} = Da (by Proposition 4.4)
01(02(0a)) = V{a(S): S Cgin 1D, SNa = @} < oa
(if s € SNa then a(S) = ¢ 1{s} = ¢a)
Sa=<an Otrue =Vig, ¢ 1{t} A V{a(S): S Cfin 1D} (by Proposition 4.4)
< V{a(SU{t}): t Ea, S Cgip 1D} = 01(02(¢a))

This completes the proof of Theorem 4.3 (i). (ii) and (iii) are left to the reader; the

method is the same as for (i), but much easier. 1



Note a corollary of (iii): the points of PyD are the Scott open filters of QD, i.e. the
points of the dual (R2D)*; in fact PyD is homeomorphic to (2D)A. It follows that we
have an infosys presenting QD: the tokens are finite sets of tokens of D ordered by >.

We next describe certain constructions associated with the Vietoris monad.
Proposition 4.5

@) Let D be an infosys, and let N: D — VD and u: V2D — VD be the unit and

multiplication for the Vietoris monad. Then

sNMT < T=@ands & Tub(T), i.e. Is; <s with {s1} >T

GuT « UG>T
(i1) Let f: D — E be an approximable mapping. Then
S(VH T < VseS. dteT. sft and VteT.Is&€S.sft

(iii) The semilattice structure of VD (see Johnstone [9]) has unit pg: 1 — VD and

binary operation n: VDxVD — VD, where

*po T iff T=0
R,S)nT  iffRUS>T

(We take 1 to be presented by the partial order {*}.)

Proof The proof methods are the same in each case. First we show (or claim) that the
approximable mappings described are indeed approximable mappings, and then we
show that the corresponding inverse image maps agree with those given by the standard
locale theory of Johnstone [9].

(1) Define n' and ' as in the statement: for instance, G ' T iff UG > T. These are
approximable mappings.

1. The only mildly difficult part of Definition 2.18 is (4). If s' > s > s; with {sj} > T;
(10< i <On), theny' {s} > T;.

u': (1) and (3) in 2.18 are easy (note that if G' > G then UG' > UG). For (4), if G' >G
withGu' Tj (1 =i=<n),thenG'nw' UG >T;.
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For (2), we must show that if LG' > T, then there exists G < G' such that LG > T.
Let P={(s,t): s € UG, tET, s >t} and for each p = (s,t) € P, choose rp with s > rp >
t. Now, for each S € G', let Rg = {rp: p = (s,t) with s € S}, and let G = {Rs: SE€ G'}.
Then S >Rg, so G'>G, and UG >T.

Now m'=m and W' = u, for

Qn'(da)={s: H1, T.s>s1, T i a, {s1} >T} =a=Qn(0a)
Qn'(¢a)={s:3s1, T.s>s1, TG 1D, TNa= A, {s1} >T} =a=Qn(va)
Qu'(Oa) = {G:AT. UG > T Cfjp a} = {G: UG Gy a}

={G: VS.(S€G = SCfjp a} = {G: G Gfjp, Da} =00a = Qua)
Qu'(¢a)={G: AT. UG >T Cfj, 1D and TNa = @}

={G Cfip 1(VD): UGNa = @}

= {G Cgn 1(VD): 3SEG. SNa = @}

={G Cfip 1(VD): GNoa = @} = 0 0a=Qu(<a)

(ii) Letus define f' € VD x VE by the condition on the right-hand side of the
statement. f' is an approximable mapping. For (2) of 2.18, suppose S' f' T and define P =
{(s,t)ES'XT: s f t}. For each p = (s,t) € P, choose s, such that s > sp f't. Then
S'>{sp:pEP}T
For (4), suppose S' > S ' T; (1 =i <On), and let
P = {(s',8,(t) 1<i=n)ES')Sx[ [ Ti: s' >s f t; (I =i =<n)}

For each p = (s',s,(t})) € P, choose rp such that Vi.s'f rp >t , and let T' = {rp: p EP}.
Then S' f' T' > Tj. (In showing T' >1, Tj, note that if t; € T; for a particular i then we can
find s € S with s f t;j, and then for each j = i we can find t; € T;j with s f t;.)

Now f' = VT, for we have

SeQf(0a) < A Chpa. ST < VseS. Itca. s fit
< S Gy Qf(a) = S € 0Qf(a) =Q(Vf)(Oa)
Sef(®a) < AT G 1E. ST Tand TNa= @
< S Gip 1D and 3sES, t€a. s f't

(for <, use the nullary case of Definition 2.18 (4))
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< S Giip 1D and SNQA(a) = @ < S € ©Qf(a) = Q(VI)(<a)

(iii)  Define pg' € 1xVD and n' € VDxVDxVD by the conditions on the right-hand

sides in the statement. They are approximable mappings. Then po' = pg and n' = n, for

* € Qpp'(Da) <@ Ca< true < * € {*} = Qpo(Da)
* € Qpp'(©a) < BNa = @ < false < * € @ = Qpp(<a)
(R,S) € Qn'(Oa) « Il Cfjp a. RUS >T <« RUS Cepa
< RCGqpaand S G a < (R,S) € Da® Oa=Qn(0a)
(R,S) €Qn'(¢a) < IT Cpp 1D.RUS >Tand TNa = @
< RUS Cipy 1D and (RUS)Na = @
< R G 1D and S Gy, 1D and either RNa = @ or SNa = @

< (R,S) E<¢a®true v true ® ¢a=Qn(<a)

Vietoris power locales are free semilattices

We now investigate continuous posets equipped with a localic semilattice structure, so
throughout the section let D be an infosys so equipped. We write o,: D — D for the
n-ary semilattice operation; so O is the unit, o7 is the identity map, 07 is the binary
operation, and oy, (n > 2) is 07 iterated (of course, we’ve used the associative law here).

If (sj)1<i<n 1S a sequence of tokens, then we also write (s;) o= t for (s;) Oy t.

The commutative law tells us that if (s;) o= t, then (s(j)) O+ t for any permutation 7
of the indices. In other words, the validity of (sj) o= t depends only on the multiplicities
of the tokens s;j, not on their order: so we can consider (sj) to be not a sequence, but a
bag (multiset) of tokens. We can think of a bag either as a sequence indexed over an
unordered set or as a (finite) set in which the elements are assigned finite multiplicities.
Note how the bags are ordered. B > C means that there is a way of arranging the
elements of B and C so that as sequences, B > C. In particular, B and C must have the
same size (length). We shall write Set(B) for the set of elements of a bag B.

It would be nice if the idempotent law enabled us to eliminate duplications and

consider the bag to be a set: we could then define 6: VD =D by S o tiff S o= t
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(treating S as a bag); but in general this is not possible: the converse of the following

proposition does not hold. For a counterexample, consider the five-element infosys

t

that is almost reflexive, except that s «s. Its points form the four-element Boolean

algebra. If we consider its join operation, we find that (u, v) o2 t and hence that (s, s) 02

t — but we don’t have s > t.
Proposition 4.6 s >t = (s,s) o t

Proof

The idempotent law says that the following diagram commutes (9 is the diagonal

map).

D » Dx D

D

If s > t, then there is a pair (uy, up) such that s d (ug, up) oz t. s 0 (ug, up) says there

is some s' such that s > s' > uj; then (s, s) > (uy, uz), so (s, s) o t. ]

In general, we must define 6: VD — D by S ot iff B o= t for some bag B with
Set(B) = S: i.e. B contains exactly the elements of S, but possibly with multiple copies.
It can then be proved that this makes D into a Vietoris algebra. Let us introduce some
language to ease the discussion.

Definition 4.7 Let D be a set and let B = {b;: i €I}, C = {cj: j € J} be finite bags over

D. Then B is an inflation of C iff there is a function f from I onto J such that b; = cj)



for every i. In other words, treating the bags as sets with multiplicities, B has exactly

the same elements as C, all with multiplicities at least as great.

Lemma 4.8 Suppose S', S € VD with S' >gv S, and By is an inflation of S. Then we

can find bags B' > B such that B' is an inflation of S' and B is an inflation of By.

Proof Let P be the bag of pairs (s',s) such that s' € S', s € Bg and s' > s. Then define B'

and B as the bags
B'={s" (s',s) € P}, B={s:(s's)EP} ]

Proposition 4.9 If B o= t and C is an inflation of B, then C o= t.

Proof C can be made from B by a series of duplications of elements, so without loss of
generality we can assume that B and C are of the forms (s, s;)1<i<n and (s,s, Si)1<i<n- BY
generalized associativity, op4+) can be expressed as (02 x Idpn);0p+1. Now B opy1 t, SO
we can find B' = (s', si')1<i<n < B with B' o471 t. By Proposition 4.6, (s,s) 07 s', so

CO6,xId) B' and hence C Gp40t. ]

Definition 4.10 o: VD — D is defined by S o t iff B o« t for some inflation B of S (S

treated as a bag with single multiplicities).

Proposition 4.11 Let : VD — D be defined as in 4.10. Then —

@) O is an approximable mapping.

(i1) o makes D a Vietoris algebra.

(i11) The Vietoris algebra structure on D extends the semilattice structure.
Proof

(i) IfS'>gm S ot, then S' ot follows from Lemma 4.8.

Suppose S' o t, with B' o= t for some inflation B' of S'. Then B' > B o= t for some
bag B, and S' >gm Set(B) o t.

Suppose S' >gm S o tj (1 =i =<n). For each i we can find an inflation B; of S such
that B; o= tj; and by taking the maxima of the multiplicities we can assume there is a
single inflation By of S with By o= tj for all i. Take B' > B as in Lemma 4.8, so B o= t;
for all i. We can then find t such that B' o=« t > t;, so S' 0 t > t; as required.

(i1)) We must show that the following two diagrams commute:
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Vo N
VVD——————» VD D » VD
o
u o Id
VD » D
o

The right-hand diagram:

Suppose s T o u. Then we can find s1 < s such that {s1} >gm T, and an inflation
B of T such that B o= u. Let B' be {s1} inflated to the same size as B: then s 6+ B'>B
O+ u where 0= is the appropriate diagonal map, and then by generalized idempotence we
have s > u. Conversely, if s > u then we can find s; and t with s >s{ >t >u, and we can

take T = {t}.

The left-hand diagram:
Suppose G (Vo) T o u. Choose G' with G > G' (Vo) T. Then G n UG, and we

show also that LU G' o u. Choose an inflation C of T such that C o+ u, and let P and C'

be the bags

P ={(S, )EG'xC: S o t}, C' = {t:3S. (S, t) EP}

(By this notation, C' is intended to have the same size as P.) C' is an inflation of C, so C'
o u. For each p = (S, t) € P let By be an inflation of S such that B, o+ t, and let B be
the bag sum (disjoint union) of the Bp’s. Then Set(B) = UG" and by generalized
associativity B ox u, so UG' o u.

Now suppose for some R that G u R o u. It follows that UG o u; let B be an

inflation of UG such that B o= u. Now let P, B' and Bg (S € G) be the bags
P={(S, s)€GxB: s €S}, B'= {s: 3S. (S,s) € P}, Bs = {s: (S,s) € P}

B'is an inflation of B, and so B' o= u. Moreover, B' is the bag sum of the Bg’s, and it
follows by generalized associativity that we can find a bag C of the form {ts: S € G}
such that Bg o tg (so, because Bg is an inflation of S, S o tg) and CO u. It follows

that G (Vo) Set(C) o u.



(iii)  (cf. Proposition 4.5 (iii).) The nullary semilattice operation induced by the

Vietoris algebra structure is pg;0, which we must prove equal to og. We have
*ppToue@=Tou<O*opu
The binary operation is (nxn);n;o, which should be 07. Suppose first that

(81,82) Mxn) (T, T)) nUo v

We therefore have s;' such that s; > s;' and {s{', s2'} >em T1UT2 >gm U o v. It follows
(using Lemma 4.8) that there is an inflation B of {s{', s2'} such that B o= v. Let us write
B as the bag sum of B and By, where each B is an inflation of s;'. It follows from
generalized associativity that we can find t; with Bj o= t; and (t1, t2) 02 v. Also s; 6« Bj,
so by idempotence s; > t; and so (s1, s2) 02 V.

Conversely, if (s, s2) 02 v then we can find

(s1,82)>(s1',82) > (s1",82") o v

(s1,82) (xn) ({s1'}, {s2 ) n {s1", 2"} oV 1
We can also answer, in our present case, another question raised by Johnstone [9].

Proposition 4.12 Let D and E be two Vietoris algebras in Infosys, and let f: D — E be
a semilattice homomorphism. Then f is a Vietoris algebra homomorphism.
Proof We must show that (Vf);o = o;f.

Suppose first that S (V) T o u, let C be an inflation of T for which C o= u, and let

P, B' and C' be the bags
P={(s,)ESxC:sft}, B'={s:3t. (s,t) EP}, C'={t: 3s. (s,t) EP}

Then B' and C' are inflations of S and C, and B' f* C' o+ u. Hence we can find r such
that B'osrfu,soSorfu.

Conversely, suppose S o r f u, and suppose B o= r where B is an inflation of S. We

can find C such that B f* C o* u, and so S = Set(B) (Vf) Set(C) o u. 1

Let us summarize.

Theorem 4.13 When the carriers are restricted to be continuous posets, the categories

of localic semilattices and Vietoris algebras are isomorphic.



Hence in CtsPO, the Vietoris power locale is a free semilattice. ]

Notes

1. For algebraic posets, these Theorems say that to construct a power locale you can
take finite sets of compact points under an appropriate preorder, and then take the ideal
completion. This is quite well-known, although to the best of my knowledge it has not
been proved for general algebraic posets. Robinson [17] proved it for algebraic posets
with bottom, while Vickers [22], following the methods used by Abramsky [1] for
strongly algebraic (SFP) domains with bottom, proved it for spectral algebraic locales

not necessarily with bottom.

2. An immediate corollary of Theorem 4.3 is that the Vietoris locale of a continuous
poset is again a continuous poset. As far as I know, this has not been shown before. Of
course, once Theorem 4.3 has been proved for algebraic posets, this additional result
follows cheaply from the fact that continuous posets are exactly the retracts of algebraic
posets. But the proof of 4.3 is not actually made any easier by a restriction to the

algebraic case.

3. Readers interested in power locales with the empty set excluded should have no

difficulties in applying the methods presented here.

4. Smyth [21] defines an R-structure to be (in our terminology) an infosys for which,
for every token s, the set {t: t <s} is an ideal.

Since for every continuous poset the points form an R-structure under «, it follows
that — classically at least -Oevery infosys is isomorphic (in the category Infosyyto an
R-structure. There is therefore no harm done by using R-structures instead of general
infosyses, and in some ways they are much easier to handle. The tokens represent a
basis of points, and QD is a topology on the tokens (an intersection of opens is still
open). Of course, the Hoffmann-Lawson duality is much less trivially representable.

In Section 4, a big advantage of using R-structures is that the converse of
Proposition 4.6 becomes true, and as a corollary the V-algebra structure map o

(Definition 4.10) can be defined by S o tif S o=t when S is treated as a bag. There
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seem to be decidability issues here: the o of 4.10 can only be semi-decidable, because

there is (apparently) no bound on the size of the inflations of S that must be checked.

5. Conclusions and further directions

Other power locales

An immediate investigation is to apply the methods of Section 4 to the lower and upper
power locales P, and Py. The same methods work, but much more simply, in showing
that the information system theoretic and localic constructions are homeomorphic.

There remain two main questions.

e What are the algebras for the Py monad on CtsPO? Schalk [19] has shown that
they are the continuous semilattices (continuous posets with finite meets, which
are then automatically continuous) and homomorphisms that are continuous and
preserve finite meets. Between continuous semilattices, the homomorphisms are
precisely the Lawson maps (see Johnstone [8]); this should be very plain from
an infosys account.

* What are the algebras for the P, monad on CtsPO? I conjecture that they are the
continuous lattices (continuous posets with finite joins; hence they are complete
lattices) and homomorphisms that preserve all joins — perhaps, to make the

morphisms implicit, these algebras should be called continuous sup-lattices.

A further direction is to investigate the composite Py © Pr,, which is isomorphic to
P1, ° Py. (This has been known for Scott domains since Flannery and Martin [4]. It was
proved for general locales by Johnstone and Vickers [10], and for general dcpos in
Heckmann [7]. Heckmann’s definitions are different form ours: his lower and upper
powerdomains over D are, respectively (and using the terminology of Johnstone and
Vickers [10]), the free suplattice and preframe over D qua dcpo. But the results of
Schalk [19] show — at least for the upper powerdomain, which is the difficult one — that
in the case of continuous posets these dcpo constructions are equivalent to the localic

ones.) Heckmann shows that these composites give the free frame over a dcpo and
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hence form a monad on the category of dcpos. Since Py and P, both preserve
continuity, we therefore have a monad on CtsPO, for which I conjecture that the
algebras are the continuous frames and the homomorphisms are the frame
homomorphisms. There is thus the possibility of doing locale theory in Infosys to treat

what, classically, are the locally compact locales.

Probabilistic power domains
Jones [11] (see also Jones and Plotkin [12]) has described how to construct, for an
arbitrary dcpo P, a “probabilistic power domain” E(P), also a dcpo. Its points are
“evaluations”, functions mapping €2P to the unit closed real interval [0, 1] and
satisfying certain conditions similar to those in measure theory. [0, 1] (with its Scott
topology) is the prime example of a continuous poset that is not algebraic, and one
could not expect E(P) to be algebraic except in extraordinary cases (e.g. P = @). This
rules out any conventional information system theoretic account of the probabilistic
power domain. But there are excellent grounds for hoping that continuous information
systems will work well.

I conjecture that if P is an infosys, then a token for E(P) should be a finite bag S of
pairs (s, r) where s is a token for P and r is a token for [0, 1] (concretely, a dyadic
rational in the interval), subject to Y(s r)es r = 1. The order < appears to be complicated.

The basic idea is that we should like to say
{(s, 1)} < {(t, ")} ifs<tandr<r'
But we should also like to redistribute the numerical weights as in —

{(s1, 11), (82, 12)} < {(t, 1)} ifsy<t,sp<tandri+rp <r'
{(s, 1)} < {(t1, 1'7), (t2, 1'2)} ifs<t,s<tyandr<r'i+r
When these are put together, one apparently needs the Ford-Fulkerson Theorem on

network flows (the Max-cut Min-flow Theorem mentioned by Jones and Plotkin) to

make the order effective relative to the original order for P.
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Function spaces

A crucial part of information system theory for domains is the treatment of function
spaces. Of course, one cannot expect to give an information system for the function
space of an arbitrary pair of information systems, because CtsPO is not cartesian
closed; but Hoofman [7] has given the construction for continuous Scott domains. Jung
[13] has now completed his very elegant account of maximal cartesian closed
subcategories of CtsPQ, so an obvious line of investigation is to construct information

systems for functions spaces within each of these subcategories.
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