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Abstract

The locale corresponding to the real interval [−1, 1] is an interval ob-
ject, in the sense of Escardó and Simpson, in the category of locales. The
map c : 2ω → [−1, 1], mapping a stream s of signs ±1 to Σ∞i=1si2

−i, is a
proper localic surjection; it is also expressed as a coequalizer.

The proofs are valid in any elementary topos with natural numbers
object.

1 Introduction

In [2], Escardó and Simpson prove a universal property for the real interval
[−1, 1], using a theory they develop of midpoint algebras: sets equipped with a
binary operation that, abstractly, provides the midpoint of any two elements.
In an iterative midpoint algebra there are also some limiting processes, and it
becomes possible there to define arbitrary convex combinations of two elements.
This property is expressed by saying that the interval [−1, 1] is freely generated,
as an iterative midpoint algebra, by its endpoints. That is the universal prop-
erty, and it thus characterizes the interval in a way that does not explicitly
describe the structure of reals.

It is also conjectured in [2, Section 10] that there is an analogous property
for the locale [−1, 1] of Dedekind reals, which we shall write I, in the category
Loc of locales. In this paper we confirm that conjecture. Our proof is valid in
any elementary topos with natural numbers object. Moreover, we have kept the
argument geometric as much as possible, with a view to possibly transporting
it to formal topology in predicative type theory, or to the arithmetic universe
techniques of [10].

The layout of the paper can be summarized section by section as follows.
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Section 2 recalls midpoint algebras.
Section 3 develops some preliminary results on Cantor space 2ω. Principally,

we analyse its localic presentation in order to get it in a “join stable” form
suitable for the preframe coverage theorem, a technical result used in Section 6.

Section 4 shows as its main result that the interval I is iterative. Our proof
relies on its metric structure, and its embedding as the maximal points of a
“ball domain”. The result of the iteration is then got via approximations in the
ball domain.

Section 5 introduces a map c : 2ω → I that can be understood as the eval-
uation of infinite binary expansions. We calculate some features of its inverse
image function; these results are needed in Section 6.

Section 6 shows that c is a localic surjection, exploiting the fact that, as
a map between compact regular locales, c is proper. In essence this is a con-
servativity result: to reason about real numbers it suffices to reason about the
infinite binary expansions, and this holds even in the absence of choice principles
allowing one to choose an expansion for every (Dedekind) real. To prove it we
use the preframe coverage theorem, relying on the analysis of Sections 3 and 5.

Section 7 describes c as the coequalizer of two maps from 2∗ to 2ω.
Section 8 now completes the proof of our main result, Theorem 8.11, that

(I,−1, 1) is a cancellative interval object in Loc. Suppose we are given an
iterative A with two specified points as in Definition 2.4 (3), and we want to
define the unique N : I → A. The composite Nc = M (say) is easy to find,
so the task is to factor M via c. The unique existence of the factorization will
follow from the coequalizer property of c. It remains to show that N preserves
midpoints, and for this it is convenient to introduce 3ω, for streams of signs and
zeros.

2 Iterative midpoint algebras

We recall the definitions from [2], in an arbitrary category with finite products.

Definition 2.1 A midpoint algebra is an object A equipped with a morphism
m : A×A→ A satisfying the following conditions:

m(x, x) = x

m(x, y) = m(y, x)

m(m(x, y),m(z, w)) = m(m(x, z),m(y, w))

A homomorphism of midpoint algebras is a morphism that preserves the
midpoint operation.

A midpoint algebra is cancellative if it satisfies

m(x, z) = m(y, z) =⇒ x = y.

Definition 2.2 A midpoint algebra A is iterative if, for every object X and
pair of morphisms h : X → A, t : X → X ( head and tail), there is a unique
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morphism M : X → A making M(x) = m(h(x),M(t(x)) – in other words, the
following diagram commutes.

A×X A×M // A×A

m

��
X

〈h,t〉

OO

M
// A

To illustrate the “iterative” condition, a particular case would be where
X = N and t is the successor function. Then h is a sequence (hi)i∈N. In an affine
setting, we would then have that M(n) is the infinitary convex combination

M(n) =

∞∑
i=n

1

2i−n+1
hi.

We now specialize to the category Loc of locales. The closed Euclidean
interval I = [−1, 1] is a cancellative midpoint algebra with m(x, y) = x+y

2 . We
shall think of the discrete two-point space 2 as {−,+}, so that Cantor space 2ω

is the space of infinite sequences (or streams) of signs.
We also write 2∗ for the set of finite sequences of signs, ε for the empty

sequence, v for the prefix order and |s| for the length of s. We use juxtaposition
to denote concatenation.

Definition 2.3 Suppose A is an iterative midpoint algebra equipped with two
points a− and a+. We define Ma−a+ : 2ω → A as the unique map such that

Ma−a+(±s) = m(a±,Ma−a+s).

Referring to Definition 2.2, X is 2ω and h, t are such that 〈h, t〉(±s) =
(a±, s) (so t is the tail map in the usual sense).

Definition 2.4 An interval object I is a free iterative midpoint algebra over 2.
That is to say:

1. I is equipped with two points x− and x+ (its endpoints).

2. I is an iterative midpoint algebra.

3. For every iterative midpoint algebra A with points a− and a+ there is a
unique midpoint homomorphism N : I → A that takes x− and x+ to a−
and a+ respectively.

We shall prove (Theorem 8.11) that I, with endpoints −1 and 1, is a can-
cellative interval object.

Note that our definition of “interval object” is slightly different from that
of [2]. On the one hand, we don’t assume that is cancellative; but on the other
we expect it to be initial amongst all the doubly pointed iterative midpoint
algebras, not just the cancellative ones. Since our I is cancellative, we have
proved a slightly stronger result than that conjectured in [2].
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3 Preliminary remarks on Cantor space

We take Cantor space 2ω to be the localic exponential of the discrete locales
2 (two points + and −) and N (natural numbers 1, 2, 3, . . .). 1 This certainly
exists, since discrete locales are locally compact. Its points can be described as
the functions from N to 2, and so its frame Ω2ω can be presented by generators
and relations as follows, using the notation Fr〈 generators | relations 〉 from [6]:

Ω2ω ∼= Fr〈(n, σ) ∈ N× 2 |(n,+) ∧ (n,−) ≤ 0,

1 ≤ (n,+) ∨ (n,−)〉.

(Here, abstractly, we write 1 and 0 for the top and bottom of a frame. Where
the locale has a definite name X, we shall also often write them as X and ∅.)
Every generator (n,±) has a Boolean complement (n,∓), so the locale is Stone.
Its frame is the ideal completion of the free Boolean algebra on countably many
generators (n,+).

A little calculation shows that

Ω2ω ∼= Fr〈↑s (s ∈ 2∗) | ↑t ≤ ↑s (if s v t),
1 ≤ ↑ε,

↑s ∧ ↑t ≤ 0 (if s, t incomparable),

↑s ≤ ↑(s−) ∨ ↑(s+)〉.

(1)

The isomorphisms are given by

↑s 7→
|s|∧
i=1

(i, si)

(n, σ) 7→
∨

|s|=n−1

↑(sσ).

The generators ↑s form a base. ↑s comprises those streams of which s is a prefix.
Later we shall need a preframe base, in other words opens of which every

other open is a directed join of finite meets, and for this we shall introduce
subbasics �s and �s that involve the lexicographic ordering. Let us first introduce
some notation.

Definition 3.1 If s, t ∈ 2∗ then we write s < t if there is some u such that
u− v s and u+ v t. We say that s and t differ if either s < t or t < s: this is
equivalent to their being incomparable under v. The relation < extends to an
open

∨
u∈2∗ (↑(u−)× ↑(u+)) of 2ω × 2ω.

We write s 6 t if either s < t or s v t. This is just the lexicographic order
in which − is less than +.

We write s 0 t if either s < t or t v s: in other words, t precedes s in the
dual lexicographic order with + less than −.

1There is a technical reason here for preferring to start at 1, in that the first term in an
infinite binary expansion is for 2−1. For finite sequences too, the indexes will start at 1.
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Both 6 and 0 can be extended in the obvious way to the case where s or t
may be infinite.

If s ∈ 2∗, then we define a right bristle of s to be a finite sequence t+ such
that t− v s, in other words a u that is minimal (under v) subject to s < u.
Dually, a left bristle of s is a u minimal subject to u < s.

Definition 3.2 If s ∈ 2∗ then we define the open �s of 2ω as the finite join
↑s ∨

∨
{↑t | t a right bristle of s}. It comprises those u in 2ω such that s 6 u.

Dually, we define �s = ↑s∨
∨
{↑t | t a left bristle of s}, comprising those u such

that u 0 s.

Lemma 3.3 � and � have the following properties.

1. ↑s = �s ∧ �s.

2. If s 6 t in 2∗ then �t ≤ �s; if s 0 t then �s ≤ �t.

3. �(s−) = �s; �(s+) = �s.

4. �s ∨ �s = 2ω.

5. If t < s then �s ∧ �t = ∅.

6. ↑s ≤ �(s+) ∨ �(s−).

Proof. (1) Suppose t and u are right and left bristles of s. They both differ
from s, but cannot differ at the same place. Thus they must differ from each
other, and we deduce that ↑t ∧ ↑u = ∅.

(2) We prove only the first assertion, since the second is dual. If s v t then
↑t ≤ ↑s, and any right bristle of t either is a right bristle of s or has s as a prefix.
If s < t then there is a unique t′ v t such that t′ is a right bristle of s. Then
↑t ≤ ↑t′. Also, any right bristle of t either is a right bristle of t′ – and hence of
s – or has t′ as a prefix.

(3) From s 6 s− we deduce �(s−) ≤ �s. For the reverse, any right bristle
of s is also a right bristle of s−. Also, ↑s = ↑(s−) ∨ ↑(s+), and s+ is a right
bristle of s−. The other assertion is dual.

(4) We use induction on the length of s; the base case s = ε is obvious.
Using part (3), and also the fact that s and s− have the same left bristles, we
find that

�(s−) ∨ �(s−) = �s ∨ ↑(s−) ∨
∨
{↑t | t a left bristle of s} = �s ∨ �s = 2ω.

By symmetry the same works for s+.
(5) Let u be the greatest common prefix of s and t: then u− v t and u+ v s.

It suffices to consider the case for �(u−) ∧ �(u+), which is the meet of(
↑(u−) ∨

∨
{↑u′ | u′ a left bristle of u

)
and (

↑(u+) ∨
∨
{↑u′′ | u′′ a right bristle of u

)
.

5



If u′ and u′′ are bristles as described, then u− < u+, u− < u′′, u′ < u+ and
u′ < u < u′′ and it follows that all the meets got by redistributing the expression
are 0.

(6) Because ↑s = ↑(s−) ∨ ↑(s+).

Lemma 3.4

Ω2ω ∼= Fr〈�s, �s (s ∈ 2∗) | �t ≤ �s (s 6 t),

�s ≤ �(s−),

�s ≤ �t (s 0 t),

�s ≤ �(s+),

1 ≤ �ε,
1 ≤ �ε,
1 ≤ �s ∨ �s,

�s ∧ �t ≤ 0 (t < s),

�s ∧ �s ≤ �(s+) ∨ �(s−)〉

Proof. The homomorphism from the frame as presented here to that in (1)
takes �s and �s to the opens as in Definition 3.2, and then Lemma 3.3 shows
that the relations are respected. In the other direction we map ↑s to �s∧ �s and
it is easily shown that all the relations are respected. In particular, for respect
of the relation ↑s = ↑(s−) ∨ ↑(s+) we must have

�s ∧ �s = (�(s−) ∧ �(s−)) ∨ (�(s+) ∧ �(s+)) . (2)

For ≥ we use that �(s±) ≤ �s and similarly for �. For ≤ we apply distributivity
to the right hand side. For three of the conjuncts we use �s ≤ �(s−) and
�s ≤ �(s+); for the other we use the final relation �s ∧ �s ≤ �(s+) ∨ �(s−).

Now Lemma 3.3 (1) shows that one composite takes ↑s to �s ∧ �s and then
back to ↑s, so is the identity. To show the other composite is the identity we
need

�s = (�s ∧ �s) ∨
∨

t∈RB(s)

(�t ∧ �t),

where RB(s) is the set of right bristles for s, and similarly for �s. The ≥ direction
is easy, since if t is a right bristle of s then s 6 t and so �t ≤ �s.

For ≤ we use induction. The base case, s = ε, is clear. For the induction
step,

�(s±) = �(s±) ∧ �s = �(s±) ∧

(�s ∧ �s) ∨
∨

t∈RB(s)

(�t ∧ �t)


≤ (�(s±) ∧ �s ∧ �s) ∨

∨
t∈RB(s±)

(�t ∧ �t)
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since every right bristle of s is also a right bristle of s±. Now using equation (2)
we have

�(s−) ∧ �s ∧ �s ≤ (�(s−) ∧ �(s−)) ∨
∨

t∈RB(s−)

(�t ∧ �t)

since s+ is a right bristle of s−, and

�(s+) ∧ �s ∧ �s ≤ �(s+) ∧ �(s+)

since s− < s+ giving �(s+) ∧ �(s−) ≤ 0.

4 I is iterative

The main task in this section is to prove that I, as a midpoint algebra, is itera-
tive. We shall use the fact that it can be described as a localic completion [8],
and then to construct the map M as in Definition 2.2 we shall use approxima-
tions in the ball domain ([9], following the ideas of [1]).

Recall that for the localic completion of a generalized metric space X we
use the elements (x, ε) ∈ X ×Q+, where Q+ is the set of positive rationals, as
“formal open balls” Bε(x) (centre x, radius ε). We write ball(X) for X × Q+

and equip it with a transitive, interpolative “refinement” order

(x, δ) ⊂ (y, ε) if X(y, x) + δ < ε.

Then the ball domain Ball(X) is defined to be the continuous dcpo Idl(ball(X),⊃)
(see [7]). Note that the small balls, the refined ones, are high in the order. We
therefore think of the points of the ball domain as rounded filters of formal
balls.

There is a radius map r : Ball(X)→
←−−−
[0,∞), with r(F ) the inf of the radii of

the formal balls in F . (
←−−−
[0,∞) is the locale whose points are the upper reals in

that interval, namely inhabited, rounded, up-closed sets of positive rationals.)
The localic completion X embeds in Ball(X); its points are the Cauchy

filters, those containing formal balls of arbitrarily small radius, i.e. the points
of Ball(X) with radius 0.

Proposition 4.1 I is the localic completion of the metric space D, the set of
dyadic rationals (those with denominator a power of 2) in the range (−1, 1),
with the usual metric.

Proof. In [8] it is shown that R is the localic completion of Q. We have
to deal with two differences. First, Q is replaced by the dyadics, which is
essentially straightforward because the dyadics are dense in the rationals. Note
that although the centre q of a formal ball must now be dyadic, the radius δ
can be any positive rational. Second, we restrict to the closed interval. For
a Dedekind section S = (L,U) that is equivalent to imposing the geometric
axioms 1 /∈ L and −1 /∈ U .
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The proof in [8] sets up a geometric bijection between Dedekind sections S
and Cauchy filters F of Q as follows. The Dedekind section S(F ) has for its
upper and lower sections the two sets {q ± δ | (q, δ) ∈ F}. The Cauchy filter
F (S) comprises those (q, δ) for which q− δ < S < q+ δ, where of course we now
have to restrict to q ∈ D.

The main difficulty is in showing that S = S(F (S)). Suppose q < S. We
can find dyadic q′ with q < q′ < S, and we know that q′ < 1 (otherwise 1 < S).
Let r = 1

4 (q′ + 3), which is dyadic, with r < 1, and let δ = r − q. Then

r + δ = 2r − q =
1

2
(q′ + 3)− q > 1

2
(3− q′) > 1.

It follows that if r ∈ D then (r, δ) provides a ball to show q < S(F (S)). On the
other hand, if r ≤ −1 (so also q < −1) then instead we can use (0,−q). The
argument for S < q is symmetric.

We also show that F (S(F )) ⊆ F . Suppose (r, ε), (r′, ε′) ∈ F , so that r− ε <
S(F ) < r′ + ε′. This interval is the ball (q, δ) where q = 1

2 (r − ε+ r′ + ε′) and
δ = 1

2 (r′ + ε′ − r + ε). We must show that if q ∈ D then (q, δ) ∈ F , but this
is so because there is some common refinement in F of (r, ε) and (r′, ε′), and it
also refines (q, δ).

We extend the midpoint map m : I× I→ I by allowing the second argument
to be taken from a ball domain. In Ball(D) we have a point with centre 0 and
radius 1. As a filter, it comprises those formal balls (q, δ) ⊃ (0, 1). Let B be the
up closure in Ball(D) of this point, and write ⊥ for the point since it is bottom
in B. Note that if F ∈ Ball(D), then ⊥ v F iff (0, 1 + ε) ∈ F for all ε ∈ Q+.

Lemma 4.2 The embedding i : I ↪→ Ball(D) factors via B.

Proof. Suppose x is a point of I, i.e. a Cauchy filter for D. If ε > 0 then we
can find r ∈ D with (r, ε/2) ∈ x. Then (0, 1 + ε) ⊃ (r, ε/2) and so is in x.

We define m′ : I × B → B as follows. Let x and F be in Ball(D) with x
Cauchy and F ⊇ ⊥. We define

m′(x, F ) = ⊃{(m(q, r),m(δ, ε)) | (q, δ) ∈ x, (r, ε) ∈ F}

(i.e. the set of all formal balls refined by one in the set on the right). The
fact that it is a filter follows from the fact that if (q, δ) ⊃ (q′, δ′) in x and
(r, ε) ⊃ (r′, ε′) in F then

(m(q, r),m(δ, ε)) ⊃ (m(q′, r′),m(δ′, ε′)).

This is because∣∣∣∣q + r

2
− q′ + r′

2

∣∣∣∣+
δ′ + ε′

2
≤ 1

2
(|q − q′|+ δ′ + |r − r′|+ ε′) ≤ δ + ε

2
.

To see that it is bigger than ⊥, suppose ε > 0. Since x is Cauchy, there is
some (q, δ) ∈ x with δ < ε/2; also, (0, 1 + ε/2) ∈ F and so (q/2, 1

2 + δ
2 + ε

4 ) ∈
m′(x, F ). From |q| ≤ 1 it follows that (0, 1 + ε) ⊃ (q/2, 1

2 + δ
2 + ε

4 ) and so
(0, 1 + ε) ∈ m′(x, F ).

8



Lemma 4.3 1. m = m′ ◦ (I× i).

2. r ◦m′(x, F ) = r(F )/2.

Proof. Both are clear.

Theorem 4.4 The midpoint algebra I is iterative.

Proof. Let X be a locale and h : X → I, t : X → X be two maps. We
require a unique morphism M : X → I making the following diagram commute.

I×X I×M // I× I

m

��
X

M
//

〈h,t〉

OO

I

Loc(X,B) is a dcpo with bottom. We define a Scott continuous endofunc-
tion T on it by T (f) = m′ ◦ (I× f) ◦ 〈h, t〉:

I×X
I×f // I×B

m′

��
X

T (f)
//

〈h,t〉

OO

B

Let M be its least fixpoint,
⊔↑

nMn where M0 is constant ⊥ and Mn+1 =
T (Mn). Then r ◦M = 1

2 (r ◦M), from which it follows that r ◦M = 0 and M
factors via I thus giving us existence of the required M .

For uniqueness, suppose M ′ is another such. Then M vM ′ since M is least
fixpoint, but the specialization order on I is discrete.

We can calculate the inverse image function for M in the above theorem
more explicitly, at least for the subbasic opens (p, α). First of all,

M∗0 (p, α) =

{
> if (p, α) ⊃ (0, 1)
⊥ otherwise

(and note that the condition is decidable). Next,

T (f)∗(p, α) =
∨
{h∗(q, δ) ∧ t∗f∗(r, ε) | (p, α) ⊃ (

q + r

2
,
δ + ε

2
)}.

In particular examples this will allow us to calculate M∗(p, α) =
∨↑

nM
∗
n(p, α).

5 The map c : 2ω → I
Thinking of the signs in a point of Cantor space 2ω as standing for 1 or −1, such
an infinite sequence can be viewed as a binary expansion, thus giving a map to
I.
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Definition 5.1 We define a map c : 2ω → I as M−1,+1. It is characterized by
the equation

c(±s) =
1

2
(±1 + c(s)) .

From the characterizing equation we see that, in more traditional form,

c((si)
∞
i=1) =

∞∑
i=1

si
2i

. (3)

Definition 5.2 2∗ is the discrete space of finite sequences of signs. We define
c′ : 2∗ → I by the formula (3), adapted for finite sequences. Thus we think of
the finite sequence s as the infinite sequence s0ω (which is not in 2ω, of course).

c′ is an isomorphism between 2∗ and D.
If s is finite of length n and t is infinite, then we see from the definition that

c(st) = c′(s) + 2−nc(t).
We now show how to calculate the inverse image function c∗, using Theo-

rem 4.4 and the remarks following it. Our map h : 2ω → I is h(±s) = ±1. It
has

h∗(p, α) =

{
↑+ if p− α < 1 < p+ α
∅ otherwise

}
∨
{
↑− if p− α < −1 < p+ α
∅ otherwise

}
.

Hence, for f : 2ω → I,

T (f)∗(p, α) =
∨
{(↑+) ∧ t∗f∗(r, ε) | (p, α) ⊃ (

q + r

2
,
δ + ε

2
), q − δ < 1 < q + δ}

∨
∨
{(↑−) ∧ t∗f∗(r, ε) | (p, α) ⊃ (

q + r

2
,
δ + ε

2
), q − δ < −1 < q + δ}.

(Keep in mind that p, q and r are all expected to be in D.)

Lemma 5.3 In ΩR we have∨
{(r, ε) | (p, α) ⊃ (

q + r

2
,
δ + ε

2
), q − δ < −1 < q + δ} = (2p+ 1, 2α),∨

{(r, ε) | (p, α) ⊃ (
q + r

2
,
δ + ε

2
), q − δ < 1 < q + δ} = (2p− 1, 2α).

Proof. We prove only the first, since the second follows by symmetry. We have

(r, ε) ⊂ (2p+ 1, 2α)⇔
(
−1 + r

2
,
ε

2

)
⊂ (p, α)

⇔ ∃β > 0

(
−1 + r

2
, β +

ε

2

)
⊂ (p, α)

Then the final condition is equivalent to the existence of q, δ, with −1 < q <
−1 + δ and (

q + r

2
,
δ + ε

2

)
⊂ (p, α).
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(Note that the second condition is equivalent to this with q = −1, δ = 0, and
the β enables us to fatten −1 out to a positive ball.) Each

(
q+r

2 , δ+ε2

)
can be

refined to a
(−1+r

2 , β + ε
2

)
and vice versa.

In ΩI the same equations hold, but we must be careful how we interpret the
right-hand side. Consider the first equation. If p < 0 then the centre 2p + 1
of the ball on the right is still in D. The ball is approximated from below by
refinements with the same centre, and it follows in the proof that we can restrict
the balls appearing in the left-hand side to those with centre in D.

Now suppose 0 ≤ p, so that 1 ≤ 2p + 1. Then the ball (2p + 1, 2α) is
equivalent in ΩI to the interval (2p+ 1− 2α, 1]. This interval may take various
forms depending on the value of 2p+ 1− 2α – which, in particular, may be less
than −1 or greater than 1. However, in every case it is approximated by balls
refining (2p+1, 2α) and with centre in D. Therefore the equations in the lemma
will still hold in ΩI.

Taking care with interpretations in ΩI in that way, it follows that

T (f)∗(p, α) = (↑+) ∧ t∗f∗(2p− 1, 2α) ∨ (↑−) ∧ t∗f∗(2p+ 1, 2α).

Although our proof of iterativity used the metric space structure and the opens
balls, we shall be actually be more interested in the behaviour of the half-open
intervals. In the rest of the section we shall calculate formulae for opens such
as c∗((c′(s), 1]). First, rewriting p− α as p, we see, for all p, that

T (f)∗(p, 1] = (↑+) ∧ t∗f∗(2p− 1, 1] ∨ (↑−) ∧ t∗f∗(2p+ 1, 1]. (4)

Now if p = c′(s) ∈ D, we have

(2p− 1, 1] =


(c′(s′), 1] if s = +s′

(−1, 1] =
∨↑

k(c′(−k), 1] if s = ε
I if s = −s′

(2p+ 1, 1] =

{
∅ if s = +s′ or s = ε
(c′(s′), 1] if s = −s′

Using this we can calculate c∗(c′(s), 1] by induction on the length of s, the
base case requiring knowledge of c∗(−1, 1].

Lemma 5.4 1. c∗(c′(−k), 1] =
∨k−1
i=0 ↑(−i+) ∨ ((↑−k) ∧ (t∗)kc∗((0, 1])).

2. c∗(−1, 1] =
∨∞
i=0 ↑(−i+).

3. c∗(0, 1] =
∨∞
i=0 ↑(+−i+).

Proof. (1) is by induction on k. The base case, k = 0, is clear.

c∗(c′(−k+1), 1] = (↑+) ∧ t∗c∗(I) ∨ (↑−) ∧ t∗c∗(c′(−k, 1]) (equation (4))

= (↑+) ∨ (↑−) ∧ t∗
(
k−1∨
i=0

↑(−i+) ∨ ((↑−k) ∧ (t∗)kc∗((0, 1]))

)

=

k∨
i=0

↑(−i+) ∨ ((↑−k+1) ∧ (t∗)k+1c∗((0, 1]))
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(2) Using part (1), and applying equation (4) to c∗(0, 1], we see that

c∗(c′(−k), 1] =

k−1∨
i=0

↑(−i+) ∨ ((↑−k) ∧ (t∗)k((↑+) ∧ t∗c∗((−1, 1])))

=

k−1∨
i=0

↑(−i+) ∨ ((↑−k+) ∧ (t∗)k+1c∗((−1, 1]))

≤
k∨
i=0

↑(−i+) ≤ c∗(c′(−k+1), 1].

It follows that

c∗(−1, 1] = c∗

(∨↑
k

(c′(−k), 1]

)
=
∨↑
k

k∨
i=0

↑(−i+) =

∞∨
i=0

↑(−i+).

(3) Apply equation (4) with p = 0, and then use part (2).
In other words, c(u) > −1 iff u has a + somewhere; and c(u) > 0 iff u starts

with a + and has at least one more.

Proposition 5.5 If s ∈ 2∗ then

1. c∗((c′(s), 1]) =
∨↑

k �(s+−k+), and

2. c∗([−1, c′(s))) =
∨↑

k �(s−+k−).

Proof. We prove only the first assertion, since the second is dual. We use
induction on the length of s.

For s = ε, we use Lemma 5.4 (3) together with �(+−k+) =
∨k
i=0 ↑(+−i+).

Now we can use the previous calculations and see

c∗((c′(+s), 1]) = (↑+) ∧ t∗c∗((c′(s), 1])

= (↑+) ∧ t∗
(∨↑

k

�(s+−k+)

)

=
∨↑
k

�(+s+−k+)

c∗((c′(−s), 1]) = (↑+) ∧ t∗2ω ∨ (↑−) ∧ t∗c∗((c′(s), 1])

= (↑+) ∨ (↑−) ∧ t∗
(∨↑

k

�(s+−k+)

)

=
∨↑
k

�(−s+−k+).
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6 c is a proper surjection

Our main aim in this section is to show that c is a surjection, and in proving
this we will be helped by the fact that it is proper in the sense of Vermeulen [5]:
the right adjoint ∀c : Ω2ω → ΩI of c∗ preserves directed joins and satisfies a
Frobenius condition ∀c(a∨ c∗b) = ∀ca∨ b. This is equivalent to saying that c is
“fibrewise compact” as bundle over I, by which we mean that it is compact as
an internal locale in the topos of sheaves over I.

As might be predicted from classical results2, any locale map f : X → Y
between compact regular locales is proper; in fact it is enough to assume X is
compact and Y regular. The regularity of Y implies that the diagonal in Y ×Y
is closed: in other words, there is a map ne from Y ×Y to the Sierpinski locale S
inducing the diagonal map ∆: Y → Y ×Y as the corresponding closed sublocale
(fibre over the bottom point of S). By calculating pullbacks over Y

X
f //

〈X,f〉
��

Y

∆

��

Y

〈⊥,Y 〉
��

X × Y
f×Y

// Y × Y
〈ne,π2〉

// S× Y

we see that X is a closed sublocale of X × Y over Y . But, over Y , X × Y is
compact, so X too is compact, in other words f is proper.

The geometric techniques of this section rely on analysing Ω2ω and ΩI not
as frames (finite meets and arbitrary joins, all preserved by frame homomor-
phisms) but as preframes: a preframe has finite meets and directed joins, and
they are what are preserved by preframe homomorphisms, and binary meets
distribute over directed joins. Thus for a proper surjection c, ∀c is a preframe
homomorphism. We first use the preframe coverage theorem of [3] to present
Ω2ω as a preframe, and define ∀c by its action on a preframe base, and then we
show that this function is right adjoint to c∗ and has the Frobenius condition.

Any open of 2ω is a directed join of finite joins of basic opens ↑s = �s ∧ �s,
hence a directed join of finite meets of finite joins of opens of the form �s and
�s. But since 6 and 0 are total orders, by Lemma 3.3 we get a preframe base
from opens of the form �s, �s or �s∨ �t. Our strategy now is to calculate ∀c for
these and to rely on preservation of finite limits and directed joins to get the
rest.

Definition 6.1 The distributive lattice S� is defined as 2∗∪{⊥}, with 2∗ ordered
by the reverse of 6 and ⊥ an adjoined bottom. Since it is totally ordered it has
binary meets and joins, and also top ε and bottom ⊥.

Similarly we define S� = 2∗ ∪ {⊥}, with 2∗ ordered by 0.
We write S for S� × S�.

2 I am grateful to an anonymous referee for making this prediction. He or she also suggested
it as a way to shorten this section, although I have not found a way to make that work beyond
simplifying the proof of Theorem 6.7.
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Lemma 6.2

Ω2ω ∼= Fr〈S (qua ∨-semilattice) |
(s, t) ≤ (s, t−) (t ∈ 2∗),

(s, t) ≤ (s+, t) (s ∈ 2∗),

1 ≤ (s, ε) (s ∈ S�),

1 ≤ (ε, s) (s ∈ S�),

1 ≤ (s, t) (s, t ∈ 2∗, t 0 s or t 6 s),

(u, s) ∧ (t, v) ≤ (u, v) (if t < s in 2∗ and (u, v) ≤ (t, s)),

(u, s) ∧ (s, v) ≤ (s−, s+) (if s ∈ 2∗ and (u, v) ≤ (s−, s+))〉

and
Ω2ω ∼= PreFr〈S (qua poset) | ... same relations as above ...〉

Proof. To map from the presentation of Lemma 3.4 to this one we map �s
and �s to (⊥, s) and (s,⊥). This respects all the relations and so gives a frame
homomorphism. For the inverse we map (⊥,⊥) to 0; (⊥, s) and (s,⊥) to �s and
�s; and (s, t) to �s ∨ �t. Again this respects the relations and so gives a frame
homomorphism. As can be tested on generators, the two composites are both
identities.

The final part is now an application of the preframe coverage theorem [3],
once it is checked that the relations are all join-stable. This is mostly straight-
forward, but we have cheated slightly in the last two relations. In join-stabilizing
the relation �s∧�t ≤ 0 (t < s) from Lemma 3.4, we get (u, s∨v)∧(t∨u, v) ≤ (u, v)
for all u, v. However, if t ≤ u or s ≤ v then one of the two conjuncts is (u, v) and
the relation holds automatically in the preframe presented. Hence it suffices to
consider only the case where u ≤ t and v ≤ s. The last relation in Lemma 3.4
is similar.

Our strategy now is to calculate ∀c for the opens (s, t) and to rely on preser-
vation of finite meets and directed joins to get the rest. Using Definition 6.5 we
define a preframe homomorphism that we subsequently show to be ∀c. Let us
explain roughly how the definition arises. (We don’t need a rigorous definition
yet, since the definition is checked in Theorem 6.7.) First consider ∀c(⊥, s), the
biggest open U ∈ ΩI such that c∗U ≤ �s. If c(t) < c(u) then t < u (it is much
more complicated for ≤), and it follows that if c(s−ω) < c(u) then u is in �s.
Hence (c(s−ω), 1] ≤ ∀c(⊥, s). If s contains a + then ∀c(⊥, s) cannot be any
bigger, for it would then contain c(s−ω) itself. By looking at the last + in s
we can replace +−ω by −+ω and find a u in c∗(∀c(⊥, s)) but not in �s. Hence
∀c(⊥, s) = (c(s−ω), 1]. If s has no + then the argument is slightly different.
�s = �ε = 2ω, so we know ∀c(⊥, s) = I. Similarly, ∀c(s,⊥) is either [−1, c(s+ω))
or I.

There remains ∀c(s, t). If c(s+ω) < c(t−ω) then this turns out to be
[−1, c(s+ω)) ∨ (c(t−ω), 1] as one might expect, while if c(s+ω) > c(t−ω) it
is I. However we have to take some care where there is equality, since we then
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find that �s ∨ �t is 2ω and so ∀c(s, t) must be I – this is an instance where ∀c
does not preserve finite joins.

Definition 6.3 If s, t ∈ 2∗ we write s G t if (i) t < s, or (ii) t v s, or (iii)
s v t, or (iv) s and t are of the forms u−+k and u+−l respectively.

Lemma 6.4 1. s G t iff �s ∨ �t = 2ω.

2. If s G t then c(t−ω) ≤ c(s+ω).

3. G is up-closed in S.

Proof. (1) ⇒: In cases (i) and (ii) of the definition we have t 6 s, so 2ω =
�s∨�s ≤ �s∨�t; similarly in case (iii). In case (iv), we have �t = �(u+−l) = �(u+)
and similarly �s = �(u−). Now

2ω ≤ (�(u−) ∨ �(u−)) ∧ (�(u+) ∨ �(u+))

≤ �(u−) ∨ �(u+) ∨ (�(u−) ∧ �(u+))

= �(u−) ∨ �(u+) because u− < u+.

⇐: G is decidable. Its negation is that, first, s < t, so that for some u we
have u− v s and u+ v t, and in addition that either u−+k− v s or u+−k+ v t
for some k. Suppose the former. Then s < u−+ω < t, so u−+ω is in neither �s
nor �t.

(2) In case (i): if u− v t, u+ v s, then c(t−ω) < c′(u) < c(s+ω). In case
(ii) (and (iii) is dual), we have t−k < s+ for some k, and can use (i). In case
(iv), c(t−ω) = c(u+−ω) = c′(u) = c(u−+ω) = c(s+ω).

(3) Suppose s G t. We show that if t′ 6 t then s G t′. By symmetry it also
follows that if s 0 s′ then s′ G t, and the result will follow. We examine the
cases of s G t. First, if t 6 s then t′ 6 s.

Second, suppose s v t. If t′ v t then s and t′ are comparable under v.
Otherwise t′ < t and so t′ 0 s.

Finally, suppose s = u−+k, t = u+−l.
If t′ v t then either t′ v u v s or u+ v t′ v t and either way we get s G t′.
There remains the case t′ < t. We have either t′ < u, so t′ < s, or u− v t′.

In this latter case consider whether t′ has any further − after u−. If it does
then t′ 0 s; if not then s and t′ are comparable under v.

Definition 6.5 We define a lattice homomorphism θ� : S� → ΩI by

θ�(t) =

 I if t ∈ 2∗ and t contains no +
(c(t−ω), 1] if t ∈ 2∗ and t contains at least one +
∅ if t = ⊥

Similarly we define θ� : S� → ΩI with θ�(s) = [−1, c(s+ω)) when s contains
a −.
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The monotone function θ : S� × S� → ΩI is defined by

θ(s, t) =

{
I if s, t ∈ 2∗ and s G t
θ�(s) ∨ θ�(t) otherwise

Note that if t contains no + or s contains no − then s G t.

That θ� and θ� are lattice homomorphisms is simply to say that they are mono-
tone and preserve top and bottom. The monotonicity of θ then follows from
that and from Lemma 6.4 (3).

Lemma 6.6 We can define a preframe homomorphism ∀c : Ω2ω → ΩI by ∀c(s, t) =
θ(s, t).

Proof. One should check that the relations in Lemma 6.2 are respected.
Much of this is routine. We consider the last two in more detail.

For the last but one, suppose t < s and (u, v) ≤ (t, s). First,

(θ�(u) ∨ θ�(s)) ∧ (θ�(t) ∨ θ�(v)) ≤ θ�(u) ∨ θ�(v) ∨ (θ�(t) ∧ θ�(s)) = θ�(u) ∨ θ�(v).

This is because, given t < s, t and s must contain − and + respectively, so

θ�(t) ∧ θ�(s) = [−1, c(t+ω)) ∧ (c(s−ω), 1] = ∅

because c(t+ω) ≤ c(s−ω).
We still need to examine the cases where θ takes the value I. Suppose u G s.

(The case t G v is by symmetry.) We must show θ(t, v) ≤ θ(u, v). This is obvious
if t 0 u, which is certainly the case if s 6 u or s 0 u (using t < s). It remains
to check the case where u = w−+k, s = w+−l, combined with u 0 t. It is
impossible to have u < t < s, so t v u. It follows from t < s that t = w −+k′ ,
with k′ ≤ k (and we might as well assume k′ < k), and so θ�(t) = θ�(u). It
remains to show that if t G v then u G v, and this is straightforward from the
various cases.

The final relation, (u, s) ∧ (s, v) ≤ (s−, s+), is clear since s− G s+.

Theorem 6.7 c : 2ω → I is a proper surjection, with ∀c right adjoint to c∗.

Proof. We show two conditions.
First, c∗ ◦ ∀c ≤ Id. For s G t, Lemma 6.4 tells us that (s, t) = 2ω. For the

other case it remains to show that c∗(θ�(t)) ≤ �t (and similarly for �). If t has
no + then �t = 2ω, and otherwise by Proposition 5.5 we have

c∗(θ�(t)) = c∗((c(t−ω), 1]) =
∨↑
k

c∗
(
(c′(t−k), 1]

)
=
∨↑
kl

�(t−k+−l+) ≤ �t.
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Second, ∀c◦c∗ = Id. It suffices to check this for opens of the form [−1, c′(s)),
(c′(t), 1] and [−1, c′(s))∨(c′(t), 1], since they form a preframe base of I. We have

∀c ◦ c∗ ([−1, c′(s)) ∨ (c′(t), 1]) =
∨↑
kl

∀c(s−+k−, t+−l+)

≥
∨↑
kl

(
[−1, c(s−+k−+ω)) ∨ (c(t+−l+−ω), 1]

)
=
∨↑
k

[−1, c′(s−+k)) ∨
∨↑
l

(c′(t+−l), 1]

= [−1, c′(s)) ∨ (c′(t), 1].

We have equality provided we have no s−+k− G t+−l+ (and also, by a
similar calculation, for the opens [−1, c′(s)) and (c′(t), 1]). If c′(t) < c′(s) then
[−1, c′(s)) ∨ (c′(t), 1] = I, so it remains to prove that if c′(s) ≤ c′(t) then we
have no s−+k− G t+−l+. That is to say, for all k, l we have s−+k− < t+−l+
(so for some u we have u− v s−+k− and u+ v t+−l+), and for some m we
have either u−+m− v s−+k− or u+−m+ v t+−l+. (See Lemma 6.4.) From
c′(s) ≤ c′(t) we get three cases. If s < t then u is a common prefix of s and t
and in fact we have m with u−+m− v s−. If s v t then from c′(s) ≤ c′(t) we
cannot have s− v t, so we can take u = s and either s = t or s+ v t. Either
way, u+ v t+. Then we can take m = k. The argument for t v s is similar.

The two conditions together show that ∀c is right adjoint to c∗, and the
equality in the second shows that c∗ is one-to-one, i.e. that c is a localic surjec-
tion. We have already remarked that all maps between compact regular locales
are proper. By construction here ∀c preserves directed joins, and the Frobenius
condition could be checked independently.

7 I as coequalizer of maps to Cantor space

In Section 8 we need a map from 2ω to factor via c, and to prove this it is
useful to display c as a coequalizer. In fact we already know that, as a proper
surjection, c is the coequalizer of its kernel pair; in this section we prove a
simpler coequalizer property. We observe that 0− = +−ω and 0+ = −+ω in
2ω are both mapped by c to 0. This is the starting point for describing c as a
coequalizer of two maps from 2∗.

Definition 7.1 We define two maps u± : 2∗ → 2ω by u±(s) = s0±.

Although this might appear to be a definition of functions between two sets,
its geometricity implies that it defines locale maps to 2ω from the discrete locale
2∗. The inverse image functions u∗± : Ω(2ω)→ P(2∗) are easily calculated.

Since c(0−) = c(0+), it is clear that c ◦ u− = c ◦ u+. We shall show that c is
in fact the coequalizer of u− and u+.

For the moment, let us write C for this coequalizer. We shall describe its
frame ΩC as a subframe of Ω2ω – it is the equalizer of the frame homomorphisms
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u∗±. From the Stone space structure of 2ω we see that Ω2ω can be described as
the frame of subsets U of 2∗, up-closed under the prefix order, and such that if
s+, s− ∈ U then s ∈ U . If t ∈ 2∗ then ↑t is the principal upset of t, so for s
in 2ω we have s � ↑t (by which we mean that the point s is in the open ↑t) iff
t v s.

Proposition 7.2 ΩC is the frame of those subsets U ∈ Ω2ω satisfying the
condition that for all finite sign sequences s,

(∃m)s+−m ∈ U ←→ (∃n)s−+n ∈ U .

Proof. We have

u∗−(U) = {s | s−+ω � U} = {s | (∃t ∈ U)t v s−+ω} = {s | (∃m)s−+m ∈ U}

and similarly for u∗+(U). The result is now immediate from the fact that U ∈
Ω2ω is in ΩC iff u∗−(U) = u∗+(U).

Having identified ΩC concretely, our task is now to show that it is isomorphic
to ΩI. The next definition defines two decidable relations on 2∗ that capture
(see Proposition 7.4) properties of c′ and c. For example, s <| t holds if, for any
stream t′ extending t, we have c′(s) < c(t′).

Definition 7.3 If s, t ∈ 2∗ then we write s <| t if either s < t, or there is some
k with s+−k+ v t.

We write t |< s if either t < s, or there is some k with s−+k− v t.

In other words, for s <| t either at the first difference s has − and t has +,
or s v t and t has + immediately after s, and at least one more + somewhere
further along.

Proposition 7.4 Let s, t ∈ 2∗. Then ↑t ≤ c∗((c′(s), 1]) iff s <| t, and ↑t ≤
c∗([−1, c′(s))) iff t |< s.

Proof. We prove only the first part, since the second follows by interchang-
ing + and −. Using Proposition 5.5 and the compactness of ↑t, we see that
↑t ≤ c∗((c′(s), 1]) iff ↑t ≤ �(s+−k+) for some k, and this clearly holds iff s <| t.

Proposition 7.5 ΩC is the image of c∗.

Proof. Since c composes equally with u+ and u−, we know that it factors
via C and so ΩC contains the image of c∗.

We show that if U ⊆ 2∗ satisfies the condition of Proposition 7.2, then it is
a join of images under c∗ of dyadic open intervals in I.

Let u ∈ U . If u = ε is empty then by up-closure U = 2∗ = c∗(I).
Next, suppose u = +n for some n ≥ 1. By the condition on U , we find

s = +n−1−+m ∈ U for some m. Then s <| u; we show that {t ∈ 2∗ | s <| t} ⊆ U .
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Suppose s <| t. If s and t disagree, it must be at the − in s, so u v t and t ∈ U .
On the other hand, if s v t then again t ∈ U . The case where u = −n is similar.

Now suppose u contains both + and −. By symmetry it suffices to consider
the case where U ends in −: so we can write u = u′+−n with n ≥ 1. By the
condition on U we can find s0 = u′−+m ∈ U and also s1 = u′+−n−1+−k ∈ U .
We have s0 <| u |< s1. Suppose s0 <| t |< s1. If s0 v t or s1 v t then t ∈ U . Thus
we assume s0 < t < s1. It cannot disagree with u′, since in its disagreement it
would have to have both + and −. Hence u′ v t. The disagreement with s0

must therefore be at the − immediately after u′. It follows that t agrees with
s1 at the first + after u′, so the disagreement must be at the second. Hence
u = u′+−n v t and t ∈ U .

After Theorem 6.7 we can now conclude –

Theorem 7.6 c : 2ω → I is the coequalizer of u± : 2∗ ⇒ 2ω.

8 I is an interval object in Loc

Let A be an iterative midpoint algebra equipped with points a±. We shall also
write

a0 = m(a−, a+)

a±/2 = m(a0, a±).

If N : I→ A can be found as in Definition 2.4, then Nc : 2ω → A is the map
M = Ma−a+ (Definition 2.3), for

Nc(±s) = Nm(±1, c(s)) = m(N(±1), Nc(s)) = m(a±, Nc(s)).

We can define M regardless of N , so it therefore remains to prove (i) that M
factors via I, as M = Nc for some N : I→ A, and (ii) that N is then a midpoint
algebra homomorphism.

Lemma 8.1 M(±ω) = a±.

Proof. By the defining property ofM , M(±ω) is a point x± such thatm(a±, x±) =
x±. But by considering the maps a± : 1 → A and ! : 1 → 1 as h and t
in Definition 2.2, we see that there is a unique map x± : 1 → A such that
m(a±, x±) = x±. Since a± satisfies this condition, we deduce x± = a±.

Proposition 8.2 M composes equally with u± : 2∗ → 2ω.

Proof. From Lemma 8.1 we have M(+−ω) = m(a+, a−) = m(a−, a+) =
M(−+ω), i.e. M(u+(ε)) = M(u−(ε)). It now follows by induction on the
length of s that M(u+(s)) = M(u−(s)) for all s ∈ 2∗.

It follows that M factors via I, as Nc for some unique N : I→ A.
It remains to be shown that N preserves midpoints, i.e. that m(N ×N) =

Nm. Since c is a proper surjection, so too is c× c and so it suffices to show that
m(Nc×Nc) = m(M ×M) = Nm(c× c) : 2ω × 2ω → A.
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Definition 8.3 half : 2ω → 2ω is defined by

half(±s) = ±∓ s.

Lemma 8.4
Ma−a+halfs = m(a0,Ma−a+s).

Proof.

Ma−a+half(±s) = Ma−a+(±∓ s)
= m(a±,m(a∓,Ma−a+s))

= m(m(a±, a∓),m(a±,Ma−a+s))

= m(a0,Ma−a+(±s)).

Lemma 8.5 As maps from I to A, we have

1. Nm〈±1, I〉 = m〈a±, A〉N ,

2. Nm〈0, I〉 = m〈a0, A〉N .

Proof. Since c is a surjection, it suffices to show equality when these are
composed with c.

(1)

Nm〈±1, I〉c(s) = Nm(±1, c(s)) = Nc(±s) = M(±s)
= m(a±,M(s)) = m(a±, Nc(s)) = m〈a±, A〉Nc(s).

(2)

Nm〈0, I〉c(s) = Nm(0, c(s))

= Nc(half(s)) (by Lemma 8.4, using c = M−1,+1)

= Mhalf(s)

= m(a0,M(s)) (by Lemma 8.4 again, using M = Ma−a+)

= m〈a0, A〉Nc(s).

To analyse preservation of midpoints we shall need to define a version of
the midpoint function that works entirely on sign sequences. However, it will
convenient to use sequences that may include 0: so we shall use 3ω where we
take 3 = {+,−, 0}. There is an obvious inclusion i : 2ω → 3ω.

We define M0 : 3ω → A, similar to M , but with the additional condition
that M0(0s) = m(a0,M(s)). In other words, in Definition 2.2 the head map
h : 3ω → I takes 0s to a0. Then clearly M = M0i.

We can do the same with c instead of M , obtaining a unique map c0 : 3ω → I
such that c0(±s) = m(±1, c0(s)), c0(0s) = m(0, c0(s)). Then c = c0i.
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Lemma 8.6 M0 = Nc0.

Proof.

Nc0(±s) = Nm(±1, c0s) = m(a±, Nc0s) (Lemma 8.5 (1))

Nc0(0s) = Nm(0, c0s) = m(a0, Nc0s) (Lemma 8.5 (2))

It follows that Nc0 has the characterizing property of M0.

Definition 8.7 The sequence midpoint map ms : 2ω × 2ω → 3ω is defined by

ms(±s1,±s2) = ±ms(s1, s2)

ms(±s1,∓s2) = 0ms(s1, s2).

Lemma 8.8 m(M ×M) = M0ms.

Proof. They are both the unique map f : 2ω×2ω → A such that f(±s1,±s2) =
m(a±, f(s1, s2)) and f(±s1,∓s2) = m(a0, f(s1, s2)). For m(M ×M),

m(M ×M)(±s1,±s2) = m(m(a±,M(s1)),m(a±,M(s2)))

= m(a±,m(M ×M)(s1, s2)),

m(M ×M)(±s1,∓s2) = m(m(a±,M(s1)),m(a∓,M(s2)))

= m(m(a±, a∓),m(M(s1),M(s2)))

= m(a0,m(M ×M)(s1, s2)).

For M0ms,

M0ms(±s1,±s2) = M0(±ms(s1, s2))

= m(a±,M0ms(s1, s2)),

M0ms(±s1,∓s2) = M0(0ms(s1, s2))

= m(a0,M0ms(s1, s2)).

Corollary 8.9 m(c× c) = c0ms.

Proof. Replace A by I.

Proposition 8.10 N : I→ A preserves midpoints.

Proof.

m(N ×N)(c× c) = m(M ×M) = M0ms (Lemma 8.8)

= Nc0ms (Lemma 8.6)

= Nm(c× c) (Corollary 8.9).

We now use the fact that c× c is a surjection, following from the fact that c is
a proper surjection.

Putting together all the results of this section, we obtain –

Theorem 8.11 In the category Loc of locales, the structure (I,−1, 1) is a can-
cellative interval object.
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9 Conclusions

The main result was about I as interval object, but along the way we also
showed that the map c : 2ω → I, evaluating infinite binary expansions, is a
proper localic surjection that is easily expressed as a coequalizer. This result
has some interest in itself. In classical point-set topology, c is a surjection
because for every Dedekind section there is an infinite expansion; however, this
uses choice. Essentially, the surjectivity of c, in other words the monicity of
c∗, is a conservativity result, and this is known as a constructive substitute for
using choice to find the existence of points. See, for example, the constructive
Hahn-Banach Theorem in [4]. However, our result is unusual in using a proper
surjection rather than an open one.

The proof of proper surjectivity used the preframe coverage theorem in a
standard way. However, it was more intricate than I expected. I had a hope to
use the metric space theory again for 2ω, but was put off by the fact that to get
2ω as a completion of 2∗ requires each finite sequence s to be identified with an
infinite sequence, either s−ω or s+ω: this breaks symmetry. I conjecture there’s
a way forward using partial metrics, so that 2∗ is metrized with d(s, s) = 21−|s|.
However, we do not at present have a theory of localic completion of partial
metrics. It would be easier with c0 : 3ω → I, but then that would presumably
make Section 7 harder. In any case, the result with 2ω is stronger.

The main result, on I as an interval object, free on two points, suggests
generalization to simplices, free on their vertices. I conjecture that similar
techniques to prove this, using infinite sequences, could be developed using
barycentric subdivision.
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[2] M.H. Escardó and A.K. Simpson, A universal characterization of the closed
euclidean interval, Logic in Computer Science, 2001. Proceedings. 16th An-
nual IEEE Symposium on, 2001, pp. 115–125.

[3] P.T. Johnstone and S.J. Vickers, Preframe presentations present, Cat-
egory Theory – Proceedings, Como 1990 (A. Carboni, M.C. Pedicchio,
and G. Rosolini, eds.), Lecture Notes in Mathematics, no. 1488, Springer-
Verlag, 1991, pp. 193–212.

22



[4] Christopher J. Mulvey and Joan Wick Pelletier, A globalization of the
Hahn-Banach theorem, Advances in Mathematics 89 (1991), 1–59.

[5] J.J.C. Vermeulen, Proper maps of locales, Journal of Pure and Applied
Algebra 92 (1986), 79–107.

[6] Steven Vickers, Topology via logic, Cambridge University Press, 1989.

[7] , Information systems for continuous posets, Theoretical Computer
Science 114 (1993), 201–229.

[8] , Localic completion of generalized metric spaces I, Theory and Ap-
plications of Categories 14 (2005), 328–356.

[9] , Localic completion of generalized metric spaces II: Powerlocales,
Journal of Logic and Analysis 1 (2009), no. 11, 1–48.

[10] , Sketches for arithmetic universes, See arXiv:1608.01559, 2016.

[11] , The localic compact interval is an Escardó-Simpson interval object,
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