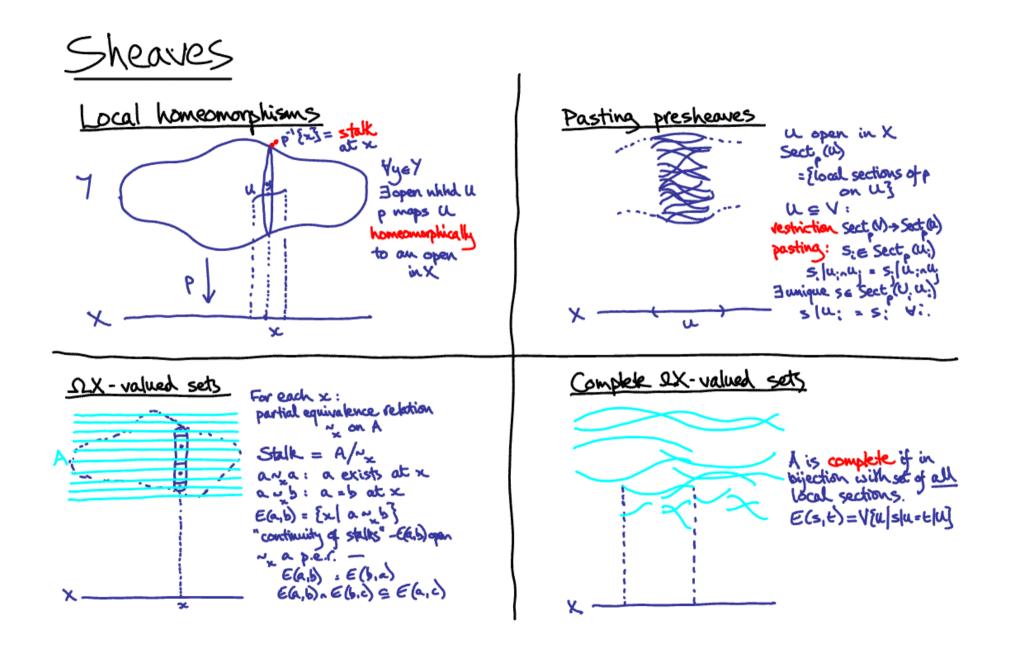
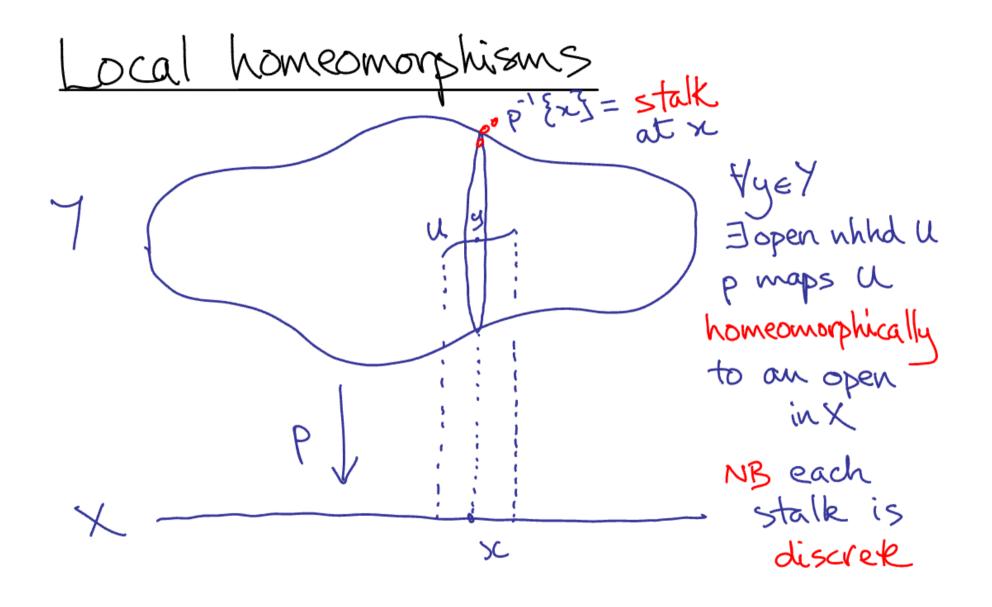
Fuzzy Setz Steve Vickers

& Geometric Logic

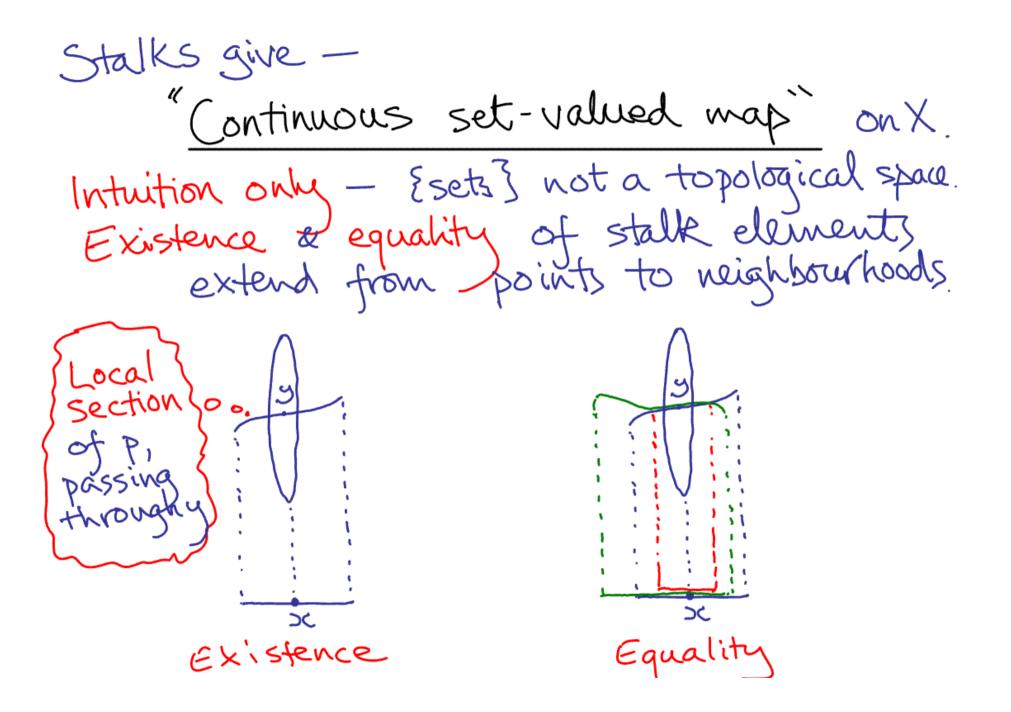
School of computer Science University of Birmingham

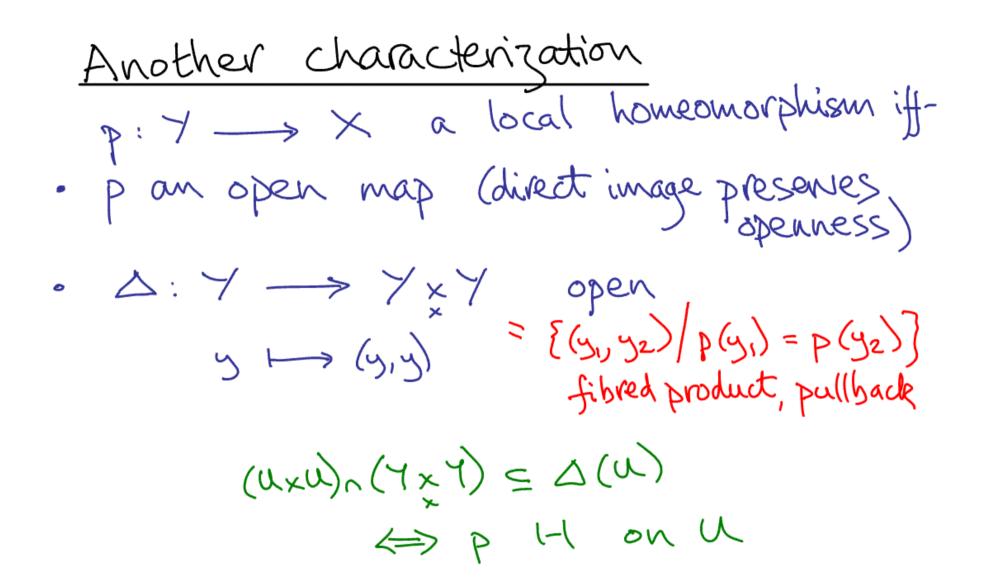
HÖHLE: Fuzzy sets (valued in frames)=sheaves GEOMÉTRIC LOGIC: Sheaves = Continuous, set-valued maps



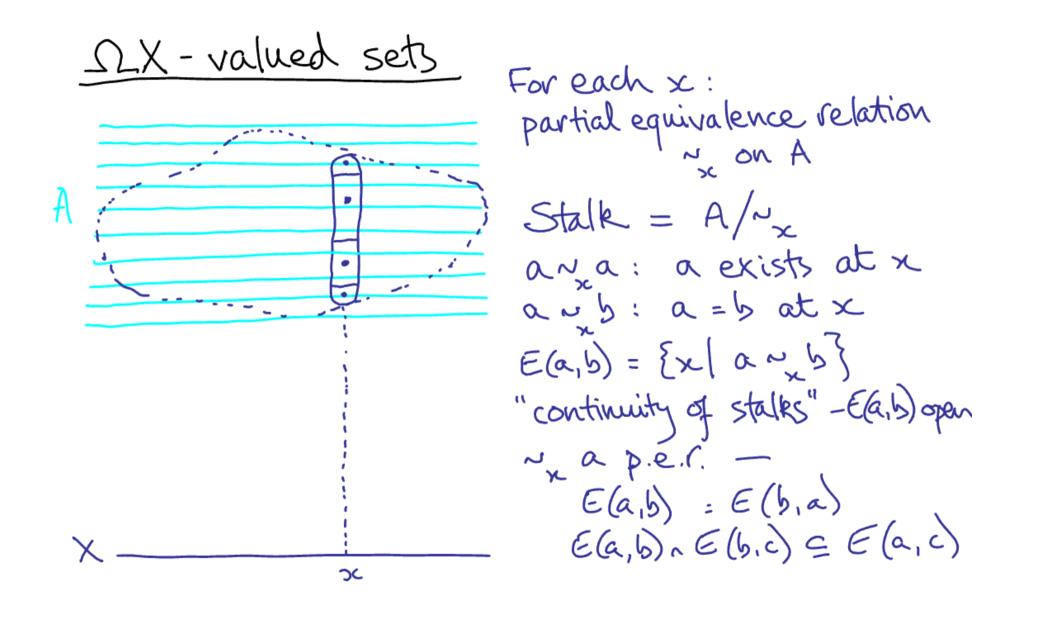


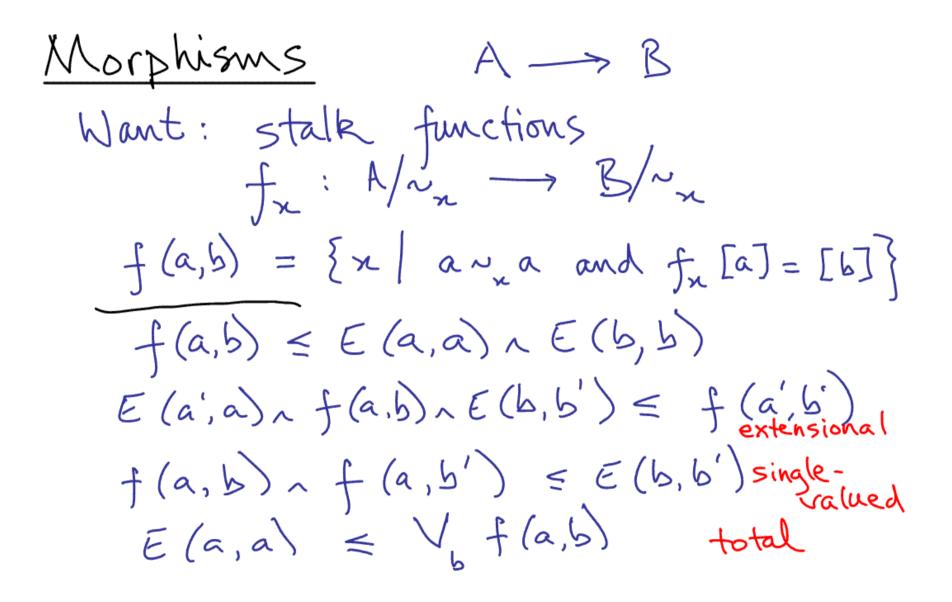
Talk given at 29th Linz Seminar on Fuzzy Set Theory, 14 Feb 2008



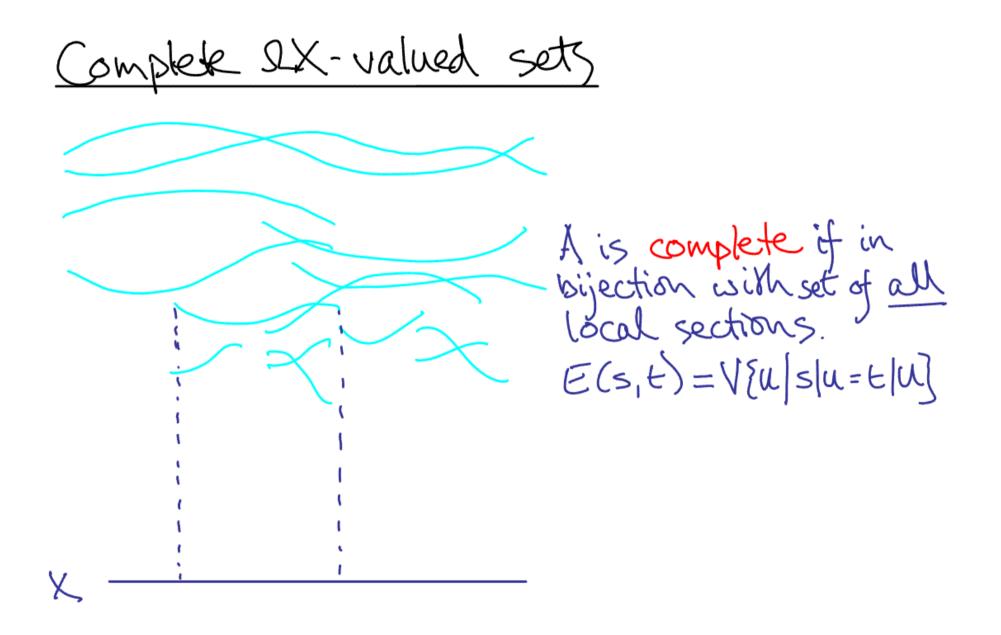


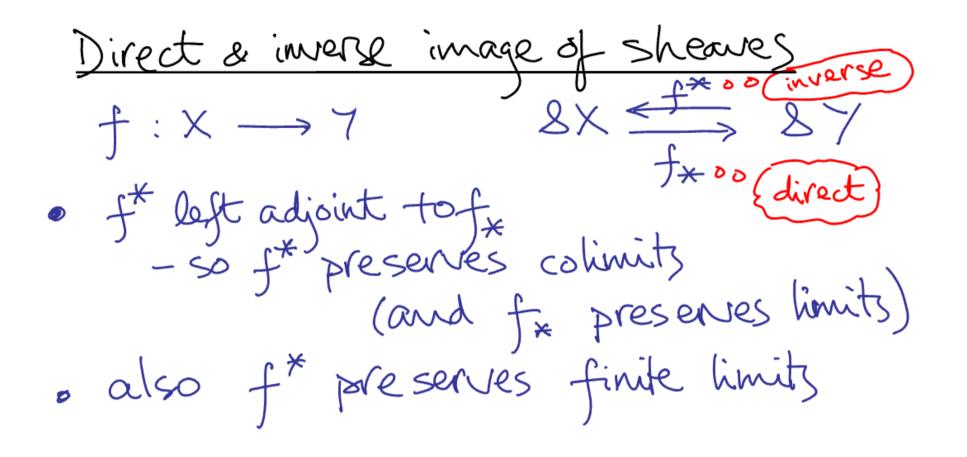
presheaves Pastina U open in X Sect (u) = Elocal sections of p on UZ UEV vestication $\operatorname{sect}_{P}(N) \rightarrow \operatorname{Sect}_{P}(\alpha)$ pasting: sie Sect (u;) $S_i | u_i , u_j = S_i | \dot{u}_i , u_j$ $\exists unique s \in Sect_i(U, u_i)$ $S_i | u_i = S_i : \forall i$. U





Singletons
a eA gives local section
$$\tilde{a}$$
 over $E(a, a)$: $\tilde{a}(x) = [a]_{x_x}$
General local section = singleton $S: A \rightarrow \mathfrak{IX}$
 $s(a) \in E(a, a)$
 $s(a) \cap E(a, b) = s(b)$
 $s(a) \cap s(b) = E(a, b)$
Local section over $E(s) = \bigcup_{a \in A} s(a)$
If $x \in E(s)$, $x \in s(a)$, say, $s_x = [a]_x \in stalk$





$$f^{*} - inverse image$$
Local homoeomorphisms
pullback
$$f^{*}A : same underlying
set A$$

$$f^{*}P \downarrow \qquad \downarrow P$$

$$X = f^{*} 7$$

$$(f^{*}P)^{-}(x) \cong P^{-}(f(x))$$

$$X = f^{-}(f(x))$$

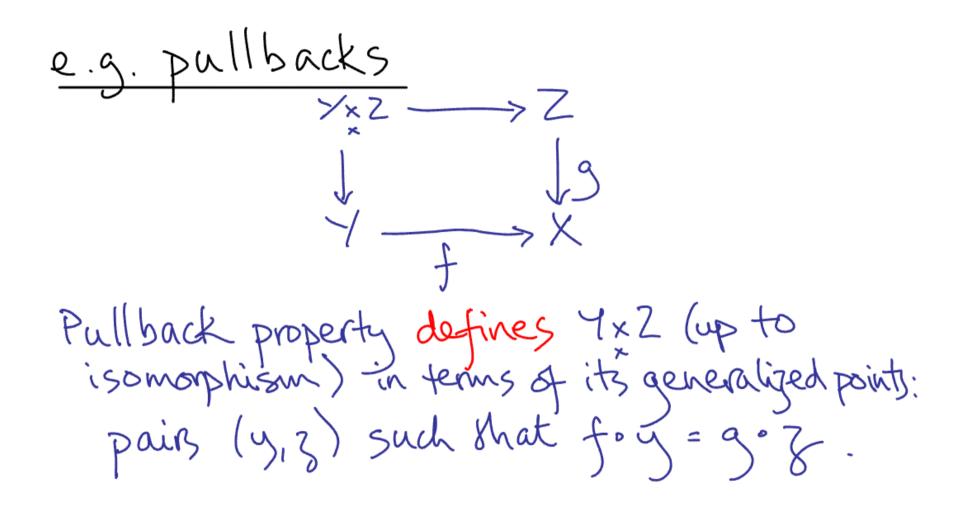
 $\frac{f_{\star} - \text{direct image}}{\text{Pasting presheaves F}}$ $f_{\star} F(u) = F(\Omega f(u))$ $f_{\star} A = \{(a, u) \in A \times \Omega T | e(a, a) = \Omega f(u)\}$ $E((a, u), (a_2, u_2))$ $f_{\star} A = \{(a, u) \in A \times \Omega T | e(a, a) = \Omega f(u)\}$ $E((a, u), (a_2, u_2))$ $f_{\star} A = \{(a, u) \in A \times \Omega T | e(a, a) = \Omega f(u)\}$ $E((a, u), (a_2, u_2))$ $f_{\star} A = \{(a, u) \in A \times \Omega T | e(a, a) = \Omega f(u)\}$

Frames Frame = complete lattice, with r distributes over V Frame homomorphism preserves n. V

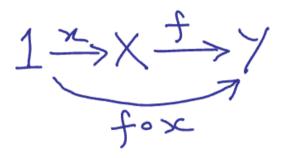
Topologu X a topological space Inverse image function Nf:NY->NX when f:X->Y continuous $\Omega f(u) = f'(u)$ = {x | f(x) e U |

Locale = Frame pretending to be space
Locale
$$X = frame \Omega X$$

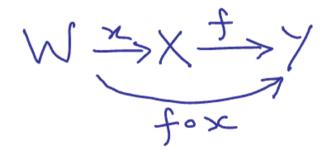
separate spatial language from lattice language
Locale map $f: X \rightarrow 7$
= frame homomorphism $Sf: \Omega Y \rightarrow \Omega X$
Point of $X = map 1 \rightarrow X^{\circ\circ\circ}$ global point
 $\Omega 1 = \Omega = Etnich values f$
But also - map $f: X \rightarrow Y$ is generalized point
 $of Y$ (at stage X)



Maps transform points Global points $1 \xrightarrow{sc} X$ \mapsto



Generalized points $M \xrightarrow{sc} X \mapsto$



Does point transformation define map? On global points: NO (maybe too.few) On generalized points: YES

Generic point $X \xrightarrow{Id} X$

 $X \xrightarrow{+} Y$

Map = point transformer that commutes with change of 5 $X: W_1 \rightarrow W_2 \qquad X: W_2 \rightarrow X$ $W, \rightarrow W_2$ x*x Suppose W $F_W: Loc(W,X) \longrightarrow Loc(W,Y)$ $F_{W_1}(\alpha^* x) = \alpha^* F_{W_2}(x)$ Define $f = F_x(Id_x): X \rightarrow Y$ Then $F_{W}(x) = F_{W}(x^* | d_x) = x^* F_{x}(|d) = x^* f = fox$

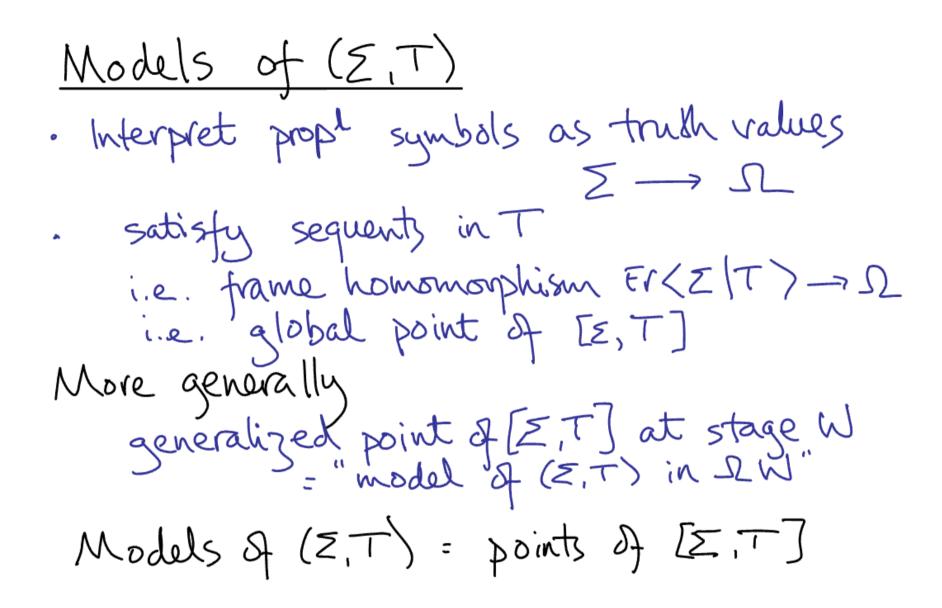
Sheaves over locales Pasting presheaves, Il-sets: same definition Local homeomorphisms: $p, \leq open maps$ $f: X \rightarrow Y$ open if $\Omega X \leq \Omega Y$ has left adjoint $\exists_f : \mathfrak{N} \to \mathfrak{N} \to$ with $\exists_f (a \land sif(b)) = \exists_f a \land b$ Stalks: by pullback $\forall_f y = \forall_f y$ XP J x P] J.P loc. homes. W

FUZZY SETS & GEOMETRIC LOGIC

Geometric logic Many-sorted, first order. Signature Z specifies sorts, predicates, functions Terms built up in usual way Formulae built up using =, 1 of form Sequents $\forall x_1 \dots x_n (\varphi \longrightarrow \psi)$ ranah 0 amona (Z,T)Geometric theory Ta set of sequents

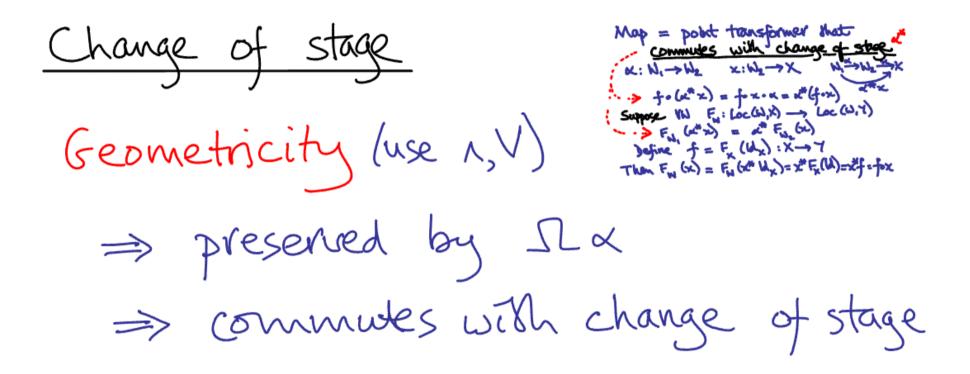
Propositional geometric sheary
$$(\Xi, T)$$

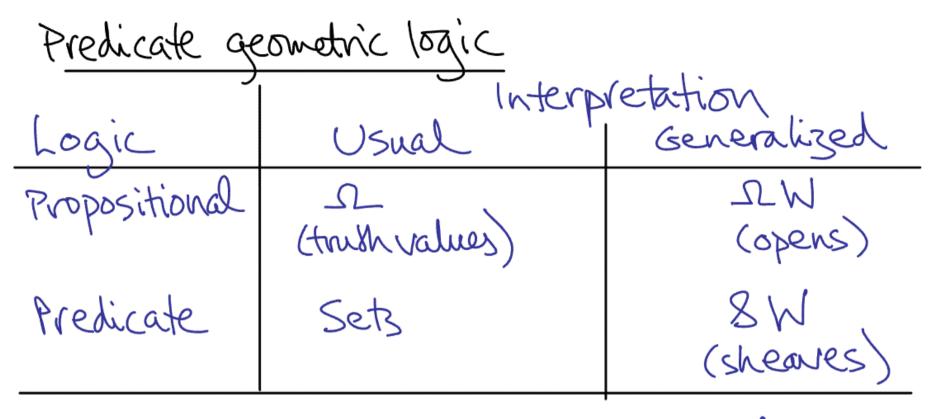
NO SORTS - so no functions
 Ξ a set of propositional symbols
Formula - disjunction of finite conjunctions
sequent - $\phi \rightarrow \psi$
 (Ξ, T) presents a frame $Fr \langle \Xi | T \rangle$
generators relations
Write $[\Xi, T]$ for locale.
 $D[\Xi, T] = Fr \langle \Xi | T \rangle$



Technically, inside DON name non-summing logic of I [Z,, T,] and x is generic point.

Summany





NB predicate extends propositional: open ~ subsheaf of 1

Constructions: topos-valid v. geometric Set Meoretic constructions meaningfu Grothendieck toposes. J (finitary only products, pullbacks coproducts, quotients Some all set of truth values acometric-(="subobject classifier SL preserved function set X by inverse $1, \mathbb{Z}, \mathbb{Q}$ indage functors free algebras finite powerset

as geometric constructions of sets Sheaves X a locale U Apply construction Let so be a point of X Then set S_x defined [geometrically] as to generic pt of X in BX. Get sheafs. [Topos-valid good enough here! 2) Geometricity => for any point WXXX stalk constructed same way in 8W (apply)

Sheaf = continuous set valued map · To define a sheaf: define its stalks geometrically . To define a sheat morphism: define stalk functions geometrically · To show two sheaves isomorphic: show isomorphic stalkwise, geometrically.

Examples
• A with crisp equality gives constant sheaf

$$a \sim b \Leftrightarrow x \text{ in } V \notin I = b \implies a = b$$

 $\therefore A/v_{xc} \cong A$
• Functionu: A $\longrightarrow \Omega X$ gives subsheaf
of constant sheaf fuzzy set
 $E(a,b) = u(a) \wedge u(b) \wedge E_c(a,b)$
 $a \sim b \iff a = b \text{ and } x \in u(a)$
 $X/v_x \cong \{a \in A \mid x \in u(a)\}$

(Examples) • SLX-valued equality on A gives quotient of subsheaf of A · Pullbacks, coequalizers, coproducts finite powersets, list objects are anything geometric j Do obvious construction & then check it works convectly on stalks

Conclusions

