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Abstract

We give a constructive localic account of the completion of quasimetric spaces. In the context of
Lawvere’s approach, using enriched categories, the points of the completion are flat left modules
over the quasimetric space. The completion is a triquotient surjective image of a space of Cauchy
sequences and can also be embedded in a continuous dcpo, the “ball domain”. Various example
constructions are given, including the lower, upper and Vietoris powerlocales, which are
completions of finite powerspaces. The exposition uses the language of locales as “topology-free
spaces”.
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1. Introduction

The aim of this paper is to give a constructive localic account of metric completion (and it turns ot
that the techniques work well also in the quasimetric case, i.e. dropping the symmetry axiom). It
brings together a number of different ideas, and to give some immediate overview | ought to poir
out that there are at least three distinct novelties.

Conceptually, we take a somewhat unorthodox view of the nature of completion. It is usual,
amongst the general spaces, all topologized, to distinguish the complete ones, and to give a gen
“completion” construction that always yields a complete space. By contrast we regard the
uncompleted space as being not itself topologized, but a set-theoretic structure that is used simp
a presentation of the completion, whisliopologized. There is a localic reason for doing it this way
Normally, one thinks of a metric as defining a new topology on a set of points, which of course
already has its discrete topology. However, in the constructive treatment of locales it is not possi
to change the topology without also changing the points — at least, when points are regarded in t
“generalized” sense, which allows set theory to vary.

If we start from a metric space (X, d) then we can construct the metric topology on X — as a
subframe of its powerset — and hence define a locale X'. In our base set theory, the points of X'
be the elements of X, but this fails elsewhere. Moreover, the very construction of this metric
topology is not preserved under change of base, so in effect we have fudged the construction of
topology in attempting to get a result (points are elements of X) that still falls apart. Our view of
completion is that it is the good construction of the metric topology, but that even in the base cate
of sets it creates new points.

Hence completion is viewed as a construction that changes the nature of the object that it is
applied to — from set with structure to a locale.

Expositionally, though we are working with locales, we experiment with a new approach to
them as “topology-free spaces”, as outlined in [21] and [23]. In execution, this has the appearan:
working with topological spaces but ignorantly neglecting to deal with topologies: they are not
explicitly defined, nor is continuity explicity proved. However, this is justified by adherence to a
constructivist discipline that makes topology implicit.

Technically, we use an approach to completion that derives from enriched category theory —t
was first proposed in the study of quasimetric spaces in [11]. According to our definition, the poi
of the completion are the “flat left modules” over the quasimetric space, in a sense that is already
well-known for categories enriched over Abelian groups or sets. However, the clearest topologic
way of understanding this is that instead of constructing the completion using Cauchy sequence
use a definition that more directly reflects filter definitions of completeness.

Cauchy completion by distance functions

Traditionally, one completes a metric space X by taking Cauchy sequences modulo an equivalen
relation. This trick is not available localically, so we shall nesdnical representations of the points
of the completionX . We give here a classically valid result that provides these in the form of certa
maps from X to the real line. Although the result itself is not constructively valid, we shall take it a
justification for using the maps rather than the Cauchy sequences as the constructive basis for ir
completion.



If & = (x,) O X is a Cauchy sequence, then we can define a map M{X ) by M(x) =
limp_ 0 d(X, %) = d(x£) in X.

Proposition 1.1 (Classically) M satisfies the following conditions:

0] M(y) < M(x)+d(x,y)
(ii) d(X,y) £ M(x)+M(y)
(i) infx M(x) = 0

Proof (i) and (ii) are instances of the triangle inequality Tn(Xi) is obvious.]

Proposition 1.2 (Classically) Let & = (xn) and¢' = (Xn) be two Cauchy sequences, giving rise to
functions M and M' as above. Then the sequences are equivalent iff M = M'.

Proof O : & and&' are equal i<, so for all x, M(x) = d(>¢) = d(x£") = M'(x).

O0:dE,&") = liMn_ e d(X%p,E") = liMn_ e M'(XR) = limp_ 0 M(X) = liMp_ o« d(X%,,6) = 0, so the
sequences are equivalent. |

Proposition 1.3 (Classically) If M satisfies the conditions of Proposition 1.1, then there is a
Cauchy sequence{xfrom which M is derived by the definition above.

Proof

By (iii) we can find a sequence)such that M(¥) < 2. Then by (ii),

d(Xn Xn+k) S M(XR)+M(Xpep) < 270+ 20—k < 2-n+1

and it follows that () is Cauchy. For any x, we have

M(X) = M(xp) + d(x,%,) < 27"+ d(x,x,) (using (1))
d(X,%) < M(X) + M(x)) < 2"+ M(x) (using (ii))
and it follows that M(x) = lim_, o d(X,Xn). ]

In summary, we have

Theorem 1.4 (Classically) If X is a metric space, then the points of its Cauchy completion are in
bijective correspondence with the maps M=X0,») satisfying the condition of Proposition 1]1.

It turns out that these functions M fit perfectly in Lawvere’s account of metric spaces using
enriched category theory: the metric space X itself is the enriched category (enrichedayer [0,
condition 1.1 (i) makes M a “presheaf” over X, and conditions (ii) and (iii) say that it is “flat”.
However, an equivalent topological view is that M describes the open badjsiiat contain the
point (i.e. for which M(x) <€), and our definition will fairly naturally turn out to be equivalent to
filters of such open balls (Proposition 4.8).

Quasimetric spaces via enriched categories

In [11] metric spaces are discussed/anriched categorieg/{here being the extended non-negative
real line [Og0]) and despite the abstractness of this account it has a solid conceptual basis: it view
metric space as a “set” in which equality formulae receive their truth values as real numbers. The
distance d(x,y) is the “numerical falsity” of the formula x=y, so that the bigger d(x,y) is, the “less
equal”’ x and y are. A zero value represents utter truth: if d(x,y) = 0 then x and y are considered
equal. The conditions on metrics correspond to properties of equality, and in particular the triang|



law corresponds to transitivity. (Actually, Lawvere deals with quasimetrics, i.e. without symmetry
which correspond to partial orders or preorders.)

The use ofi-enriched categories invites comparison with other possibilities, fand we shall
refer particularly to the case of Abelian groups. Of particular importance there is tensor product o
modules, and the notion Bhétness: a module is flat iff tensoring by it preserves finite limits.
(General abstract nonsense ([1], p.28) shows that tensoring always preserves arbitrary colimits.
it has a right adjoint given by modules of homomorpisms.) We show that over a metric space, th
modules are the points of the Cauchy completion, and develop the idea with quasimetric spaces

Locales as topol ogy-free spaces
The results here are localic, but the casual reader might be excused for not realising this. Locale
theory is often described as “point-free topology”: the frame is an abstract topology that does not
for its description on a set of points of whose powerset it is a subframe. In the standard introduc
such as [6] or [16], the frames appear very explicitly. By contrast, what you see here is almost
entirely in terms of points, with hardly any mention of topology at all — so little indeed, that even i
conventional topology it is somewhat negligent. Turning the usual description on its head, we tre
locales as “topology-free spaces”.

The trick lies in the nature of the mathematical discussion, for it is of a restricted “geometric”
form. It turns out that this is sufficient to give topologies and continuity automatically.

A fuller technical account will be given in Section 2, but let us here set out the ground rules.

(1) “Geometric” mathematics comprises those constructions and properties that can be
interpreted in any Grothendieck topos and are preserved by the inverse image functors
geometric morphisms.

(We shall actually use a different language, analogous to that of [18, 20], that makes a systemati
distinction between “toposes as generalized topological spaces” — for which we reserve the word
topos — and “toposes as generalized categories of sets” — which vgearaéitric universes, or GUs.

For a topos D, the corresponding geometric universe will be wsileand its objects will be called
sheaves over D. Inverse image functors of geometric morphisms will be called “GU-
homomorphisms”.)

(2) If certain structures are described as being the models of a geometric theory, that is to
they are specified by structure and properties within geometric mathematics, then there
corresponding classifying topos of which those structures are the points.

3) If such a theory in (2) is “essentially propositional”, that is to say, it has no sorts (other
than what can be constructed geometrically out of thin air), then its classifying topos is
actually a locale.

(4) Suppose D and E are two toposes. Then construction of points of E out of points of D,
is geometric, describes a geometric morphism from D to E.
(5) Geometric morphisms between locales are the same as continuous maps.

Consequently, we describe a locale by giving a geometric description of its points; and we descri
continuous map by giving a geometric description of how it transforms points to points. No
discussion of topology is needed — the geometricity already covers that —, and so the locales apy
as “topology-free spaces”.



We shall examine what is allowed in this geometric mathematics, but first let us mention som
things that areot allowed.

» Thelogicisnon-classical. Intuitionistic logic is valid in geometric universes, but in general
excluded middle and choice are not valid. More subtly, intuitionistic negation is not presen
by GU-homomorphisms, and nor are implication and universal quantification — so we can’
use them in general. The geometric logic is therefore more restricted than intuitionistic logi
However, if we can prove or postulate that two propositions P and Q are logical complem:
(PLQ | false, true F PCQ), then that fact is preserved by GU-homomorphisms and so
gives an instance of a geometric negation.

« We can’t use exponentials"Xpowerset®X, or the subobject classifi€ — none of these
are preserved by GU-homomorphisms.

| shall not attempt to formalize the geometric constructions, but they include finite limits, set-
indexed colimits, image factorization, monicness, epiness, inclusion between subobijects, finite
intersections and arbitrary set-indexed unions of subobjects, existential quantification, free algeb
constructionsN (natural numbersiQ (rationals), Kuratowski finiteness, finite powersgts(free
semilattices) and universal quantification bounded over finite objects.

A couple of specific issues worth mentioning are decidability and finiteness. Equality is part ¢
the geometric logic, but inequality is not (because there is no negation). Nonetheless, certain
“decidable” sets come equipped with inequality, a relation complementary to equality — two good
examples ar®l andQ. Finiteness is — as remarked abowuratowski finiteness [5]: X is
Kuratowski finite iff the free semilatticg X has an elemerit such that {x}(]1 T for every x. This
notion can sometimes behave surprisingly from the point of view of classical mathematics: for
instance, subsets of finite sets, or intersections of finite subsets, need not themselves be finite.
summary of the mathematics of this finiteness is provided in [24], which also include “observatior
intuitions that explain the surprises.

2. Technicalities on locales and toposes

The ideas of “locales as topology-free spaces”, as outlined above, have already been described
informally in [21, 23]. However, a more detailed technical justification has been lacking and we te
the opportunity to present one here. The reader who is more interested in the localic account of
completion is invited to skip this section and admire the audacity of the subsequent treatment.

The notion of geometric theory can be found in standard texts such as [5] and [12]: it is a firs
order, many-sorted theory in which the axioms are of the §oirig ), whereg andy are geometric
formulae (the connectives allowed are finite conjunction, arbitrary disjunction, equality and
existential quantification) all of whose free variables are in the finite set S. If T is a geometric thec
then we shall write [T] for its classifying topos, asjd] for the corresponding geometric universe.
(Note that by happy coincidence our notatigfT1’ — “ sheaves over [T]” — agrees with one that is
already commonly used, and denotes the same categorys{$ets) with a model of T freely
adjoined. Where we depart from convention is in refusing to call this geometric universe the
classifying topos.)



However, we shall extend this notion slightly to allow geometric constructions to be used as
notational definitions. It is clear what a model would be for such a theory. It is not immediate that
such theories have classifying toposes, but we shall prove that they do.

As mentioned in the Introduction, we use the phgeseetric universe (or GU) for
(Grothendieck) topos as generalized category of sets. Hence a category is a GU iff it has the stri
and properties given in Giraud’s Theorem (see [5]).

2.1 Propositional geometric theories

A geometric theory ipropositional if it has no sorts at all. Since terms must have sorts, we see tha
there can be no functions at all (no sorts for their results) and predicates can have no variables: ¢
they are propositions. A formula then is equivalent to a disjunction of finite conjunctions of
propositional symbols, and an axiompis . It follows that a propositional geometric theory T is
formally identical to a presentation of a frame by generators and relations [16], and so presents ¢
frameQ[T] (say), corresponding to a locale [T].

Let us now writes[T] for the category of sheaves over [T], according to the normal definition ¢
sheaf J[T] is a geometric universe, so there is a corresponding topos which, according to our ea
remarks, should be written [T]. But then is [T] the locale or the topos? Actually, it doesn’t matter,
we have ample notation to discriminate between the f@jfipand the geometric universgr], and
this point of view allows us to say that a topos truly is a generalized locale.

So far, this is really no more than a recasting of standard results, part of which is the fact the
continuous maps between the locales are equivalent to geometric morphisms between the topos

Theorem 2.1.1 Let f: E - B be a localic geometric morphism. Then for any other geometric
morphism f: E'> B, there is an equivalence between geometric morphisms from E' to E over B,
and frame homomorphisms frortIg to f+*Qg' in SB. (Qe andQg' are the subobject classifiers in
SE andsE'.)

Proof [10]. ]

If we apply this with B = 1 (the topos classifying the theory with empty presentstiens)
and E = [U], U a propositional geometric theory, then we find that for any topos E', with-f'1E'
the essentially unique geometric morphism, geometric morphisms from E' to [U] are equivalent tc
frame homomorphisms fro@[U] to f'«Qg. If we then take E' to be [T] for another propositional
geometric theory, then we find that geometric morphisms from [T] to [U] (qua toposes) are
equivalent to frame homomorphisms fréflJ] to Q[T], i.e. continuous maps from [T] to [U] (qua
locales).

The topos [T] was constructed by sheaf theory, as the geometric universe of sfigaves
constructed from the franf@[T]. Our notation was devised to suggest that [T] classifies the theory
T, but that remains to be proved. Another way of viewing this is that the standard theory works fi
the frameQ[T], but we want a firmer grasp of how it relates to the presentations T. We shall
therefore be more precise about the structure of a propositional theory.

A frame presentation will include sets G and R of generators and relations, and the relations
be written in the form £< e, where ¢ and e are frame expressions in the generators. Using frame
distributivity, each gcan be written as a join of finite meets of generators; and then the relation cai
be replaced by a set of relations, one for each disjungt gaging that the disjunct $sep. After all
this rewriting we have that each relation r is of the form —



finite meet of generatoesjoin of finite meets of generators

Let us writeA(r) O # G for the finite set of conjuncts on the left. For the right-hand side, we have ¢
arbitrary set of disjuncts: so what we should do is take the set D of all disjuncts in all relations, fik
over R by somet D - R. Each disjunct d is a conjunction of a finiteel) of generators, so the
relation r has been formalized as —

NAN) £ Vigd)=r /\p(d)

Definition 2.1.2 A frame presentation is a structure comprising three sets G, R and D with
functionsA: R -~ ¥G,p: D - #G,andrt D - R.
We writeFrPr for the (geometric) theory of frame presentations.

Given such a frame presentation, we shall as usual writ& FiRCfor the frame presented by
it. Then a frame homomorphism from[B& | R[to a frame A is given by a functignG - A that
respects the relations in the following way. Since A is a semilattice uhdad 7 G is the free
semilattice over Gy extends uniquely to a semilattice homomorphysrir G, ) — (A, D) such
thaty'({g}) = y(g). We want for each relation r thadA(r) < VV{yop(d): (d) = r}.

Theorem 2.1.3 Let T be a geometric theory whose ingredients include a frame presentation as
above, and let A be the framediT] presented by it. Then the corresponding locale over [T]

classifies the theory T' that is T extended by —

» a predicate symbol I(g) (g: G)
e anaxiom

OgOA(r). 1(9) Fr.r 0d:D. (r(d) = r 0 Ogtp(d). 1(9))

Proof

Let f: E - [T] be any topos over [T]. We know (by Theorem 2.1.1) that geometric morphisms ove
[T] from E to the locale are equivalent to frame homomorphisnggirfrom A to - Qp, and these

are equivalent to functions from G td¥g that respect the relations. On the other hand, geometric
morphisms over [T] from E to [T'] are equivalent to subsets of *(G) that satisfy the axiom. We
show that these are equivalent, and that suffices to show that the locale and [T'] are equivalent.

Functionsy: G - f«Qp are equivalent to functions from *G €@, which in turn are equivalent
to subsets | of f*G. The difficult part is to show that the one respects the relations iff the other
satisfies the axiom.

Recall some general properties about hoanid f* relate to algebras for any finitary algebraic
theory. First, because bothdnd f* preserve finite products, they transform algebras into algebras
(In particular, this gives the distributive lattice structure«@:f though not the frame structure — for
Mikkelson’s description of joins in€g see [5], Proposition 5.36.) Moreover, if X and Y are
algebras irs[T] and SE respectively, anl: X - f<Y and@. f*X - Y are adjoint transposes of each
other, therB is a homomorphism ifpis. Finally, if F denotes the free algebra construction, then f*
preserves it: fEX OF(f*X) by an algebra isomorphism E (we shall apply this for the theory of
semilattices, so thédgis 7).

Lemma 2.1.4 Let0: X - fxQg in 5[T] give semilattice homomorphis®i: ¥ X - (f+Qg, ), and
let their adjoint transposes pef*X - Qg and@: f* ¥X - Qg. Then the function



Og: A#(F*X) OF FX - Qf

maps S to the truth valuelxIS. @(x)].
Proof

¢
—>
PX o X S o

=3 =

P

X g PFIX
C

In the left-hand diagram, both triangles commute: the left-hand one by definition of the
isomorphism, and the right-hand one by naturality of the adjoint transposeg@Adsa,semilattice
homomorphismQ@g ast}semilattice) becaud# is. It follows that’t¢' is the unique semilattice
homomorphism mapping each {x} tg{x), but S—[OxOS. ¢(x)] is such a one. ]

From the lemma (applied o G - f+Qp), and using naturality, it follows that the adjoint
transposes of;y: R - fxQg andp;y: D - fxQg correspond to the subsets frgf* A(r). 1(9)}
and {d: Ogf* p(d). 1(g)}of f*R and f*D. It remains to show that the adjoint transpose of the
function r— \/{yop(d): (d) = r} from R to Qg corresponds to the subset

{r: d.(f*m(d) = r O OgOf* p(d). 1(9)}
of *R. Our function from R to4Qg calculates the join of a generalized elemerﬁmf*QE, namely
r —{yop(d): m(d) = r}. The generalized element comes from a function fretia & to Q7}, and
this corresponds to a subset off R)g, namely the image adft, yoplID - Rxf«Qp. We obtain a
functiond m, ad *D - *RxQE, wherea: f*D - Qg is the adjoint transpose gép, which by
the lemma corresponds to the subset{gIf* p(d). 1(g)}of f*D. The image ofi* 1, algives a
function from f*R toQgQE, r — {a 0 Qg | d:F*D.(f* i(d) = r 0 a = [OgOf* p(d). 1(g)])} and the
join of this set is the truth valuéd:f*D.(f* Ti(d) = r O OgOf* p(d). 1(g)], and Mikkelson’s
description says that this is the adjoint transpose-ofA{ yop(d): (d) = r}.]

2.2 Essentially propositional geometric theories

Though the propositional theories are sufficient to describe locales, it turns out to be very conver
to use equivalent non-propositional theories. We shall call a geometric ¢ésssmyally

propositional if it has no base sorts: so all the sorts used must be constructed geometrically out o
nothing.

Proposition 2.2.1 Essentially propositional geometric theories are equivalent to propositional
ones.
Proof



Let T be an essentially propositional geometric theory. Without loss of generality, we can assume
that it has no function symbols: for the functions can be replaced by their graphs (as predicates,
axiomatized to require single-valuedness and totality).

Each type is constructed out of nothing, and so is interpreted uniquely (up to isomorphism) ¢
object A ins, the base category of sets; moreover, the construction is preserved by GU-
homomorphisms, giving the type an essentially unique interpretation in any geometric universe —
fact, as an A-indexed coproduct of copies of 1.

Now consider an n-ary predicate B(x., X,) in T. Each xis typed; let X be the product of the
corresponding interpretations of the typeg.ifihen in any model of T, the interpretation of P is a
subobject of the interpretation of X, which is equivalent to an X-indexed family of truth values. It
follows that P in the theory can be replaced by an X-indexed family of propositional symbols.

Finally, we must look at the axioms. In [18] it is shown that any geometric forgh)les
equivalent to one of the foriv(; (E O Cy(®. /\jzlni Pj) where (1) for each i the vectoraindy()
are disjoint, (2) each;jis a conjunction of equations among the free variablaad (3) each;Pis a
predicate applied to variables fronandy(). We can represegtby an X-indexed family of
propositional formulae, where X is the interpretation of the product type &uppose [ X.

Then we get a truth valug¢) constructed in propositional geometric logi§;: is — obviously — just
disjunction, “g [0 ..."” is \/{...: equations Ehold for¢} (a disjunction of a subsingleton),

“Oy0). ...7is V{...(&, nM): n() in interpretation of product type fgf)}, /\ is conjunction, and
Pi (€,nM) is the corresponding proposition. Hence any geometric aggt-, W(x) gives an
X-indexed family of propositional relationg]

It follows that by writing down an essentially propositional geometric theory T, we can preser
locale [T] whose points (anywhere) are equivalent to the models of T. Its @Amis presented by
generators and relations got from an equivalent propositional theory.

2.3 Continuous maps

We have already seen that continuous maps between locales are equivalent to geometric morphi
between the corresponding toposes; and the theory of classifying toposes makes it easy to defin
these as geometric constructions.

In passing, let us note that any geometric theory in our extended sense must have a classify
topos. We have already covered the essentially propositional case in the previous section. More
generally, if a theory T has base sorts, then we can form a classifying topos [T'] for those base :
on their own. If we then relativize ourselvessfd’] then T is essentially propositional and so has a
classifying topos over [T'].

Returning to our discussion of geometric morphisms, suppose T and U are two geometric
theories (not necessarily propositional), and let F be a geometric construction that transforms mc
M of T to models F(M) of U. Since F is geometric, it can be applied in any geometric universe, s
particular we can apply it to the generic T-model (8hy) ins[T] to give a U-model F()j), also in
S[T]. By the theory of classifying toposes, this then gives us a geometric morphism-f:[[]]
such that f* applied to the generic model®f U gives (something isomorphic to) FgMNow
suppose M is an arbitrary model of T s, say; it will correspond to a geometric morphism g: E
[T]. Since F is geometric, it is preserved by GU-homomorphisms, soEFE8ND*(Mg)) [
g*(F(Mo)) Og*(f*(N 0)) O(g;N*(Ng). Hence, applying F is equivalent to postcomposing with f.
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We thus see that geometric transformations give us geometric morphisms. In the circumstan
it seems fussy to distinguish notationally between F and f — we might as well call them both by th
same name and think of a geometric morphism as a geometric transformation.

As a corollary, note that geometric transformations are therefore automatically functorial with
respect to homomorphisms between models, and moreover preserve filtered colimits: the
homomorphisms are the natural transformations between geometric morphisms (in the 2-categol
toposes), and postcomposition by geometric morphisms has these properties. In particular, in th
localic case, geometric transformations (or continuous maps) are automatically monotone with
respect to the specialization order, and preserve directed joins (Scott continuity).

3. Quasimetric spaces

In this section, we give a localic discussion of quasimetric spagasrietric means dropping the
symmetry law). As already mentioned, we do not try to consider the space itself to be a locale “u
its metric topology” — it is a set (discrete locale) with some additional structure given by the
guasimetric. However, we do need to take care over our localic account of the real line in which t
guasimetric takes its values, for we don’t assume the usual topology (which, constructively, mee
the points are slightly different too).

Definition 3.1 [0,«] is the locale whose points are rounded upper sets of positive rationals (we
write Q.. for the set of positive rationals) — we shall refer to its pointppes reals. We shall

frequently use conventional notation such as “x” for an upper real considered abstractlyf@and R
the corresponding subset 0f.Q

To show how this already defines the topology, we have

Q[0.0] = Frif0,0) (1Qs) | [0,0) =Vq<q[0.q) O

The symbolic generator [0,q) corresponds ta“R,”, and the relations to the property of being
rounded (thes direction of the relation) and uppe) (

This is the rounded ideal completion of the continuous information system ([17], where it is
called an “infosys”) whose tokens are the extended positive rationals ordered by & gwithr Q)
— in other words, “<” in the infosys sense is numerical “>". Hence it is a continuous dcpo (i.e. its
frame is constructively completely distributive).

Classically, it is the space whose points are the non-negative extended rehlanfier the
Scott topology foe. But constructively we cannot change the topology without changing the point

and the points of0,0] are not real numbers —i.e. Dedekind sections — because they lack half the

data and it can’'t be reconstructed geometrically.
We now give localic expression to the symmetric monoidal category (or, rather, poset) struct

on [0,,0] . The poset structure is the specialization order, the reverse of the usual numerical orde

big set of rationals is numerically small).
The monoidal product is sum:

Rx+y ={g+r: g 0 Ry, r 0 Ry}
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giving a map +{0,.0] 2 - [0,»] . This is associative and commutative, and its unit isp0 (R
contains all the positive rationals).

Finite limits — meets — are given by right adjoints to the finite diag@ngB o] - [0,00] M.
Specifically, for n = 0 we have a top point 0, and for n = 2 we have [fmﬁ: 2. [<0,_oo] :
Rmax()(,y): RX N Ry

Similarly, finite colimits are given by left adjoints to the finite diagonals. The nullary jon is
(Reo = @), and binary join is min, fin(x,y) = Rx O Ry. However, since a locale always has directed

joins, we actually have arbitrary joins (numerical infJ@ro] : Rinf x = Uxox Rx.
The need to work with extended reals, i.e. includmgs a minor nuisance, but seems
constructively unavoidable if we are to give meaning to the empty infs that arise in connection wit

empty metric spaces. Of course, for the usual constructivist reasons, it would be quite wrong to
to exclude these empty metric spaces.

< . .
Morally, of course]0,»] should be monoidal closed. However, the monoidal hom can't be
defined as a continuous map, for it would have to be contravariant in one argument. It would be

interesting to know whether the closedness can still be expressed somehow in this localic setting
fortunately it seems that we can manage without having it as an explicit piece of structure.

Definition 3.2 A metric space is a set X equipped with a map £ X [<(roo] satisfying

e dx,x)=0
* d(x,2) = d(x,y)*d(y,2)
 d(x,y) = d(y.x)

We do not assume that d(x,y) = 0 implies x = y: in other words, we are really defining a
pseudometric space. However, the omitted property does not arise naturally in the enriched categ
setting, and makes no difference to our theory of completion. Therefore we drop it without bothel
to write “pseudo” everywhere.

If the symmetry axiom is dropped, then we hageas metric space. Much of the general theory
works in the quasimetric case (as Lawvere pointed out).

We shall call the metric space, or quasimetric space, —

* finitary iff d(x,y) is finite for every X, y;
« Dedekind iff d factors via [Ow] — [0,09] .

There are geometric theories of quasimetric spaces. The trick is to replace d by a ternary rel¢
a subset of XXxQ,.. We shall write this relation using the suggestive notation “d(xgy) €hen
the axioms are —
d(x,y) <e Oe<¢'F d(xy) <¢'
d(x,y) <¢'F [E. (d(x,y) <e Oe<¥)
F d(x,x) <€
d(x,y) <d 0d(y,z) <e F d(x,z) <d+e

and, for metrics (symmetric), —
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d(x,y) <e F d(y,x) <e

(The first two of these express the fact the d(x,y) is a poi[fﬁ] , and the last three express the

conditions given in Definition 3.2.) In the case of Dedekind spaces, we should also need a secol
ternary relation “d(x,y) ¥". From the geometricity, it follows that there are toposes classifying the
various kinds of spaces, in particular [MS] and [QMS] for metric or quasimetric spaces.

Given a metric space, the functions M as in Proposition 1.1 are the models of a geometric
theory, using the trick of expressing M by through the relation “Mg) (<€ rational). But since X is
given and Q is geometrically constructible, the theory is essentially propositional and hence prest
a locale. These propositions correspond to the rational open palJsd@hd hence the topology
induced by this locale is the usual one. It follows that we have a localic completion; explicitly, it is
given by

QX =FrBg(x) (x O X, € 0Q,) | Be(x) < Bg(x) (€ <€)
Be'(X) < Ve<e' Be(X)
Bs(X) < Bs+e(y) (d(x,y) <¢)
Bs(x) O Bg(y) < V{true: d(x,y) <o+e}
true< Vy Bg(X) O

Classically, by Theorem 1.4, its global points are in bijection with those of the completion by
Cauchy sequences. Moreover the frame, generated by rational open balls, puts the right topolog
those points. This leaves open the issue of whether the locale is spatial, but, leaving that aside,
now have a localic completion pfetric spaces X.

We shall not exploit this possibility here, but by using the generic metric spsftéShwe get
a locale over [MS] (i.e. a localic geometric morpism to [MS]) that is in effect the generic localic
completion.

In the next section, we shall see how to extend the construction to quasimetrics.

4. Enriched categories and flat modules

We follow with a quick exposition of how the module language (of ringoids, i.e. categories enrict
over Abelian groups) applies to metric spaces (treated as enriched categories following [11]), an
particular leads to a notion of flat module. The material here applies easily to quasimetric spaces.
we shall therefore express it in that generality.

For the rest of this section, let X be a quasimetric space. For reasons of notational slickness
shall frequently write Xy for the distance d(x,y) in X.

Definition 4.1
() A right module over X is a map M: X [6,7.1 (we shall often write Mrather than M(x))

such that M+Xyxy > My. These form a locale, Mod-X, in which the specialization order is
the pointwise reverse numerical order.

(i) A left module over X is a right module over©R, in other words a map M: X [0,c0]
such that Xy+My > My. We write X-Mod for the locale of left X-modules.
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Proposition 4.2 Mod-X is a localic distributive lattice with meet and join given by pointwise
numerical max and min. ]

Some important examples are tlepresentable modules:. if x [ X, then X is the right module
given by (X-)y = Xxy, and Xy is the left module given by (X)y = Xyx. We thus get two maps,
one from X to X-Mod and one from X to Mod-X. One of them (it's a matter of opinion which, but
we shall choose X-Mod) should be thought of as the Yoneda embedding.

If M is right module, then so sOM for any pointA of [m , defined by ALIM), = A+M,.
This gives a continuous map

0: [0.00] X Mod-X — Mod-X

Similarly if M is a left module, then we write N\, giving a map from X-Mod[m to X-Mod.

Definition 4.3
() Let M and N be right and left modules respectively. Then taesor product MO xN is
infx(Mx+Ny), giving a map

Ox: Mod-X x X-Mod - [0,0] .

(i) A left X-module M isflat iff the map ElxM: Mod-X — [0,0] preserves finite meets.

Note that £1xM preserves the nullary meet iftikM = 0, i.e. inf, M, = 0. If X is finitary (no

infinite distances), then this condition in itself is enough to show tht M too is finitary: for if we
choose z so that Mk 1, then for any x we have M X,,+M, < X, +1, which is finite.

Proposition 4.4 M Ox X_y = My, and X% Ox N = N.
Proof M Ox X_y = infx (Mx+Xxy). By the module law this &8 My, but by choosing x =y we can
attain that lower bound. |

From this it is plain that representable modules are flat.

Proposition 4.5 Let M be a left module. Then the following conditions are equivalent.

() —x M preserves binary meets.

(in) For all upper reald andy, inf; (max@+Xxz, U+Xyz) + Mz) £ maxQq+My, u+My).

(iii) For allrationals A and, inf; (maxQ+Xxz, U+Xyz) + Mz) £ max@q+My, u+My).

(iv) For all X, yJ X and rationalst andp, if My <a and M, <3 then there is some z for
which d(x,z) + M, <a and d(y,z) + M <.

(v) If m =1 and for each i, ¥ i < m, we have xJ X and M(%) < a; [ Qs+, then there is

some z for which for all i, d{xz) + M, < q;.
Proof
@ O (i: For any x, yl1 X, we must have
AOXx- OpuOXy)Ox M = AOXxOxM OpdXy-OxM
= maxQ+My, u+My).

But the left hand side of this is justirfnax®+Xxz, u+Xyz) + My).
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@y d (): Let N and N' be right X-modules, so we want to show thalNNJIxM = (NOxM)
O (N'OxM), i.e.

infz (max(N;, N'z) + Mz) = max(ing(Nz+Mz), inf(N'z+Mz))

The= direction is obvious. Fag, we see that the right hand side isy(hax(Ny+My, Ny+My)),
SO we must show that for every x and y we have

infz (max(Nz, N'z) + Mz) < max(Ne+My, Ny+My)

But max(N,, N'7) + Mz < max(Ne+Xxz, Ny+Xyz) + Mz, so we can apply condition (i) with=
Nx, 1 = Ny.

(i) = (ii): [ is a fortiori. Forl], use the fact that any upper real is the inf of the rationals
greater than it.

(i) O (iv):  If My <a, My < then max@+My, a+My) < a+{3, so there is some z with
B+Xxz+tMz < o+B, a+Xyz+Mz < a+f.

(iv) O (i) If max(\+My, p+My) < g then for some, B we have M <a, My <[, A+a < q,
H+B < g. Find z with Xz+Mz < a, Xyz+Mz < [3; then LHSS max@Q+Xxz, U+Xyz)+Mz <
max(+a,u+p) < g.

(iv) = (v): O is afortiori. We prové] by induction on m. If m = 1, then we can take z= x
Suppose nz 2. By induction we can find z' such that g&) + M, <a; (1<i< m-1). It follows
that for each i we can fing ands;' such that d(x z') <y;, M, <¢&;' andy;+¢;' < ;. Lete' = min
g;'. Now by (iv) we can find z such that ¢{xz) + M, <a,, and d(z', z) + M<¢€'. Then for I<i <
m-1 we have d{xz) + M, < d(x, z') + d(z, z) + M < d(x, Z') +€' <y;+g;' < q;. 1
Theorem 4.6 A left module M is flat iff it has infM, = 0 and satisfies any one of the equivalent
conditions (i)-(v) in Proposition 4.5|

We write XsMod and Mog-X for (respectively) the locales of flat left and right modules of X.
However, we shall generally abbreviatgMed to X .

From 4.5 (v) we can deduce that the propositions<M form a basis for the topology of1 (in
effect they’re the open ballss&)): for a conjunctiom\1<j<yy M(X;) <0 is a disjunction of
propositions M < € such that for each i theregs with d(x, z) <¢;' andg;'+e < a;.

We shall often treat points & straightforwardly as the maps M, but it is also useful to treat
them via the relations “M< &”. In doing so, we shall use the following language.

Definition 4.7 We introduce the symbol ‘#x)”, a “formal open ball”, as alternative notation for
the pair (x9) (x O X, d O Q,), and write

Bs(X) < Be(y) iff d(x,y) +e<d

This formal relation is intended to represent the notion that {z: d(ygk)s<contained in {z: d(x,z) <
0}, with a bit to spare:
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4G,

Note that if B(x) < Bg(y) then B(y) is thesmaller ball: this is because < is being used as an
information ordering — high in the order means more precise. We shall say(fhateBnes Bx(x).

In these terms, 4.5 (v) can be understood as saying tHa€ in
i Bai(Xi) = V{Bg(2): Li. Bqj(xi) < Be(2)}

Proposition 4.8 A point of X can be represented as a subset M>@Xsuch that —

0) Bs(X) O M < Bg(y) O M for someBg(y) > Bx(x)

(i) If Bo(x) and By(y) are both in M, then so is somg(B) with By (x) < B(z) and B(y) <
Be(2).

(iir) For everyd in Q, there is some x with £x) L] M.

Proof

A map from X to[<0,_oo] is equivalent to a subset M okR. such that
Bs(x) OM = [E<3J. Beg(x) O M.

This condition is implied by (i), using the fact that
Be(y) > Bs(x) O € <d 0 Bg(x) > Bs(x),

and it also implies thel direction of (i). However, theél direction of (i) is a direct translation of the
module law: for Xy+My < d iff there is some for which Bs(x) < Be(y) O M. We thus see that left
X-modules are equivalent to subsets &fQ4 satisfying (i). Then (iii) holds iff inf My = 0, and (ii)

is equivalent to 4.5 (iv). ]

This presentation leads to a useful embedding. Recall [17] toatiauous information system
is a set D (ofokens) with a transitive, interpolative order < (so<<= <). Then its rounded ideal
completion RIdI(D) is a continuous dcpo. Now the order < just definedx@n X6 transitive and
interpolative.

Definition 4.9 Theball domain Ball(X) is the rounded ideal completion of X®., <).

A point of this is a subset of¥Q. satisfying the conditions of 4.8, except that (iii) is weakened to
inhabitedness of M (fasome d there is x with B(x) O M).

HenceX is (homeomorphic to) a sublocale of a continuous dcpo Ball(X). This is obviously
related to the continuous dcpo of “formal balls” used in [2], though the spatial construction there i
constructively inequivalent to ours.
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Given the unspatial direction of the ordering oxQX (big balls are small for <), it is

conventionally more natural to think of the rounded ideals as filters of balls, and then the p¥ints c
are the Cauchy filters, those that contain balls of arbitrarily small radius.

We conclude this section with a result that expresses the usual dense embedding of a metric
space in its completion. For constructivist reasons we use the notion of “strong density” that is
defined in [8]. From the definition there it is not hard to see that a map.fHls strongly dense iff
for any proposition ol Q, and a QE, if Qf(a) < Q!(p) then a< Q!(p). (! denotes a unique locale
map to 1. Classically, p is eithiue or false. true contributes only trivially to the definition, and
false gives the definition of density.)

Proposition 4.10 The Yoneda embedding X - X, 91X) = X_,, is strongly dense.

Proof

Suppose al QX . Without loss of generality we can take a to be a basic ogah B9(B¢(x)) is
the set {yIX: Xy <¢€}. This contains x, so i29(Bg(x)) < Q!(p) we deduce that X Q!(p) =
U{X: p} and so p (is true). & Q!(p) is then immediate. |

5. Examples

5.1 Some dcpos

Example 5.1.1 Flat quasimetric completion subsumes ideal completion
Let (P,<) be a preorder, and define a quasimetric d on it by

d(x, y) =inf {0: x< y}

ThenP is homeomorphic to Idl P.
Proof Suppose N is a flat left module over P. The module property tells us thayithen N, <

N,.
’ We claim that if N is finite, then it is 0. For supposg Ma O Q. If € > 0, then we can find y
such that j <€, and then z such that d(x,z)3K a, d(y,z)+N, <e. Since d(x,z) <, it follows
thata 0 U{Q,: x< 2z}, sox<z,s0N <N, <e. Hence N =0.

Now let | = {xOP: N, < 1}. It is easy to see that this is an ideal, and what we have just showr
proves that ) = inf {0: x O I}. Conversely, if | is any ideal, then this definition of N gives a flat left

module for which XJ 1 iff N < 1, and putting this together gives the bijection between ideals and
flat left modules. |

Example 5.1.2 Let the rational® be equipped with a quasimetric d(x,y) = ¥ = max (0, x-y)
(truncated minus). Then its left flat completion is homeomorphic to the rounded ideal completion

Q, which we may write abootoo] |
Proof Let N be a flat left module ove€X d). From the module property, we get that & x then

Ny < Ny < Ny + (y =X)

We claim that if N, <a, then N_ = 0. For ife > 0, then we can find y with|\< €, and then z
with (x =z) + N, <a and (y-z) + N, <&. Hence x-z <0, so x-et <z and N_, < N, <Ee.
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Now define | = {XQ: (X'UQ. x < x" and N = 0}. Clearly | is rounded lower; it is also
inhabited, for if we choose x withy\ 1, then N_; = 0 and x—27J I. Hence | is a rounded ideal.

Furthermore, for all x we have,N inf {x = y:y Ul I}. For <, ify O I then N < (x =y) + N, =
x~y. For2, suppose N<a. Then N, <a'<a for somea’, Ny_o =0, and xa 0O I; x ~ (x—0) =
a.

Conversely, if | is any rounded ideal, then defining=Nnf {x - y: y [I I} gives a flat left
module. The only part of any intricacy here is whgndt and N, <. We can then find;zand 2
in | such that x -z; <a and y—z, <. Taking z to be max (zz), we find (x=z) + N, <a and (y
~z) + N, <. Furthermore, we havelX | iff there is some x' > x with N= 0. ForQ , if x O |
then x < x'00 | for some X', and N = 0. For[J , since xX'—x > 0, we can find(z | with X' ~z<

X'-X, so x< z and xJ I.
Putting all these together we get that flat left modules are equivalent to rounded]ideals.

5.2 Completion of metric spaces

For this section, we take X to be a metric space. In this symmetric case, we can simplify the
characterization of flathess somewhat. This will complete the connection with Theorem 1.4, for
condition (ii) in 5.2.1 corresponds to condition (ii) in Proposition 1.1. In other words, in the metri
case, the flat completion of Section 4 is the same as the completion mentioned at the end of Sec

Theorem 5.2.1 Let M be a module over X for which inM, = 0. Then the following are
equivalent:

() M is flat.

(i) O%,y:X. Xyy < My+My,

(iii) Ox,y:X. infz (Max(X«z, Xyz) + Mz) < max(My, My)
Proof

() (iii): (i) states that ElxM preserves binary meets rapresentable modules. Note that the
Theorem is showing that this is sufficient for flatness in the metric case; in the quasimetric genere
of 4.5 (ii) we needed modules of the fohii Xy_.

(i) OI (i1): This is the hard part. We shall use a lemma; for it we shall presume (iii) as hypothesis.

Lemma 5.2.2 Suppose N < d. Then for all x we have y < Mx+My+20.
Proof
We first prove by induction on n the following:

On. Ox. Og. (Mx < g0 (3/4)'g< 20 » Xxy < My+My+20)

Suppose we have such n, x and g. Suppose in addition hagMand M < o'; we must show that
Xxy < +0'+20. Without loss of generality we can replace g' by min(q',q) (so thaf'¢3#2d)
andd' by min@, 9), and thereby take it thatg'q andd' < &. Since max(M, My) < max(q',d)),
we can find z such that(+M; and X,-+M; are both < max(qQ’).

If g' < 20, then Xy < Xzx+Xzy < 2 max(q'd’) < q'+0'+20 as required.

Otherwise, g' > @ Then max(q'd) = q'. My < Xzy+My, so

2:M; < My+Mz+Xy; < My+q' <3+q' < 3q/2



18

and so M < 3q'/4. Hence by induction, (< Mz+My+29, so
Xxy < sz+XZy < sz+Mz+My+26 < q'+6'+26

Returning now to the main statement of the Lemma, suppose without n and g that we kave |
g and M, < d'. For some n we have (3/d) < 2, so by our inductive result we haveys
Mx+My+25. This completes the proof of Lemma 5.2.2. ]

Returning now to 5.2.1, let x and y be arbitrary and suppgse ¢fland M <r. If 3 > 0, choose z
such that M < min(,q,r). By the lemma we havegXs My+Mz+20 < g+, Xyz < r+3), so it
follows that Xy < q+r+&. Sinced was arbitrary, Xy < g+r, S0 Xy < Mx+My,.

(i) O (i): A+Xxz+Mz < A+My+2Mz, andu+Xyz+M; < p+My+2M;. Hence

infz(MaxQ+Xxz, P+Xyz)+Mz) < infz (maxQ+My, p+My) + 2Mz) = max@+My, p+My)
]

A notable fact about completion in the metric case is that we can put a méfrimasimple
way.

Proposition 5.2.3 Let X be a metric space. By symmetry Mod-X and X-Mod are homeomorphic

so the tensor produtt: Mod-X x X-Mod - [0,,] restricted to the flat modules gives a map d =

0: X x X = [0.] , d(M,N) = inf, (M()+N(x)).

0] d satisfies the axioms for a metric.
(i) The Yoneda map: X - X is an isometry.
Proof

(i) Symmetry is obvious, and d(M,M) = intM(x)+M(x)) = 2 infy M(x) = 0. For the triangle
inequality, suppose d(L,M) & and d(M,N) <@3, so we want to prove d(L,N)e&+p3. We can find
X, a1 andaz such that L(x) <01, M(X) < a2 andaj+az <a, and y,1 andf2 such that M(y) <
B1, N(y) <B2 andp1+p2 <. Choose z such that d(x,z)+M(z)s and d(y,z)+M(z) 1. Then
L(z)+N(z) = L(x)+d(x,2)+d(y,2)*N(y) <ap+az+B1+p2 <a+p.

(i) d(X—x,X—y) = Xxy (by Proposition 4.4) = d(x,y). ]

Next, we show that, at least in the metric case, there’s a sense in which our completion reall
does complete.

Proposition 5.2.4 Let X be a metric space, and let X' be the set of poin¥ @he construction

of X' is not geometric, but it is intuitionistically constructive), equipped with the metric arising fron
5.2.3. Then Xis homeomorphic tX .

Proof

Let K be a flat module over X'. We show that for every M in X', K(M) % (i(X_x)+M(X)). <

comes from the module property of K, for M(x) = d(M,,X For=, suppose K(M) < We can find

€' <g such that K(M) <', and x such that M(x) <£€')/2; then K(X_x)+M(x) < K(M)+2M(X) < €.

It follows that a flat module over X' is determined by its restriction to .
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5.3. Dedekind sections
In this section we present the relationship between two different completions of the rationals: by
Dedekind sections, and by flat modules as in Section 4. They are in fact equivalent, though the

is surprisingly intricate. This arises from the fact that the two constructions are quite different. A
Dedekind section relies heavily on the orderin@ptlescribing which rationals are bigger than a

given real, and which are smaller. The modules, on the other hand rely entirely on undirected
distances.

Definition 5.3.1 A Dedekind section is a disjoint pair (L,R) of inhabited subsets of the ratio@als
such that L is rounded lower, R is rounded upper, and if q < r then eitheray r [ R.

This is the usual definition of the reals, as in [6]. However, there the following lemma is
incorporated into the definition.
Lemma 5.3.2 If (L, R) is a Dedekind section and <] Q, then we can find @ L, r 0 R such
that r—q <¢.

Proof
We can take @] L and g O R (for both are inhabited), and then use induction on natural numbers

for which lo—0p <€.2". For the base case, we can take @, ¢ Ip. For the induction step, lets
qo+(r0:170m| (O<si<4).WehaveslOLorg[OR,ands0LorsgR. Thenif 3R we can

defineq =g, n=9;ifsp0L,defineq=9,n=rgandifg 0L, 30R, defineq=s, 1 =

s3. ThengqUOL, rnOR, n—q = @ <e&.2"-1and the result follows by induction. |

Theorem 5.3.3 R, the locale of Dedekind sections@f is homeomorphic to the completion@f

as (finitary) metric space.
Pr oof

If (L, R) is a Dedekind section, then we can define a ma@M: [m (which in fact is always
finite) by
M(x) = inf{e: x+¢ 0 R and x€ O L}

To show inf M(x) = 0, suppose > 0 and choose [ L, r [J R such that r—q <€2 Then M((g+r)/2)

<e&. To show M(x)< M(y)+d(x, y), suppose M(y) €. Without loss of generality (since the order
onQ is decidable), we can take>xy. Then

X—€—[x=y| = x€Xx+y =y-€ L

x+et+|x—y|=y+e O R
so M(x) < e+d(x,y). To show d(x,yx M(x)+M(y) (as in Theorem 5.2.1), suppose M(xp and
M(y) < . Again, without loss of generalityxy. x-0 O L and y+€ [ R, so x-® < y+¢, and d(x,y)
= X-y <Ote.

Now suppose M is an arbitrary map satisfying the properties. We define L and R by

rdR iff O <r. M(r') < r—r'

gOL iff 9" > g. M(q") < gq'—q
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The idea here is that r is bigger than a &g#flsome rational r' smaller than r is closegtthan to r.
(Obviously this is impossible ifs €.)

We must show that these give a Dedekind section. Choose s such that M(s) < 1; fiéh s+1
Hence R is inhabited. It is clearly upper. To show that it is rounded, suppdRenwith
corresponding r'. Then M(r') < r—g<or somee > 0. 0 < r-r'g, so r' < r€ and it follows that re
O R. Similarly, L is inhabited rounded lower.

To show L and R are disjoint, supposéld.nR with r' < q < g, M(r') < g—r' and M(Q') <
g'-qg. Then q'-r' < g—r'+g'—q = q'—r', a contradiction.

Now suppose g and r are any rationals with g < relze{r—q)/3, and find s such that M(sg<
We have ¢ < r-¢, so either s < ig-0r s > €. Suppose the former. M(s)essor > s¢ [ R.
Similarly, if s > g+ then g L.

We have now shown that (L, R) is a Dedekind section.

Lemma 5.3.4 M(X) <€ = x+¢ 0 R and x€ O L.

Proof

[0 : We can fince' < € such that M(x) <'. x—€ < x—¢€', so either xe[J L or x€' O R. In the latter
case, we have r' < g~with M(r') < x-€'—r'. Then x—r< M(X)+M(r') < €'+x—€'-r', a
contradiction. It follows that in either caseeX3 L, and similarly x€ [0 R.

[0 : We first prove a sublemma:

Lemma535IfqOL, rOR, r—gq <d and g x < r, then M(x) <d.
Proof We can find g < gJ L and r > rlJ R. Lete = min(q'—q, r—-r')/2, and choose s such that
M(s) <&. By the first part of 5.3.4 we havees2 L and s [0 R, so ' < s¢ and s€ <r'. Hence

g<g-ZX<s€<S<sSE<r+z<r

If s= x then s—x s—q = (—q)—(r-s) ¥, and so M(x) <+(d—€) =, and similarly if < x. This
completes the proof of Lemma 5.3.5. ]

Returning to 5.3.4, we can firell< € such that x¢' 0 L and x#' O R. Consider the elements
x—€'12 < x < x+€'/2. We have x¢/2 0 L or x[J R, and xJ L or x+¢'/2 [ R. In every case we can

find qO L and rO R such that g x<r and r—q =' <¢, so by 5.3.5 we have M(x) & This
completes the proof of Lemma 5.3.4. ]

We now return to the main theorem. Lemma 5.3.4 has shown us that starting from M, definii
Dedekind section, and then defining a new M from that, we have actually recovered the original ¢
It remains to show that if we start from a Dedekind section (L, R), define M, and then define the
corresponding Dedekind section, we again have the original one. In other words,

rR < [O'<r. (r+(r—r) 0 ROr—(r—r)O L)
qUL = 09>q. (q'+(g—o)X RUg—(q—aq)0 L)
In both parts[] follows a fortiori. Forl, let us consider the first part, concerning R (the second

part is similar). We can find an element r' of L with r' <r. Then r'+(r—r')J=Rand r'—(r-r") <r'
O L. 1
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6. Powerlocales

We turn now to the powerlocale constructions, lowe),(Bpper (i) and Vietoris (V), and show
that the class of quasimetric completions is closed under all three. A summary of the constructiv:
theory can be found in [22]. Quite apart from any intrinsic interest, they are also crucial to the
“topology-free space” approach to locale theory, for they can be used in characterizing certain
important properties. For instance [19] a locale D is open bf Ifas a top point and compact iff

PuD has a bottom point, and we exploit this in 6.1.4 and 6.2.4 (which leads to another proof of t
localic Heine-Borel theorem).

Recall thatQP, D andQPyD are the frames generated freely d€r qua suplattice and qua
preframe respectively, with generators writterasandd a (all QD). VD is the sublocale of
PLDxPyD presented by relatiorsa 1 O b < ¢ (alb) andd (alb)< Dad<b.

In the case of algebraic (or even continuous) dcpos, these three powerlocale constructions ¢
ideal (or rounded ideal) completions can be constructed by defining preorders on the finite powel
of the informations systems [17]. If D is an information system, as defined just before Definition
4.9, and RIdI(D) its localic rounded ideal completion, then the powerlocaisliiD), P RIdI(D)
and V RIdI(D) are also continuous dcpos, with tokens all taken from the finite pow&sbtit
with three different orders: respectively,

« thelower order S ¢ Tiff OsS.O0OT. s <t
» theupper order S g T iff OtOT. 8US. s <t
» theconvexorderS¢TiffS< TandSgT

We show that a parallel idea works for quasimetric completions, defining quasimetrics on the
finite powerset of a quasimetric space. It is clearly reminiscent of the Vietoris metric and its
guasimetric parts, but the information system flavour shows up in the fact that we define it only o
finite subsets.

The ball domain (Definition 4.9) turns out to be technically useful in relating the quasimetric
powerlocale constructions to continuous dcpos.

6.1 The lower powerlocale, Pi

Definition 6.1.1 Let X be a quasimetric space. We defindatger powerspace, 7 X, by taking
the elements to be the finite subsets of X, with distap(®,d) = maxng miny gt d(x,y).

Theorem 6.1.2 # X is homeomorphic to the lower powerloca|exP.
Pr oof
We work by embeddingf; X and R X in two continuous dcpos, namely Bg|lK) and
P_Ball(X) respectively.
A point of Ball(7_X) is a rounded ideal of XxQ,, while a point of PBall(X) is a rounded
ideal of F(XxQy). Let us defingp: FXxQ; - FAXxQ,) by ¢(B5(S)) = {Bs(s): sl S}. We have
B5(S) < B(T) = d (S, T)+<d
= [OsOS.OT. d(s,t)€ <d
- OsOS.OT. By(s) < B(t)
= @B(S)) < ®(Bg(T)).



22

It follows that we get a continuous m@pBall(7 X) — P Ball(X), mapping | tol { ¢(B5(S)):
Bs(S) U I}. @ is not itself a homeomorphism, but we show it restricts to a homeomorphism betw:

A X and RX.
We must identify the points of Ball(X) that lie in R X".

Lemma 6.1.3 Let J be a point of Ball(X). Then the following are equivalent:

(i) JisinRX.

(in) Singletons in J have arbitrarily small singleton refinements: in other words, @ and
{Bs(x)} O J, then there is some {§)} U J withe <a and B;(x) < Be(y).

(iii) if a >0 and U J, then there is somg®) withe <a and U § @B(T)) U J.

Pr oof

Let D — E be an arbitrary locale embedding, witD presented oveRE by relations & b for (a,b)
0 RO QExQE. By a routine application of the coverage theorem (see [22]), we have

QD [OSupLatlQE (qua SupLat) |[& < bl ((a,b)I R, cO QE) O
and it follows that

QP D = Fr[@D (qua SupLat)!
OFr [QE (qua SupLat) |& < bl ((a,b)d R, c QE) O
OFr QP E (qua Fr) K (alk) < ¢ (blk) ((a,b)I R, cO QE) O

In our present case we have X5 E = Ball(X), withQX presented ove@Ball(X) by
relationstrue <V, By(y) (a > 0). Hence, using the fact that thg(8's are a base for Ball(X), we
find thatQP X is presented oveé®P| Ball(X) by relations

©Bg(x) = Vo (Bs(X)Bqy(Y))
= V{<oBg(y'): Bs(x) < Bei(y') ande' <a}

Equivalence of (i) with (ii) now follows, because [17] J satisti(x) iff {B 5(x)} U J.

(ii) O (i) follows a fortiori. For the converse, let J satisfy (ii), and léf J,a > 0. We can
find U < U' 0 J, and by pressing the finitely many strict inequalities involved we can find
such that

OBa(x) U U. [Be(y) O U'. By(X) < B (y)

In addition, we can requing < a. For each By) U U' we have {B(y)} [l J, and so we can find
{Bn(2)} O J withn' <n and B(y) < B,(z'). We can therefore find a finite set U"J with U" ¢
U" and for every B(z') in U",n" <n. Let T be {z[". By(z') O U"}. (B, (T)) < U", so
®By(T)) is in J. Given B(x) in U, find By(y) U U" with Bg(x) < Be4y(y) and By(z) O U" with
Be(Y) < By(2). Then By (Y) < Byin(z') < By(z') and so U g (B (T)). I

Returning to the proof of 6.1.2, suppose we are given | in‘Bad) We see that if | is iF X
(i.e. | has balls of arbitrarily small radius) thg(l) satisfies (iii) in the lemma, s@ restricts to a

map from7_ X to R X. Its inverse is given by 3 ¢~1(J). Note that J @/(¢~1(J)) follows from
6.1.3 (iii). ]



23

Recall [10] that a locale D wpen iff the unique map !: D> 1 is an open map of locales. By
[19] this holds iff R D has a top point.

Corollary 6.1.4 If X is a quasimetric space théf is open (i.e. as a locale).
Proof FXxQ, is a point of X, and hence must be the top point. It follows thaFhas a top
point and soX is open. ]

The lower powerlocale ® always has a bottom point, corresponding to the empty sublocale «
D. For many purposes it is desirable to exclude this and work with the open subjd€al@P
otrue). We show that this corresponds to excluding the empty set from our finite powerspace (re
that for finite sets, emptiness is decidable). Notice that including the empty set had inevitably take
us beyond finitary metrics, for {T,9) = if T # &. (d_(4,T) = 0 always.)

Proposition 6.1.5 The homeomorphism of Theorem 6.1.2 restricts to a homeomorphism betwe
P_L*tX and 7 TX, where the elements of the spagéX are the finite non-empty subsets of X, and
its metric q is as before.

Pr oof

Suppose 00 FXxQ is a point of 7 X. For everye we have B(d) < Bg/2(T) U | for some T. But
{B&(D): € 0 Q4} is already a point off X and hence must be the bottom point, s6X°
corresponds to those | that contain sorg@ Bwith T # @. But once we have some sud{B then
we have arbitrarily small ones, for an upper boug{S} of B;(T) and B(&) must have 8 @ and

a <. The result now follows. 1

6.2 The upper powerlocale, Py

Definition 6.2.1 Let X be a quasimetric space. We definaugper powerspace, F,X, by taking
the elements to be the finite subsets of X, with distap¢8,d) = maygr mings d(x,y).

Theorem 6.2.2 7;X is homeomorphic to the upper powerlocalg<P.

Proof

The proof, somewhat similar to that of 6.1.2, works by embedd{pg in Ball(#,X) and R;X in
PyuBall(X). The same functiop: F XxQ,; - F(XxQ,) preserves and reflects ordeg(8) < B.(T)
(but this time with respect to the upper quasimetrigSdr)+e < 9) iff B(S)) U P(Be(T)). It
follows that we get a continuous m@pBall(F,X) - PyBall(X), which we show restricts to a
homeomorphism betweeh,;X and R,;X . Again, the bulk of the work lies in identifying the points
of PyBall(X) that lie in R, X".

Lemma 6.2.3 Let J be a point of fBall(X). Then the following are equivalent:

(i) Jisin R)X.

(i) J contains elemenggB,(T)) for arbitrarily smalk.

(i) if a >0 and Ul J, then there is somg®) with € <a and U g, @B(T)) U J.
Pr oof

Let D — E be an arbitrary locale embedding, witD presented oveRE by relations & b for (a,b)
0 RO QExQE. By a routine application of the preframe coverage theorem [9], we have

QD OPreFrQE (qua PreFr) |lac < ble ((a,b)U R, c0 QE) O
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and it follows that

QPyD = FriQD (qua PreFr)]
OFr [QE (qua PreFr) |E < bl ((a,b)d R, cO QE) O
OFr [QPyE (qua Fr) B (allk) < d(blk) ((a,b)U R, cO QE) O

In our present case we have X5 E = Ball(X), withQX presented ove@Ball(X) by
relationstrue <V Be(y) (¢ > 0). The c’s appearing above make no differetrage{ic =true), so
we find thatQP X is presented ovéP(;Ball(X) by relations

true< OV Be(y) = VH{OVygr Be(y): T Ugin X}

Equivalence of (i) with (ii) now follows, because J satisfieg'y 1 Be(y) iff @(B¢(T)) U J.

(ii) O (ii) follows easily because J is inhabited (so we can find a U in it). For the converse, I¢
satisfy (ii), and let UJ J,a > 0. We can find U g U' [0 J, and by pressing the finitely many strict
inequalities involved we can fird> 0 such that

OB\(y) O U IBg(x) O U. Bp(X) < Bye(y)
In addition, we can requie< a. Choose S such th@B.(S)) U J, let V' be a common refinement
of U' and@(B¢(S)) in J, and let T = {zIB. By(z) U V'}. If B 5(z) U V' thend <¢, and it follows
that@(B(T)) U J. If Bs(z) U V' then we can find &y) [ U and By(x) U U with B(y) < By(2)
and Bz(x) < By¢(y), and so B(X) < Bg(z) < Be(2). It follows that U g @(Bg(T)). I

Returning to 6.2.2, suppose we are given | in Bgl). If 1 is in 7,X (i.e. | has balls of
arbitrarily small radius) theqi(l) satisfies (ii) in the lemma, 3p restricts to a map from X to
PyX. Its inverse is given by 3 ¢-1(J)]

Corollary 6.2.4 Let X be a quasimetric space. Th¥nis compact iff X is totally bounded, i.e.
for everye > 0O there is some finite.cover, i.e. some S, X such that for every x in X there is an
S in S with d(s,x) <.
Proof By [19], a locale is compact iff its upper powerlocale has a least point, so by 6.2.2 we see
thatX is compact ifff ;X has a least point.
O : Let K be the least point @i, X. If € > 0, we can find S such that®) O K. If x O X, then we
have a point off X comprising those §U) for which there is some u in U with d(u,xp<Since
K is the least point, it follows that85) is in this other point and so for some s in S, d(sg) <
Hence X is totally bounded.
[0 : We define K to contain 8S) iff for somese' <¢, S is are'-cover. To show that this is a point of
FuX, most of the parts are easy. [fiSana;'-cover,a;' <q; (i = 1,2), let T be an/2-cover where
aj'+e <q;. d(§,T)+e <aj, and B(T) U K.

Now let M be another point f ;X — we must show K M, so if S is arg'-cover (so for all T,
dy(S,T) <¢) with €' <g, we want B(S) [ M. Letd =¢—¢', and choose T such thag@) [ M.
Then B(S) U M. It follows that K is the least point. ]

As a corollary, we get a new constructive proof of the localic Heine-Borel theorem [3].
Incidentally, this is an illustration of the disadvantages of trying to use point-set topology
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constructively. In any geometric universe we can construct (non-geometrically) a real number obj
R, the set of points of the locake then we can construct (again non-geometrically) a spatial locale

“spatial reals” whose frame is the subframefgfgiven by the usual topology. But then the subspac
[0,1] is not in general compact [4].
Theorem 6.2.5 (Heine-Borel Theorem)
If x and y are reals, then the closed interval [x,yRiis compact.
Pr oof
It is not hard to show that [0,1] is homeomorphid®@I)n @, after which its compactness follows
from 6.2.4, and a similar technique works for other closed intervals. However, we shall use a
different method that also shows that [x,y] depends continuously on x and y. We shall first define
map H-B:RxR - PyR which, by 5.3.3 and 6.2.2, is homeomorphict. The points of BR
are equivalent to compact fitted sublocaleR¢22], and we then show that a point ZRofs in H-
B(x,y) (i.e.1z = H-B(x,y) wheret is the unit of the § monad — see [19]) iff ¥ z<y. This will
complete the proof that [x,y] is compact.

Suppose x and y are reals. We define H-B(x,y) as a point @t if S Usin Q, then M(S) is
inf{ €: {B¢(s): s S} covers [x,y]}, where we say that a finite set of balls (i.e., here, rational open
intervals) covers [x,y] iff either y < x or if we can find a finite list of ballg,(8): 1<i < n) from
the set, with < < ... < &, 51—€1 0 Ly, S+& > §+1-€j+1 (1< i< n-1) and g+ten O Ry. Thisis a
geometric construction, and a little calculation verifies that it is indeed a pa@ip€f

Now we have thatz = H-B(x,y) iff whenever {B(s): sUJ S} covers [x,y] then z is in &s)
for some s in S (i.e. s-£1 Lz, s+ [0 Ry, by the proof of 5.3.3). Suppose this holds. We wish to
show x< z (i.e. that (x,z) is in the closed complement of the open sublocal®3),afo suppose z
< x. We can find a rational q inRLy, after which it is not hard to find a cover of [x,y] that lies
wholly in R, — a contradiction. Similarly, 2 y. For the converse, suppose thatx< y and {B(s):
s S} covers [x,y]. If y < x we get instant contradiction. Otherwise, suppose we have a(st (B
1<i<n)as above. We have-s [1L; and g+€ [0 R, and for 1< i < n-1 eithergi1—<€ O L, or
s+€ 0 R,. It can be deduced that z is in som¢sh. 1

(I conjecture that, at least in the case wheryxit is possible to strengthen the construction H-
B by defining H-B(x,y) as a point in the Vietoris powerlocalERwWescribed in Section 6.3.)

Just as for the lower powerlocale, we can “exclude the empty set”, which in the upper
powerlocale corresponds tdaap point. Excluding this gives us a closed sublocg/tlP(the
complement ofafalse). Again, including the empty set had taken us beyond finitary metrics:
du(@,T) = if T # .

Proposition 6.2.6 The homeomorphism of Theorem 6.2.2 restricts to a homeomorphism betwe
PutX and 77X, where the elements of the spaggX are the finite non-empty subsets of X, and
its metric @) is as before.

Pr oof

Identifying points off ;X with certain subsets | g XxQs, it is clear that the top point is the whole
of FXxQ+. Now suppose a point | containg(8) for somee. For anyd it will contain some

Bs(S), and hence an upper boung{B) for Bs(S) and B(d). But B(9d) < By(T) implies d)(3,T)

is finite, and hence that T = &; and since aisod we deduce that$d) [J | for everyd and hence
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| = FXxQ4. We deduce that the points of X are those | containing na:@), and the result
follows. ]

6.3 The Vietoris powerlocale, V

Definition 6.3.1 Let X be a quasimetric space. We definedisvex powerspace, X, by taking
the elements to be the finite subsets of X, with distap8,d) = max(d(S,T), d,;(S,T)).

Note that if X is actually a metric space, then sgdX: for d, (S,T) = q,(T,S).

Theorem 6.3.2 7cX is homeomorphic to the Vietoris powerlocaleXV.

Proof

Again, we embed7-X in Ball(/cX) and VX in V Ball(X). The same functiom: FXxQ, —
HXxQ,) preserves and reflects order: we hageSB< B.(T) (but this time with respect to the
convex quasimetric) iff(B5(S)) <c ®(Bs(T)). It follows that we get a continuous m@pBall(7c-X)
- V Ball(X), which we show restricts to a homeomorphism betwgefiand VX'. Again, the
bulk of the work lies in identifying the points of V Ball(X) that lie inX/.

Lemma 6.3.3 Let J be a point of V Ball(X). Then the following are equivalent:

(i) JisinVX.

(i) J contains elemenggB,(T)) for arbitrarily smalk.

(iii) if a >0 and U J, then there is somg@) with e <a and U < @(B(T)) U J.
Proof

Again, let D - E be an arbitrary locale embedding, witb presented oveRE by relations & b
for (a,b)0 R O QEXQE. Combining the calculations of 6.1.2 and 6.2.2, we get

QVD = Fr QD (qua SupLat)Q2D (qua PreFr) |
OdO¢e< < (dle), 0(dle)< OdO¢ed
OFr QVE (qua Fr) K (ak) < ¢(blk), O(alk) < O(blk)
((a,b)0R, cOQE)O

In our present case, these relations reduce to

©B(x) < V{0 Bge(y): Bs(x) < Be(y') ande' <a}
true<s VH{OVynr Be(y): T Usin X}

However, given the second, we have the first (in fact they are equivalent): for

©Ba(x) = VI{¢Ba(X) IOVt Be(y): T Ugin X}
< VOBV yar Be(Y)): T Usin X}
= Vyox <¢(Ba(x)OBg(y)) < RHS of first
From [17] we see that J satisfiesv/ 1 Be(y) iff it contains@(B¢(T")) for some TUg, T. The
conditions therefore reduce to (ii).

(i) O (i) is easy. For (iid (iii), suppose U] J; choose U' with U<U' 0 J, andn >0
such than <a, OBg(x)UU. [Bg(y)UJU'". Bg(X) < Bein(y) andB(y)LU". [Bg(x)LU. Bg(x) <
Be+n(y). Find S such thap(B,(S)) U J, and let V be a common refinement of U g(®},(S)) in J.
Then, much as before, we see that if T =[{3: Bg(z) U V} then U <c ¢(B(T)) <c V. 1
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Returning to 6.3.2, suppose we are given | in Bgi). If I is in 7oX (i.e. | has balls of
arbitrarily small radius) theq(l) satisfies (iii) in the lemma, sg@ restricts to a map from:X to V
X. Its inverse is given by 3 ¢-1(J). |

Again we can “exclude the empty set”, which in the Vietoris powerlocale VD is neither bottom
nor top, but is isolated. Excluding it gives us a clopen sublocdle(¥trueis now the complement
of Ofalse).

Proposition 6.3.4 The homeomorphism of Theorem 6.3.2 restricts to a homeomorphism betwe
V+X and7-*X, where the elements of the spageX are the finite non-empty subsets of X, and
its metric ¢ is as before.

Pr oof

If B3(S) < B(T) then &(S,T) is finite, and it follows that S and T are either both empty or both
non-empty. ldentifying points ofcX with certain subsets | gf XxQ4, we therefore see that either

| = {B¢(D): € O Q4} (which corresponds talfalse) or | contains only balls £T) with T non-
empty (corresponding totrue). The result follows. ]

7. Cauchy sequences
We continue to deal with a quasimetric space X.

Definition 7.1 [14] A sequence @non in X is forward Cauchy iff for every rationak > 0 there
is some NI N such that whenever &im < n we have d(y, X,) <€.

(It is backward Cauchy iff it is forward Cauchy in XP, i.e. in the above definition we have
d(Xn, Xm) instead of d(¥, Xn).)

For a geometric theory of Cauchiness, it has to be structure, not just property — the modulus of
convergence (the dependence of Nephas to be supplied explicitly. We shall make do with a fixed
canonical rate of convergence:

A forward Cauchy sequence,phascanonical convergence iff whenever N m< n we have
d(Xm, Xp) < 27N; it suffices to have dg, Xm) < 2-M for all m, k.

We write Cauchy;(X) for the locale of forward Cauchy sequences in X with canonical
convergence. Henceforth, we shall tacitly assume that all forward Cauchy sequences mentioned
canonical convergence.

Proposition 7.2 There is a map lim: Caucf{)X) — X such that if () is forward Cauchy, then
lim x, is defined by

(im xp)x = infy (d(X, X)+27")

Proof To show that lim xis indeed flat, let us write L(x) = (lim¥,. First, inf, L(z) is O, for L(%)
< d(X, X) + 27 K= 2K Next, suppose we have x and y in X with L(xxand L(y) <B. Then we
can find natural numbers k and | and ratiorealand' such that

d(x, %) + 2k<a'<a and d(x, x) + 2 <p'<B

Now choose 2 max(k, I) such tha'+2"< a, f'+2-"< 3. Then
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d(X, Xy) + L(xp) < d(x, %) + d(x, Xp) + 27"
<d(x, %) + 2K+ 2N<qa' +2N<q

and similarly d(y, x) + L(x)) <B. ]
This would more normally be constructed as liiax, %,) = sug infhsn d(X, %,). This is

constructively difficult in[<0,To] (we don't have sups), but they are classically equal. To show
inf(d(X, X,) + 2 = supy infsn d(X, X,), we must show for every m and N that

d(x, Xp) + 2M > inf >N (X, %)

If m >N, then take n = m. If m < N, then
RHS < d(X, xy) < d(X, Xpn)+d(Xm, XN) < LHS.

For the reverse inequality, we must show that for ezery there is some m such that
d(X, Xp) + 2M < supy infrsn A(X, %) + €

Choose N such that® < /2, and then choose BN such that d(x, x) < infsn d(X, %,) +€/2.
We then have that d(x,J + 2M < inf>N d(X, X,) + €.

Our aim now is to show that lim is a surjection. However, there is little point in showing mere
that a map between locales is surjective, for surjective maps in generality are not well behaved —
preserved under pullback, for instance. One would normally hope to show that a surjection is eitl
open or proper, but in general lim is neither.

Example 7.3 Consider X ZQn(-2,2). First, it is not too hard to show that its completion is
homeomorphic to [-2,2]. (The proof is numerically slightly intricate; what is required is to show th:
for a real in [-2,2], its open neighbourhoods are determined by those centred on rationals in the
interval (-2,2).)

Now consider the open sublocale of sequenggsdrprising those for whichpx= 0. If such a
sequence has limit x, then x is in [-1,1] — for

d(0,x) = inf (d(0,%)+2-1) = inf; (d(xo,x)+2-) < inf (1+27) = 1

But — classically at least — every real in the interval [-1,1] is the limit of such a sequence starting
so [-1,1] is the direct image under lim of an open. It follows that lim is not an open map.
But neither is it proper, for inverse image under proper maps preserves compactness. [-2,2

compact, but CauclfX) is not — it is covered by the open setg$xq) for g in X, but there is no
finite subcover. (This argument was shown me by Till Plewe.)]

Nonetheless, we shall show that limrigjuotient. This class of localic surjections was proposed
by Plewe [13], who has proved that it is pullback stable, that it includes both open surjections an
proper surjections, that triquotient maps have effective descent, and that any triquotient map is tr
coequalizer of its kernel pair. From this last property we see in effect that the completion is got frc
the locale of Cauchy sequences by factoring out an equivalence relation, though a direct constru
this way would be problematic. (I conjecture too that triquotient maps have a key role to play in o
synthetic reasoning [19], unifying the “lower” and “upper” flavours.)

Definition 7.4 [13] A map f: X - Y is triquotient iff there is a functionf QX - QY (a
triquotient assignment) such that —
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() f4 preserves directed joins
(i) fy@aldQf(b)) =f(a)0b (al QX, b1 QY)
(iii) fy(@aldQf(b)) =f(a)0b (al QX, b1 QY)

The usual special cases are open surjectigns Igft adjoint toQf) and proper surjections(f
right adjoint toQf). In any case, we see that a triquotient assignmenekervesalse andtrue
(put b =false in (ii), truein (iii)) and £°Qf(b) = b (put a truein (ii)), showing that f is a
surjection. In our case, where f is lim, we shall have;anét preserves all joins, and we see that a
join-preserving function fis a triquotient assignment for f iff it presentese and satisfies
condition (ii), the Frobenius identity far Note that a functiorgfpreserving all joins is equivalent to
a map from Y to the lower powerlocalgX

In the following Lemma we translate this sufficient condition into localic form so that we can
apply the synthetic methods of [19]. These facilitate reasoning with powerlocales by allowing poi
of PLX (or, indeed, BX) to be treated like collections of points of X. We briefly recall some
notation from there:

e I: X 5 1isthe unique map.

e |:X - P_Xis the unit of the monad P

* If x and U are points of X and_ K, then xO U iff 1 x e U.

o x: PLXXPLY - PL(XXY) is the “Cartesian product map”, (x,¥) UxV iff x JU and y1V.

Lemma7.5Letf: X -~ Y be a map of locales, and let g:-Y P_X. Then f is triquotient (with
triquotient assignmeni £ ¢;Qg: QX - QP X - QY) if

() gR!'=51:Y - R1
(i) g;P dy, fO=1[g, IdyCI(Idx1);x 1 Y - P (XxY)
Proof f4 is a suplattice homomorphism so by the above discussion it suffices to prove that it

preserves 1 and that the Frobenius identity foolds.
First, we apply the two sides of (i) tetruein B 1:

Q(g;P N(otrue) = Qg(<otrue) = fytrue
Q% 1)(otrue) =true

Next, we apply the two sides of (ii) ta(allb) in B (XxY):

Q(g;P_dy, fO(<(allb)) = Qg(¢Qldy, fl{allb)) = f«(alkf(b))
Q(Ig, 1dy GIdx1 );x)(< (allb)) = QLg, Idy [{Q(Idx1 )(¢allob))
= Q[g, Idy{oalb) = fab

The calculations arising from this Lemma involve comparing powerlocale points. The basic
technique arising from [19] is that if K and L are points ogbPthen K= L iff every x 0 K is also
in L. We also have to consider powerlocale points of the fortiKPwhere f: D - E is a map. To
show Rf(K) L it is equivalent to show that for everilK we have f(x)IL; however, the reverse
direction= is trickier. We need that ifyL then yIP f(K), i.e. Iy = P_f(K). From the basic
definition of the specialization ordet this amounts to showing that ifryb [0 QE (it suffices to
take b from a basis) then fK) E <¢b, i.e. Kk ¢ Qf(b). (Notice that in classical point-set
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topology, the points of D are the closed subsets of D, ané K a iff K meets a: so k& < Qf(b)

iff K meets f1(b), i.e. iff f(K) meets b. Interpreted classically, therefore, the reasoning shows that
is in A_f(K) iff every open neighbourhood of y meets f(K), and this is exactly what would be callet
for if P_f(K) were the closure of the direct image of K. It is remarkable that the constructively valic
synthetic reasoning recreates a classical argument, even though the classical justification of the
argument fails quite comprehensively.)

Proposition 7.6 The points of P(Cauchy(X)) are the lower closed subsets UsgNxX) such
that if SCJ U then —

() if S contains (n,x) and (n,y) then x =y (in other words, S is a finite partial function from
N to X);

(in) if n 0N then $1{(n,z)} O U for some z;

(iii) if S contains (n,x) and (n+k,y) then d(x,y) <2

Proof By the Suplattice Coverage Theorem. If we required U to be an ideal (closedIynttem
we should just be describing the points of Cag(@f)y if the point is a sequencej)xthen U is the
set of finite subsets of the set {{)xi 0 N}. Dropping the closure undér gives points of the lower
powerlocale. |

Proposition 7.7 We can define a map & - P_(Cauchy(X)) by SO g(M) iff —

(i) O@,x) O S. M, < 2
(i) 0@,x), ,y) OS. (x=yO(@ <jOd(x,y) < 2
O@ <i0d(y,x) < 29))

Proof (Note that g(M) is a geometrically defined subsef(dixX). This exploits the fact that
universal quantification bounded over finite sets is geometric. Condition (ii) rewrites the geometric
axioms (i) and (iii) of 7.6 as a geometriormula.) The only difficult part is (ii) in 7.6. SupposelE
g(M) and nO N. We havel(i,x)JS. (n<i Oi < n), and from the finiteness of S it follows [7] that
either(i,x)JS. n<ior OJ(i,x)JS. i < n.

In the first case, suppose we have (KX with n< k; let k be the least such: so
d3,y)0S. (i<nOk<i). Then $1{(n,x)} O g(M).

The second case is whel(i,x)[JS. i < n. Suppose S = {{(nx;): 1< i< m-1}, and choosex
such that M(x,) < 2. By flatness we can find x such that

d(x, x) + M(x) <2 (1<i<m;take g,=n)
It follows that d(x, x) < 2 (1<i<m-1) and M(x) < 2", so that §{(n, x)} O g(M). ]

Theorem 7.8 lim is triquotient.
Proof
We use Lemma 7.5. Let M be a flat left module. First we must show thi{g(i)) = . !in P, 1.
The troublesome direction is we must show that P, !(g(M)), and for this we must show that
g(M) contains a non-empty set. We can find x such tha& M, and then {(0,x)1J g(M).

Next, we must show,PId, lim@g(M) = g(M)x. M in P, (Cauchy(X) x X). For=, following
the remarks after Lemma 7.5, it suffices to show that)if pg(M) thenld, lim{(x;j)) O g(M)x1 M,
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i.e. lim (%) = M. If lim (X;) E Bg(y) then d(y,x) + 2" < ¢ for some n, i.e. Ry) < Bo>-n(xy). But
from (%) O g(M) we know that M= Bo—n(xn) and hence alsogBy).

For the reverse;, we show that if (3 O g(M) then[{x;), M P_0d,lim[@g(M). A basic open
neighbourhood offfx;), MOwill be described by some&in NxX, being a finite subsequence of
(xi), and B(y) with My <e&. Its inverse image undéid, limLis then

V{NA(SI{(n,x)}): d(y,x)+2"< ¢}

It follows that we must find (n,x) so that the finite sequerid§®x)} has the Cauchy property 7.7
(i), with My < 2-Nand d(y,x)+2"<e. Choose n so that n > i for every {j,in S, and M+2"<g,
and then choose z such that #12" and x such that

o d(Xj,X)+My < 2 (for every (i,%) in S)
o d(y,x)*Mx+2N<e
o d(z,X)+My < 2N ]

8. Conclusions

Given a quasimetric space X, we have constructed a Bcéat apparently enjoys many properties
appropriate for a completion. In the metric case, its spatialization is classically homeomorphic to t
usual completion.

The proposed completion is constructively robust, for its dependence solely on geometric
constructions makes it stable under change of base. Nonetheless, it is hard to see what would k
required in order to sustain a claim that it is “the right” notion of completion. For a start, it evades
standard accounts based on any idea of complete quasimetric spaces as special kinds of more ¢
guasimetric spaces. This is because of the different natures of the original space and the comple
The original space is considered to have its discrete topology and to try to construct its quasimeti
topology would not be stable under change of base. On the other hand the topologized structure
completion, does not in general have its own quasimetric, at least not in any straightforward way

We therefore present the construction “as is”, in the hope that its localic good behaviour will
prove useful.

Moving on to “locales as topology-free spaces”, | believe this must be the right way to handle
locales (and, indeed, topological spaces), at least for certain considerations. On the other hand,
that the justification given in Section 2 is, ultimately, spurious. The essence of geometric logic is-
it allows set-indexed disjunctions and coproducts, but this clearly depends on what sets are. The
conventional topos approach would be to fix an elementary topos (with natural number object) as
“the” category of sets, and build up a theory of Grothendieck toposes over it. These set-indexed
infinities give a lot of structure in the geometric universes, including Cartesian closedness, subok
classifiers, natural number objects and free algebra constructions. However, what we see in the
working in this paper is that not only do we have to be careful about the non-geometric
constructions, but also to present theories we don’t need the arbitrary infinities: the countable on
embodied in free algebra constructions suffice. This suggests that the correct approach is to use
even more restricted mathematics comprising finitary constructions together with free algebras
(which also can be specified finitarily), and | conjecture that a good theory can be made by replac
the geometric universes by Joyal’s arithmetic universes (pretoposes with free algebras). If one s
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from this very basic mathematics as constructivist foundations, then there are severe limitations ¢
what can be constructed as sets, and “locales as topology-free spaces” arises as a natural way -
indeed, perhaps the only way — of handling anything like powersets, or function spaces, or the

line.

Many questions are left unanswered here. Some that perhaps merit further work are —

Can quasimetric completions be given quasimetrics of their own in any sense? (The obvic
sense — of a continuous map frdf# to [0,.0] — is plainly not possible in general, for it
would have to be contravariant in one argument with respect to the specialization order.) C
approach that looks promising is to define a quasimetric on a locale X by using a map fror
to AL(Xx[0,] ), conceptually mapping y to {&): d(x,y)< d}. This has the right
variances.
What special properties are enjoyed by spaces for which the metric factorsoyi@ioits

<
way to[0,c0] )?
How does the theory appear when restricted to grasnetrics? These can also be treated as
enriched categories in a different way, enriched ¢@es] with max for its monoidal
product instead of addition. Are the points of the completion still flat modules in the new
setting?
How can maps between quasimetric completions be expressed in terms of the original
guasimetric spaces?
Can one give criteria on the quasimetric spaces for their completions to have various
properties — for instance, Hausdorff, stably locally compact, locally compact?
Can one use the theory to “solve domain equations” for quasimetric completions? There i<

topos [QMS] classifying quasimetric spaces, and it is local — it has an initial point, @. It
follows from [24] that any geometric morphism F: [QMS][QMS] has an initial algebra X

(take the colimit of @ F(@) - FA@) - ...). If F on spaces correspondsFoon
completions (as, for instancg, corresponded to }}, thenX is a solution taF (Y) Y.
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