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The work investigates the powerlocales (lower, upper, Vietoris) of localic com-
pletions of generalized metric spaces. The main result is that all three are localic
completions of generalized metric powerspaces, on the Kuratowski finite powerset.
This is a constructive, localic version of spatial results of Bonsangue et al. and of
Edalat and Heckmann.

As applications, a localic completion is always overt, and is compact iff its gener-
alized metric space is totally bounded.

The representation is used to discuss closed intervals of the reals, with the localic
Heine–Borel Theorem as a consequence.

The work is constructive in the topos-valid sense.

54B20; 06D22, 03G30, 54E50, 03F60

1 Introduction

In the geometric approach to point-free topology, as outlined in some detail in [32], a
prominent place in the reasoning style is occupied by the powerlocales (or point-free
hyperspaces). There is therefore an intrinsic interest in investigating how powerlocales
interact with geometric modes of defining point-free spaces. The present paper studies
powerlocales when applied to localic completions [33] of metric spaces (in fact, of
generalized metric spaces in the sense of Lawvere [14]), and shows that the power-
locales too are localic completions, got by taking appropriate generalized metrics on
the finite powersets of the original spaces.1

Hyperspaces from the start have been associated with metric spaces. (From the localic
point of view, a convenient account of the historical background is given in [7] in its
description of the Vietoris powerlocale. Another interesting summary, from the point

1The core technical content of those results has already appeared in [29].

http://www.ams.org/mathscinet/search/mscdoc.html?code=54B20,(06D22, 03G30, 54E50, 03F60)
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of view of non-standard analysis, is in [39].) If X is a metric space, then the Hausdorff
metric on the powerset PX is defined by

dH(A,B) = max(m(A,B),m(B,A))

where
m(A,B) = sup

a∈A
inf
b∈B

d(a, b).

In this generality we have that m and dH satisfy the triangle inequality, that dH(A,A) =
m(A,A) = 0, and that dH (though not m) is symmetric. However, they are not metrics
as they stand. First, m(A,B) may be infinite if A is unbounded or B is empty. Next,
dH(A,Cl(A)) = 0 where Cl(A) is the closure of A – indeed, m(A,B) = 0 iff A ⊆ Cl(B).
We get a metric space by restricting dH to the closed, bounded, non-empty subspaces
of X .

Restricting to compact non-empty subspaces, the topology induced by the Hausdorff
metric can also be got by purely topological means, from the Vietoris topology on PX .
This is given by a subbase of opens, comprising sets of the form

�U = {A | A ⊆ U}
♦U = {A | A ∩ U 6= ∅}

where U is open in X . This Vietoris topology motivated Johnstone’s construction
[9] of what we now call the Vietoris powerlocale. (It is also described in preliminary
form – with an unnecessary restriction to the compact regular case – in [7], together
with detailed historical notes.) The aim of the present paper is to reconstruct in localic
terms the connection between Hausdorff metric and Vietoris topology. We shall see
the metric reappearing at the level of finite subsets of the metric space.

It is also natural to ask how the hyperspace theory might appear in the setting of gen-
eralizations such as quasimetrics (for which the symmetry axiom is dropped). In fact
the whole of the present paper depends on this, since the upper and lower powerspaces
are non-symmetric. Another example is the lower reals (Definition 7.5); in fact non-
symmetry goes naturally with non-T1 spaces (non-discrete specialization order). It is
then fruitful to modify the definition of the Hausdorff metric, so that it is not automat-
ically symmetric. If we take m, as defined above, as a lower quasimetric dL on sets,
and define an upper quasimetric dU(A,B) = supb∈B infa∈A d(a, b) (which would equal
m(B,A) if d were symmetric), then we can take dH(A,B) = max(dL(A,B), dU(A,B)).

Bonsangue et al. [2] have already studied hyperspaces for Lawvere’s generalized metric
spaces, in which the only assumptions are zero self-distance and the triangle inequality:
the metric may be asymmetric, may take infinite values, and may fail the axiom that if
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d(x, y) = d(y, x) = 0 then x = y. In [2] the approach to hyperspaces is adopted from
domain theory, which distinguishes between the convex powerdomain, analogous to
the Vietoris hyperspace, and two other “lower” and “upper” powerdomains. Given a
complete generalized metric space X , equipped with what they define as a “basis” B,
they define the “lower powerdomain” of X as a certain subspace of a continuous dcpo
B̂ that can also be understood as the lower powerdomain of a ball domain, a continuous
dcpo as developed in [3] and [20]. Having defined this lower powerdomain, [2]
shows that it can also be got by completing the finite powerset FB equipped with a
“lower metric” (in effect, one part of the Vietoris metric). The paper also sketches
similar results for upper and convex powerdomains. To summarize, hyperspaces
(powerdomains; lower, upper or convex) of generalized metric space completions can
be got as completions of finite powersets equipped with an appropriate generalized
metric (lower, upper or convex).

There are analogous constructions in [3] for the convex powerdomain (Vietoris hyper-
space) of an ordinary metric space, and there we see extensive use of the ball domain
idea. This embeds the metric space as the maximal points in a continuous dcpo of
formal balls, the maximal points being balls of zero radius. The idea seems to originate
in the interval domain [21], where the same idea is applied to the reals. Once the
embedding has been made, techniques of continuous dcpo theory can be applied to
gain results about the metric space.

Our companion paper [33] describes a localic treatment of generalized metric space
completion: for each generalized metric space X , it defines a locale X , its “localic
completion”. The points of X are Cauchy filters of formal open balls in X . In
the symmetric case these are classically equivalent to equivalence classes of Cauchy
sequences, and more generally to the elements of the completion described in [2].
However, the descriptions used in [2] and in [33] are radically different. The completion
in [2] is a “least subset closed under limits”, and even in classical mathematics it is
not amenable to localic development – the classical equivalence proof in [33] is rather
intricate. From the localic point of view, the completion by Cauchy filters of formal
balls is much more satisfactory, essentially because those Cauchy filters are the models
of a propositional geometric theory. (One might argue that in any case the construction
is simpler than that in [2].) Moreover, the reasoning is easily done constructively – one
great advantage of the localic approach to topology is that it gives better constructive
results.

The effect of the present paper is to translate the powerdomain results of [2] into the
setting of the localic completion. However, their definitions of powerdomains are re-
placed by the localic constructions of powerlocales, the localic version of hyperspaces,
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and for this reason the technical development here is almost entirely new and somewhat
algebraic in nature. There is still a measure of comparison through our use of ball do-
mains, and in that respect the present paper gives a localic account of a generalization
(to generalized metric spaces and to all three powerdomains) of [3]. We shall show
that the powerlocales of X may themselves also be described as localic completions,
with respect to three different generalized metrics on the (Kuratowski) finite powerset
FX of X . The Vietoris powerlocale, which is by definition analogous to the Vietoris
hyperspace topology, in this situation uses the Hausdorff metric restricted to finite
subsets. The lower and upper powerlocales correspond to different topologies with
subbases given by the opens �U and ♦U respectively. Their corresponding metrics
are asymmetric, even for symmetric X .

We give two sets of applications. The first exploits the fact that some properties of
locales can be expressed as structure existing in the powerlocales. For instance, a locale
is compact iff its upper powerlocale is colocal (has, in a certain universal sense, a top
point). This then makes it easy to characterize compactness of X in terms of a total
boundedness property on the generalized metric space X . A similar argument with the
lower powerlocale yields the result that all completions X are overt (open) as locales,
a property that is classically trivial but constructively important.

The second set of applications is to the real line R, as completion Q of the rationals.
Our techniques make it easy to define the closed interval [0, 1] as a point of the
Vietoris powerlocale VR, and then its compactness (the Heine–Borel Theorem) follows
immediately from the way points of VX (for any locale X ) correspond to certain
compact sublocales of X . The localic Heine–Borel Theorem is, of course, known
already [4], and is a good example of how in constructive mathematics, ordinary
topology works better with a point-free approach. With the powerlocales we can
strengthen this by defining the interval [x, y] for general x ≤ y, and indeed we see
how [x, y] depends continuously on x and y. This is developed further in [38], with an
account of the Intermediate Value Theorem.

The paper is constructive throughout in the sense of topos validity.
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1.1 Outline of development

We shall be working within a context of categories

gms

cis

ball

??�������������

cis

Loc

Idl

��?
??

??
??

??
??

?

gms Loc
Ball

**gms Loc
Comp

44i
KS

where Loc, gms and cis are the categories of locales, generalized metric spaces and
continuous information systems (Sections 2.1, 2.4 and 2.3).

The functor of central interest is the localic completion functor Comp(X) = X . Our
main result (Theorem 5.4) is that each powerlocale P∼ (lower, upper or Vietoris)
applied to a completion X can be got by completing an elementary construction based
on the finite powerset FX . We find three powerspace constructions F∼ on gms
(Section 3), and natural isomorphisms

υ∼ : Comp ◦F∼ ∼= P∼ ◦ Comp .

While the diagram is in front of us, let us mention that in our context Comp is not an
endofunctor and does not lead to a completion monad over which some power monad
might distribute. We do not at present have notions of “generalized metric locale”, or
complete such, and Comp acts between two quite distinct categories.

The rest of the diagram concerns tools used in constructing these isomorphisms.
These reduce to the similar, but simpler, results [26] for the ideal completion functor
Idl : cis → Loc. They involve constructions F∼ on cis (again based on the finite
powerset; Proposition 2.11) and natural isomorphisms (Definition 2.12)

υ′∼ : Idl ◦F∼ ∼= P∼ ◦ Idl .

These are combined using the ball domain idea (Section 4). This can be understood
at an elementary level as a functor ball : gms → cis, under which ball(X) is an
information system of formal balls ordered by refinement. There are again natural
transformations

φ∼ : ball ◦F∼ → F∼ ◦ ball

(Definition 4.4), though this time not isomorphisms. From these we can derive (Defi-
nition 4.7)

φ′∼ : Ball ◦F∼ → P∼ ◦ Ball
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in which Ball(X) = Idl ◦ ball(X) is the ball domain.

We can take φ′∼ as already understood, since υ′∼ is known from [26] and φ∼ is elemen-
tary. Our strategy now (Sections 5.1 and 5.2) is to use an embedding i : Comp→ Ball
(Definition 4.3) and show how υ∼ can be obtained by restricting φ′∼ and, moreover,
that it becomes a natural isomorphism.

An important fact about the powerlocales is that they are the functor parts of monads
(in the categorical sense: see [16]) on Loc, so it is useful to know that there is also
monad structure on the F∼ constructions and that Comp and Idl preserve it (modulo
the isomorphisms υ∼ and υ′∼ ). This last fact can be expressed technically by saying
that (Comp, υ∼) and (Idl, υ′∼) are monad opfunctors ([23]; see our Section 2.2). That
notion does not depend on υ∼ and υ′∼ being isomorphisms, and in fact it will prove
useful to know that (ball, φ∼) and (Ball, φ′∼) are also monad opfunctors.

1.2 Notation

We mention some notational features of the paper that are not entirely standard.

Composition: The default order for composition of functions or morphisms is the
“applicative” order, sometimes emphasized with a ◦ symbol. Thus if f : X → Y
and g : Y → Z then gf = g ◦ f : X → Z with (g ◦ f )(x) = g(f (x)). Occasionally
it is convenient to use the diagrammatic order, and for this the ; symbol is adopted
from computer programming. Thus f ; g = gf . For natural transformations the “ver-
tical” composition, got by composing components, is often written vertically. This is
explained and illustrated in Section 2.2.

Down closure etc.: Suppose R is a relation from A to B and B′ ⊆ B. Then RB′ denotes
the inverse image {a ∈ A | ∃b ∈ B′. aRb}. This is particularly useful in association
with orders. If ≤ is a partial order on A, then ≤ A′ and ≥ A′ are the down closure
and up closure of A′ . Similarly for a non-reflexive order < we might write < A′ and
> A′ , though these will no longer include A′ and so are not closures.

2 Background

2.1 Locales and powerlocales

For the general background on locales, see [7] or [25]. We shall use extensively
the technique that locales and locale maps can be described pointwise, so long as
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the description is geometric: the points are described as the models of a geometric
theory, and a map is described using constructions of geometric constructivism, ie those
constructions that are preserved by the inverse image parts of geometric morphisms.
Principally, those are colimits, finite limits and free algebra constructions for finitary
theories – including the finite powerset, as free semilattice. This is explained rather
more carefully in [38]. For technical detail see [32], which also explains how locale
constructions (notably powerlocales) may be geometric, as well as other papers such
as [36], [30] and [31].

A propositional geometric theory is presented by a set G of propositional symbols,
and a set R of axioms of the form φ → ψ where φ and ψ are geometric formulae:
they are built from the propositional symbols using finitary conjunction and arbitrary
(possibly infinitary) disjunction. But this is formally equivalent to a presentation
Fr〈G | R〉 of a frame by generators G and relations R, each axiom φ → ψ being
interpreted as a relation φ ≤ ψ , with conjunction and disjunction interpreted as frame
theoretic meet and join – this frame is the (geometric) Lindenbaum algebra of the
theory. Algebraically, its universal property is that for any frame A and function
f : G → A respecting the relations (they become true in A), there is a unique frame
homomorphism f ′ : Fr〈G | R〉 → A that agrees with f on the generators. If G itself
has structure of a kind that exists in frames (for example poset, semilattice, lattice), we
often write “(qua ... that kind of structure)” to indicate implicit relations requiring the
structure of G to be preserved in the frame presented.

The Vietoris powerlocale was introduced in [9]; see also [7]. The upper and lower
powerlocales were in effect derived from it, influenced by the parallel development of
three powerdomains in the denotational semantics of computer programs. The localic
connection was made in [40] and [19]. For further remarks on their history see [28],
whose technical development we shall largely follow (see also [27]).

Definition 2.1 As in [13], a suplattice is a complete join semilattice. A suplattice
homomorphism preserves all joins.

As in [12] (and following Banaschewski), a preframe is a poset with finite meets and
also directed joins, over which the binary meet distributes. A preframe homomorphism
preserves the finite meets and directed joins.

Definition 2.2 If X is a locale, then the lower and upper powerlocales PLX and
PUX are defined by letting ΩPLX and ΩPUX be the frames generated freely over ΩX
qua suplattice and qua preframe respectively, with generators written as ♦a and �a
(a ∈ ΩX ). “Qua suplattice” and “qua preframe” say that ♦ preserves joins and �
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preserves finite meets and directed joins. Then if A is any frame and f : ΩX → A is a
suplattice homomorphism, then there is a unique frame homomorphism f ′ : ΩPLX → A
such that f ′(♦a) = f (a), and similarly for preframe homomorphisms and PUX .

The Vietoris powerlocale VX is the “Vietoris construction” of [9]. It is the sublocale
of PLX × PUX presented by relations

♦a×�b ≤ ♦(a ∧ b)× PUX

PLX ×�(a ∨ b) ≤ ♦a��b.

(In a product locale U×V , with a ∈ ΩU and b ∈ ΩV , a� b denotes a×V ∨U× b.)
We shall frequently write VX as PCX to facilitate general arguments that apply to P∼X
where ∼ can stand for L, U or C. C here stands for “convex”, but this is in a sense of
order theory rather than geometry. This is further explained after Theorem 2.3.

The three powerlocales all have positive parts. P+
L X is the open sublocale ♦X , P+

U X
is the closed sublocale PUX −�∅, and V+X is the restriction of VX to P+

L X × P+
U X .

The term “powerlocale” is explained by the fact that their points can be considered as
sublocales. The results, all topos-valid, are surveyed in [28]. Sublocales (the localic
notion of subspace) are described in the standard texts, but see also [37] for a survey
from the geometric point of view.

The global points of PUX are easily seen to be equivalent to Scott open filters of ΩX ,
and a localic form (essentially due to Johnstone [9], though the constructive proof [28]
is somewhat different) of the Hofmann–Mislove Theorem ([6]; see also [25]) shows
that these are exactly the open neighbourhood filters of the compact, fitted sublocales
of X . (A sublocale is fitted iff it is the sublocale meet of its open neighbourhoods.)
Note that the specialization order in PUX is the opposite of sublocale inclusion: a large
Scott open filter corresponds to a small sublocale. ∅ is the top point in PUX , the Scott
open filter containing all the opens of X .

The global points of PLX are equivalent to the completely prime upsets F in ΩX .
Classically, by taking the closed complement of the join of the opens not in F , one
finds that these are equivalent to closed sublocales of X . The constructive version is
slightly more complicated, and the completely prime upsets are equivalent to overt,
weakly closed sublocales of X . (Overtness of locales will be discussed in more detail
in Section 6.2. A sublocale of X is weakly closed iff it is a meet of sublocales of the
form (X−U)∨!∗p, where U is open and p is a proposition (truth value). ! : X → 1 is
the unique map, and so !∗p denotes the sublocale

∨
{X | p}.) The completely prime

upset corresponding to an overt, weakly closed sublocale K comprises the opens of X
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that are positive modulo K . The specialization order for PLX agrees with the inclusion
order for sublocales: a large sublocale has more positive opens. ∅ is the bottom point
in PLX .

The global points of VX are equivalent to the compact, overt, weakly semifitted
sublocales of X , where a sublocale is weakly semifitted if it is a meet of a fitted
sublocale and a weakly closed sublocale.

There are embeddings ↑ : X → P+
U X , ↓ : X → P+

L X and {−} : X → V+X , whose
inverse image functions take (as appropriate) �a to a and ♦a to a. For a point x
of X , ↑ x is the sublocale comprising those points y with x v y, and ↓ x comprises
those with y v x . {x} comprises the point x only. We vary this notation by writing
⇓ : VX → PLX and ⇑ : VX → PUX for the projection maps restricted to VX .

Theorem 2.3 [27] Let X be a locale, and let K be a point of P∼X where ∼ is U, L or
C. Then the corresponding sublocale of X comprises those points x such that (for the
three cases of ∼) –

U: ↑ x w K ,

L: ↓ x v K , or

C: ↑ x w ⇑ K and ↓ x v ⇓ K .

Note that a sublocale K corresponding to a point of the upper powerlocale PUX is
upper closed with respect to the specialization order: if x is in K and x v y then y is
in K . (This is an immediate consequence of the fact that K is fitted.) Similarly, for
PLX the sublocales are lower closed. For VX (also known as PCX ), the sublocales are
order convex – if x v y v z with x and z both in K , then y is in K .

2.2 Monads and monad opfunctors

An important aspect of all three powerlocales, as well as their three positive parts, is that
they are the functor parts of monads on the category Loc of locales. The units are ↑,
↓ and {−}. The multiplications are analogues of the union function

⋃
: PPX → PX

and, following [27], we write them as u : P2
U → PU , t : P2

L → PL and ∪ : V2 → V .
Their inverse image functions take (as appropriate) �a to ��a and ♦a to ♦♦a. In
this section we summarize relevant parts of the abstract theory of monads.

The notion of monad itself is familiar from [16], but let us repeat the definition here.
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Definition 2.4 Let C be a category. A monad on C is an endofunctor T : C → C
equipped with two natural transformations η : C → T and µ : T2 → T , satisfying the
equations

T η

µ
=

η T
µ

= T and
µ T
µ

=
T µ

µ
.

There are some notational conventions here that we shall use throughout. First, we
use the name of a category C also for the identity functor IdC on it (as in η : C → T ),
and the name of a functor for the identity natural transformation on it (as for both

instances of T in
ηT
µ

= T ). Second, we write horizontal composition of natural

transformations horizontally, with the domain on the right, and vertical composition
vertically, with the domain at the top. In displayed equations we shall mark these with
vertical and horizontal lines, aligned to give an indication of how the domains and
codomains match up.

As an example, consider the equation
µT
µ

=
Tµ
µ

. The horizontal composite

µT : T3 → T2 is got by taking components of µ at objects TX , while Tµ : T3 → T2

is got by applying T to components of µ. Now bearing in mind that vertical composition
is got by composing components of natural transformations, we see that the equation
stands for a commutative diagram as follows (for all X ).

T3X T2X
µTX //T3X

T2X

TµX

��

T2X

TX

µX

��
T2X TXµX

//

Example 2.5 The best known examples of monads on Set are those in which TX
is a free algebra over X for some given algebraic theory. One that is related to the
powerlocales is the free semilattice, given concretely by the finite powerset FX with
∪ as its semilattice operation. (Similarly, the full powerset PX is the free suplattice.)
Functorially, if f : X → Y then F f gives direct images. The unit of the monad is
the singleton map {−} : X → FX , x 7→ {x}, and the multiplication is the union map⋃

: FFX → FX .

“Finite” here means Kuratowski finite: a set is finite if its elements can be listed in a
finite list, possibly with repetitions. Note that emptiness of finite sets is a decidable
property. We write F+X for the set of non-empty finite subsets of X . The monad
structure on FX restricts to one on F+X .
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We now turn to the monad opfunctors. Street [23] defines, for any 2–category C, a
2–category Mnd(C) whose 0–cells, 1–cells and 2–cells are monads, monad functors
and monad functor transformations. The paper also introduces dual terminology
corresponding to Mnd(C∗)∗ , where C∗ is the dual got by reversing 1–cells, and in
fact those monad opfunctors will be more relevant to us here. Specializing to the case
C = Cat we have the following definitions.

Definition 2.6 Suppose Ci (i = 1, 2) are categories, with monads (Ti, ηi, µi). A
monad opfunctor from (C1,T1) to (C2,T2) is a pair (F, φ) where F : C1 → C2 is a
functor and φ : FT1 → T2F is a natural transformation such that

F η1

φ
= η2F and

φ T1

T2 φ

µ2 F
=

F µ1

φ
.

Given a second monad opfunctor (G, ψ) : (C2,T2) → (C3,T3), their composite is

(GF,
Gφ
ψF

) : (C1,T1)→ (C3,T3).

If (F, φ) and (F′, φ′) are two monad opfunctors from (C1,T1) to (C2,T2), then a monad
opfunctor transformation from (F, φ) to (F′, φ′) is a natural transformation α : F → F′

such that
αT1

φ′
=

φ

T2α
.

The dual terminology is similar. A monad functor from (C1,T1) to (C2,T2) is a pair
(F, ψ) where F : C1 → C2 is a functor and ψ : T2F → FT1 is a natural transformation
such that the corresponding dual equations hold. Transformations of monad functors
are defined similarly to those for monad opfunctors.

If φ is a natural isomorphism, then (F, φ) is a monad opfunctor iff (F, φ−1) is a monad
functor and these are equivalent ways of saying that F preserves the monad structure
modulo the isomorphism. Our main result (Theorem 5.4) is that localic completion does
this, with respect to the powerspace and powerlocale monads, and as such it could be
stated in terms of either monad functors or monad opfunctors. However, as mentioned
already in Section 1.1, along the way we find ourselves using transformations φ that
are not isomorphisms but still give monad opfunctors. Hence we see monad opfunctors
as a kind of symmetry breaking of the main idea of preserving monad structure modulo
isomorphism.

As an exercise, the reader unfamiliar with the 2–dimensional calculus might like to

verify that the equation
φT1

T2φ

µ2F
=

Fµ1

φ
above stands for a commutative diagram as
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follows (for all X ).

FT2
1 X T2FT1X

φT1X // T2FT1X T2
2 FX

T2φX //FT2
1 X

FT1X

F(µ1)X

��

T2
2 FX

T2FX

(µ2)FX

��
FT1X T2FX

φX //

Next we prove some abstract lemmas that will be useful later.

Lemma 2.7 Let (F, φ) : (C1,T1)→ (C2,T2) be a monad opfunctor. Let G : C1 → C2 ,
and let i : G→ F be such that each component of T2i is monic. For each object X of
C1 let ψX : GT1X → T2GX be such that the following diagram commutes.

GT1X FT1X
iT1X //GT1X

T2GX

ψX

��

FT1X

T2FX

φX

��
T2GX T2FX

T2iX
//

Then (G, ψ) is a monad opfunctor and i : (G, ψ)→ (F, φ) is a transformation of monad
opfunctors.

Proof A simple diagram chase shows that ψ is natural, and then it is immediate that
i satisfies the conditions for a transformation of monad opfunctors. Next, we have

G η1

ψ

T2 i
=

G η1

i T1

φ

=
i

F η1

φ

=
i

η2 F
=

η2 G
T2 i

and hence
Gη1

ψ
= η2G. Next,

G µ1

ψ

T2 i
=

G µ1

i T1

φ

=
i T1 T1

F µ1

φ

=

i T1 T1

φ

T2 φ

µ2 F

=

ψ T1

T2 i
φ

µ2 F

=
ψ T1

T2 ψ

µ2 i
=

ψ T1

T2 ψ

µ2 G
T2 i
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so

G µ1

ψ
=

ψ T1

T2 ψ

µ2 G
.

(Readers unfamiliar with this kind of vertical calculus can prove the result by diagram
chasing.)

Lemma 2.8 Let (F, φ), (G, ψ), (G′, ψ′) : (C1,T1)→ (C2,T2) be three monad opfunc-
tors, and consider a diagram

(F, φ)

(G, ψ)

β

��

(F, φ)

(G′, ψ′)

β′

��?
??

??
??

??
??

(G, ψ) (G′, ψ′)α
//

in which –

• β′ and α are transformations of monad opfunctors,

• β is a natural transformation of functors,

• the diagram commutes at the level of natural transformations of functors, and

• every component of T2α is monic.

Then β is a transformation of monad opfunctors.

Proof
β T1

ψ

T2 α

=
β T1

α

ψ′
=

β′ T1

ψ′
=

φ

T2 β′
=

φ

T2 β

α

and hence
βT1

ψ
=

φ

T2β
.

2.3 Continuous dcpos and their powerlocales

When discussing the powerlocales, we shall find it useful to embed localic completions
in (the localic form of) continuous dcpos (see, eg, [5]). For these, the powerlocales are
well understood and constructed using finite powersets.
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The usual definition is as follows. First, a poset (P,v) is directed complete (or a dcpo)
if it has all directed joins. We write

⊔↑
i xi for a directed join, the “↑” signifying that

the family of xi s is indeed directed. If x, y ∈ P, we say x is way below y, and write
x� y, if whenever y v

⊔↑
i zi then x v zi for some i. Then a dcpo P is a continuous

dcpo (or a domain) if for every y ∈ P we have

y =
⊔↑

(� y).

(Recall the notation from Section 1.2: � y is {x | x � y}.) The default topology
on a dcpo is the Scott topology, for which a subset U is open if it is an upset and
inaccessible by directed joins – ie if

⊔↑
i xi ∈ U then xi ∈ U for some i.

We shall use the localic theory of continuous dcpos, with the characterization of [26]
using continuous information systems.

Definition 2.9 A continuous information system (or cis or infosys) is a set D equipped
with an idempotent (transitive and interpolative) relation ≺.

A homomorphism between continuous information systems is a function that preserves
≺. We get a category cis of continuous information systems and homomorphisms.

An ideal of (D,≺) is a directed lower subset I ⊆ D: in detail,

(1) I is a lower set (≺ I ⊆ I ).

(2) I is inhabited (nullary directedness).

(3) If s1, s2 ∈ I then there is some s ∈ I with s1 ≺ s and s2 ≺ s (binary
directedness). (Consequently, I is rounded, ie I ⊆ ≺ I .)

We write Idl(D,≺) (or often just Idl(D)) for the locale whose points are the ideals of
(D,≺). We can then present

Ω Idl(D,≺) ∼= Fr〈↑ s (s ∈ D) |true ≤
∨
s∈D

↑ s

↑ s∧ ↑ t =
∨
{↑ u | s ≺ u, t ≺ u}〉.

We say a locale is a continuous dcpo if it is homeomorphic to one of the form Idl(D,≺).
(Note that this is not the same as saying that its frame is a continuous dcpo. In fact
[26], a locale is a continuous dcpo iff its frame is constructively completely distributive
– such frames are the Stone duals of continuous dcpos.)
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Proposition 2.10 Let f : (D,≺) → (E,≺) be a homomorphism of continuous infor-
mation systems. Then we have a map Idl(f ) : Idl D→ Idl E ,

Idl(f )(I) = ≺ f (I)

where f (I) denotes the direct image. In terms of opens, we have

Idl(f )∗(↑ t) =
∨
{↑ s | t ≺ f (s)}.

Proof It is straightforward to check that if I is an ideal of D then Idl(f )(I) as defined
above is an ideal of E .

This gives a functor Idl : cis→ Loc.

By [26], each powerlocale P∼ Idl(D,≺) is homeomorphic to Idl(FD,≺∼) for a suitable
idempotent order on the Kuratowski finite powerset FD.

• The lower order has S ≺L T iff ∀s ∈ S. ∃t ∈ T. s ≺ t .

• The upper order has S ≺U T iff ∀t ∈ T. ∃s ∈ S. s ≺ t .

• The convex order has S ≺C T iff S ≺L T and S ≺U T .

The notation ≺L , ≺U and ≺C will be used uniformly by applying those subscripts
to binary relations. Note that (≺U)op = (≺op)L (or �L ). This gives a useful duality
principle.

Proposition 2.11 We have three monads F∼ on cis, given by

F∼(D,≺) = (FD,≺∼).

In each case, the unit and multiplication of the monad are the same as those for the F
monad on Set (see Example 2.5).

Proof Checking is routine. One must check (i) F∼ is functorial, and (ii) {−} and
⋃

are homomorphisms. Once these are done for FL , they follow for FU by duality, and
then for FC by combining the two.

Definition 2.12 If (D,≺) is a continuous information system then we define a map
υ′∼ : IdlF∼(D,≺)→ P∼ Idl(D,≺) by

υ′∗∼(♦ ↑ s) =
∨
{↑ T | {s} ≺L T} ( ∼ stands for L or C)

υ′∗∼(�
∨
s∈S

↑ s) =
∨
{↑ T | S ≺U T} ( ∼ stands for U or C; S ∈ FD).
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Since the opens ↑ s form a base for Idl(D,≺), and ♦ preserves joins, it suffices to
define υ′∗∼(♦U) for basic U . However, note that we also have

υ′∗∼(
∧
s∈S

♦ ↑ s) =
∧
s∈S

∨
{↑ T | {s} ≺L T}

=
∨
{↑ T | for each s we have Ts with {s} ≺L Ts ≺∼ T}

=
∨
{↑ T | S ≺L T},

thus giving a formal similarity with the � case. Since � preserves directed joins, it
suffices to define υ′∗∼(�U) for U a finite join of basics.

[26, Theorem 4.3] shows that υ′∼ is a homeomorphism. The proof there is readily made
topos-valid. (It uses cardinality of finite sets and decidable equality for their elements.
However, this can easily be remedied by replacing the finite set with an enumeration,
possibly with repetitions, of the elements.) The inverses for υ′∗∼ are given by

↑ S 7→


∧

s∈S ♦ ↑ s (for L)
�(

∨
s∈S ↑ s) (for U)

�(
∨

s∈S ↑ s) ∧
∧

s∈S ♦ ↑ s (for C)

Note that this proves that the class of continuous dcpos is closed under the powerlocales.

We show how this translates into actions on ideals.

Lemma 2.13 Let (D,≺) be a continuous information system, let I be an ideal of
(FD,≺∼), and let S ∈ FD.

(1) (∼ is L or C) I is in the open
∧

s∈S ♦ ↑ s for P∼ Idl(D) iff S ∈ ≺L I .

(2) (∼ is U or C) I is in the open �(
∨

s∈S ↑ s) for P∼ Idl(D) iff S ∈ ≺U I .

Note that if ∼ is L or U we have ≺L I and ≺U I (respectively) equal to I .

Proof The proof of [26, Theorem 4.3] deals explicitly with the Vietoris powerlocale
where ∼ is C. From it we see that ♦ ↑ s corresponds to

∨
{↑ T | T ∩ (� s) 6= ∅},

which equals
∨
{↑ T | {s} ≺L T}. Now I is in the open ↑ T iff T ∈ I , and so we

can deduce that I is in ♦ ↑ s iff {s} ≺L T for some T ∈ I . The first condition readily
follows. Similarly, �(

∨
s∈S ↑ s) corresponds to

∨
{↑ T | T ⊆ � S}, which equals∨

{↑ T | S ≺U T}.

[26] leaves to the reader the easier cases of the lower and upper powerlocales, but they
yield the same conditions.
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Note the empty point for each powerlocale. For the lower, it is I = {∅} (every ideal
contains ∅); for the upper it is I = FX (if an ideal contains ∅ then it contains every
finite set); for the Vietoris it is {∅} (an ideal can contain either ∅ or non-empty sets,
but not both). Excluding the empty set, we find that υ′∼ also gives a homeomorphism
IdlF+

∼ (D,≺) ∼= P+
∼ Idl(D,≺).

Proposition 2.14 (Idl, υ′∼) : (cis,F∼)→ (Loc,P∼) is a monad opfunctor.

Proof Using Proposition 2.10 and Lemma 2.13, it is easily checked on inverse image
functions that υ′∼ is natural and that the conditions of Definition 2.6 are satisfied.

We shall also need the following.

Lemma 2.15 Let (D,≺) be a continuous information system.

(1) The map ⇓ : V Idl(D)→ PL Idl(D) maps each ideal I of (FD,≺C) to ≺L I .

(2) The map ⇑ : V Idl(D)→ PU Idl(D) maps each ideal I of (FD,≺C) to ≺U I .

Proof 1. Using Lemma 2.13 we have S ∈ ⇓ I iff ⇓ I is in
∧

s∈S ♦ ↑ s, ie iff I is in∧
s∈S ♦ ↑ s since the inverse image function Ω ⇓ takes each generator ♦U in the lower

powerlocale to the one with the same name in the Vietoris. From Lemma 2.13 again
this is equivalent to S ∈ ≺L I .

2. This is similar.

2.4 Generalized metric completion

We now summarize the account of localic completion that appears in [33]. The descrip-
tion there is in terms of “spaces”, on the understanding that classical mathematicians
can interpret it in the conventional way, while locale theorists can read in a localic
interpretation as described above. In the present paper our results are unavoidably
localic, so we shall write of locales throughout.

Q+ is the set of positive rationals.
←−−−−−−
[−∞,∞] is the locale whose points are extended “upper reals”, ie rounded upper sets
of rationals. Classically, the finite upper reals (ie those for which the rounded upper
set of rationals is inhabited but not the whole of Q) are equivalent to ordinary reals,
ie Dedekind sections. Constructively, however, there may be finite upper reals for
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which there is no corresponding lower set of rationals to make a Dedekind section. The
arrow indicates the direction of the specialization order v. This is the reverse of the
numerical order ≤ (−∞ is top for v), because a large upper set of rationals denotes a
numerically small upper real. We shall be particularly interested in

←−−−
[0,∞], the locale

of non-negative, extended upper reals, whose points are rounded upper sets of positive
rationals.

The continuous arithmetic structure on
←−−−
[0,∞] includes order, addition and multi-

plication, finitary max and min, and infinitary inf . It does not include any kind of
subtraction (which would have to be contravariant in one argument, whereas continuous
maps must preserve specialization order), or infinitary sup.

We now give the definition from [14], but using the locale
←−−−
[0,∞] for the reals.

Definition 2.16 A generalized metric space (or gms) is a set X equipped with a
distance map X(−,−) : X2 →←−−−[0,∞] satisfying

X(x, x) = 0(zero self-distance)

X(x, z) ≤ X(x, y) + X(y, z)(triangle inequality)

(By map we mean continuous map, between locales. We are treating the set X2 as the
corresponding discrete locale.)

If X and Y are two gms’s, then a homomorphism from X to Y is a non-expansive
function, ie a function f : X → Y such that Y(f (x1), f (x2)) ≤ X(x1, x2). We write gms
for the category of generalized metric spaces and homomorphisms.

The opposite gms Xop has Xop(x, y) = X(y, x).

Remark 2.17 There is a predicate geometric theory whose models are the generalized
metric spaces, and our notion of homomorphism is the natural one in that context.

Definition 2.18 If X is a generalized metric space then we introduce the symbol
“Bδ(x)”, a “formal open ball”, as alternative notation for the pair (x, δ) ∈ X×Q+ . We
write

Bε(y) ⊂ Bδ(x) if X(x, y) + ε < δ

(in other words, if ε < δ and X(x, y) < δ − ε) and say in that case that Bε(y) refines
Bδ(x).

Definition 2.19 Let X be a generalized metric space. A subset F of X × Q+ is a
Cauchy filter if –
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(1) F is upper with respect to ⊂, ie if Bε(y) ⊂ Bδ(x) and Bε(y) ∈ F then Bδ(x) ∈ F .

(2) If Bδ(x) ∈ F and Bδ′(x′) ∈ F then there is some Bε(y) ∈ F with Bε(y) ⊂ Bδ(x)
and Bε(y) ⊂ Bδ′(x′).

(3) For every δ ∈ Q+ there is some x ∈ X such that Bδ(x) ∈ F .

Definition 2.20 [33] Let X be a generalized metric space. Then its localic completion
X (or Comp(X)) is the locale whose points are the Cauchy filters of formal open balls.
If f : X → Y is a gms homomorphism then Comp(f ) = f : X → Y is defined by

f (F) = ⊃ {Bδ(f (x)) | Bδ(x) ∈ F}.

These together give a functor Comp : gms→ Loc.

Proposition 2.21 Let f , g : X → Y be homomorphisms of gms’s such that for all
x ∈ X , Y(f (x), g(x)) = 0. Then f v g.

Proof Suppose F is a Cauchy filter for X and Bε(y) ∈ f (F) with Bε(y) ⊃ Bδ(f (x)),
Bδ(x) ∈ F . Then

Y(y, g(x)) + δ ≤ Y(y, f (x)) + Y(f (x), g(x)) + δ = Y(y, f (x)) + δ < ε

so Bε(y) ⊃ Bδ(g(x)) and Bε(y) ∈ g(F).

Definition 2.22 Let X be a generalized metric space. A subset F of X ×Q+ is a left
X–module if it is a rounded upper set of formal open balls –

(1) F is upper with respect to ⊂ (as in Definition 2.19).

(2) F is rounded, ie if Bδ(x) ∈ F then there is some Bε(y) ∈ F with Bε(y) ⊂ Bδ(x).

We write X–Mod for the locale whose points are the left X–modules.

(The term “module” is explained in [33] in terms of Lawvere’s use of enriched cate-
gories. In the present paper those ideas are less relevant but we keep the term.)

3 Powerspaces

If X is a gms, we shall define three powerspaces F∼X on it, where ∼ can stand for
L (lower), U (upper) or C (convex, or the Vietoris powerspace). They are defined by
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three generalized metrics on the finite powerset FX ,

FLX(S,T) = max
x∈S

min
y∈T

X(x, y)

FUX(S,T) = max
y∈T

min
x∈S

X(x, y)

FCX(S,T) = max(FLX(S,T),FUX(S,T)).

The finite sets S and T may be empty. We have FLX(∅,T) = 0 for all T , and
FLX(S, ∅) = ∞ if S is non-empty. FUX is similar but the other way round, and
FCX(S,T) =∞ if just one of S , T is empty, but 0 if both are (fortunately for the zero
self-distance law).

Clearly FCX is the Hausdorff metric restricted to finite sets – hence it is calculated in
a finitary way, without recourse to limits. The other two are less familiar but clearly
derive from separating out parts of the Hausdorff metric.

A useful duality principle is that FUX = (FL(Xop))op .

If X is symmetric then so is FCX , but the other two are not.

We write F+
∼X for the three positive powerspaces, ie restricted to non-empty finite

subsets.

Proposition 3.1 The monad structure of F extends to all three powerspaces, giving
monads on gms.

Proof We need to check that the functions involved are non-expansive. First, the unit
{−} : X → FX is obviously an isometry for all three.

For the rest, we first consider FL . The multiplication
⋃

: F2X → FX , U 7→
⋃
U , is

a homomorphism (non-expansive) because

F2
LX(U ,V) < q⇐⇒ ∀U ∈ U . ∃V ∈ V. FLX(U,V) < q

⇐⇒ ∀U ∈ U . ∃V ∈ V. ∀u ∈ U. ∃v ∈ V. X(u, v) < q

=⇒ ∀U ∈ U . ∀u ∈ U. ∃V ∈ V. ∃v ∈ V. X(u, v) < q

⇐⇒ ∀u ∈
⋃
U . ∃v ∈

⋃
V. X(u, v) < q

⇐⇒FLX(
⋃
U ,

⋃
V) < q.
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Now if f : X → Y is a homomorphism then so is F f (where F f (S) is the direct image
f (S)) because

FLX(S,T) < q⇐⇒ ∀x ∈ S. ∃y ∈ T. X(x, y) < q

=⇒ ∀x ∈ S. ∃y ∈ T. Y(f (x), f (y)) < q

⇐⇒ ∀x′ ∈ F f (S). ∃y′ ∈ F f (T). Y(x′, y′) < q

⇐⇒FLY(F f (S),F f (T)) < q

The corresponding results for the upper metric follow by duality, and then those for the
Vietoris metric are immediate.

4 The ball domain

A technique pioneered in [3] (working classically) is to prove results about complete
metric spaces by embedding them in continuous dcpos, the ball domains, so that limits
in the metric space can be found using directed joins in the dcpo. A simple example
then is that the Banach fixed point theorem follows easily from the dcpo fixed point
theorems. They also deal with compact subspaces by using powerdomain techniques on
the ball domain. Our working will depend on an analogous construction, the principal
benefit being to allow us to exploit the way powerlocales are constructed for continuous
dcpos. Ball domains for gms’s have also been described in [20], and we shall compare
our construction with the work there.

If X is a metric space, then Edalat and Heckmann [3] define the ball domain B(X) to
be the product X × [0,∞), ordered by the non-strict analogy of our ⊃ on X × Q+ .
They call the elements of B(X) formal balls on X . Although B(X) is not a dcpo in
general, they define a Scott topology on it and show (theorem 13) that X embeds in
it as the maximal elements (x, 0). Moreover, they define the way below relation and
show (section 2.6) that the metric completion X embeds in the ideal completion of
B(X) with respect to way below.

Clearly their formal balls are more general than ours in allowing radii that are 0 or
irrational. Our ball domain will go further than theirs by allowing centres to be in the
completed space. In other words, in a single step we shall complete on both radii and
centres.

Note the elementary fact that ⊂ and ⊃ are idempotent relations on X ×Q+ . We shall
write ball(X) for the continuous information system (X × Q+,⊃). This extends to a
functor ball : gms→ cis, by ball(f )(Bδ(x)) = Bδ(f (x)).
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Definition 4.1 The ball domain functor Ball : gms→ Loc is Idl ◦ ball.

In practice it is more natural to view the points of the ball domain as filters of X ×Q+

with respect to ⊂, rather than ideals with respect to ⊃.

Proposition 4.2 A point of Ball(X) is a subset G of X×Q+ satisfying the conditions
(1) and (2) of Definition 2.19, and in addition that for some δ there is x with Bδ(x) ∈ G.

Proof Condition (1) says that G is rounded lower with respect to ⊃, (2) is binary
directedness and the new condition is nullary directedness, ie inhabitedness.

Hence X embeds as a sublocale of the continuous dcpo Ball(X), and in turn Ball(X)
embeds as a sublocale of X–Mod (Definition 2.22). The points of X–Mod are the
rounded upper sets of balls, those of Ball(X) are the filters, and those of X are the
Cauchy filters.

Definition 4.3 We write i : Comp → Ball for the natural transformation whose
component at a gms X is the embedding X ↪→ Ball(X).

Definition 4.4 For any gms X , we define φ : FX×Q+ → F(X×Q+) by φ(Bε(S)) =
{Bε(x) | x ∈ S}.

Lemma 4.5 If Bδ(S) ⊃ Bε(T) (with respect to the metric on F∼X , where ∼ is L, U
or C), then φ(Bδ(S)) ⊃∼ φ(Bε(T)). If we are given that ε < δ then the converse also
holds.

Proof We have F∼X(S,T) + ε < δ . First, when ∼ is L the condition is equivalent to
ε < δ and

∀x ∈ S. ∃y ∈ T. Bδ(x) ⊃ Bε(y),

and these together imply φ(Bδ(S)) ⊃L φ(Bε(T)) – in fact, if we are given that ε < δ

then the reverse implication also holds. (If S is non-empty, then φ(Bδ(S)) ⊃L φ(Bε(T))
already implies ε < δ . However, for the lower order, we have φ(Bδ(∅)) ⊃L φ(Bε(T))
for all δ, ε,T .) The case when ∼ is U can be proved either similarly or by duality, and
then the case when ∼ is C follows.

Proposition 4.6 (ball, φ∼) is a monad opfunctor from (gms,F∼) to (cis,F∼).
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Proof Lemma 4.5 shows that each component of φ∼ is a homomorphism of contin-
uous information systems, and then naturality is easily checked. The rest is routine
checking.

Definition 4.7 The monad opfunctor (Ball, φ′∼) : (gms,F∼)→ (Loc,P∼) is defined
as the composite of (ball, φ∼) and (Idl, υ′∼).

Thus φ′∼ =
Idlφ∼
υ′∼ ball

: Ball(F∼X) → P∼ Ball(X), so φ′∼(X)(I) = (⊃∼ φ(I)), where

φ(I) is the direct image.

We finish this section by showing how our ball domain relates classically to those of [3]
and [20]. The projection X×Q+ → Q+ is a cis–homomorphism, and so lifts to a radius
map r : Ball(X)→←−−−[0,∞) = Idl(Q+, >) by r(G)=inf{q | Bq(x) ∈ G}, an upper real.
Lifting the cis–homomorphism (X×Q+)×Q+ → X×Q+ , (Bδ(x), q) 7→ Bδ+q(x), we
also obtain a map + : Ball(X)×←−−−[0,∞)→ Ball(X), defined by

G + a = {Bδ+q(x) | Bδ(x) ∈ G, a < q}.

Note that r(G + a) = r(G) + a, and G is Cauchy iff r(G) = 0.

Proposition 4.8 (Classically) Let X be a gms. Then the map + : X × ←−−−[0,∞) →
Ball(X) is a bijection on points.

Proof Let G be a filter in X×Q+ . We define its centre c(G) to be {Bδ(x) | ∃Bq(x) ∈
G. q − δ < r(G)}. (Note – constructively, the upper real r(G) is approximated from
above. It is therefore constructively illegitimate to use approximations from below, as
in q− δ < r(G).)

If F is a Cauchy filter and a is a non-negative upper real, then c(F + a) = F , ie

Bδ(x) ∈ F ⇐⇒ ∃δ′, q. (Bδ′(x) ∈ F and δ′ + q− δ < a < q).

The ⇐ direction follows because δ′ < δ . For ⇒, we can find δ′ < δ such that
Bδ′(x) ∈ F , and then q such that q− (δ − δ′) < a < q.

Now suppose G is a filter in X × Q+ . We must show G = c(G) + r(G), which works
out as equivalent to

Bq(x) ∈ G⇐⇒ ∃δ, q′. (Bq′(x) ∈ G and q′ − δ < r(G) < q− δ).

⇐ is obvious. For ⇒, find q′ < q such that Bq′(x) ∈ G and then r such that
r − (q− q′) < r(G) < r < q, and then put δ = q− r .
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Of course, the map + is not a homeomorphism. As can easily be seen from the case of
symmetric X , the specialization orders on X ×←−−−[0,∞) and Ball(X) are different. The
classical result shows that for symmetric X , the points of our Ball(X) are the same as
those of the ball domain B(X) in [3].

We should also compare our formal balls with those of [20], which deals with the gms
case (albeit classically). Rutten defines the formal ball F〈r, x〉 (r ∈ [0,∞], x ∈ X ) to
be a function from X to [0,∞], given by y 7→ r + X(x, y). This is in fact (to use the
terminology of [33]) a right module over X , in other words a point of Xop –Mod. When
we consider Rutten’s F〈r, x〉 with respect to Xop we find that it is just our Y(x) + r ,
where Y : X → X is the Yoneda embedding, Y(x) = {Bε(y) | X(y, x) < ε}. Note that
Rutten allows r = ∞ here, which does not give a point of Ball(X) – as a subset of
X × Q+ it is empty. Rutten’s ball domain F over X is defined to be the set of right
modules F〈r, x〉, so his ball domain over Xop (apart from the infinite balls) is included
in the set of points of Ball(X). Once again, our ball domain has the extra generality of
allowing the centre to be in the completion of X .

5 Main results

Our strategy now is to show that we have a factorization

F∼X Ball(F∼X)� � iF∼ //F∼X

P∼X

υ∼

��

Ball(F∼X)

P∼ Ball(X)

φ′∼

��
P∼X P∼ Ball(X)� �

P∼i
//

with υ∼ in fact a homeomorphism (though φ′∼ is not), giving a monad opfunctor
(Comp, υ∼) : (gms,F∼) → (Loc,P∼) such that i : (Comp, υ∼) → (Ball, φ′∼) is a
transformation of monad opfunctors.

There are two main steps in the proof. The first (Section 5.1) is to identify those points
of P∼ Ball(X) that are in the sublocale P∼X , and the second (Section 5.2) is to describe
the factorization through a homeomorphism. The process will also describe how points
of F∼X (Cauchy filters of balls for F∼X ) satisfy the � and ♦ opens of P∼ Ball(X).
This will be needed in order to see how they correspond with sublocales of X .
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5.1 The embeddings P∼X ↪→ P∼Ball(X)

[3, theorem 22] use their domain theoretic results to deal not only with points of a
complete metric space X , but also with compact subspaces. For this they use the
Plotkin powerdomain (of which the Vietoris powerlocale is the localic analogue) of
their ball domain. They show (their theorem 22) that the compact subspaces of X are
in bijection with the rounded ideals I of finite non-empty subsets of X × [0,∞) for
which

inf
S∈I

max
(x,r)∈S

r = 0.

We now give constructive localic analogues of their result, for all three powerlocales
and covering the generalized metric case. We shall replace X× [0,∞) by X×Q+ (and
drop any assumption that X is complete), and then the results surveyed in Section 2.3
show that the powerlocales of Ball(X) are got as the ideal completions of F(X × Q+)
under suitable orders ⊃∼ . Since X embeds in Ball(X), it follows that P∼(X) embeds in
Idl(F(X×Q+),⊃∼). Our task in this section is to identify which ideals of F(X×Q+)
are in the sublocale P∼(X).

[2] also examine powerdomains for generalized metric spaces. Their most detailed
working is for the lower. They work in the case where X is complete but has a
“basis” B, and the lower powerdomain is then a certain subset of B̂ = B–Mod. In
fact (our Proposition 5.1), B̂ can be understood as PL Ball(X), so we share a basic
approach. However, their characterization of that subset is very different from ours,
being described in terms of limits of sequences. They also show (their corollary 7.11)
that this subset is isomorphic to the completion of the finite powerset of B with the
lower metric. It is difficult to compare this account directly with ours, since they are
throughout using not only classical, spatial reasoning, but also sequencewise definitions
of completeness and completion ([33] shows that netwise definitions are needed to get
a good classical correspondence). They also (their section 7.4) sketch the definition of
upper and convex powerdomains, and state without proof that they can be obtained by
completing the finite powerset with upper or convex metric.

Before proving the main results of this section, let us give the following result that
relates them to the approach of [2].

Proposition 5.1 Let X be a gms. Then X–Mod is homeomorphic to PL(Ball(X)).

Proof It is straightforward to show that, for any continuous information system D, the
rounded downsets of D are equivalent to ideals of FLD, hence to points of PL(Idl(D)):
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a rounded downset I corresponds to the ideal J = {S | S ⊆ I}, and, inversely, J
corresponds to I = {s | {s} ∈ J}. 2

Now the points of X–Mod, the rounded upsets of formal open balls, are the rounded
downsets with respect to the refinement order ⊃ used in ball(X), and hence ideals of
FL ball(X). We conclude that X–Mod is homeomorphic to PL(Ball(X)).

Note that reversing the order on the information system D corresponds to taking the
Lawson dual 3 of the continuous dcpo, its points being the Scott open filters of points
of Idl(D).

We now prove the main results of this section. In each P∼ Ball(X) ∼= Idl(F(X ×
Q+),⊃∼), we identify which points correspond to those in the image of P∼X . Fol-
lowing [3], if S ∈ F(X × Q+) then we write rS = max{δ | Bδ(x) ∈ S} ∈ Q, and if
J ⊆ F(X × Q+) then we write rJ = inf{rS | S ∈ J} ∈ ←−−−[0,∞]. In the context of [3]
(with X complete and symmetric) they prove that non-empty compact subspaces of X
correspond to ideals J of (F+(X × [0,∞)),⊃C) for which rJ = 0.

We shall strengthen the condition rJ = 0, to one saying that for every ε ∈ Q+ , every
S ∈ J has a refinement T ∈ J with rT < ε. For the upper and convex cases (which
deal with compact subspaces) this is equivalent to rJ = 0, because if S ⊃U T then
rS > rT . However, in the lower case our condition is stronger.

In proving the theorem, we shall consider the locale embedding X → Ball(X) in terms
of frame presentations. From the definition of the points as filters of balls, we see
immediately that the frame for Ball(X) can be presented as

Ω Ball(X) = Fr〈Bδ(x) (x ∈ X, δ ∈ Q+) |

Bδ(x) ∧ Bδ′(x′) =
∨
{Bε(y) | Bε(y) ⊂ Bδ(x) and Bε(y) ⊂ Bδ′(x′)}

(x, x′ ∈ X, δ, δ′ ∈ Q+)

true =
∨
{Bδ(x) | x ∈ X, δ ∈ Q+}〉

while the sublocale X has the extra relations

true =
∨

x∈X
Bε(x) (ε ∈ Q+)

corresponding to the Cauchy property.
2The equivalence here is essentially that remarked on in [26, after theorem 4.3], using the fact

that the rounded downsets of D are the rounded upsets of Dop and hence the opens of Idl(Dop).
Thus Ω Idl D is presented, as continuous dcpo, by the information system FLDop ∼= (FUD)op .
Note that there is a mistake there in [26]. “>U ” should be either “>L ” or “(<U)op ”.

3This is sometimes known as the Hoffmann–Lawson dual, since – according to [7] – it was
discovered independently by Hoffmann and by Lawson.
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Theorem 5.2 Let J be a point of Idl(F(X × Q+),⊃∼) ∼= P∼ Ball(X). Then J is in
the image of P∼X iff for all S ∈ J and ε ∈ Q+ , there is some T ∈ J with S ⊃∼ T and
rT < ε.

Proof ∼ is L: Let Y ↪→ Z be an arbitrary locale embedding, with ΩY presented over
ΩZ by relations a ≤ b for (a, b) ∈ R ⊆ ΩZ × ΩZ . By a routine application of the
coverage theorem (see [28]), we have

ΩY ∼= SupLat〈ΩZ (qua SupLat ) | a ∧ c ≤ b ∧ c ((a, b)∈R, c ∈ ΩZ)〉

and it follows that

ΩPLY = Fr〈ΩY (qua SupLat )〉
∼= Fr〈ΩZ (qua SupLat ) | a ∧ c ≤ b ∧ c ((a, b)∈R, c ∈ ΩZ)〉
∼= Fr〈ΩPLZ (qua Fr) | ♦(a ∧ c) ≤ ♦(b ∧ c) ((a, b)∈R, c ∈ ΩZ)〉.

Clearly it suffices to take the opens c just from a base of Z .

In our present case we have Y = X , Z = Ball(X), with ΩX presented over Ω Ball(X)
by relations true ≤

∨
y∈X Bε(y) (ε > 0). Hence, using the fact that the Bδ(x)’s are a

base for Ball(X), we find that ΩPLX is presented over ΩPL Ball(X) by relations

♦Bδ(x) ≤
∨
y∈X

♦(Bδ(x) ∧ Bε(y))

=
∨
{♦Bε′(y′) | Bδ(x) ⊃ Bε′(y′) and ε′ < ε}.

We now apply Lemma 2.13 (1). Suppose J satisfies the relations, and suppose S ∈ J
and ε ∈ Q+ . For each Bδ(x) ∈ S we have {Bδ(x)} ∈ J and so there is some
{Bε′(y′)} ∈ J with Bε′(y′) ⊂ Bδ(x) and ε′ < ε. Taking those balls Bε′(y′) together,
we can find a finite set T ∈ J such that S ⊃C T – hence S ⊃L T – and rT < ε. The
converse is obvious.

∼ is U: This time for the arbitrary locale embedding Y ↪→ Z , by a routine application
of the preframe coverage theorem [12], we have

ΩY ∼= PreFr〈ΩZ (qua PreFr ) | a ∨ c ≤ b ∨ c ((a, b)∈R, c ∈ ΩZ)〉.

It follows that

ΩPUY = Fr〈ΩY (qua PreFr )〉
∼= Fr〈ΩZ (qua PreFr ) | a ∨ c ≤ b ∨ c ((a, b)∈R, c ∈ ΩZ)〉
∼= Fr〈ΩPUZ (qua Fr ) | �(a ∨ c) ≤ �(b ∨ c) ((a, b)∈R, c ∈ ΩZ)〉.
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In our present case with relations true ≤
∨

y Bε(y) (ε > 0), the opens c appearing
above make no difference (true ∨ c = true). Hence we find that ΩPUX is presented
over ΩPU Ball(X) by relations

true ≤ �
∨
y∈X

Bε(y) =
∨↑
{�

∨
y∈ T′

Bε(y) | T ′ ∈ FX}.

We now apply Lemma 2.13 (2). Suppose J satisfies the relations, and suppose S ∈ J
and ε ∈ Q+ . From the relations we can find T ′ ∈ FX such that {Bε(y) | y ∈ T ′} ∈ J .
Let T ∈ J be such that S ⊃U T and {Bε(y) | y ∈ T ′} ⊃U T . Then rT < ε and T
is as required. Conversely, suppose the condition holds. Let ε ∈ Q+ . We can find
S ∈ J (which is inhabited), and so there is some T ∈ J with S ⊃U T and rT < ε. If
T ′ = {y | ∃α. Bα(y) ∈ T} then {Bε(y) | y ∈ T ′} ∈ J as required.

∼ is C: This time for an arbitrary locale embedding Y ↪→ Z , combining the calculations
for the lower and upper cases, we get

ΩVY = Fr〈ΩY (qua SupLat ), ΩY (qua PreFr ) |
�d ∧ ♦e ≤ ♦(d ∧ e),

�(d ∨ e) ≤ �d ∨ ♦e〉
∼= Fr〈ΩVZ (qua Fr ) | ♦(a ∧ c) ≤ ♦(b ∧ c),�(a ∨ c) ≤ �(b ∨ c)

((a, b)∈R, c ∈ ΩZ)〉.

In our present case, as before, these relations reduce to

♦Bδ(x) ≤
∨
{♦Bε′(y′) | Bδ(x) ⊃ Bε′(y′) and ε′ < ε}

true ≤
∨↑
{�

∨
y∈T′

Bε(y) | T ′ ∈ FX}.

However, given the second, we have the first (in fact they are equivalent): for

♦Bδ(x) ≤
∨↑
{♦Bδ(x) ∧�

∨
y∈T′

Bε(y) | T ′ ∈ FX}

≤
∨↑
{♦(Bδ(x) ∧

∨
y∈T′

Bε(y)) | T ′ ∈ FX}

=
∨
y∈X

♦(Bδ(x) ∧ Bε(y)) ≤ RHS of first.

From Lemma 2.13 we see that J satisfies �
∨
{Bε(y) | Bε(y) ∈ U} iff U ⊃U V for

some V ∈ J , and then U′ ⊃C V for some finite U′ ⊆ U .
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Suppose J satisfies the relations, and S ∈ J and ε ∈ Q+ . From the relations, find
U ∈ FX and V ∈ J such that {Bε(x) | x ∈ U} ⊃U V , and then U′ ⊆ U such that
{Bε(x) | x ∈ U′} ⊃C V and hence {Bε(x) | x ∈ U′} ∈ J . If T is an upper bound
for S and {Bε(x) | x ∈ U′} in J , then rT < ε as required. The converse argument is
essentially the same as for the upper powerlocale.

Notice that although the statement of the Theorem is geometric, its proof is not – it
uses frames, suplattices and preframes, which are not geometric structures. However,
the proof is topos-valid and so holds at every stage of definition. Implicitly, it also uses
the fact that the powerlocale constructions themselves are geometric [32] in order to
ensure that Theorem 5.2 applies also to generalized points.

We refine the Theorem slightly to show that T can be chosen of the form φ(Bβ(T ′))
(with φ as in Definition 4.4).

Lemma 5.3 Let X be a gms, let ∼ stand for L, U or C, and suppose J is an ideal of
(F(X × Q+),⊃∼). If J satisfies the condition of Theorem 5.2, namely that for every
S ∈ J and ε ∈ Q+ there is some T ∈ J with S ⊃∼ T and rT < ε, then for every S ∈ J
and ε ∈ Q+ there is some φ(Bβ(T ′)) ∈ J with S ⊃∼ φ(Bβ(T ′)) and β < ε.

Proof We can find δ ∈ Q+ such that S′ = {Bα−δ(x) | Bα(x) ∈ S} ∈ J , and then
we can find T ∈ J such that S′ ⊃∼ T and rT < min(δ, ε). Choose β ∈ Q+ such
that rT < β < min(δ, ε), and let T ′ = {y | ∃γ. Bγ(y) ∈ T}. Then φ(Bβ(T ′)) ⊃C T ,
so φ(Bβ(T ′)) ∈ J . Also, S ⊃∼ φ(Bβ(T ′)). To see this when ∼ is L, if Bα(x) ∈ S
then we have Bα−δ(x) ⊃ Bγ(y) ∈ T , and then Bα(x) ⊃ Bβ(y) ∈ φ(Bβ(T ′)), because
β − γ < β < δ . The argument when ∼ is U is similar, and then the case for C
follows.

5.2 Powerlocales of localic completions

We shall be working with the following diagram. φ∼ , φ′∼ and the homeomorphism
υ′∼ are Definitions 4.4, 4.7 and 2.12; υ∼ is the homeomorphism we are constructing.

F∼X Ball(F∼X)� � iF∼ // Ball(F∼X) Idl(ball(F∼X))Idl(ball(F∼X)) Idl(F∼(ball(X)))
Idlφ∼ //F∼X

P∼X

υ∼

��

Ball(F∼X)

P∼ Ball(X)

φ′∼

��

Idl(F∼(ball(X)))

P∼ Idl(ball(X))

υ′∼ ball
xxqqqqqqqqqqqqqqqqq

P∼X P∼ Ball(X)� �

P∼i
// P∼ Ball(X) P∼ Idl(ball(X))
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Theorem 5.4 Let X be a gms, and let ∼ stand for L, U or C. Then φ′∼ factors through a
homeomorphism υ∼ : F∼X ∼= P∼X , giving a monad opfunctor (Comp, υ∼) : (gms,F∼)→
(Loc,P∼) and i : (Comp, υ∼)→ (Ball, φ′∼) a transformation of monad opfunctors.

Proof Let I be an ideal of (F∼X × Q+,⊃). We show that if I is Cauchy, then
Idl(φ∼)(I) = (⊃∼ φ(I)) satisfies the condition of Theorem 5.2. Suppose S ⊃∼
φ(Bα(S′)) with Bα(S′) ∈ I , and ε ∈ Q+ . We can find Bα(S′) ⊃ Bβ(T ′) ∈ I with β < ε,
and then, using Lemma 4.5, S ⊃∼ φ(Bβ(T ′)) ∈ Idl(φ∼)(I), with r(φ(Bβ(T ′))) ≤ β < ε.
(We have only ≤, because in some situations T ′ might be empty.) Hence Idl(φ∼)
restricts to υ∼ : F∼X → P∼X .

At this point we see by Lemma 2.7 that (Comp, υ∼) is a monad opfunctor and
i : (Comp, υ∼) → (Ball, φ′∼) is a transformation of monad opfunctors. Note that
each P∼ preserves embeddings. (In fact this follows from the proof of Theorem 5.2.)

We also have I = φ−1(Idl(φ∼)(I)). For suppose φ(Bδ(S)) ⊃∼ φ(Bε(T)) with Bε(T) ∈
I . By the Cauchy property we can assume ε < δ , and then by Lemma 4.5 we have
Bδ(S) ⊃ Bε(T) so Bδ(S) ∈ I .

Now suppose J is an ideal of (F(X×Q+),⊃∼) satisfying the condition of Theorem 5.2.
We show that φ−1(J) is an ideal of (F∼X × Q+,⊃) and that it is Cauchy. Clearly
φ−1(J) = (⊃ φ−1(J)). For the rest suppose Bαi(S

′
i) ∈ φ−1(J) (i = 1, 2) and ε ∈ Q+ .

Then the φ(Bαi(S
′
i))s have an upper bound in the ideal J and using Lemma 5.3 there

is some φ(Bβ(T ′)) ∈ J such that φ(Bαi(S
′
i)) ⊃∼ φ(Bβ(T ′)) and β < min(α1, α2, ε).

Using Lemma 4.5 we see that Bβ(T ′) refines both Bαi(S
′
i)s in φ−1(J) with β < ε,

so φ−1(J) is both an ideal and Cauchy. From Lemma 5.3 we also deduce J = (⊃∼
φ(φ−1(J))).

It is straightforward to check that these homeomorphisms restrict to the positive parts,
giving F+

∼X ∼= P+
∼X .

Having identified P∼X with F∼X , we should ask when points of F∼X are in the �
and ♦ opens.

Proposition 5.5 Let B be a finite subset of X × Q+ .

(1) If I is a Cauchy filter for F∼X (∼ standing for L or C), then υ∼(I) is in∧
{♦Bδ(x) | (x, δ) ∈ B} iff there is some Bε(S) ∈ I such that B ⊃L φ(Bε(S)).

(2) If I is a Cauchy filter for F∼X (∼ standing for U or C), then υ∼(I) is in
�(

∨
B) = �

∨
{Bδ(x) | (x, δ) ∈ B} iff there is some Bε(S) ∈ I such that

B ⊃U φ(Bε(S)).
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Proof In each case we consider I as a point of Ball(F∼X), and ask when φ′∼(I) is in
the corresponding open of P∼(Ball(X)). The answer can be derived from Lemma 2.13.

(1): φ′∼(I) is in
∧
{♦Bδ(x) | (x, δ) ∈ B} iff B ∈ (⊃L φ

′
∼(I)) = (⊃L (⊃∼ φ(I))) = (⊃L

φ(I)) where φ(I) denotes the direct image.

(2) is similar.

Proposition 5.6 Let I be a Cauchy filter for FCX . Then Bδ(S) ∈ I iff υ∼(I) is in
both �(

∨
x∈S Bδ(x)) and

∧
x∈S ♦Bδ(x).

Proof ⇒ is clear. For⇐, and using Proposition 5.5, suppose φ(Bδ(S)) ⊃U φ(Bα(A))
and φ(Bδ(S)) ⊃L φ(Bβ(B)) with Bα(A),Bβ(B) ∈ I . Choose Bε(T) ∈ I such that
Bα(A) ⊃ Bε(T) and Bβ(B) ⊃ Bε(T) in FCX , and ε < δ . Using Lemma 4.5 we have
φ(Bδ(S)) ⊃∼ φ(Bε(T)) with ∼ standing for U or L, and hence also for C. Then again
by Lemma 4.5 we have Bδ(S) ⊃ Bε(T) in FCX , so Bδ(S) ∈ I .

We complete this section with an analysis of the maps ⇓ and ⇑.

Proposition 5.7 For any gms X , the identity function on FX gives non-expansive
maps FCX → FLX and FCX → FUX . These lift to the maps ⇓ : PCX → PLX and
⇑ : PCX → PUX .

Proof We find monad opfunctors

(gms, Id∼) : (gms,FC)→ (gms,F∼),

(cis, Id∼) : (cis,FC)→ (cis,F∼) and

(Loc, I∼) : (Loc,PC)→ (Loc,P∼)

where Id∼ in each case is just the identity on the finite powerset, and I∼ : PC → P∼
is ⇑, ⇓ or Id according as ∼ is U, L or C.

In the following diagram of monad opfunctors, the two squares commute.

(gms,FC) (cis,FC)
(ball,φC) // (cis,FC) (Loc,PC)

(Idl,υ′C)
//(gms,FC)

(gms,F∼)

(gms,Id∼)

��

(cis,FC)

(cis,F∼)

(cis,Id∼)

��

(Loc,PC)

(Loc,P∼)

(Loc,I∼)

��
(gms,F∼) (cis,F∼)

(ball,φ∼)
// (cis,F∼) (Loc,P∼)

(Idl,υ′∼)
//

For the left hand square this is elementary, while the right hand can be checked (by
considering inverse image functions) using Definition 2.12 – essentially it is because
the same definitions work in the different powerlocales.
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These two squares together give a monad opfunctor (Ball, ψ∼) : (gms,FC)→ (Loc,P∼).
We have monad opfunctor transformations

i(gms, Id∼) : (Comp, υ∼)(gms, Id∼)→ (Ball, ψ∼) and

(Loc, I∼)i : (Loc, I∼)(Comp, υC)→ (Ball, ψ∼).

The identity natural transformation on Comp makes a commutative triangle with these
at the level of natural transformations, and we can apply Lemma 2.8 to see that it is an
monad opfunctor transformation from (Loc, I∼)(Comp, υC) to (Comp, υ∼)(gms, Id∼).
The effect of this is to show that ⇑ and ⇓ are the lifted maps.

6 Compactness and overtness

For our first applications we look at two important properties of locales that can be
easily addressed using powerlocales.

6.1 Compactness

A well known classical property of complete metric spaces X is that they are compact
iff totally bounded: for every ε > 0 there is a finite S ⊆ X such that the open ε–balls
centred on elements of S cover X . (Given a dense subspace D, one can even choose
S ⊆ D.) Constructively, [1] used total boundedness as the definition of compactness for
complete metric spaces; [18] shows that this is constructively equivalent to compactness
of a corresponding localic completion in the style of [33].

We now use powerlocale methods to show this result quite generally for localic com-
pletions: a gms completion X is compact iff X is totally bounded. (More information
on totally bounded quasimetric spaces can be found in [22].) We shall apply a basic
result that a locale is compact iff its upper powerlocale has a least point in the following
strong sense. We say that a locale X is local if the unique map ! : X → 1 has a left
adjoint, a global point ⊥ : 1 → X such that ⊥◦! v IdX . This can be expressed by
saying that ⊥ is less than the generic point, in other words that ⊥ is less than all
generalized points. Hence ⊥ is a bottom point of X in a strong sense. (This is a special
case of the concept of local topos, which has been studied in [11]; see [10].) To prove
that a locale is local, we shall normally give a geometric definition of the bottom point
and show that it is less than every point. The geometricity allows us to deduce that the
bottom point is less than the generic point.



Localic completion II 33

Theorem 6.1 [27]

A locale Y is compact iff PUY is local. Its bottom point then corresponds to Y as a
sublocale of itself.

The usual definition of total boundedness is that for every δ > 0 there is a finite
subset S ⊆ X that is a δ–cover in the sense that for every x ∈ X there is some s ∈ S
with X(s, x) < δ . The universal quantification here (∀x ∈ X ) is intuitionistic but not
geometric, so we give a geometric definition in which the relationship between δ and S
is given as a relation Cov in the theory. Hence total boundedness is not (geometrically)
a property of a gms but additional structure. We shall, however, present it in such a
way that it is unique when it exists.

Definition 6.2 A totally bounded gms X is one equipped with a relation Cov ⊆
FX × Q+ satisfying the following axioms:

∀S ∈ FX. ∀δ ∈ Q+. ∀x ∈ X. (Cov(S, δ)→ ∃s ∈ S. X(s, x) < δ)(TB1)

∀δ ∈ Q+. ∃S ∈ FX. Cov(S, δ)(TB2)

∀S ∈ FX. ∀δ ∈ Q+. (Cov(S, δ)→ ∃δ′ ∈ Q+. (δ′ < δ ∧ Cov(S, δ′))(TB3)

∀S,T ∈ FX. ∀δ, ε ∈ Q+. (Cov(T, ε) ∧ FUX(S,T) < δ(TB4)

→ Cov(S, δ + ε))

Note that from TB1 we can deduce that if Cov(S, δ) then FUX(S,T) < δ for every
T ∈ FX .

Note also that if Cov is viewed (in the obvious way) as a set of formal open balls
for FUX , then conditions TB2, TB3 and TB4 are equivalent to saying that Cov is a
rounded upper set containing balls of arbitrarily small radius (the Cauchy property).

Proposition 6.3 Let X be a totally bounded gms. Then Cov(S, δ) iff ∃δ′ < δ such
that S is a δ′–cover (ie ∀x ∈ X. ∃s ∈ S. X(s, x) < δ′ ).

Proof ⇒: Combine TB3 with TB1.

⇐: By TB2, we can find T with Cov(T, δ − δ′), and by hypothesis FUX(S,T) < δ′ .
Then Cov(S, δ) by TB4.

It follows that on any given gms X , if Cov can be defined at all then it is unique.

The axiomatization is strong in order to characterize Cov uniquely. However, it is
useful to know that we can get by with weaker structure.
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Proposition 6.4 Let X be a gms and let Cov0 ⊆ FX × Q+ be such that axioms TB1
and TB2 hold when Cov0 is substituted for Cov. Then X can be given the structure of
total boundedness.

Proof Define Cov(S, δ) if for some δ′ < δ and some T we have FUX(S,T) < δ′ and
Cov0(T, δ − δ′). We prove the four axioms.

TB1: Suppose Cov(S, δ) with T and δ′ as above, and suppose x ∈ X . There is some
t ∈ T with X(t, x) < δ − δ′ , and then some s ∈ S with X(s, t) < δ′ . Then X(s, x) < δ .

TB2: Choose T with Cov0(T, δ/2). We have FUX(T,T) = 0 < δ/2, and it follows
that Cov(T, δ).

TB3: Given Cov(S, δ), in the part of the definition that says FUX(S,T) < δ′ we can
reduce δ′ to some δ′′ and thereby reduce δ to δ − (δ′ − δ′′).

TB4: Given the hypotheses of TB4, we have some ε′ < ε and U such that Cov0(U, ε−
ε′) and FUX(T,U) < ε′ . Then FUX(S,U) < δ + ε′ , so Cov(S, δ + ε).

Lemma 6.5 Let X be a totally bounded gms. Then FUX is local, with Cov (as a set
of formal balls) its least point.

Proof We have already noted that Cov is upper and Cauchy. For binary filteredness,
suppose Cov(Si, δi) (i = 1, 2). By TB3 we can find δ′i < δi and Cov(Si, δ

′
i). Let ε =

mini(δi − δ′i) and choose T with Cov(T, ε). Then it follows that FUX(Si,T) + ε < δi ,
which is what was needed.

Now let F be any point of FUX . We want to show Cov ⊆ F . Suppose Cov(S, δ), and
find δ′ < δ such that Cov(S, δ′). By the Cauchy property for F , there is some T with
Bδ−δ′(T) ∈ F . Then FUX(S,T) < δ′ and so Bδ−δ′(T) ⊂ Bδ(S) and Bδ(S) ∈ F .

There is a logical subtlety here, relying on the geometric constructivism of the argument.
When we let F be “any” point of FUX , we allow arbitrary generalized points, not just
global points. To explain it in terms of categorical logic, we can use the argument
internally in sheaves over FUX to show that Cov is less than the generic point of FUX .
In other words, the map !; Cov : FUX → 1→ FUX is less (in the specialization order)
than the identity map on FUX , which was the definition of locality. This is stronger
than saying that Cov is less than all global points. A more concrete argument can be
found by analysing the above proof to find the inverse image function (!; Cov)∗ .

Lemma 6.6 Let X be a gms and suppose FUX is local. Then X is totally bounded.
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Proof Let K be the least point of FUX . We define Cov(S, δ) if Bδ(S) ∈ K . Axioms
TB2, TB3 and TB4 follow easily from the fact that K is a Cauchy filter. To prove
TB1, suppose Bδ(S) ∈ K and we are given x ∈ X . Consider the Cauchy filter
Y(x) = {Bε(y) | X(y, x) < ε}. The corresponding point ↑ Y(x) of PUX ∼= FUX is
{Bε(T) | FUX(T, {x}) < ε}. We have K v ↑ Y(x), and it follows that FUX(S, {x}) <
δ . Hence there is some s ∈ S with X(s, x) < δ .

Theorem 6.7 Let X be a gms. Then X is compact iff X is totally bounded.

Proof Combine Theorem 6.1 with Lemmas 6.5 and 6.6.

6.2 Overtness

“Overt” here is Paul Taylor’s synonym of “open” [13], in the sense that a locale Y is
overt if the unique map ! : Y → 1 is an open map. This means that for every open
U in Y , its image under ! is open in 1 and hence is a proposition Pos(U). Thus Pos
is a “positivity predicate”. Actually, the positivity predicate can always be defined, by
Pos(U) holding if every open cover of U is inhabited. However [8], overtness implies
in addition that every open is a join of positive opens.

Classically, overtness is not an issue since every locale is overt, with U positive iff
U 6= ∅. Constructively it becomes important, and in many ways is a counterpart of
compactness. In formal topology, it is often taken as part of the basic definition. (See
[17] for a discussion of the relationship between localic overtness and the positivity
predicate in formal topology.)

We now use powerlocale methods to provide a simple proof that all gms completions
are overt. Dual to localness, a locale X is colocal iff the unique map ! has a right
adjoint > : 1 → X (a top point). (This is a special case of the concept of totally
connected topos [10, C 3.6.16].)

Theorem 6.8 [27]

A locale Y is overt iff PLY is colocal. Its top point then corresponds to Y as a sublocale
of itself.

Corollary 6.9 If X is a gms then X is overt.

Proof If δ > ε then in FLX we have Bδ(S) ⊃ Bε(S ∪ T) for all S and T , so any two
balls Bδi(Si) (i = 1, 2) have a common refinement Bε(S1 ∪ S2) where ε < min(δ1, δ2).
It follows that FX × Q+ is a point of FLX , and hence must be the top point. We can
now apply Theorem 6.8.
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7 Sublocales of R

We now look at some applications to those sublocales of the reals R ∼= Q that can be
expressed as powerlocale points. Theorem 5.4 offers us the opportunity of defining
powerlocale points as Cauchy filters of formal balls, and this gives access to geometric
techniques for reasoning with the corresponding sublocales of the reals. The working
is reduced to elementary manipulations of the rationals and finite sets of them, and
ends up describing subspaces not by their points, but by the opens that contain or meet
them. A good example of the style is [38], which deals with connectedness in the reals,
with applications to the Intermediate Value Theorem. In fact, as is explained in section
7.1 there, this unfamiliar style of reasoning still makes sense in classical topology. 4

Since R is regular, all its sublocales are fitted, and its compact sublocales are closed
and hence weakly closed. Thus its powerlocale points can be described as follows.

• In PLR: overt, weakly closed sublocales.

• In PUR: compact sublocales.

• In VR: compact, overt sublocales.

Classically all locales are overt, and weakly closed is equivalent to closed, so it might
seem that there is little to choose between the powerlocales. In particular both PUR
and VR have as their classical points the compact sublocales of R. However, VR
has a finer topology (with opens ♦U as well as �U ). Constructively, the requirement
for overtness needs extra information on the points. In effect, a compact sublocale is
approximated “from above” (the opens �U provide information about what includes
the sublocale), while an overt sublocale is approximated “from below” (the opens
♦U provide information about what is in the sublocale). This becomes important in
Section 7.1, where we see how to calculate the inf and sup of points of V+R. To
approximate sup K from above or below we need approximations of K from above or
below respectively (and inf K is similar but the other way round).

7.1 Bounds of Vietoris points

In this section we examine the maps sup and inf from V+R to R. (We have to use
V+R rather than VR, because the sup and inf of the empty set would have to be
infinite.) These can be defined as lifts of gms homomorphisms.

4Another approach to such questions is Taylor’s study [24] in the context of his Abstract
Stone Duality. Again, subspaces are described in terms of the opens that contain or meet them.
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Proposition 7.1 The functions max and min : F+
C Q→ Q are non-expansive.

Proof We prove the result for max. For min it is dual, by order reversal on Q.

Let S and T be in F+Q, let smax = max(S), tmax = max(T), and let q = F+
C Q(S,T), a

non-negative rational. Since tmax ∈ T we have that tmax is within q of some s ∈ S and
then tmax ≤ s + q ≤ smax + q. Similarly, smax ≤ tmax + q and so |tmax− smax| ≤ q.

Definition 7.2 We define sup : V+R → R as max : V+R ∼= F+
C Q → Q ∼= R.

Similarly, inf is min.

Our goal now is to show how, if K is a point of V+R, sup(K) genuinely is the supremum
of K . (We focus on sup from now on; the results for inf are entirely dual.) We show in
fact that it is the greatest element of K : sup(K) ∈ K , and if x ∈ K (see Theorem 2.3)
then x ≤ sup(K).

Lemma 7.3 If K is a point of V+R, then sup(K) ∈ K .

Proof We must show ↓ sup(K) v ⇓K and ↑ sup(K) w ⇑K . Now sup; ↓ : V+R →
R → PLR lifts max; {−} : F+

C Q → Q → FLQ and by Proposition 5.7 ⇓ : V+R →
PLR lifts Id : F+

C Q → FLQ. Hence to prove ↓ ◦ sup v ⇓ it suffices by Proposi-
tion 2.21 to show that FLQ({max(S)}, S) = 0 for every S ∈ F+Q. This is obvious,
because max(S) ∈ S . The other half, ↑ ◦ sup w ⇑, is dual.

Lemma 7.4 If x is a point of R then sup({x}) = x.

Proof {−}; sup : R → V+R → R lifts {−}; max : Q → F+
C Q → Q, which is the

identity.

We now proceed to show that if K ⊆ L are points of V+R, then sup(K) ≤ sup(L). Note
that by K ⊆ L we mean the order corresponding to that of the sublocales: ⇑ K w ⇑ L
and ⇓ K v ⇓ L .

We first investigate a locale that will be useful.

Definition 7.5 Let
−→
Q be the gms whose elements are the rationals, but whose metric

is defined as truncated minus,
−→
Q (x, y) = x−̇y = max(0, x− y).
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It is shown in [33] that
−→
Q is homeomorphic to the ideal completion of (Q, <), in other

words its points are equivalent to rounded lower inhabited subsets of Q. It is the locale−−−−−−→
(−∞,∞] of lower reals.

Lemma 7.6 In
−→
Q we have Bε(y) ⊂ Bδ(x) iff ε < δ and x− δ < y− ε.

Proof

Bε(y) ⊂ Bδ(x)⇔ (x−̇y) < δ − ε
⇔ 0 < δ − ε and x− y < δ − ε

Lemma 7.7 Id : Q →
−→
Q lifts to the map ↓ : R → −−−−−−→

(−∞,∞] that takes each
Dedekind section (L,R) to L .

Proof It is shown in [33] that (L,R) as a Cauchy filter is

{Bδ(x) | x− δ ∈ L, x + δ ∈ R}.

This maps to

{Bε(y) | ∃x, δ. (x− δ ∈ L and x + δ ∈ R and δ < ε and y− ε < x− δ)}

and this in turn corresponds, as an ideal of (Q, <), to

{y− ε | ∃x, δ. (x− δ ∈ L and x + δ ∈ R and δ < ε and y− ε < x− δ)}.

But this is just L again. To show that it contains L , suppose z ∈ L , and by roundedness
find z < z′ ∈ L . Now find w ∈ R and let x = (z′ + w)/2, δ = (w − z′)/2 = x − z′ .
Then x − δ = z′ ∈ L and x + δ = w ∈ R. Let y = x , ε = y − z > δ . Then
y− ε = z < z′ = x− δ .

Lemma 7.8 If K ⊆ L are points of V+R, then sup(K) ≤ sup(L).

Proof The function max : F+
L Q→

−→
Q is non-expansive. Let S,T ∈ F+Q, smax =

max(S), tmax = max(T) and q = F+
L Q(S,T) ≥ 0. Since smax ∈ S we can find t ∈ T

within q of smax , and then smax ≤ t + q ≤ tmax + q and smax−̇tmax ≤ q.
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Using Proposition 5.7 and Lemma 7.7, the first of the following two commutative
squares lifts to the second.

F+
C Q Qmax // V+R R

sup //F+
C Q

F+
L Q

Id
��

Q

−→
Q

Id
��

V+R

P+
L R

⇓
��

R

−−−−−−→
(−∞,∞]

↓
��

F+
L Q

−→
Qmax

// P+
L R

−−−−−−→
(−∞,∞]

max
//

Since K ⊆ L we have ⇓ K v ⇓ L , and it follows that ↓ sup(K) v ↓ sup(L). This
says that sup(L) has the larger left half in its Dedekind section, in other words that
sup(K) ≤ sup(L).

We can similarly show that inf(K) ≥ inf(L), but this time the proof has to use the upper
powerlocale.

The proofs show something of the reason why we need points of the Vietoris pow-
erlocale if we are to calculate sup and inf . Given a point of the lower powerlocale,
we can approximate its sup from below but not from above. This gives a point of−−−−−−→
(−∞,∞], which in fact is what max calculates in the above proof. Similarly, we can
approximate its inf from above but not below, getting a point in the dual

←−−−−−−
[−∞,∞)

(completing the dual metric
←−
Q (x, y) = y−̇x). The same applies to points of the upper

powerlocale, but the other way round. To get sup and inf as full Dedekind sections,
approximated from both below and above, we need to start with a point of the Vietoris
powerlocale.

Putting all these together, we obtain

Theorem 7.9 There are maps sup, inf : V+R → R such that sup(K) is the greatest
point in K and inf(K) is the least.

7.2 The Heine–Borel maps

If x ≤ y are reals then the Heine–Borel Theorem says that the closed interval [x, y]
is compact. As it happens, it is also overt and semifitted, and so corresponds to a
point HBC(x, y) of V+R. In fact, this gives a continuous map HBC : ≤ → V+R.
To see continuity, first note that if U is open, then [x, y] ⊆ U iff there is some
rational open interval (p, q) ≤ U containing both x and y. Hence HB−1

C (�U) =∨
{(p,∞) × (−∞, q) | p < q, (p, q) ≤ U}. Next, [x, y] meets U iff there is some
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rational open interval (p, q) ≤ U such that x < q and p < y, so HB−1
C (♦U) =∨

{(−∞, q)× (p,∞) | p < q, (p, q) ≤ U}.

We shall turn this argument on its head. Suppose we can define a map HBC : ≤ →
V+R, and show that HBC(x, y) corresponds to the subspace [x, y] for reals x ≤ y.
Then we have shown that [x, y] is always compact.

Remark 7.10 [0, 1] is homeomorphic to (0, 1) ∩Q, after which its compactness
follows by Theorem 6.7 from the fact that (0, 1) ∩ Q is totally bounded. A similar
technique works for other closed intervals. In fact in the case where x < y we have
[x, y] ∼= [0, 1]. Hence our metric space techniques already give a proof of the localic
Heine–Borel.

The paper [38] (written as a sequel to the present paper, though published earlier) shows
that HBC factors via a new powerlocale VcR whose points are connected points of
V+R (in fact it gives a homeomorphism ≤ ∼= VcR). It exploits HBC in its discussion
of the Intermediate Value Theorem and Rolle’s Theorem.

To define HBC it will be convenient also to use two simpler maps HBL = ⇓ ◦HBC and
HBU = ⇑ ◦HBC , taking their values in PLR and PUR.

To find the closed interval [x, y] as a point of a powerlocale, our working in effect
requires us to define the “upper” and “lower” distances from S to [x, y] for every
finite S ⊆ Q. In classical terms these would appear as supz∈[x,y] mins∈S d(s, z) and
maxs∈S infz∈[x,y] d(s, z). The upper distance is less than q iff every z in [x, y] is within
q of some s in S , in other words {Bq(s) | s ∈ S} covers [x, y]. The lower distance is
less than q iff every s in S is in the interval (x− q, y + q). However, we must express
these geometrically.

Definition 7.11 Let x ≤ y be reals, and let S be a non-empty finite subset of Q×Q+ .
We say that {Bε(s) | (s, ε) ∈ S} covers [x, y] if there is some non-empty finite sequence
(si, εi) (1 ≤ i ≤ n) in S such that

s1 − ε1 < x

si+1 − εi+1 < si + εi (1 ≤ i < n)

y < sn + εn

It is simpler for us not to assume that s1 ≤ s2 ≤ · · · ≤ sn . It could be that the
ball Bεi+1(si+1) is a long way to the left of Bεi(si) with a big gap in between. For
present purposes it turns out not to matter, though [38] also shows that a better behaved
subsequence can always be found.
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Lemma 7.12 Suppose {Bε(s) | (s, ε) ∈ S} covers [x, y] with a sequence (si, εi) as
described. Suppose also x ≤ z ≤ y. Then for some i we have si − εi < z < si + εi .

Proof The sequence also covers [x, z], for z ≤ y < sn + εn implies z < sn + εn .
(Proof: choose a rational q such that y < q < sn +εn . Then we have either z < sn +εn ,
as desired, or q < z. But this second alternative implies y < z, which is impossible.)
Hence without loss of generality we can assume that z = y. By a similar argument we
can furthermore assume that x = z and the closed interval is a single point. We use
induction on n. If n = 1 then we have s1 − ε1 < z < s1 + ε1 and we are done. Now
suppose n > 1. Since sn − εn < sn−1 + εn−1 , we have either sn − εn < z, in which
case we can take i = n, or z < sn−1 + εn−1 , in which case we can use induction.

It is clear that if we have a cover and we enlarge all the balls then we still have a cover;
and also that we are able to shrink the balls slightly and still have a cover.

Recall the natural transformations φ∼ from Definition 4.4.

Definition 7.13 Let x ≤ y be reals. Then we define subsets HB∼(x, y) of F+Q×Q+

by

Bδ(S) ∈ HBU(x, y) iff φ(Bδ(S)) covers [x, y]

Bδ(S) ∈ HBL(x, y) iff ∀s ∈ S. (x < s + δ ∧ s− δ < y)

HBC(x, y) = HBU(x, y) ∩ HBL(x, y)

The condition for HBL(x, y) is stating that each Bδ(s) overlaps [x, y]: for it would fail
to overlap iff s + δ ≤ x or y ≤ s− δ .

Lemma 7.14 Suppose x ≤ y are reals, S , T ∈ F+Q, Bδ(S) ∈ HBU(x, y) and
Bε(T) ∈ HBL(x, y). Then

FUQ(S,T) = FLQ(T, S) < δ + ε.

Proof The first equality is immediate from the symmetry of our gms structure on Q.
If t ∈ T then t is in the open interval (x − ε, y + ε). However, the closed interval
[x − ε, y + ε] is covered by {Bδ+ε(s) | s ∈ S}, and so by Lemma 7.12 there is some
s ∈ S with s− δ − ε < t < s + δ + ε. Hence FUQ(S,T) < δ + ε.

Lemma 7.15 Let x ≤ y be reals and let ε ∈ Q+ . Then there is some S ∈ F+Q such
that Bε(S) ∈ HBC(x, y).
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Proof Choose rationals a and b with a < x < a + ε and b− ε < y < b. Now choose
some natural number k ≥ 1 such that µ < 2ε, where µ = (b− a)/k . If we divide the
interval (a, b) into k equal parts, each of length µ, then their centres are

si = a + (2i− 1)µ/2 (1 ≤ i ≤ k).

Let S = {si | 1 ≤ i ≤ k}.

Lemma 7.16 Suppose x ≤ y are reals, and suppose (with ∼ being either U, L or C)
we have

Bδλ(Sλ) ∈ HB∼(x, y) (λ = 1, 2).

Then there is some Bε(T) ∈ HBC(x, y) such that F∼Q(Sλ,T) + ε < δλ .

Proof We can find ε such that Bδλ−2ε(Sλ) ∈ HB∼(x, y) for λ = 1, 2. By Lemma 7.15
we can find T with Bε(T) ∈ HBC(x, y). Now by Lemma 7.14 if ∼ is U or L we deduce

F∼Q(Sλ,T) < δλ − 2ε+ ε = δλ − ε.

The case when ∼ is C follows.

Proposition 7.17 The definitions above define maps HB∼ : ≤ → F+
∼Q (with ∼

being U, L or C).

Proof We must show that HB∼(x, y) is a Cauchy filter. Upper closedness is obvious,
and binary filteredness and the Cauchy property follow from Lemmas 7.16 and 7.15.

Lemma 7.18 Let x ≤ y be reals. Then

(1) ⇓ HBC(x, y) = HBL(x, y) and

(2) ⇑ HBC(x, y) = HBU(x, y).

Proof By Proposition 5.7 and Definition 2.20 we must show that (with ∼ standing
for L or U) HB∼(x, y) = (⊃ HBC(x, y)), where ⊃ is the ball refinement of F∼Q. This
follows from Lemma 7.16.

Theorem 7.19 If x ≤ y are reals, then HB∼(x, y), as point of P∼R, corresponds to
the closed interval sublocale [x, y].
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Proof When ∼ is U: We show that a point z of R has ↑ z w HBU(x, y) iff x ≤ z ≤ y.
We have that ↑ z w HBU(x, y) iff whenever {Bε(s) | s ∈ S} covers [x, y] then z is in
Bε(s) for some s in S . That this is implied by x ≤ z ≤ y has already been proved in
Lemma 7.12. For the converse we wish to show x ≤ z, ie that (x, z) is in the closed
complement of the open sublocale > of R2 , so suppose z < q < x for some rational
q. Choosing also a rational r > y such that r > q, the ball B(r−q)/2((q + r)/2) covers
[x, y] but does not contain z. Similarly, z ≤ y.

When ∼ is L: We show that a point z of R has ↓ z v HBL(x, y) iff x ≤ z ≤ y. We have
that ↓ z v HBL(x, y) iff whenever s − ε < z < s + ε then x < s + ε and s − ε < y.
This is obviously implied by x ≤ z ≤ y. For the converse, if z < x then we can find
rationals q and r with q < z < r < x and then by taking s = q and ε = r − q we get
a contradiction. Hence x ≤ z, and similarly z ≤ y.

When ∼ is C: For any locale X , the sublocale corresponding to a point K of VX is the
sublocale meet of those corresponding to ⇑ K and ⇓ K . Hence by Lemma 7.18, the
sublocale corresponding to HBC(x, y) is the meet of those for HBU(x, y) and HBL(x, y),
so it is just [x, y] again.

Corollary 7.20 (Heine-Borel Theorem) If x and y are reals, then the closed interval
[x, y] is compact.

Proof This follows already from part (U) of the Theorem 7.19, since the points of
PUR are equivalent to compact fitted sublocales of R.

Example 7.21 Let f : R → R be a map. Then we can define supx≤z≤y f (z) (as a
continuous function of x and y) localically as the composite map

HBC; V+f ; sup : ≤→ V+R→V+R→ R.

The main technical question here is how we know V+f takes points of V+R to their
sublocale images under f . This is discussed in more detail in [38].

Remark 7.22 We have defined HB∼(x, y) in the case where x ≤ y. One might
consider it natural to extend this so that HB∼(x, y) is empty if x > y, but a simple
argument shows this is impossible for HBL and HBC . Consider the point ∅. It is
bottom in PLX and isolated in VX , and in each case {∅} is closed. Hence HB−1

L ({∅})
and HB−1

C ({∅}) would also have to be closed; but our ambition was to have them equal
to >, which is open but not closed.

In PUX on the other hand, ∅ is the top point and {∅} is open. We sketch a modified
construction of HBU that extends it to a map R × R → FUQ in the way suggested.
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We generalize the previous definition of “covers” to say that, for S a finite subset of
Q×Q+ , {Bε(s) | (s, ε) ∈ S} covers [x, y] iff either x > y or it has a non-empty finite
sequence with the property described before. (Note that in this second case we still do
not assume x ≤ y.)

The proof of Proposition 7.17 must now be modified slightly. For the Cauchy property,
if ε ∈ Q+ then we find rationals a and b with a < x and b > y. Without loss
of generality we can suppose a < b. By Lemma 7.15 we can then find U with
Bε(U) ∈ HBC(a, b) ⊆ HBU(a, b) ⊆ HBU(x, y).

For binary filteredness, suppose Bδλ(Sλ) ∈ HBU(x, y) (λ = 1, 2). We can find ε′ ∈ Q+

with Bδλ−2ε′(Sλ) ∈ HBU(x, y). We shall now find Bε(T) such that Bε(T) ∈ HBU(x, y)
and FUQ(Sλ,T) + ε < δλ . If x > y then we can choose T = ∅ and ε = ε′ . In the
other case, we have covering sequences ((sλi , δλ − 2ε′))1≤i≤mλ

taken from Sλ . Let

a = max
λ

(sλ1 − δλ + 2ε′) < x

b = min
λ

(sλmλ
+ δλ − 2ε′) > y.

Note that Bδλ−ε′(Sλ) ∈ HBU(a, b). If b < a then y < x , so (since the order is
decidable on Q) we can assume a ≤ b, and then by Lemma 7.16 we can find

Bε(T) ∈ HBC(a, b) ⊆ HBU(a, b) ⊆ HBU(x, y)

such that
FUQ(Sλ,T) + ε < δλ − ε′ < δλ.

Martı́n Escardó has pointed out that in some situations it is useful to precompose HB∼
with 〈min,max〉 : R×R→≤, thus recovering a map with domain R×R. (This does
not recover the HBU defined above, of course.)

8 Conclusions

We have presented a constructive, localic account of hyperspace techniques for dealing
with certain kinds of subspaces of complete metric spaces. Our account is very
general, covering localic completions of generalized metric spaces in the sense of
Lawvere [14], and it uses that generality to include the lower and upper powerlocales
(localic hyperspaces) where the metric is necessarily asymmetric. The techniques
are computationally convenient, as illustrated by the applications here. As applied to
compact intervals in the reals, they have been extended [38] to discuss connectedness
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and give constructive localic accounts of the Intermediate Value Theorem and Rolle’s
Theorem.

Our results are analogues of existing classical, spatial results ([2], [3], [20]). [2]
discusses powerdomains for completions of generalized metric spaces, and shows that
they too are completions of spaces of finite subsets. However, their classical proofs
are based on a definition of completion as closure by limits within a space of modules.
Our constructive, localic results, though clearly analogous, are quite different in their
techniques and technical content even when viewed in terms of points. Our completion
(from [33]) is defined with a direct representation of the points as Cauchy filters, and
for our analogues of the powerdomains defined in [2] we have been able to exploit the
established theory of powerlocales.

One constructivist aspect of the results is that they indicate how to get good predicative
tools for dealing with these powerlocales. The definition of powerlocale uses the
frame of opens of X as a set of generators for PUX or PLX , and on the face of it
this underlay our treatment particularly in Section 5.1. This is topos-valid, but not
predicative, since the construction of the frame of opens requires the powerset axiom.
However, there are predicative approaches for extracting generators and relations for
powerlocales out of those for the original locale, and some of these are set out (in
the context of predicative formal topology) in [35] and [34]. In fact, our proofs in
Section 5.1 could be made compatible with that development. When translated thus
into predicative mathematics the general results can be complicated to use. We have
here transformed them into a special form that applies in the case of gms completion
and naturally extends conventional ideas using the Hausdorff metric.

Finally, it is natural to wonder whether the technical development can be simplified,
perhaps avoiding the lengthy detour via continuous dcpos and the ball domain, or
perhaps making better use of the pointwise reasoning techniques (in a point-free setting)
of geometric logic. I would hope it can, but in the 10 years since [29] was issued I
have not managed to simplify the overall argument despite having tidied the proofs
considerably. Nonetheless, the use of ball domains does show connections with a
technique (see [3]) that has already had some success in relating computation and
domain theory to metric spaces. As for the pointwise reasoning, this seems to call
for better ideas than have so far come to me. Even for the particular case of VR,
the classical equivalence between compact subspaces and points of FCQ (see [38]) is
intricate and does not seem to have an analogue in geometric reasoning.
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