Imperial College of Science,

‘Technology and Medicine
(University of London)

Department of Computing

Reasoning in Arithmetic Universes
by

Alan Morrison

Submitted in partial fulfilment
of the requirements for the MSc
Degree in Engineering of the
University of London and for the
Diploma of Imperial College of
Science, Technology and Medicine

September 1996

Abstract

An Arithmetic Universe is a category in which coherent logic can be in-
terpreted and in which recursive definitions can be made. The notion of
Arithmetic Universe was introduced by André Joyal in a lecture he gave in
1973 in which he presented a categorical approach to proving Gédel’s in-
completeness theorem. He constructed a minimal category which had the
qualities which we would like to ascribe to an Arithmetic Universe. Regret-
fably, none of his work in this area has ever been published.

Recently, interest in Arithmetic Universes has awakened in the theoreti-
cal computer science world as a possible place in which to perform categorical
recursion theory and in which specification languages may be interpreted. It
has not so far been entirely clear what the minimal set of axioms for defining
an Arithmetic Universe should be. In this paper, we give precise definitions
of the concepts involved and then re-examine Joyal’s construction and give
detailed proofs of his results. We then formulate a definition of an Arith-
metic Universe as a pre-topos with action variants and we conjecture that
this is the minimal set of suitable axioms.

Finally, we present part of a proof of a conjecture of Steve Vickers that
Arithmetic Universes have freely generated Lex Theories.

Acknowledgements

I'am grateful to Steve Vickers whose idea this thesis was and who has proved
himself to be a thoroughly good egg in all sorts of ways. He has been
extremely helpful throughout the life of the project and in pa,rtlcular during
the final month when the calls upon his time have grown ever larger and
more ridiculous. In addition to assistance with specific thesis-related matters
he has spent time talking to me about the more general categorical issues
underlying the area and has certainly provided me with a great deal of
intuition.

I must also record my gratitude to Gavin Wraith for making his notes
on this subject available to me and for kindly spending a morning with me
explaining them.

All of the commuting diagrams were drawn using Paul Taylor’s commut-

- Ing diagrams package. '

Contents

1 Introduction

2 Arithmetic Categories
2.1 Parameterised Recursion
2.2 List Arithmetic Categories
2.3 Natural Numbers Objects
2.4 Inductive Proofs in Arithmetic Categories

3 Internal Categories
4 Distributivity

5 Skolem Theories and A.U. Construction
5.1 The Language PRIM
5.2 Constructing A.U.’s from Skolem Theories

5.2.1 Adding Decidable Subsetsto £
5.2.2 The Exact Completionof E

6 Defining the Arithmetic Universe

7 Theories in Arithmetic Universes
7.1 Theories

...............................

8 Conclusions

ii

23

27

31
31
43
43
68

83

Chapter 1
Introduction

In 1973 André Joyal gave a lecture at a conference in Amiens entitled “The-
orem d’Incomplétitude de Godel et Univers Arithmétique” in which he out-
lined a categorical approach to the incompleteness results of Godel. His
approach involved the construction of a minimal category in which recur-
sive definitions could be performed which contained a model of itself. He
called the resultant category the “Initial Arithmetic Universe”, Ag. Regret-
tably, none of this work was published, although he produced some lecture
notes which are still in circulation.

Recursion theory is clearly of interest to Compﬁter Scientists and Joyal’s
construction produced a category which also admitted the interpretation of
observational coherent theories. The combination of these two properties
therefore seems likely to be very attractive to theoretical computer scien-
tists. For example, a recent proposal by Steve Vickers has suggested that
Arithmetic Universes could form the basis for the interpretation of a speci-
fication language in which the user would be forced to employ only coherent
logic. The related work of Robin Cockett ([Co 90]) , Barry Jay ([Jay 93])
and others has looked at the applications of recursion theory in arbitary
distributive categories to problems related to programming semantics. [t
seems likely that Arithemetic Universes could form the basis of an entirely
categorical exposition of recursive function theory. :

The lack of published material on the subject has so far acted as a drag
upon research work in the area. In particular, there has been some debate
about precisely what should be the definition of an Arithmetic Universe.

This thesis attempts to address some of these questions. There is no attempt
herein to replicate or to expand upon Joyal’s proof of Godel’s result - we
are more concerned here with a sufficient framework for other more general
applications in recursion theory and specification langauges as mentioned
above.

The work of Makkai and Reyes ([MakRey 77]) has shown that pre-
toposes are precisely those categories in which coherent logic can be inter-
preted. It therefore seems that an Arithmetic Universe should be a pre-topos
with some additional properties. To get an understanding of precisely what
those properties should be, we can turn to Joyal’s original construction and
see which properties Ay has. Specifically, Aq has all free monoids, all list
objects and also free category objects over arbitary graph objects. In A
we can also lift an arbitary left-action over an internal graph to a unique
left-action over the category of paths derived from that graph which agrees
with the graph action on the generators - the so-called action variant. The
starting point for this investigation was the suggestion that these definitions
were all equivalent. ‘

To investigate this claim properly, it is neccessary to perform some back-
ground work which will allow us to define precisely each of these intuitive
concepts in entirely categorical terms. Chapters 2,3 and 4 of this document
survey the relevant literature and prove some element‘a.ry relations between
the above definitions.

Chapter 2 is devoted to the definition of recursion in categories; the
definitions have been extracted from Robin Cockett’s paper ([Co 90]). He
defines parameterised recursion, which is going to be of interest to us. He
then identifies two flavours of parameterised recursion and associates them
with number-arithmetic and list-arithmetic categories. We demonstrate that
list-arithmetic categories have free monoids. We then turn to number arith-
metic categories and examine natural numbers objects and the primitive
recursive definition of functions in arbitary cartesian categories. Finally we
justify the use of familiar inductive techniques in arithmetic categories.

Chapter 3 is concerned with the definitions of internal graphs and of
internal categories in a category and is therefore related to the notion of
a category as a “universe of mathematical discourse”. We define Cat(C),

the category of categories in C, and motivate and discuss the definition of

internal diagrams in C.

Chapter 4 is a brief review of the relevant parts of Carboni, Lack and
Walter’s paper ([CLW 93]) about distributive categories. The upshot of
this chapter is that any pre-topos is necessarily distributive and hence that
Arithmetic Universes are distributive.

In chapter 5 we examine Joyal’s construction in some detail. The key
notion here is that of a Skolem Theory - a cartesian category whose only
objects are powers of N, where N is a natural numbers object as defined in
chapter 2. We want to define arrows in an arbitary Skolem Theory E using

”primitive recursion so we start by examining in some detail a laﬁguage PRIM
which appears in Gavin Wraith's notes ([GCW Notes]). It is easy to show
that PRIM functions correspond precisely to primitive recursive functjons.
We define in some detail an interpretation function in E for PRIM functions
- in other words, a denotational semantics. We want to know that two
functions which are the same when interpreted in Set are the same when
interpreted in E. In order to express this requirement precisely we define an
operational semantics for E in the familiar fashion and we then conjecture
without proof a correspondence result which would Justify our use of PRIM
to define functions throughout the remainder of the paper.

We then examine Joyal's Skolem Theory completion process; this gen-
erates a pre-topos with all of the above properties and the completion of
the initial Skolem Theory is his category Ag. Most of the material avail-

" able to me on this topic was rather sketchy and I have therefore performed

the majority of the proofs myself. I have however been lucky to have ac-
cess to Gavin Wraith’s unpublished notes on the subject ([GCW Notes)).

In particular, Wraith supplied the kernel of the proofs of the existence of

free monoids in E and of the existence of finite limits, coproducts and split

epi/monic factorisations in E.

In forming the proofs of the existence of free categories over graphs and
of action variants, I managed to convince myself of the non-equivalence of
the above definitions. When attempting to demonstrate the existence of free
categories over graph objects in a category with list objects, one ends up
attempting to define functions ¢ using recursive definitions of the following

form:

C <2 axgcC
Given the existence only of list objects, we can in general only make defi-
nitions of this nature when Cy = Dy = 1. The definition is possible in the
completion of a Skolem Theory only because it can be made using standard
list recursion in a category which is lower down in the completion hierarchy
and then demonstrated to work in the completed category.

In view of results like this, we postulate a number of non-equivalences
between the earlier definitions and we list these with some proved equiva-
lences in chapter 6. We then define an Arithmetic Universe to be a pre-topos
which has action variants - we show that this will certainly give us all of the
desired properties and conjecture that a weaker definition would not. It has
been suggested that an appropriate definition of Arithmetic Universe would
be any category which has been obtained from a Skolem Theory by Joyal's
completion - we observe that this would preclude the use of Set as an A.U.
and therefore reject this definition. »

Chapter 7 is devoted to a partial proof of a conjecture of Steve Vickers
that Arithmetic Universes have freely-generated finitely presented Lex The-
ories. By this we mean that given freely generated Lex Theories 7; and 75
and a Lex functor 73 —> 73 the induced pullback functor between models
of 7; and 7; in a given Arithmetic Universe A always has a left adjoint. To
render this statement precise we need to define Lex Theories; we do this
using Sketches. This approach was originally due to Ehresmann, but our
approach is due to Barr and Wells ([BW 85]). Using sketches allows us to
separate the underlying graph of the theory 7 from the limits and commut-
ing diagrams which it includes. Clearly, the graph of 7 itself generates a
Lex theory 7'. We then review some of the material in [John 77] before
suggesting an approach to proving the theorem.

Our approach mirrors that of Barr and Wells for the same problem in
Set. They use the existence of Left Kan extensions of functors into Set to
show that the theorem is true for models of 7/ and of 7;. They then show

that the category of models of 7 in Set is a reflective subcategory of the
category of models of 7’ in Set and hence deduce their result.

We cannot assume the existence of left Kan extensions as our AU A
may not be cocomplete. However, Johnstone ([John 77]) shows that left
Kan extensions of internal functors will always exist in 4. We prove our
result by demonstrating that categories freely generated over finite graphs
can always be represented in A and then that functors from these categories
to A correspond precisely to internal diagrams over the representation of
these categories. Our proof uses the existence of action variants to allow us
to rely upon the internal properties of the Arithmetic Universe.

We leave unproved the conjecture that if 7 is finitely presented then
the category of models of 7 in A is a reflective subcategory of the category
of models of 7' in A, although we give some rationale for believing the
statement to be true.

Chapter 2

Arithmetic Categories

2.1 Parameterised Recursion

We start with a brief overview of the definitions which relate to monoids in
a category.

Definition 2.1 (Cartesian Categories) A cartesian category is one wh-
ich has all finite products.

In the following, we will deal with a cartesian category C. The defini-
tions which relate to monoids could equally as well be made in a monoidal

category.

Definition 2.2 (Monoid Objects) If C is a cartesian category and M €
Ob(C) then M is a monoid in C if there is a map e : 1 —> M and a map
p:M x M —> M such that the following diagrams commute:

. y
Mx Mx M P9 0 M 22N M

Cr

id, x p P idpy X e & U
p p

MxM ——————— M MxM—> M

where we exclude the obvious isomorphisms.

Definition 2.3 If My and M, are monoids in C then a monoid homomor-
phism ¢ : My —> M, inC is a C-arrow which makes the following commute:

MIXMly—l-éMl 1———61%M1

bx ¢ A
K2

MQXMQ——-%MQ) M,

Note that when C is Set, the above definitions reduce to the familiar
equational ones for a monoid. The following is a direct analogue of the
associated definition in Set:

Definition 2.4 IfC is a cartesian category and S € O0b(C) then if it exists,
e free monoid over S is a monoid object M(S) in C with a C-arrow n
S ——> M(S) such that if P is another monoid object inC with f : S —> P
a C-arrow then there is a unique monoid homomorphism ¢ : M(S) —> P
‘with pon = f inC.

Lemma 2.5 (Uniqueness of Free Monoids) Free monoids over an ob-
ject § of C are unique up to isomorphism.

Proof Trivial. _ 0O

It is easy to prove in the Set case that the free monoid over a set $ is §*,
the set of finite lists over § with unit the empty list e and p : $*x5* —> §* -
([s1--. 8n,[t1 .. tm]) [s1...5481...1m] given by concatenation. We will
investigate the connection between lists and free monoids in our more general
setting.

The following results appear in [Co 90]:

Definition 2.6 If A, X are C-objects then an action of A on X is an arrow
AxX —>X.

Definition 2.7 If C is a cartesian category then Act4(C) is the category of
actions of A in C with morphisms (Ax X; —> X)) — (AxX; = X3)

given by arrows f: X; —> X, which make the following square commaute:

AxX; —2 5 x,
idAXf f

Ax X, 22 Xy

Definition 2.8 Uy : Acts(C) —> C is the forgetful functor which maps
(.’L‘] A x X, ——9X1)HX1.

Definition 2.9 C is recursive (or C has enough recursive objects) if for
every A € Ob(C), Uy has a left adjoint Fju.

We can express this in terms of the unit of the adjunction; this means
that if X € Ob(C) and A € OH(C) then there is an A-action

rf’x cAxrec(A, X)—>rec(4,X)

and a map
ra® X —> Up(r™®)

with the universal property that if g : AxC —> C'is any object of Act4(C)
with f : X —> Uy4(h) then there is a unique A-action morphism

rec(g, f): UA(rf’X) —> Ualg)

such that rec(g, f)o r(f’x =f.
In other words, for any 4, X € Ob(C) there is an object rec(A4, X) and
AX and r(‘f’x such that givenany f : X —> Candg: AxC —> C

arrows rj
there exists a unique rec(g, f) : rec(4, X) —> C such that the following
commutes:

rA’X rA’X :
X —2> rec(4,X) €— A xrec(4, X)

N rec(g, f) ida x rec(g, f)
g

C ¢«—— AxC

Cockett observes that there is no reason at first to assume that rec(4, B)

should be remotely well-behaved and it may not be; we do not as yet have the

8

ability to perform the parameterised recursion from which primitive arith-
metic arises. We now state necessary conditions for parameterised recursion
to be possible. As usual, if C has exponentiation then parameterisation
is automatic, so we will worry about it only when exponentiation is not
assumed.

We can obtain parameterised recursion by requiring that recursive ob-

Jects in slice categories are closely related to those in the underlying category.

Definition 2.10 Let C be a cartesian category, Y € Ob(C). The overlying
functor is defined by Vy : C/Y —> C : [X LN Y]~ X. The functor Iy
is defined by Iy :C —> C[Y : X - [X x ¥ -5 ¥].

Lemma 2.11 Vy 4 Iy

Proof Let [Xo — > ¥] € OB(C/Y) and suppose that X; € O(C).
Define

g Homc(VF(Y),Xl) —_ Homc/y(F,Iy(Xl))

by
(Xo ~L> X)) (£, F): (X0 25 ¥) —> (X, x ¥ 5 1)

Since 7 o (f, F) = F, 6 is well-defined.
6 is trivially injective. If 79 o (a,8) = F then (o,08) = ba s0 8 is
surjective, too.
Also, if
(X4 —>Y) and F —E> p

in C/Y then for any f : Vy(F') —> X;,

Home;y (g, X1)(6(f)) =(f,F') o g
=(fog,Flog)
=(foy,F)
= 8(Homce(Vy(9), X1)(f))

1t follows that the following diagram commutes and hence that 6 is natural
in F:

" 9
Home(Vy (F'), Xy) > Homeyy(F', Iy (X))
Home(Vy (9), X1) : Homepy
N [/
Home(Vy(F), X,) > Homeyy (F, Iy(Xy))

Similarly, if g : X; —> X then for any f : V3 (F) —> X,
0(gof)=(gof,F)=(gxY)o(f,F)
80 § is natural in X; and we have therefore demonstrated the adjunction. O

Lemma 2.12 If C is a cartesian category and G = C —<> Y is an object
in CJY then Iy(A) x G ezists in C/Y and is given by one of the sides in
the folowing commuting square:

Ce—2_axcC
g daxg

Y <2 AxY

Proof The square trivially commutes - we need to show that it is a pullback
inC.

o<l x Ly Axvisa C-diagram with g o fo = my o f; then
(m10 f1,f2) : X —> A x C satisfies m3 0 (y 0 fy, f2) = f2 and

(tdaxg)o(mo fi,fa) =(mo fi,go fa) = (mo fi,mo f1i) = fi

Moreover any map A : X —> A X C withmyoX = f, and (id4 XgloA=fi
determines a map X —> A X Y x C which has the universal property of
(f1, f2). The uniqueness of A therefore follows from the uniqueness of (f1,12)
- and it is (m; o fy, fo), as desired. 0

Lemma 2.13

rec(Iy(A),Iy(B)) = [rec(ny*¥, 72%Y) . rec(4,B x Y) —> Y]

10

Now note that there is a unique comparison map ¢
rec({{m1,m 0 m) o ry, 3 0 my), re X idy) :rec(4,BxY) —> rec(A,B) xY

which is derived from the following recursive data:

rdB xid riBo(m wo)xxs
Bxy 2% rec(4,B) XY €———"— A xrec(4,B)x Y

Lemma 2.14 Requiring that this comparison map is iso is equivalent fo
requiring that Iy preserves the recursion.

Proof We need only show that this is a C/Y map
[rec(ng*¥ zBxYy . rec(4,BxY) —> Y] —> [r; : rec(4,B)xY —> Y]

This follows immediately from the commutativity of the following diagram
and the uniqueness of rec(rf ¥, x5*Y)

rA,BxY TA,BxY
BxY 2—> rec(4,BxY) < !

Axrec(d,BxY)

idAXC

A,B
51’ +] (’R‘],‘R’g) X w3
™~

Axrec(A,B)xY

idA X Ty
7‘.%4)0’ A
AxY
We have 73 0 ¢ = rec(n2*Y , 7B%Y) ag desired. O

Definition 2.15 (Parameterised Recursion) The recursion is parame-

terised in the case where Iy preserves recursion.

Definition 2.16 We define list(A) to be rec(A,1). We may write A* for
list(A).

Note: rec(4, B) —> rec(4,1 x B) —> rec(4,1)x B > list(A) x B
1s a series of isomorphisms in a category which has parameterised recursion.
We call B the parameter of the recursion.

11

Definition 2.17 If C is a cartesian category then C is:
1. arithmetic if for every B rec(1, B) exists and is parameterised;

2. list-arithmetic if for any pair A, B of C-objects, rec(A, B) ezists and
is parameterised.

2.2 List Arithmetic Categories

Definition 2.18 In list-arithmetic categories, we write r'“

and ry” Al gs cons : A X A* —> A*.

ase:l —> A"

Lemma 2.19 IfC is a list-arithmetic category then we can write r{;"B

B

and
as € X idp and cons X idg respectively.

Proof This follows immediately from our requirement that the map c is
iso, in the following case:

Pl FAY
Y ——-—-—-—> rec(A,Y) < ! A xrec(AY)
[
+) c c
2.

d
rec(4,1)x Y gm—s-f—z—i A xrec(A1)xY

Since ¢ is iso, any diagram Y Ly x L axy gives rise to a map
rec(A 1) XY 25 X with the desired universal properties and such a map
gives us a map rec(A4,Y) —-—> X and must therefore be unique. o

Lemma 2.20 If C is list arithmetic then list(A) =1+ A x list(A).

Proof Let f:list(A) —> 1+ A xlist(A) be the unique map which makes
the following diagram commute:

1 [,A*< cons - A x A*

f AXf

: A
L Axar &g EXEeond 4 haxam

12

Then the following diagram commutes, since [e,cons] o iy 0 A x [¢,cons] =
conso A x [e, cons).

& cons

1 > A* <« AxA*

f Ax f
\ i A x [e, cons] \
o\l +AXA €~ AxA" €= Ax (1+ 4 x 4"

[e, cons] A X [¢, cons]

cons
AT € AxA*

By the uniqueness requirement, it follows that [e,cons]o f = A*.

Also, f o[e,cons] = [iy, f o cons]
= [i1,i2 0 A x [¢, cons] o f]
= [11,42 0 (A4 x 4*)]
= [i;,iz]
= A*

So f is iso. (]
Definition 2.21 We write the map f in the above Lemma as

pop : list(A) —> 1 + A x list(A)

It will be useful in what follows to define some additional functions on
lists which will be familiar from functional programming languages:

Definition 2.22 In g list-arithmetic category C, we define:

back: A" —> A" = A* EB 1 4 A x4 By g 4] 4
JstiAXA* —> A=z Ax A* -5 4
B A" X AY —> A* is given by the following recursion schema:

13

A*
A28 g 4 208 4 woa x4

7 # Axp

A <0 4 oa

Axe cons

N:A—> A=A "S5 AxXA* —> 4

rev: A® —> A* is given by the following recursion schema:

1 g > A* P cons A % A*
@ TEY TEev
At o &4t Z——AxA*

where tw is the usual isomorphism A x B —> B x A.

front: A* —> A* = A* reu/ A* back £ 4 req}
last : AXA*____>A AxA*_‘i_’_‘_’:gA A* xpogA)((l.l.AxA*)

—-—>A+(AxAxA')MA

where § : A X (B+C) —> (A x B)+ (A x C) is the canonical map of

chapter 4, we shall use last only when § is iso.

Lemma 2.23 If C is list-arithmetic then for any A € Ob(C), list(A) is the

free monoid over A.

Proof ¢:1 —> list(A) will be the unit of the monoid.
o list(A) x list(A) —> list(A) is the map defined in 2.22.
Recall from Lemma 2.19 that:

ra st ABetA) = o o list(A) x list(A)

A Mist(A)xlist(A) _ oo list(A) x list(A)

14

Associativity of u then follows triVia]ly from the commutativity of the
following diagrams:

At xpr EEAXE e pr g XA e
ux A* A X px A*
A* x A" ¢ cons x A” AxA:xA*
7 AXp
A cons Ax A*
A*xA‘MA*xA*xA*%MSXA*XA*AxA*xA*xA“'
A* X p | AXA* xpu
e x 4 oCons XA AxA*x A*
p AXp
q cons /
A* < Ax A*

By the universal property of rec(cons, p), we must have that po(px
list(A)) = po (list(A) x p), as desired.

To see that ¢ is a left inverse for &, observe that the left hand triangle
in the defining diagram for u gives us p o (e x list(A)) = list(A).

To show that ¢ is a right inverse for u, we employ induction:

L ——5 list(A4) €22 4 x list(A)
e Xe A A X A

list(A) x list(4) £> list(4) €22 4 x lis(A)

- This diagram commutes if we take A = list(A); the right hand side does
so trivially, the left hand side by the definition of u. However, with \ = .
o (list(A) x €), the left hand square trivially commutes and so does the

15

right hand one, since the following diagram commutes, the top trivially and
the bottom by definition of u:

cons

list(A) — > A x list(A)
list(A)x € A X list(A) x ¢
list(A M
list(A) x list(4) LP2XNUA) 4o ist(a) x list(a)
) . A X u
. \ cons \,'
list(A) < A x list(A)

Since A must be unique, we have u o (list(A) x €) = list(A), so ¢ is a
right inverse for u.

We have therefore demonstrated that /ist(A4) is'a monoid.

Suppose that (P,ep,pup) is a C-monoid with f : § —> P a C-arrow.
Define ¢ : list(A) —> P to be the unique arrow which makes the following
diagram commute:

1 —S5 list(4) «e—220 A x list(A)

¢ A X ¢

Pett pyupdXP 40P

%

We claim that ¢ is the unique monoid homomorphism which we require
to complete the proof.
¢ trivially preserves units.

16

To see that ¢ preserves multiplication, observe that the following dia-
grams commute: _

A SR gt Comex A A* X A* x A*
J* % A X p
cons /
o A* < Ax A"
¢ - Ax ¢
, |
P
Pt pypc X b
A EXA A < cons x 4 A* X A" x A*

Yo o x4 (2) Axxo

v PxP
PxPdXE pupxpdXPXP , pyp

L
we (3) Pxp A X up
(|
Pt pype fXP AxP

Commutativity of the first diagram is trivial. Commutativity of the
second diagram comes from the commutativity of the sub-diagrams - (1) is
the left unit for P, (2) is the definition of y and (3) is the associativity of

“p.
Since the arrow obtained from the recursion data

a* L5 p s pyp LPAP

must be unique, we have that up o (¢ x #) = ¢ o u as desired and so we have
shown that ¢ is a monoid homomorphism.
Define 7 : A —> A* to be the composite

Axe cons

A—> AX A" — A

Then

17

gpon=¢oconso(Axe)
=ppo(f xP)o(Ax¢)o(Axe)
ppo(f x(poc))
= ppo(f xep)
=f

For uniqueness, suppose that \ : 4* —> Pis a monoid homomorphism
with A o5 = f and observe that uo (7 x 4*) = cons. Then we have:

Aocons = Aopo(nx A*)
= ppo(AxA)o(nx 4*)
= ppo(f xA)

So A makes the defining diagram for ¢ commute and so by the usual

uniqueness argument, A = ¢, which completes the proof. O

2.3 Natural Numbers Objects

Definition 2.24 A Natural Numbers Object (NNO) in a cartesian cate-
gory C is a diagram 1 —-9-9 N €<<— N in C such that given any diagram
x>y <—h—-—Y in C there is a unique f : N x X —> Y which makes
the following diagram commute:

0
x 00X v v X vox
NI s
h

Y¢<——Y

We will use the notion of a Natural Numbers Object extensively. Effec-
tively, a NNO allows us to interpret the induction theorem with parameters.
There are a number of available definitions - the original one, due to Law-
vere, existed in a Cartesian Closed Category and replaced the object X in
the above definition by the terminal object 1 - it is easy to show that in
such a category these definitions are equivalent. Our definition is designed

18

for use in weaker categories and the object which we have defined is some-
times referred to as a parameterised NNO.

Lemma 2.25 A cartesian category has a NNO off it s arithmetic.
Proof This is trivially the case. N is rec(1, X).]

Definition 2.26 Given arrows X —2> Y and Nx X x Y ——hé Y, we
say that f and g determine a function f : Nx X —> Y by primitive
recursion if there is a unique f : N x X —> Y such that f o (0x,X)=g¢g
and ho(N x X, f) = fo(sx X).

te. if a definition of the form:

f(0,2) = g(z)
f(s(n),z) = h(n,x, f(n,z))

ts valid.

Lemma 2.27 If a cartesian category C has a NNO as defined in 2.2} then
any two arrows X —>Y and N x X x Y —-”—} Y determine a function
f:NxX —>Y by primitive recursion.

Proof Letf' be the arrow determined by the following recursion schema;

0
x 0 nvwx XX Nox

rq,.fs fl fl
7

Nx X xy X0

NxXxY
Observe the following:

m 0 f'0(0,X)=0and 7 0(0,X)=0
moflo(sxX)=somoflandmo(sx X)=s0m

So by the universal property of recursively. defined maps using NNO's,
710 f' = 7. Similarly, 73 0 ' = 5.

19

- Now consider the following diagram:

x A% X) v x < sx X NxX
f'o'{:va
e | (N x X, ')

h \
NxXxy &R N oy (W x X)x (N x X x¥)

T3 (7T1,7f3°7f2>

\ h \
Y « NxXxY

We know that the top right hand rectangle commutes by the definition
of f', so we can write ’ ‘

T30 flo(sx X) =m0 (s, X,h)
=hof
=ho(mof',mof',m30f')
= ho (afX, V"X, 5y o 1)
=ho (ﬂ_ngX)x(NxXxY)’ngxXxY) ongxX)x(NxXxY))

o(N x X, f')

So 73 o f'is a solution to the recursive definition. It is easy to see that
any solution gives rise to a solution to the NNO recursion used to define f’

and 73 o f' is therefore the unigue solution to the recursive equation. 0

2.4 Inductive Proofs in Arithmetic Categories

We now justify the use of familiar styles of induction in Arithmetic Cate-
gories. In this subsection, let C be a category with pullbacks.

Definition 2.28 A monic i : I >—> A is closed under f : A —> A if for
anyT —=> A,z €ixmfoz €.

Lemma 2.29 i : I >—> A is closed under f : A —> A iff there is some
h:I—>1with foi=ioh.

- Proof Ifr€i=>fox€ithen foi€im»3h.foi=40h If3h.foi=ioh
and z € i then since i € f~!(z) we have f(z) € 1. 0

20

Lemma 2.30 Suppose that C has NNO N. Then ifi: I >—> N x X has
0 x X €1 and is closed under s x X then i WdNxx.

Proof There are p,¢ such that the lower part of the following diagram

cimmutes:

Nxx 22X vux

y
x X
NxX 2————- N xX
Then define n as shown from recursion data P,q- Then jou must be idyyx,

by the uniqueness criterion for recursively defined data. u is therefore both
monic and split epic and is therefore iso. mi

Corollary 2.31 IfC has NNO N and [, : NxX —>Y have f(O z) =
9(0,2) and f(n,z) = g(n,z)= f(s(n),s) = g(s(n),z) then f = g.

Proof By Lemma 2.30, the equaliser of f and g is an isomorphism. O
We can extend definition 2.28 as follows:

Definition 2.32 4 monic i : I >—> C is closed to f: A xC——%C if
(a,z) € Axi=>fo(a,z) €.

Lemma 2.33 i : I >—> C is closed to f if 3¢ : A x I —> I such that
iog=fo(Axi).

Proof Precisely as for 2.29. : O

Lemma 2.34 Suppose that C has list objects. IfI >—'-9 A*xXBhasexB el
and is closed under cons X B then i = id 4.

Proof Analogous to 2.30. a

21

Corollary 2.35 If C has list objects and f,g: A* x B —> X satisfy

f(e,0) = g(e,b)
and
f(a,b) = g(a,b)af(cons(al,a),b) = g(cons(a;,a),b)
then f = g. ’

Proof Precisely as for 2.31.

22

Chapter 3
Internal Categories

In this short chapter, we define the notion of category object in a category.
This concept is analogous to that of an internal monoid object of the previous
section - we use the equational definition of a category to give its definition
in terms of arrows with commuting diagrams and then we define a category
object to be any collection of objects and arrows in a suitable category which
satisfies our requirements.

All of this formalism is a special case of the more general categorical
notion of a theory, which we introduce in chapter 7.

Definition 3.1 Let C be any cartesian category. An internal graph in C is
&)

any diagram of the form G, ; G,.
3

Definition 3.2 An internal graph homomorphism between internal graphs
G and H is a pair of maps ¢; : G, —> H; and o : Go —> Hy with
8fT 0 ¢1 = o 0 F and 8f 0 ¢, = ¢y 0 5.

Definition 3.3 Let C be any finitely complete category. An internal cate-
gory in C consists of:

1. A pair of objects Co,Cy which we will refer to as the object of objects
and the object of arrows respectively;

30 € m
2. Morphisms C, :; Co, Co —> C; and Cy X¢, Cy —> Cy, where
9N .

23

C1 X, Cy s the following pullback:

C] XCo C] —_— C]
9o

8
Cy ——1—'900

We refer to these as the source, target, unit and composition arrows
respectively.

We require the following diagrams to commute:

C1 xg, Ci LE: N Co ———> C;
™ 0y e g o
< C\’o Cy ——> Cy
“ 5
01
\
€1 —5—> Co <——)
id x m e x id

Cy XCo Cy XCo Ci ————> o) qu C C, XCo C, €—Cy XCo Cq

m X id m idXe > T
m
C] XCo Cl "—‘——'———901 C} X¢o Cg-—;r—>01
1

Definition 3.4 An internal functor F : C —> D between internal cate-
gories C and D is a pair of morphisms Fy : Co —> Dy and Fy : C; —> D,
in C which makes the obvious diagrams with e,dy,d,,comp commaute.

Definition 3.5 IfC is any finitely complete category, Cat(C) is the category

of internal categories and internal morphisms in C.

Definition 3.6 Let G be an internal graph in a left ezact category C. If

it exists, the free category over G is an internal category C in C with an

24

internal graph homomorphsim n : G —> C such that for any internal
category D in C for which there is a graph homomorphism ¢ : G —> D,
there is a unigue internal functor ¢ : C —> D with fop = é.

Lemma 3.7 The free internal category over an internal graph G is unique
up to isomorphism.

Proof Trivial. a

In our usual external category theory, functors F : C —> D between
small categories play a different role to functors from small categories into
the ambient category Set. The following definitions expands this notion
to functors from internal categories in a category C to C. We start by
generalising the concept of an external graph morphism from G to Set and
then extend this to a functor from a category C to Set.

Definition 3.8 Let G = (Go,G1,do,dy) be an internal graph in a category
C which has pullbacks. An internal diagram on G, or left G-action in C, is
an object

m:. F —_— Go
of C/Gq, with an action

b:G Xg, F —> F

. where Gy X, F is the pullback of 7 along dy, such that the following diagram
commutes.

G; XGOF‘E‘——-—}F

™ T

d
G, ———> G,

Here the map 7 : F —> G, should be regarded as a Go-indexed family
of C-objects which corresponds to the object function for an external graph
morphism H : G —> Set. In Set, H(A) can be extracted as n~1(A).

The map ¢ : Gy xg, F —> F corresponds in Set to the operation
(fiz) = fx, where f : A—> B, z ¢ H(A) and f.z = (Hf)(z). The
commutativity of the diagram gives us f.z € H(B).

25

Definition 3.9 Let C = (Cy,C1,do,d1, e, comp) be an internal category in
a category C which has pullbacks. An internal diagram on C, or left G-
action in C, is an internal diagram (F,n,) on the underlying graph of C
which makes the following diagrams commute:

ex F Cy x
Coxce F =5 Ci x F Cy ¢, Cy xco F 228 ¢, %o, F
> 1 comp X F u

P C) xgp F ——t— s F
These diagrams express the unit and associativity laws respectively for

the internal functor.

Definition 3.10 4 morphism of internal diagrams over C between internal
diagrams (F,m, p) and (G,x',p') on Cin Aisan arrow f 1 F —> G in A
which makes the following diagrams commute:

Cy xcy F Ls F

F ¢ > G
Co x f f \ /
' e,

o XCOG —E—-—% G

Definition 3.11 IAct(C, A) is the category of internal diagrams over C in
A and morphisms of internal diagrams over C.

Note that the usual notation for IAct(C,A) is AC - we have avoided
this in order to prevent confusion with definition 7.8.

26

Chapter 4
Distributivity

We will see that the categories in which we are principally interested are

distributive. In this section, we briefly overview the relevant definitions and

some of the key results. The results appear in great detail in [CLW 93]

and require no amplification; we therefore give sketches of only the more
interesting proofs.

Definition 4.1 A distributivecategory is one with finite sums and products
in which the canonical map 6 : (AX B)+(AxC)—> A x (B + C) is an
tsomorphism. ’

The map § is the following one:

B.C _AB B,C_ _AC

A’Br) .] .
(AXB)-'_(AXC)(["}_ le)Cl])[1 ox, g OF, QAX(B'*-C)

Some authors use the following notion as their definition for distributiv-
ity:

Definition 4.2 An extensive category A is one with finite sums and prod-

ucts such that the canonical functor AJA x A|B —> A/(A + B) is an
equivalence.

Firstly, we state a technical lemma:

27

Lemma 4.3 A4 category A with finite sums is extensive iff it has pullbacks
~along coprojections of coproducts and every commutative diagram

a1 ag

Az

fi f f2

z z

X, —3 X+ X, <— X,
comprises a pair of pullback squares in A just when the top row is a coproduct
diagram in A.

Proof Appearsin [CLW 93] in great detail. (]

Definition 4.4 In a category with finite sums and pullbacks along their
injections a coproduct diagram X, BTN X1+ X, <2 X2 is universal if
pulling it back along any arrow into X, + X, gives a coproduct diagram.

It is a trivial consequence of Lemma 4.3 that sums are universal in any
extensive category.

Definition 4.5 In a category with finite sums and pullbacks along their
injections, sums are disjoint if the pullback of the injections of a binary sum
ts the initial object and all injections are monic.

Lemma 4.6 Sums are disjoint in an extensive category.

Proof Easy consequence of Lemma 4.3. a
[CLW 93] prove the following converse to Lemmas 4.3 and 4.6:

Theorem 4.7 A category with finite sums and pullbacks along their injec-

tions is extensive iff the sums are universal and disjoint.

Proof "Only If“- see above.
"If" - Universality of sums gives us half of the condition of Lemma 4.3.

We want to show that with universal and disjoint sums the following is a
puliback:

A —5 4+ 4, E— 4,
hy hy + hy ha

X;%X]'I‘XQ €w—2———X2

28

Suppose that X; <2~ B —I> 4, + 4, with (hy + h)o f = z;04. Pull
the above diagram back along f:

h] hl + h2 h2

. . \f
X —5x4+x,E X,

Now .'B]Og0b2=(h1+h2)0fobg:{L’zthOfg.

So there is a unique arrow from B; to] l(Xg), which is initial since

sums are disjoint. It follows that B, is initial. Since sums are universal,
B = B; + B; & By, so b; is invertible. f; o b]'] is the desired map (f,g) :
B —> A. Similarly, A, is a pullback. (]

Lemma 4.8 In a distributive category, injections are monic.
Proof [CLW 93] o

Lemma 4.9 Initials are sirict in o distributive category. (ie any arrow
A —> 0 is invertible).

Proof [CLW 93] O
Theorem 4.10 An extensive category with products is distributive.

Proof Suppose that A, By, B; € 0b(C).
We know that the following is a coproduct diagram:

B, —5B +B, < B,

! 14! !

i .
1 Lo 1412

hence by Lemma 4.3 it is a pullback diagram.

29

In any category, if this is a pullback then so is
AxBlif—gAx(leBg)é—&Ang

! ('+') 0 Ty !

; i
1 2! >1+1< 2 1

It follows from Lemma 4.6 that this diagram is a coproduct. This is
exactly the requirement of distributivity. o
[CLW 93] note in passing that the converse is not true: p(X) for a set

X is distributive but not extensive.

30

Chapter 5

Skolem Theories and A.U.

Construction

In this chapter, we define Skolem Theories and exmaine their properties
using a language PRIM which appeared in outline in [GCW Notes]. We then
examine Joyal’s completion process from a Skolem Theory to an Arithmetic
Universe in some detail; this process is sketched in [GCW Notes] and an
outline of the proofs of the existence of free monoids in E and of finite

limits, coproducts and surjective images in E appears in that document.

Definition 5.1 A Skolem Category is a cartesian category with a NNO. A
Skolem Theory is a Skolem Category in which every object is a power of N.

There is an initial Skolem Theory which is generated by the diagram
1—=>N&—N.

Definition 5.2 A morphism of Skolem theories is ¢ Lez functor which pre-

serves recursion.

Throughout this chapter, we will write £ for the initial Skolem Theory
and E for an arbitary Skolem Theory.

5.1 The Language PRIM

GCW mentions that the arrows of a Skolem Theory E can be related to
programs in a rudimentary programming language. We will examine this
approach, in greater depth.

31

Definition 5.3 PRIM is a language which uses a countable collection of

registers z,y,2,..., each of which holds a natural number, with statements
which have the following intended meanings:

SKIP do nothing

CLR x » set x to zero

INC x increment x

LOOP x {Instructions not referring tox } do Instructions x times
We define a code block in PRIM to be C, where:

C::= SKIP | INC x | CLR x | LOOP x {C;} | Cy;C,

We define a PRIM program P : IN" —> IN® to be the following, where
C is a code block:

DEF P(x)
c
RETURN(y)

The intended meaning here is that the paremeters z; used to define P will
be placed in the first r registers of the PRIM machine and all other registers
will be zeroed. The placeholders z1,23,..., 2, in P which refer to them will
then refer to the relevant register during execution. After execution, the
elements of y will be placed in the first s registers of the PRIM machine and
all others will be zeroed.

We can use this intuition to define an operational semantics for PRIM:

Definition 5.4 A memory state is a function o : IN —> IN which gives the
values held in each of the registers of the PRIM-machine during ezecution.

We will denote by E the set of all memory states.

The common nomenclature for the initial Skolem Theory and the set
of all memory states is regrettable but should not in practice cause any
confusion. Note that any PRIM program takes only a finitely large list of
input parameters and is of finite length so we can assume that all elements
of X are finite - we will not want to interpret £ as a Skolem Theory object,
so this will suffice for our purposes. Our operational semantics will now be

a syntax-directed system of transitions on the memory state of the PRIM
machine.

32

Definition 5.5 A configuration for a PRIM machine is one of the follow-
ing:

1. (C,0), where C is an unexecuted code block and o € I;

2. 0, for 0 € X, in which case no further execution remains and the
program has terminated.

Definition 5.6 The transition relation ~ is a binary relation on configu-

rations. To define it, we will require some auxilary functions, all of which
map ¥ to X.

1. succp(o)(m) = { :E:Z; +1 :ﬁ :i:

a(m) if n#m
2. predn(0)(m)=¢ o(m)—1 if n=mand o(n)>0

o(m) tfn=mand o(n)=0

0 ifn=m

3. zeron(q)(m):{ o(m) if n#m

We now define ~ to be the smallest relation which satisfies the following:
1. (SKIP, o)~ 0
2. (INC x, 0) ~» succy00

3. (CLR x, 0) ~+ zeros o0

4. (LOOP 2 C, o)~ { O ifolz)=0
(C;LOOP z {C};INC z,pred, o o), else

5. (C1, o) ~ (C}, o'} = (Cq;ca, o) ~ (C};Ca, 0')

6. (Cy, 0) ~ o' = (Cy;Cy, o)~ (C, o)

Lemma 5.7 Given any code block C and memory state o in PRIM, there is
a unique memory state o' such that (C,0) ~* o', where ~* is the transitive

reflexive closure of ~».
Proof Thisis a trivial induction which we ommit. 0

33

Definition 5.8 p maps finite parameter lists to memory states. A param-

eter list (z1,22,...,2,), is mapped under p to [l — z1,...,n — z,].

Definition 5.9 The operator O maps PRIM programs to memory states.
If P has code block C and

(C,p(zy,...,z5)) ~* o'
then if the RETURN statement of P is RETURN(x) then
O[P)(z1,22,...,2,) = [z 0,z & x]o’
Lemma 5.10 PRIM has thé following properties:

1. Assignment of register x to register y can be defined and is written
y €—x;

2. If P is any PRIM program then we can run it within another PRIM
program Q.

Proof

1. Trivial:

CLR y;
LOOP x {INC y}

2. Also trivial. Suppose we wish to run P(zy,...,z,) within Q and to
place the output in registers y;, ..., y,. Since P is finite, there is a num-
ber n which is the maximum register used by P; let m = max(n, r, 5).
We can therefore run the following commands within Q to accomplish -
our goal:

m+1<—1

m4m<€<—nmn
16—-)(1

r €— X,
All of the commands of P(xy,...,x,)

34

yi+meé—1

y.+mé-_8
l1€—mn+1

m&—m+m
CLR m+1

CLR m+m

In view of the above, we will allow commands of the form
Yy €—P(xq,...,%5)

where P is a PRIM program.

Lemma 5.11 The functions defineable in PRIM are precisely the primitive
recursive functions.

Proof PRIM contains the functions 0, succ and p : (z1,...,2,) z,
trivially. As a consequence of Lemma 5.10, PRIM is closed under substitu-
tion. Given g : IN —> IN and h : IN> —> IN as recusive data for a function
f, we can calculate f using the following PRIM routine:

DEF f(n,x)
y <— g(x)
i€e—0
LOOP n{y «— nh(i,x,y)
i<—s(i)}
RETURN(y)
So PRIM can define all primitive recursive functions.
We show that all PRIM functions are recursively definable by induction
on the length of the program. For the base case, note that INC x and CLR x
are both primitive recursive functions. Then for the inductive step, assume
that programs with < n instructions are primitive recursive functions. Then
any program P of length n + 1 must have one of the following formats:

35

CLR x;C or INCx;C or LOOPx {C};C'

where C and C' are code blocks. Since INC and CLR are both primitive
recursive functions and PRIM is closed under substitutiqn, the first two of
these must be primitive recusive functions.

Consider the LOOP statement. Since C is shorter than P it must define a
recursively definable function f : IN" —> IN", where r is at least the number

. . . d .
of registers employed in the execution of P. Now IN" —> IN" éf—— IN" is
recursive data for the LOOP statement:

e X0 o i s xid =
> LOOP x {Cy} LOOP x {Cy}
m" < f N"

It follows that P defines a primitive recursive function and this completes
the proof. : D

Definition 5.12 Let C be a PRIM code block. Reg(C) is the mazimum

number of registers used in the execution of C.

Definition 5.13 We interpret a PRIM code block C as a T-arrow S[C] as
follows: :

SKIP IN" —M-> IN" for any r € IN;

ING x N idx...xidxsxidx...xio\i]N', for anyr >z,
where the s here occurs in the xth position;

CLR x N idx...xidx()o!x:‘dx...xig IN', for anyr >z,

where 0o! is in the zth position;
LOOP x {C} S[LOOP x {C}] is obtained from the following

recursion schema, where r > maz(reg(C), z):

N S[cLR x] SN < S[inc x] N
2 S[LDOP X {C}]] S[[LOOP X {C}]
N < s[c] N
Cy;Ca SfC.] o S[c4]

36

Deﬁnitipn 5.14 Given a PRIM program

DEF P(X1, v ,Xr)
C
RETURN(z)

let n = maz(r,reg(c),z). We define S[P] to be the following composition:

sdxoln-r) Sf¢ x
N’ N U O NI

S[P] is easily defined for programs which return a vector of natural numbers.

Conjecture 5.15 O[P] = O[P,] iff S[P;] = S[P,].

Example

Consider the following programs:

DEF Py(x)
INC 2,
INC z;
LOOP z {INC x};
CLR z;
RETURN(x)

DEF P,(X)
INC x;
INC x;
RETURN(x)

We calculate Py(a) and Py(«) using the operational semantics:

Py(a) ~ (INC z; INC z; LOOP z {INC x};CLR z,[x — a])
~+ (INC z;LOOP z {INC x};CLR z,succ; o [x — o)
~» (LOOP z {INC x};CLR z,succ, o succ, o [x > a])
~» (INC x;LOOP z {INC x}; INC z;CLR z, pred, o succ, o succ; o [x — o))
~+ (LOOP z {INC x}; INC z;CLR z,succ, o succ, o [x - a)
~» (INC x;LOOP z {INC x}; INC z; INC z;CLR z, pred, o succ, o [x o +1])

37

~+ (LOOP z {INC x}; INC z; INC z;CLR z, [x - o + 2])
~ x> a + 2]

Py(@) ~ (INC x; INC x,[x +— o])
~+ (INC x,succ, o [x — o)
SUCC, 0 8UCCy 0 [x > a]
=[x a+2]

So 0![?1]} = OH:P2]]
S[P4] is the following composite:

1dx0 1dXs tdXs s
ey Ve Ra G Vi B Ve BN S NG

where f is the unique arrow which makes the following commute:

N? id X Oo!\ N2 <id X s sz
f f
N2 s Xid N2

S[P.] is the composite N —> N —> N.
Now

S[P1] = 10 f o (id x s) o (id x 5) o (4d x Oo!)
=mo(sxid)o fo(idx s)o(id x 0o!)
=mo(sxid)o(sxid)o fo(id x Oo!)
= myo (s x id)o (s x id) o (id x 0o!)
= 7 0 ((s05) x (0o!))
= 850S§

- S[pzll

Definition 5.16 We write Py ~ P, if O[P4] = O[P,]. ~ is clearly an equiv-
alence relation.

Conjecture 5.17 Every L-arrow is the image under S[-] of en eguival-
nence class of ~.

38

It follows that arrows in PRIM and E-functions do not bijectively cor-
respond. A PRIM program P is a routine for calculating the function rep-
resented in ¥ by the arrow S[P] and the bijection is between routines with
‘the same effect on E-arrows. We are effectively saying that we cannot prove
in ¥ that routines are different, so that this is not a useful framework for

contemplating efficiency issues.
Lemma 5.18 Homg(1,N)= N

Proof Immediate from the construction of £. O

Defining simple arithmetic functions in PRIM is easy. Some simple ex-
amples which will be useful to us follow below. Note that in view of Lemma
5.10, we can call previously defined functions in our PRIM programs.

DEF add(x,y)

zZ €— Xx;
LOOP y { INC z };
RETURN(z)

We will write z + y for add(z,y). In ¥, S[add] is the following arrow:
N? idxQ N3 Sfz—x} N3 SfLooe y {1c z}} N3 s N

where S[LOOP y {INC z}] is defined recursivel;y as follows:

S[LOOP y {INC z}] S[LooP y {INC z}]
N < S[ING z] N3

so add(x,y) is 1 &4 N x v S
We can therefore define multiplication in PRIM:
DEF mult(x,y);
CLR z;

LOOP x {z <— z+y};
RETURN(z)

39

We will write zy for mult(z, y).
So Sfmult] is the following Z-arrow:

N2 ide} N3 Sfere :5; N3 SfLoop x {zo—z+y}; N? 'ir,> N

where we obtain S[LOOP x {z €<— z + y}] recursively as before.
We can continue to define primitive arithmetic functions in this way:

DEF exp(x,y);
CLR z;
INC z;

LOOP x { z «<— z.y};
RETURN(z)

We will write z¥ for exp(z,y).

DEF pred(x);

CLR y;
CLR z;
LOOP x { y «— 2z;
INC z };
RETURN(z)

DEF diff(x,y)

2 €— Xx;
LOOP y { 2 «— pred(z)};
RETURN(z)

We will write z= y for diff(z,y).

DEF zero(n)
RETURN(«— s(0) <~ n)

40

DEF even(n)

z2 €&— 1

LOOP n {z «— zero(z)}
RETURN(z) ’

DEF odd(n)
RETURN(zero(even(n)))

DEF eq(n,m)
RETURN(€«— zero ((n = m) + (m = n)))

DEF case(e,x,y)
RETURN(«— zero(zero(e)).x + zero(e).y)

We can wﬁte case(e,x,y) as IF e THEN x ELSE y.

DEF gt(x,y)
RETURN(€«— 2zero (y = x))

We write z > y for gt(z,y).

DEF get(x,y)
RETURN(«— x + 8(0) > y)

We write z > y for gte(z,y).

We know that each of these functions has an interpretationin ¥. If ¥/ is
any other Skolem category then there is a unique map of Skolem categories
F : ¥ —> ¥’ and as F must preserve recursion, it is obvious how our PRIM
programs will be interpreted in arbitary Skolem Categories.

Definition 5.19 Given arrows X —9—19 Ne, X —Qz—> N¢ in a Skolem cate-
gory C and a PRIM function OP(z,y), we define 0P(Qy,Q;) to be

41

This definition has obvious extensions to more input parameters and to Né‘
outputs.

Definition 5.20 A predicate on an object X in a Skolem category is a map

X —3-9 N such that Q.Q = Q. We write P(X) for the set of predicates on
X.

A Lemma 5.21 P(X) has a Boolean Algebra structure with the following def-
initions:
(NOT Q)(z) = zero(Q(s))
(P AND Q)(z) = P(z).Q(z)
(P OR Q)(z) = zero(zero(P(z) + Q(z)))

Proof Define

t
T=X—3>1—SN-—sN

J.EX——!91—9->N

Then we can use our conjecture concerning interpretations to justify the
obvious use of PRIM programs which yields all of the required equations. O

It follows that any Boolean combination of primitive recursive predicates
is a primitive recursive predicate.

In passing we recall:

Definition 5.22 If P is a predicate then the function pz < y.P is the
bounded minimisation function, given by:

9(x,y) = pz < y.P(x,z)
_ { the least z < y with P(x,2) if such a z exists

Yy otherwise

We call pz < y the bounded minimisation operator.

Lemma 5.23 We can compute bounded minimisation operators in PRIM

and hence interpret them in an arbitary Skolem theory.

42

Proof If N x X —9—9 N is a predicate, define a function N x X —-—f—> N
as follows:

DEF £(n,x)
CLR y
CLR m
LOOP n { IF Q(m,x) AND y AND NOT eq(Q(0,x),1)
' THEN z <— m
ELSE z «—; y

y €&— 2z;
INC m; }
RETURN(y)
Then f(n’x) = NK<NQ(K,9«”) u

Corollary 5.24 uz < y is primitive recursive.

5.2 Constructing A.U.’s from Skolem Theories

5.2.1 Adding Decidable Subsets to E

Theorem 5.25 (Pairing Functions) In any Skolem Category there is an
- isomorphism N x N —> N. Any such T is called a pairing function.

Proof 7(z,y) = (22+41)2¥ — 1 does the trick - this is a basic result from
the theory of computability. We will refer to 7 as pair. a

Definition 5.26 We define the map N M N x N to be the inverse of
pair.

Note that it does not matter which pairing function we choose to define
(pr1,pr3) so long as we stick to a single choice. Note that pair and pr are
primitive recursive and can therefore be represented by maps in a Skolem
Category.

Recall ([Mac 71, p.168]) that we can always construct the free monoid
over an object 4 in € if C has denumerable coproducts. Clearly, E need not
satisfy this condition. However, we shall see that the presence of recursive

definitions gives us enough structure to perform the required constructions ‘
in a Skolem Theory.

43

Lemma 5.27 Define u : N x N by (n,m) — 2°"m + n, where e, is the
smallest integer for which 2°* > n. Then (N, u,0) is @ monoid object in E.

Proof Trivial. A 0

We can learn something significant about E by examining what is go-
ing on here in Set. If we express évery integer in binary format then the
multiplication operator applied to {m,n) simply returns

(Binary Representation of n) ++(Binary Representation of m)

In other words, we are simply building lists. Note that the multiplication
operator has reversed the order of m,n. This allows us to adopt some

suggestive notation for the following Lemma:
Definition 5.28 Definen: N —> N in E by n — 2"
Lemma 5.29 In E, any n in N can be uniquely expressed as u(n(np),n,).

Proof n, will be the number of zeros on the right of the expansion of n as
a binary number. Note that in non-initial Skolem Theories we may not have
an initial digit - the expansion could be infinite, say - and this motivated
the change in order of digits in the statement of Lemma 5.27.

On input n, the following PRIM routine returns on input n the first
number > n/2: |

DEF HALF(n)
LOOP n {
IF (NOT DONE) AND (2%C > n) THEN {
Z « C;
DONE <— 1;
}

INC C;

}

RETURN (z)

Then the following routines determine n; and ny:

44

DEF HD(n)
IF n # 0 THEN {

Z €— n;
LOOP n {
IF EVEN(Z) THEN{
INC C;
Z <— HALF(Z);
}
}
}
RETURN(C)
DEF TL(n)
H <«— HD(n);
LOOP n{
IF n = pu(n(H),T) THEN DONE <— 1;
IF NOT DONE THEN INC T;
}
RETURN(T)

The following routine therefore extracts ny and n, for a given n:

DEF GET-VECT(n)
H <— HD(n);
T «— TL(n);
I <«— PAIR(H,T);
RETURN(Z)

This completes the proof.
We now apply the above to prove the following:

Lemma 5.30 N is the list object over N in E.

Proof

45

Define cons: N x N —> N : {n,m) = u(n(n),m)
EN—>N:n-0

Suppose that N —-t—> N <2~ N x N. We claim that there is a unique
NxN ——-h-> N such that the following commutes:

NN N NN N Nk NI XN o N
h h N x h

N g N xN

le. that h is well defined by the following recursion schema:

h(0,n) = f(n)
h(u(n(m),ms),n) = g(m, h(ms, n))

Intuitively, we would expect this to work since A is defined at n in terms
of its value at number ms < n and because we can perform recursion. We
actually define h recursively by retaining all earlier values of A and then
accessing them as required:

DEF h(n,m)
z=PAIR(£(m),0)
i «— 1
LOOP n {
B «— HD(n);
T <«— TL(n);
zy €— 2zZ;
] <&— 1
LOOP (i-T) {
zy €<— pry(zy;
INC j;
}
z <— pair(g(H,z,),2);
INC i;

46

}
RETURN(pry(2))

h clearly satisfies the recursion schema, from a straightforward examina-
tion of the PRIM program. Now suppose that A’ also satisfies the recursion
equations. We want to use induction to show that A’ = A. However, we can-
not yet use Lemma 2.35 as we have not proved yet that N is a list object
and so we must induct on the size of n and employ Lemma 2.31.

Define k(0,n) = h(0,n)
k'(0,n) = K'(0,n)
k(s(m),n) = pair(h(s(m), n), k(m,n))
K'(s(m),n) = pair(h'(s(m),n), k'(m, n))

Then k(0,n) = k'(0,n) = f(n).
Suppose that the two functions are equal at m.
k(s(m),n) = pair(g(s(m)n, h(s(m),,n)), k(m,n)).

But h(s(m),, n) = LOOP(n — s(m).){pr1(k(m,n))}
= LOOP(n — s(m),){pri(k'(m,n))}, by IH
- = K(s(m)y, n)

So k(s(m),n) = k'(s(m),n) and hence by Lemma 2.31, k = k',
Taking pry of both sides, we get h = h', as required. a
This result therefore allows us to prove equality of functions in E by list
induction as in Lemma 2.35: .

If f(0,z) = g(0,2)
and f(n’vx) = g(n»x)ﬁf(ﬂ(ﬂ(nl)»n)»x) = g(”(”(nl);n)rx)

then f =g
In passing, let us briefly consider the following PRIM routine:

DEF GET-FULL-VECT(n)
v M-LEN = peen(2* > n) /% Max length of the rep. of n x/

47

J €«—n
J &— ST(n)
V-LEN <— 1
IF (pry(J)=0) THEN (DONE <— 1)
LOOP M-LEN {
IF (NOT DONE) THEN {
J <«— PAIR(PAIR(pry(J),HD(pr;(J))), TL(pry(I)));
INC V-LEN;
IF pry(J)=0 THEN { DONE <— 1:
V-LEN <— V-LEN= 1;
J €— pr;(J)
}
1}
RV &«— PAIR(J, V-LEN);
RETURN(RV)

In Set this would give us

pair(ny, pair(ns, ..., pair(ne_y,n,)...)

where n = pu(n(n1),...,n(n,)) is a finite length representation for n in Set.
The routine converges in the sence of [Jay 93] - in other words, there is a
computable upper bound M — LEN in N to the number of iterations required
to produce a fully expanded vector. The point here is that M — LEN exists

internally - in specific cases, the completed representation could be infinite.

Lemma 5.31 E has free monoids.

Proof This is a trivial consequence of 5.30 and 2.23. 0O
We now proceed towards the definition of an Arithmetic Universe. In
view of the above pairing result, we henceforth define arrows in a Skolem

Theory using only the objects 1 and N. Recall the following definition in
Set:

Definition 5.32 Suppose that IN —Q> IN is a predicate in the Skolem The-

ory of primitive recursive functions, prips. Then Q determines a set

48

{n € IN|Q(n) = 1}, which we will call the extension of Q. We call a subset
of IN decidable if it is the extension of a predicate Q.

In other words, X C IN is decidable iff its characteristic function is prim-
itive recursive. We want to extend our universe to include decidable subsets
of IN and primitive recursive functions between them. In a general Skolem
Theory we need not have an easy notion of global elements as in L pgryp, S0
instead we use the correspondence between predicates and decidable subsets,
and we take the arrows to be suitably defined equivalence classes:

Definition 5.33 Suppose that E is a Skolem Category. Define the category
E as follows:

Objects Predicates N —éé N of E;

Arrows Suppose that A,B are E-objects. Define Arrap={N N NjA <
Bo f}. Define a relation ~ on Arrap by fi ~ f2 if A < eq(fi1, f2).
It is clear that ~ is an equivalence relation on Arra p. The arrows

A —> B in E are ~-equivalence classes.

So Arry4,p consists precisely of thise arrows which map A into B. Each
equi'valence class of ~ consists of arrows which agree on A - in © PRIM these
would be those arrows whose restrictions to A agreed -ie. the primitive
recursive functions A —> B.

Lemma 5.34 Composition of arrows in E is well-defined.

Proof Suppose that A,B,C are E-objects with [f)] = [f2] : A —> B
and [g1] = [g2] : B——> C are E-arrows. We need to show that g1 0
fi] © A —> C, which is trivial, since A < Bof; <Cog;of; and that
[91 © f1] = [g2 © f2], which follows from the identities eq(g1 0 f1,92 0 f2) >
eq(g1,92) 0 eq(f1,f2) 2 Bo A > A. a

In the case where E is Spgry, we clearly have pgrras as a full sub-
category of EPRIM - ﬁpmM consists of Lprrar augmented with decidable
subsets of IN and the primitive recursive functions on those sets. We will
establish this in the general case:

Definition 5.35 We define TRUE to be the map

! s

N—s1-2sN-"snN

49

Note that in Lpgrp, TRUE = XIN-

Lemma 5.36 If E is any Skolem Theory then E can be embedded as a Sull
subcategory of E.

Proof We identify N with TRUE. Define (= N —> 1 —> N, define
I tobeeg(-(): N —> N. (ie N =% N x ¥ 59).

Then if N —=> N is an E-object we have P < eq((, (), so [¢]: P —> i
in E.

If[(] : P—>1 then P < eq((,(’), by definition of Arrp above.
However this is the same as saying that [(] = [¢'], so [¢] : P —> T is unique
and 1 is the terminal object in E.

We can embedd E into E using F, defined on objects by F(1)=1 and
F(N)=TRUEIN and on arrows by F(f) = [f].

We know that for any predicate @, @ < N o f, where N —-{9 N is any
arrow; in particular, N < N o f, so that NV —% N. In general, we clearly
have X L>vinE=sXx-Lynk

F(fog) =[f]o[g] by the previous lemma and F trivially respects identity
maps, so F is a functor.

Any arrow [f] in E is the image of f under F, so F is full. (i

Lemma 5.37 (= N —> 1 —>> N is initial in E.

Proof This is easy: for any predicate @, (< Q so any f : N —> N maps
(—> P, where P is a predicate; moreover, if f;,f, : N —> N are any

arrows we have (< eq(f1, f2), so that [f,] = [f2] on Arr4 g, which gives us
uniqueness. 0

Regarding A and B as the extensions which they represent in Set, we
have (n,m € A)=(f(n) = f(m)=>n = m) iff f is mono. The following
Lemma generalises this statement:

Lemma 5.38 A -5 B in B is monic iff A(n).A(m).eq(f(n), f(m)) <

eqg(n, m).

Proof 'Only If’ is easy: [f] monic =eq(f(n), f(m)) < eg(n,m), which
yields the result.

50

'If” is also fairly strightforward: Suppose that
A(n).A(m).eq(f(n), f(m)) < eq(n, m)

If fon = fom then A(n).A(m).eq(f(n), f(m)) < eq(n,m). If fon = fom
then A(n).A(n) < eq(n,m). Now n,m are E-arrows, so C < Aon and
C < Aom. ie C? = C < A(n).A(m) < eg(n,m). If C is identically zero
then C = (, so C is initial by lemma 5.37 and n = m. If C is not identically
zero then eq(n,m) = s(0) so n = m. O

Corollary 5.39 Every E-object is a subobject of N.

Proof If N —25 N then since A < Noid, we have [idy]: A —> N.
Since A(N).A(M) < 5(0), A(n)A(m) < eg(n,m), so [tdn] is monic. O
This is directly analogous to the statement in Set that every predicate

deterines a subset of IN.

Lemma 5.40 E has finite products.

Proof We have shown that eq(-, () is the terminal object in E. For
products over non-empty diagrams, given predicates AB in E, we will use
(AXB) to denote the E-object multo (A x B)o (pry, pry), where (pr1,pra) :
N —> N?is the inverse of the pairing function pair : N2> —> N. In terms
of generalised elements, (AXB)(n) = A(pri(n)).B(pra(n)).

Now Aopr; > multo (A x B)o (pry,pra), so [pr1] : AXB —> 4
in E. We claim that A & Ax B -M B is a product diagram in E.
Suppose that B <——-—- C —> h A and write (fy;f;) for the equivalence class
of N85 NxN —$ NxN ﬂ-'} N, where A is the usual diagonal map.
Then since C < Bo f; and C < Ao fy, we have that C < AXBo (f1;f2) =
multe(AX B)o(f1 X f3)0A, so (f1;f2) is a well defined arrow C —> A% B
in E, pry o (f1;f2) = fi and pryo (fiifo) = fo. If [9] : € —> AXB with
[pra} o [9] = [f2] and [pry] o [g] = [f1] then since [pr1] and [prs] are jointly
monic, [g] = (f1;f2). a

Lemma 5.41 E has equalisers.

[u
Proof If A % B is an E-diagram then C(n) = A(n).eq(u(n),v(n))

with C l'i';l A [3 Bis an equaliser diagram, since C < Aoid = A and
Ui

51

C < eqo(u,u), so [ulolidn] = [u]ofidy]; if D -L> 4 with D < eg(uof,vof)
then . .‘
D = D? < multo(D,eqo(u°f,U°f))

<multo(Ao f,eqgo (uo f,vo f))

=Cof

so D -5 ¢ and clearly, D U5 4 = p UL ¢ bad 4

1 D 4% C with idyo[g] = [f] then [4] = [], which gives us uniqueness.
a

This result is really very obvious: in Set, C is the characteristic function
of {z € Alu(z) = v(z)}.

Lemma 5.42 E has finite coproducts.

Proof We have already seen in Lemma 5.37 that £ has initial object
1 -
(=N—>1 -——0-—> N. For non-empty co-products, suppose 4, B € Ob(E).

. _) A(n/2) if n is even
Define (4+B)(n) = { B((n-1)/2) if nis oddd

Define i3 : N —> N :n— 2n
i9: N —>N:nm—-2n41

Then it is easy to show that
Al 41pdel g

is a coproduct diagram. u

In general, £ need not have coequalisers.

Definition 5.43 A split epic in a category C is an arrow f : A —> B
which has a right inverse.

Clearly, split epics are epic. In Set, the Axiom of Choice is equivalent
to the statement that epics split.

Lemma 5.44 Every arrow A & B in E has a factorisation into a split
epic followed by a monic.

52

Proof Define a predicate I on generalised elements by

I(n) = A(n).eq(1, Zf-oA(k).eq(f(k), f(n)))

In other words, I(n) iff A(n) AND (n is the first integer in the extension of
A whose value under f is f(n)).
Define N —%> N in terms of generalised elements by

p(n) = pr<n(A(k).eq(f(k), f(n)))
Then

(Top)(n) = A(mecn(A(E).-eq(f(k), £(n)))).eq(1, 23 A(k).eq(f(k), f(p(n))))
= AQuscn(A(k).eq(F(k), £(n)) |
_J A(n) thereisno k < n with A(k) and f(k) = f(n)
11 otherwise

So [p] : A—> 1. Moreover, I < A< Bof,s0[f]: I —>B. We
therefore have that A —[p—]> I ﬁ-l> B.

It is trivially true that eq(f o p, f) > A, so [f] = [f] o [p].

(Note that I Jﬂ) B is a different map from 4 -lﬂ} B; in the former,
[f]is a class of maps which only have to agree on the extension on I, which
is a subset of the extension of A4).

We have that I < eq(p o idy, idw), 50 [p] o [idn] = [idn], and
ALy U p

is a split epic/monic factorisation of [f], where A —I’g I has a right inverse
g 4 bl D

Recall that the usual proof in Set of this result involves taking I to be
J(A) and then using the Axiom of Choice to find a right inverse for f. In
our proof, I is a subset which consists for every z € f(A) of precisely one
element of /~1({«}) (the least one); we can calculate I without recourse to
the Axiom of Choice because f has a countable well-ordered domain. We
will employ this approach again in Theorem 5.74.

Definition 5.45 An arrow A —2> Q in a category C is surjective if the
smallest subobject of Q through which q factors is idg.

53

Definition 5.46 A surjective image of A ---—9 B is an image factorwataon
A 1> Q >*> B with g surjective.

Lemma 5.47 A —-> B has surjective image A —> A’ s B iff i is the
smallest subobject of B through which f factors.

Proof 'Only if’. If A —%> Q > B is a surjective image of f then if f

factors through Q' Cj—-} B, ¢ must factor through ini 801N =idg.
If’. If ¢ is the smallest subobject of B through which f factors then ¢

factors through Q' C-g'-é @, f factors through i 0 ¢’ C 7 s0 ¢' = 1dg. o

Corollary 5.48 Surjective images are equivalent up to a commuting iso-

morphism.

Definition 5.49 A catgory C has image factorisation if every A —f-> B in
C has a surjective image.

Lemma 5.50 4 —> T ——g B is the image factorisation of A f B.

‘Proof Note that I(n).I(m).eq(f(n), f(m)) < eg(n,m); this is trivially
true if eg(f(n), f(m)) = 0 and if f(n) = f(m) and m # n then at least one
of I(n) and I(m) is zero, so I Ls B is monic.

If A —-[—f-]é B factors through C > Ls] B via A —[—l> C then I —> 1]
factors through C C—-[-gle B via [h] o [idn] so [f] : I —> B is the minimal

subobject through which [f] : A —> B factors. o

Definition 5.51 4 surjection A —> Q is stable if for everys : Q' —> Q,
the pullback of q along s is surjective.

Note that since pullbacks of monics are monic, we could equally as well

have defined this as preservation of image factorisation by pullback.

Lemma 5.52 If A ——[f—1> o is a surjection in € then if C(ng) = TRUE there
is a map N —=> N such that A(n).eq(f(n),ne) = TRUE.

Proof Suppose C(ng) = TRUE and A(.).eq(f(.),no) = FALSE.
Define a predicate Cp by Co(n) = C(n).not(eg(n,ng)). Then

54

Co 0 f)(n) = C(f(n)).not(eq(f(n),no))
2 C(f(n).A(n)
2 A(n).A(n)
= A(n)

So A —[—fl-> Co is an E-arrow and A —% C factors through Cy as
A —[—f-]-> Cy fidn, C,s0C M C should factor through Cy -['—dlg C, since

A -—[g C is surjective. This is a contradiction, so our result follows. 0
Lemma 5.53 In E, any surjection is a split epic.

Proof Any surjection s has a factorisation m o e, where m is a split epic

and m is monic. By the definition of surjectivity, m is iso. 0
Lemma 5.54 Image factorisation in E is stable under pullback.

Proof If e is a split epic with right inverse p then eopog = g = goidp so
there is a map (id,pog) : B —> g~1(A) with g~1(e) o (id,po g) = idg. O

Definition 5.55 A regular category is one which has finite limits and image
factorisation which is stable under pullback.

Lemma 5.56 Coproducts in E are stable under pullback.

Proof Suppose that the following is a pullback diagram:

PR L) R L) I

[+
[pra]][

9] 7‘2]
P Lix) IR OO s} N

Then

Xa(n) = A(pra(n)). X (pri(n)).eq(g(pri(n)), 2.pra(n))
X B(n) = B(pra(n)).X (pri(n)).eq(g(pri(n)), 2.pr2(n) + 1)

55

Now suppose that X 4 -‘EL C f2] Xpg.
Define n' = pair(n,g(n)/2) g(n) even
pair(n,(g(n) - 1)/2) g(n) odd
fi(n') g(n) even

Define f iV == Nin = { fa(n") g(n) odd

By assumption,
X(n) < ((44B)og)(n)
= A(g(n)/2) g(n) even
B((g(n)-1)/2) g(n) odd
So X(n) < { Xa(n') g(n) even
Xg(n') g(n) odd

< (Co fi)(n') g(n)even
T | (Cofy)(n') g(n)odd
<(Co f)(n)

sox YS cim k.

X4(n) = 1=>g(pri(n)) is even
=(f o pr1)(n) = fi(pair(pri(n), g(pri(n))/2))
= fi(pair(pri(n), pra(n)))

It follows that X4 < eq(f opri, f2), so the following diagram commutes:

xorly x Il o

RN
(o]

For uniqueness, observe that if [h] also makes this diagram commute
then

Xa(n')=1 g(n)even

X(n) = 1'—">{ XN(n') =1 g(n) odd

56

N (hopri)(n') = f1 g(n) even
(hopra)(n') = fi g(n) odd

So X < eq(h,f). 0
Lemma 5.57 Coproducts in E are disjoint.

Proof Suppose the following is a pullback diagram:
A—25>4+8B

ra) [é2]
]

C __._[J_?.CL__> B
Then using the previous lemmas and the elementary properties of pullbacks
we have that

C(n)= A(pra(n)).B(pri(n)).eq(2.pra(n), 2.pr1(n) + 1)

= (, as required

Theorem 5.58 E has list objects.

Proof Suppose that NV --14—-> N is an E‘-object. Recall that (N, y,0) as
defined in Lemma 5.30 is the free monoid over N in E.

By the freeness of (N, u,0), there is a unique arrow 4 : N —> N, which
is a monoid homomorphism from (N, ,0) to (N,-,0) with Aon = A.

We prove that A is a predicate, using the induction principle of 2.35
applied to A.4 and the constant function 1.

1. A(0) = s(0), since A preserves units and so A(0).4(0) = 1.

2. If A(n).A(n) =1 then

A(u(n(n1),n)). A(u(n(m),n)) = A(n1).A(n).A(n1).A(n)
= 1 by the IH and since A is a predicate.

57

SoAA=1. |
Definei: N —> N=N 225 v v A5 N,

Then (AxA)(n) = A(pri(n)).A(pra(n))
= A(u(pri(n), pra(n)))
= (Ao p)(n)

So AXA -5 Ain E.

Since A(0) = 1, TRUE - A in £,

Now suppose that B —[lg C é—gl- AxC. By Lemma 5.30, since N is the
list object over N in E there is a unique map h which makes the following
commute: '

NXN N v LB XN o NxN

e h N x h

Ne—2 —_NxnN
We use list induction again to show that [h] : 4 x B —> C. ie that
A(n1).B(ng) = 1=>C(h(pair(ny, n3))). We perform the induction on n;.
Base Case: If n; = 0 then A(n;).B(n;) = 1=B(n;) = 1=C(f(n)) =
1, since B 45 ¢ and so by definition of h, C(h(pair(0, n))) = 1.
Inductive Step: Suppose that A(u(n(ns),ns),n) = 1 = B(n).

Then C(h(pair(u(n(nn),ne),n))) = C(g(nn, h(pair(n, n))))
. -1
Since by the IH, A(n;) = 1 = B(n)=>C(h(pair(n,,n))).
So the following diagram commutes in E: ‘
B—" rrupsp [UXB z5p LorsIXB ¢ 155
h Ax[h
/f/ [A] x[h]

C é—[i]——— AXC
. For uniqueness, suppose that [k] : AXB —> C also makes the diagram
commute. We need to show that AXB < eq(h, k).

58

ie that A(n;).B(ny) = 1=>h(pair(ny, nz)) = k(pair(ny,ng)).

Once again, we proceed by list induction on n,.

Base Case: n; = 0. Then by definition, 4(0).B(n;) = 1=>B(n;) = 1.
So

h(pair(0,na)) = £(ng) = K(pair(0, 7a))

by the commutativity of the left triangle.
Inductive Step: Assume

A(ny).B(ns) = 12> h(pair(ni, n2)) = k(pair(ny,ny))

and suppose that A(u(n(n),ny)).B(nz) = 1. Then A(n).A(n;).B(ny) =1
and we can deduce that A(n;).B(ny) = 1.

Then h(pair(u(n(n),n1),n2)) = g(pair(n, h(pair(n1,n2))))
= g(pair(n, k(pair(ny, ny))))
= k(pair(u(n(n), n1),n2))

So AxB < eq(h, k), as desired. 0

Corollary 5.59 E has free monoids.

Proof This follows immediately from Lemma 2.23 and Theorem 5.58.
(4, 7,[0)) is the free monoid over A, with [7] : A —> A as in definition
5.28. O

Theorem 5.60 There are free category objects over graph objects in E.

) .
Proof Supposethat G=F ; V is a graph object in E.
&

Let M(E) be the free monoid over E, which is the list object over E.
. Define map(8,) to be the unique arrow M(E) —> M(V) which comes
from the recursion data 1 —> M(V) €= V x M(V) w E xM(V)
Define map(8y) analogously.

59

Define C; to be the following equaliser:
VxM(V)

V x map(B,)/ w

C1 ——>VxME)xV M(V)

! x map(8o) R /O(M(V) x 1)

. M({V)xV
So in Set,

C1 = {{vn,[e1,. .., en],v2)|vs = Boey, vz = Byep, Bre; = Bpejy1} U Ay

Define dy = C)y —> VX M(E)xV 2>V
hi=C >V XME)xV 5V

Define C} x¢, C; 5V x M(E) x V, where the pullback is of dy along
dlr by
m = C) xg, C1 —> (V x M(E) x V)2 {furaxtrary

V x M(E) x M(E) x V 2225 v x M(E)x V

We want to show that m equalises the above diagram and hence that it
induces a map C; x¢, C; —> C;.

This can be done painfully via a huge commuting diagram, or alterna-
tively using generalised elements. For ((vi,wi,vs), (va,wq,v3)) €7 C) Xc,
Cy,

cons(vy, map(0,)((w1, wa))) = cons(vy, u(map(d;)wy, map(d;)w;))
= p(cons(vy, map(d1)wy), map(8))ws)
= u(u(map(8o)wy,n(v2)), map(8;)ws)
= p(map(do)wi, u(n(vz), map(8;)w,))
= p(map(8o)wi, u(map(do)ws,n(v3)))
= p(map(8o)(u(w1,w2)),n(vs)), as required.

60

It is similarly easy to show that m is associative and that e = V —£-> V x
V is the identity for m.

We claim that C = (C4,V, do, d1,m, e) is the free category object over G
in E, with injection of generators in : G —> C the graph homomorphism
with components

ing: V —>V =idy
iny . E—> C = (30,E,31)

Now suppose that D = (D;, Dg, src,tar, mp, ep) is a category object in
E with ¢ : G —> D a graph homomorphism.

Recall that ¢g 0 0y = tar o ¢y and ¢g 0 9y = srco ¢

We therefore have:

map(¢o) o map(d1) = map(tar) o map(s;)

map(¢o) o map(dy) = map(src) o map(¢1)
This gives us commutativity of (1) and (2) in the following diagram:

&)
N

VxE*"xV

$o X map($1) X $o
! x map(8p) X V

(1) Dy x Dg X Do (2)

Dy >§/map(tar)x! I'x map(srclkx Dy (60) % 3
X
v x V& 20X mar(do) Do x Dj x Do €220 e <y
d
cons__ u}(z X 1)

(3) Dy (4)

Commutativity of (3) and (4) is trivial. Since the left hand outside path
from Cy to Dy = the right hand outside path from C; to D§, it follows from

61

the commutativity of (1),(2),(3),(4) that the inside paths from C; to D}
are the same and hence that

Cy > V x B* x v 227208 1y o Dt x D,

. induces a map C; C—£—> Dg, where Dy —> Dg x D} x Dg equalises cons o
(Do x map(tar)x!) and p o (id x n) o (! X map(src) x Dy).

It is fairly clear by now that we want to define an arrow D, —> D,
by returning the composition of all of the maps in an element (0y,e,05)
and by returning ep(o;) for an element (oy,[],0;). It is not in general clear
how we can define the arrow D, —> D, as our recursive definitions are
over arbitary lists and recursive definitions of the following form are not
permiﬁted:

€ cons
1 > D, < D] X Do D,)

>

D]XA

| ¢ <« D, xp, Da
since we are then effectively checking at every application of cons that the
element to which we are applying it is in D; X p, D4 and nothing in chapter
2 entitled us to do this.

In E, we can fall back upon the definition of arrows within E. Recall
that mp : Dy xp, Dy —> D; in E is represented by at least one arrow
mp:N —> NinE.

We can define an arrow A : N —> N in E via the following recursion:

N—2" SN« cons NxN
> A N x A
N2 NP2 nun

It will be convenient to write triple(ny,ng, n3) for pair(pair(n;,n3), n3)
and (tri(n),tro(n),tra(n)) for the unique triple (n;,ngz,n3) such that n =
triple(ny, na, n3).

Now define f : N —> N by n triple(tri(n), A(tra(n)), tra(n))
g: N —> N by nws (if tro(n) = 0 then e(tri(n)) else try(n))

62

Since these functions are PRIM-definable they are both well-defined as
arrows in E.

Define h : N —> N = go f. We claim that [A] : D, —> D; in E.
As usual, our proof uses list induction, as in Lemma 2.35. In this case, for
n = triple(ny, na,n3), we perform our induction on n,.

Base Case: n; = 0. Then Dgy(triple(n;, no,n3)) = 1=>Do(ny) =
1=> Dy (h(triple(ny, nz,na))), so we have Dy(h(triple(ny, ng,n3))) = 1.

Inductive Step: Assume that

Dy(triple(ny, ng,n3)) = 1=>Dy(h(triple(ni, ng,n3))) =1

Suppose that Dg(triple(n;, u(n(n),nz),n3)) = 1. Then if ny = 0 we
must have Dy(n) = 1, Di(A(x(n(n), n2))) = Di(mp(pair(n,0))) = Di(n) =
1. If ny # 0 then Dy(A(n2)) = 1, D1(A(u(n(n)),n2)) = Di(mp(n,Ang)) =1,
by the definition of arrows in E.

It follows that [A] : D, —> D in E and hence that [ho k] : C; —> D
in E.

Define ¢; = hok. We claim that ¢ = (d0, 1) is an internal functor from
Cto D.

- h
Froe=V S5V xv 2% pyx Dy 22255 by Dr x Dy =25 D,
oo epomy)

=V 25 vV x vV 2% Dy x Dy 2% D,
=V 25 D, =2 p,

So ¢ respects identities.
To show commutativity of

5 % &
C XCo C, u D] X Do D1

m mp

Cy — > Dy
$1

We need to show that if Cy(r) = 1 = Cy(s) and di(r) = do(s) then
mp(i(r), $1(s)) = p1(m(r, s)).

Write r as triple(n;, ng,n3) and proceed by list induction on rs.

63

Base Case: ry = 0. If Ci(r) = 1 = C)(s) with dy(r) = do(s) then
r =rz3=<s. .

mp($1(r), #1(s)) = mp(ep(rs), d1(s)) = d1(s) = $1(m(r, 5)).

Inductive Step: Suppose that Cy(triple(ry, u(n(r),r2),r3)) = 1 =
C1(s) and that dy(triple(ry, p(n(r),r2),r3)) = do(s).

Then by definition of Cy, Cy(triple(ry,re,73)) = 1 and by definition of
dy, di(triple(ry, p(n(r),r2),73)) = do(s), so we can use the IH to deduce
that -

mp(@1(triple(ri,ra,73)), $1(8)) = d1(m(triple(ry, rq, r3),5))

Then

mp(1(triple(ry, u(n(r), r2),73)), $1(5))
= mp(A o map(¢1) o u(n(r), r2), #1(5))
= mp(A o p(n(¢1(r)), map(¢1)ra), é1(s))
= mp(mp(é1(r), A o map(¢1)r2), $1(s)) (Def of A)
= mp(:1(r), dr(m(triple(ry,ra,r3),5))) (Associativity and IH)
= $1(m(triple(ry, u(n(r,r2)),73),8)) by definition, as required

So ¢ is a functor.

For commutativity:

(1 0 iny)(n) = k(go(src(n)), ¢1(n), go(tar(n)))
= ¢1(n) ’

So phioin = ¢.

Uniqueness follows via another easy induction. (m)

It is worth remarking again upon why the proof succeeded. All of the
reasoning could have been performed without alteration in any category
with finite left limits and list objects, up to the point where we needed to
define an arrow D, —> D. To do this, we needed to fold mp through D,;
in general, this is not possible, for the reasons mentioned in the course of
the proof. We can however get away with this in E because we can use the
fact that mp is defined on products in E and not on pullba,cks - this allows
us to demonstrate inductively in E that it has the desired properties.

64

Definition 5.61 Let C be a category which has free category objects over
graph objects and let G be any internal graph object in C with associated free
internal category C and let n : G —> C be the unit of the corresponding
adjunction. If any internal diagram (F,7,v) on G lifts to a unigue internal
diagram (F,m,«'") on C with y'o(n Xg, F) = v then we say that C has action

variants.

Lemma 5.62 Any finitely complete category which has action variants has
list objects.

Proof Let £ be any finitely complete category and let A* ; 1 be

!
the free category over the graph object A ; 1 in £. Then A* has a
!
multiplication operator m and a unit e, as above. Consider the recursion
data 1 —-—f—> C <2~ A x C. To show that A* is a list object over A, we

need to show the existence of a unique A such that the following diagram

commutes:

A#
1 ¢ > 4 mA*xA*gx—AxA*
e

Jh

&<
<
C <

AXh

g

AxC
Now observe that (C, !,) is a diagram over the graph 4 ~ : ? 1 and therefore

by assumption must lift to a unique diagram (C,!, g') over A* ::; 1, with
g'o(n x C) =g. Define h to be .

h=a" "> 4" x1 2 4 xc s ¢
Then we claim that A is the desired map.

Firstly, hoe = ¢’ o (e, f) = f by the definition of an action.

Also, hopu(n x A*) =g’ o (A* x f)omo (g x A%)
= ¢'o (mo (1 x 4°), fo!)
=g'0(n,g' 0 (A", f)) , by definition of internal diagram
=gog' o (A" f), by the properties of action variants

65

= go (A X h), as required

For uniqueness, note that any h which makes the above diagram com-

mute is the action variant of the following action:
(C, AxC D> A——éAxc—-aC)
and must necessarily be unique. (]
Theorem 5.63 E has action variants.
Proof Let G = G, :803 Go be an E-graph and suppose that (F, =)

is a diagram over G. Let C = C :3 Gy be the free category over G, as

described in Theorem 5.60. We wa,nt to define 4’ : C xg, F —> F so that
noy’ = dyom;. Recall that C; > V xE* xV equalises cono(V xmap(d;)x!)
and po (id x) o (! x map(8y) X V), so in Set we could easily define 4"

({(fr,. o z) = v(fr,7(f2, - v(fns) .))

However, we cannot in general make a recursive definition of 4' along
these lines, as we cannot make recursive definitions over pullbacks, precisely
as stated in the proof of Theorem 5.60

We again employ the technique of Theorem 5.60 and make the desired
definitions in E before proving inductively that they work in E. Recall that
4:N —> N in E and define 41 : N x N —> N in E using the following

recursion:

0

NN vy N Coms XN NxNxN

2 " N xym
N <2 NP NuN

So 4, will fold up a list, as in Set above.
Define ¢ : N —> N by

triple(ny, ng,n3) = (if ny = 0 then ec(ny) else ny)

66

Since ¢ is PRIM-definable, this is a meaningful definition.

Define 4’ by n +— ¥1(¢(pri(n),pra(n))). We claim that [y] : C xg,
F—> FinE.

We need to show that if C(m) = F(n) = 1 and do(m) = =(n) then
F(~'(pair(m,n))) = 1. We write m as triple(m;, my, m3) and proceed by
list induction on m;.

Base Case: my = 0. Then

F(v'(pair(m,n))) = F(n1(pair(e(m1),n)))
= F(y(pair(e(my), n)))
= F(n), by the unit law
= 1, by assumption.

Inductive Step: Let m = triple(m,, cons(m', mz), m3) with the result
true for triple(m;, ma, m3). Suppose that

C(triple(my,cons(m’,mg),m3)) = F(n) =1 and d,(m) = n(n)
Then
F(v'(pair(m,n))) = F(v(pair(m',y'(pair (triple(m;, ma, m3), n)))))

Recall that 4 : Gy Xg, F —> F. We can apply our inductive hypothesis
to see

(G1 X, F)(pair(m',v'(pair(triple(my, my, m3),n)))) = 1

so F(v'(pair(m,n))) = 1, as required.

To prove the desired commutativity 7oy’ = dyom; in E, we need to show
that if C(m) = F(n) = 1 and dy(m) = n(n) then n(y'(pair(m,n))) = di(m).
This falls out very quickly from another list induction on n,.

Finally, it is clear from the definition that 7' o (n x G;) = 7. Uniqueness
of the 4’ follows from yet another list induction, which we ommit.

This completes the proof. 0

Observe again that we could not use the machinery currently available
to us to prove the existence of action variants in an arbitary category with
free category objects over graph objects because we would again need to
form a recursive definition involving pullbacks.

67

5.2.2 The Exact Completion of E

Recall that the purpose of Joyal’s construction was to produce a category
which contained a model of itself. We can model ¥ in ¥ but to extend this
model to one for £ we need to form coequalisers of equivalence relations and

this is not possible. We now show how to add the required structure.

Definition 5.64 A category C is regular if it has:
1. Finite Limits
2. Stable surjections

3. A surjective image for every arrow.
We showed in the preceeding section that E is regular.

Definition 5.65 A regular category which has coequalisers of equivalence
relations is called exact.

There is a standard completion process from a regular category to an ex-
act category. From a regular category C, we form a category Map(C) which
has objects the equivalence relations on the elements of Ob(C) and ar-
rows the functional relations defined between them. The details appear
in [FreySce 90, McL 94].

Taking the exact completion of a category of the form F is rendered far
simpler by the presence of split epi/monic factorisations and of the bounded
minimisation operator. We will give the details of the procedure in that
specific instance.

Firstly, we will prove some results which will give us a better under-

standing of equivalence relations.

Definition 5.66 A groupoid is a category in which every arrow is invert-
ible. ’

Theorem 5.67 We can identify equivalence relations in a cartesian left

exact category C with the groupoids in C for which {(dom,cod) is monic.

68

Proof Suppose that

dom

cod

Arr(Rg) —> Ag
<——-

is a groupoid in C with inverse map Arr(R;) ﬂ) Arr(R;) and composition
map 24rr(R,;) =28 Arr(R;), where the following is a pullback:

24rr(R;) —> Arr(R;)
dom

Arr(R,) cod Arr(R,)

and suppose further that dom and cod are jointly monic. We show that
Arr(R,) M Az X Az is an equivalence relation:

Reflexivity domoe = codoe = id, so for any X —> A, the following

L0

A, «—— Arr(R;) —> A,

diagram commutes:

Symmetry If 2Ry then thereis a z such that domoz = x and codoz = y.
Recall that dom o inv = cod and cod o inv = dom, so (y, z) factors through

R via invo 2.
Transitivity If RyRz then there are p and p' which compose with R to

give (z,y) and (y, 2) respectively. Since cod o p = dom o p' = y we have a
map X —> 2Arr(R,) which makes the following commute:

69

All of the subdiagrams in the above diagram which involve 24rr(R,)
commute by the category axioms for comp, so (z, z) factors through R via
compol,

For the converse, suppose that R M X x X is an equivalence
relation in €. Since R is reflexive, we must have (X, X) € R; define e :
X —> R to be the map which satisfies domoe = X and codoe = X.

We trivially have (dom, cod) € R and so by symmetry of R we must have
that (cod,dom) € R; define inv : R —> R to be the map which satisfies
dom o inv = cod and cod o inv = dom. Suppose that the following diagram
is a pullback: v

2R —1—>

LI
}2 \[cod
dom

R—mrr> X
We must have (domop,codop;) € R, with p; the factorising arrow.
Now cod o p; = dom o py so {cod o py, cod o p2) € R, with p, the factorising
arrow. It follows from the transitivity of R that (domop;,codop,) € R,
so there is an arrow comp : 2R —> R which makes the following diagram
‘commute:

70

b’o& comp

R< %™ _p > X

We show that cod, dom, e, inv, comp are together a groupoid in C:

By definition, dom o comp = dom o p;

cod o comp = cod o py

So dom o comp o (Comp x x R) = dom o p; o (comp xx R)
= dom o comp o p;
= domo p; o p;
dom o comp o (R xx comp) = dom o p; o (R Xx comp)
=domop;op;

Similarly, cod o compo(comp X x R) = cod o compo (R X x comp), so since
dom and cod are jointly monic, we must have

comp o (comp X x R) = comp o (R X x comp)

Similarly, comp o (R x ¢) o (R,dom) = R
compo(e x R)o(R,dom) = R
comp o (R,inv) = e o cod

comp o (inv, R) = e o dom

which completes the proof. 0

Definition 5.68 Suppose that E is a Skolem Theory. We define the cate-
gory E as follows: : :

Objects Pairs (X, R), where X € Ob(E) and R is an equivalence relation
- on X.

71

Arrows Given E-objects (X,R) and (Y, S), define
Arrixsvs = (X —I> YIRC (f x £)7(Y))

The relation ~ on Arr(x s)(v,s) is defined by f ~ g iff R C (f x
9)71(S). That ~ is an equivalence relation on Arr(x s),(v,s) 18 an easy
consequence of the fact that R, S are equivalence relations. An arrow

(X,R) —Ig (Y, S) is an equivalence class of Arr(x) (v,s) under ~.
Lemma 5.69 Composition in E is well-defined.

Proof Suppose that (X, R) —-—IQ} (v,S) ﬂ) (Z,T) with f ~ f' and
g~4g"

Then RC (f x £)~1(S) € (f x f)~ (g x 9)"X(T)
=(gof xgo f)"YT) by the properties of p.b.’s

So[gofl:(X,Ry —> (Z,T).
Similarly, [¢' o f'] : (X, R) —> (2,T).

Now R C (f x f)~1(8) C (£ x f')"N(g x ¢')(T)
=(g0f xg' o f')(T)

Sog'of'=gof. (m]

Lemma 5.70 An equivalent definition ofi? ts the following:

dom

Objects Groupoids Arr(R,) ; vAx, with dom, cod jointly monic.
co -

Arrows inv-preserving functors. (ie Groupoid homomorphisms), with f ~

g iff there is a natural transformation f —> g.

Proof Equivalence of objects is immediate from Theorem 5.67.

To see the result for arrows, observe that an arrow between the groupoids
dom

dom,
(Arr(Ry) _é Az) and (Arr(R,) g Ay) is an arrow A, LN Ay with
cody cody

72

some ¢ such that the following diagram commutes:

Arr(R,) -& (fo % fo)™* —""C“—? Arr(Ry)

p.b. (domy, cod,)

Put fi = (0. We claim that f = (fo, f1) is a groupoid homomorphism.
From the definition of f we immediately have that:
foodomg = domyo fy

foocod; = codyo fy

Also, domy oeo fo = fy and domyo froe = foodomzoe = fg

codyoeo fo = fo and codyo fioe= fypocodsoe = fy

So f preserves units, since (dom, cod) is monic.
domy o comp o (f1 X f1) = domy o py 0 fy X f1 = domy o fy0p,
domy o fy 0 comp = fo 0 domg o comp = fy 0o dom, o py = domy o fyop;

cody o comp o (fy X f1) = cody o pa o (fy X f1) = cody o f1 0py
cody o fy ocomp = fg o cody o comp = fyocod,opy = cody o fy 0py

So f preserves multiplication, since (dom, cod) is monic.
Preservation of inverses is equally trivial.
Conversely, if f : (Arr(R;), A:) —> (Arr(R,), A,) is a functor,

Arr(R,) M A, x A,

factors through (f, X Jo) "} (Arr(Ry)) via (f1, (domg, cod,)).
Suppose that two arrows f, g in E are equivalent; there is then some ¢
which makes the following diagram commute:

Arr(Re) B (o x o) ——s Arr(R))

p.b. (domy, cody)

/ .
Ay X Ay ——————> A X A
FUTE fo % go voo

3

Define ¢ = (o ¢ oe. Then (domy, cody) 0¥ = (fo, go), trivially; it is easy
to show that the following commutes , using the usual argument with the
monicness of (dom, cod):

2Arr(R,)

(o doy Yp

Arr(Rg) Arr(Ry)

(Yo codxk Ap

2Arr(Ry)

So 4 is a natural transformation from f to g. O
Lemma 5.71 E is a full subcategory of E.

Proof Defined: E —> E on objects Aby §A = A, where A is the discrete
groupoid on A with dom = cod = e = inv = A and comp = Ay =>4
and on arrows A —> B by 8f = A MUY B, where f is the functor (f, f) :
A—> B.

Then any functor (fo, f1) : A —> B must satisfy foodom ; = dompgo f,
ie fo = f1, and is therefore the image under 6 of [fo] : A —> B. 0

Before we prove that E has the properties which we require, we will prove
a couple of Lemmas which show us why the split-epi/monic factorisation
is important. Recall that in Set, the Axiom of Choice can be stated as
“All epis split” or alternatively as “For any relation F' C X x Y satisfying
Ve € X3y € Y(z,y) € F, there is a function f : X —> Y with f C F”,
The following lemmas are analogous and reflect the level of choice which the

split epi/monic factorisation in E gives us:

Lemma 5.72 If B/Rp is a E‘-object then there is a E-object C and an
arrow h : B —> C in E such that h : B/Rp 2 C/Ac in E.

Proof Define C: N —> N by n + pycn(B(m).(nRgm)).
Define C : N —> N by n + eg¢(1, Zpmgn B(m).(nRpm)).

74

Then C is clearly a predicate and B(n) = 1=C(h(n)) = 1, s0 h :
B—>CinE his clearly surjective and hence has a right inverse k. :
C—>B,hok=1do.

To show that A : B/Rgp —> C/A(, suppose that zRgy.

Then if h(z) = m; and h(y) = my, m,Rgz and my Rpy so that m; Rgm,
by the properties of equivalence relations. Then m, and my are both
tm<z(B(m).(zRgm)) and so we must have m, = my. It follows that
Rg C(hx h) 1Ac. '

k:C/Ac —> B/Rp trivially:zAcy &z = y=>k(z)Rpk(y).

Since ho k = idc in E, k is the right inverse for h in E.

Suppose that k(h(n)) = n'. We need to show that nRgn'.

h(n) = h(n') because k is the right inverse to k, so h(n')Rpn’ and
h(n)Rgn, so we have n'Rgn as required, which éompletes the proof. O

Corollary 5.73 If f,g : B/Rg —> C/R¢ in E with f=gin E then
there is a D in Ob(E) and an isomorphism h : C/Rc —> D/Ap such that
hog=hof in E.

Proof We use the object which we constructed in the above theorem.
Then zRpy= f(z)Rpg(y)=(ho f)(z)Ac(ho g)(z)=>(hog)(z) = (ho f)(y).
In particular, z = y=>(ho g)(z) = (ho f)(y) 0
We are now in a position to prove that E has the properties which we
require;

Theorem 5.74 E has co-equalisers of equivalence relations.

f
Proof Suppose that A/R4 3 B/Rp is an equivalence relation on
g

B/Rp. In view of Lemma 5.72, we can assume WLOG that R4 = Ay
and Rg = Apg. We know that Ag C (f,g) by the properties of equivalence
relations, from which is follows that both f and g are surjective in E and
that they split. Call their right inverses f' and g’ respectively.
Define R’ to be the relation on B given by zR'y iff f'z = g'y. We claim
that R’ is an equivalence relation on B.
R’ is trivially reflexive. Suppose that zR'y. Then there is some a with
(f,9)oa = (z,y). Since (f,g) is an equivalence relation, it follows that for
some b, (f,g) ob = (y,z) - in other words, yR'z. Finally, if zR'yR'z then

75

f'z = g'y and f'y = ¢'z, so (z,y) € (f,9) and (y,2) € (f,9) and so from
the transitivity of (f,g) we have that zR'z € (f, g).

Now note that idg : B/Rg —> B/R' in E and that this map trivially
has the universal properties of a coequaliser. a

Lemma 5.75 E has finite products.
Proof Given any two E-objects, we have maps
AL AxB->B

Define Ryxp = Rs X Rp ;M (A x B) x (A x B), where tw is the
twisting isomorphism (4; x 4;) x (B; x By) —> (A1 x B;) x (A2 x By).
The following diagram commutes:

! !

T kit
Ry <! Raxs 2 —> Rpg
AxAS T (AxByx(AxB) &2 BB

so that A/Rgy € A x B/Raxp =223 B/Rp is a diagram in E.
It is trivially the case that if A/R4 L C/Rc —f—2> B/Rp is any
diagram in E then the following commutes:

C/Rc
)y (1 NC

ARy S22 A x BJRawp 222 B/Ry

For uniqueness, suppose that g also makes this diagram commute.

Then Rc C (fi x m0g) 1Ry
Rc C(faxmog) 'Ry

It follows that Ro C ((f1, f2) X 9)"'Raxp, so that g = (f1, f2) in E. ©

Corollary 5.76 The full inclusion E —> E preserves finite products.

76

Proof Immediate from the above proof. : o
Lemma 5.77 E has finite coproducts.
Proof Given objects A, B in E, we have a map

A2>44B< B

Define R4+ = R4 + Rp M (A+ B) x (A+ B), where tw is the
twisting isomorphism (4; x 43) + (B x By) —> (A4; x By) + (Ag x Bg).

The following diagram commutes (in fact, since the ambient category
is extensive and the top row is a coproduct the whole diagram must be a
pullback):

?:’ . z'l
Ry — Ryyp <——2—Rp

AxA2 Y (44 Byx(4+B) 222 By B

Trivially, if A[/R4 N C/R¢ <L B/Rp is any E -diagram then the
following commutes: ‘

C/Rc
'S\ [fl:.f2 "3

" A/R4 —> A+ B[Rsp €—B/Rs
For uniqueness, suppose that g also makes this diagram commute.

Then R4 C (f1 xgoi1)"'Re =410 ([f1, f2] X 9)"'Re
Rp Cizo([f1,f2) x 9)"'Rc

It follows that RayB C ([f1,f2] X 9)" Rc,s0 g = [f1, fo] in E. a
Corollary 5.78 The full inclusion C > C preserves coproducts.

Proof Trivial from the proof of the preceeding Lemma. O
To show that E is exact, we want to show that it has two further prop-

erties. The proofs are so similar to those above that we simply state both

properties as Lemmas with extremely rapid sketches of the proofs:

7

Lemma 5.79 E has equalisers of parallel pairs of arrows and the full in-

clusion E —> E preserves equalisers.

Proof (Sketch) We use Lemma 5.72 to assume WLOG that any pair of
arrows A/R4 ﬁ B/Rp are between discrete groupoids and then take
the equaliser of j,f, g in E. The embedding of this object into E as a dis-
crete groupoid is the required equaliser; because the E-objects are discrete
groupoids, any commuting diagram C/Rc —> A/R4 "_—f__g B/Rp com-

g
mutes in £ and the universal property of the equaliser then follows easily

from that of the equaliser in E. 0

Lemma 5.80 E has surjective images which are stable under pullback. The

full inclusion E —> E preserves surjective images.

Proof (Sketch) Given an arrow in E we assume as usual that it is between
discrete groupoids. Its surjective image is then easily seen to be the image
under the full inclusion of the surjective image of the same arrow in . O

To show that E has nice recursive properties, we state a trivial Lemma
which will be useful in the proof of the following Theorem

Lemma 5.81 If E/Rgp 9 V/Ry is a category object in 'E with compou-
——9

tion operation m then if fRVg and f'Ryg' with m(f, f') and m(g,g') both
defined then m(f, f')Rym(yg,g').

Proof Straightforward from the definitions.
m : E[Rg xy/p, E/Rg —> E[Rg n E.

E[Rg xv g, E[Rp C E x E[Rgxg where {f,g)Rpxp(f',¢') iff fRgf' and
gREg', so the result follows from the definition of arrows in E. 0O

Theorem 5.82 E has free category objects over graph objects.
9 _ <
Proof Suppose that E/Rp ; V/Ry is a graph object in E, with
it

) .
Rg >(2-$ V. Then there is a free category object over E 3 V in E,
8,

C = (C,V,dy,dy,e,m). Consider the following E-graph:

: doxd
Re S8 ExEPL CxC—2VxV
dl’_(jl

78

ie
doonou,doonoy
7 R — U 4

dyonou,d; ongov

e
Let Ry ; V x V be the free category over this graph. A lengthy and
c2
unwieldy diagram chase of the form of Theorem 5.60 shows us that
Ro > (VX V)x Ry x (V x V) =25 (V x E* x V) x (V x E* x V)

induces a map R, —> C x C (because of the equaliser properties of
C), where X is the following map:

(VxV)xmap({u,v))x(VxV)

(VxV)xRp x(VxV)
(V x V) x (E x E)t % (V x V) (1!'1,map(‘n),‘n)X(‘R‘z,map(n’z),ﬂ'z;
(VXE*"xXV)x(VXE*xYV)

Let Rc > C x C be the image of this map. Then we claim:

1. Rc¢ is an equivalence relation on C;

do -
2. C/R¢ d:g V/Ry is a category object in E;
1

d ' 3
3. C/Re ::3 V/Ry is the free category object over E/Rp ?0 V/Ry
= 1

b

in
The proof runs as follows:

1. Reflexivity of Rc is trivial. One can use induction to shpw symmetry
and transitivity. The proofs are similar; we show symmetry only.

To show

triple(vy, e1,v2) Rotriple(vs, e, vs)
=>t7'2'p13((v3, €2, 'UQ)RctTZ.pIe(?}h €1, 'U2)

we use list induction on e;.

Base Case: If e; = 0 then we must have ey = 0, since

(triple(vy, ey, v2), triple(vs, e2,v2))

79

factors through (V x V) x Ry, x (V x V) via A, so by definition of R,
vz = v3 and v; = vy. It follows trivially that

triple(vs, ez, v2) Rotriple(vy, ey, v3)

Inductive Step: Assume that the statement holds for ey, e;. and

suppose that
triple(vy, cons(e, e;), v2)Retriple(vs, cons(e', e3), vg)

Then eRpe' and triple(vy, ey, va)Rotriple(vs, ez, v3). It follows that
e'Rge and triple(vs, ez, v2))Retriple(vy, eq, vg) and hence that the sta-
tement holds for cons(e,e;) and cons(e’, e;).

. Suppose that

(triple(vy, eq,v2), triple(vy, e3,v3)) € C xy C

and that
(triple(v), e}, 03), triple(uh, ch v)) € C xy C
with
triple(vy, e1,va) Rotriple(vy, e}, v5)
and

triple(vy, ez, v3) Rotriple(vh, e, v})
It is then immediate from the definition of Re that
triple(v, u(e1, e2), va) Rotriple(vy, p(el, e3), v3)

So that comp : C/Rc Xyg, C/Rc —> C/Rc in E.

Similarly, e is well defined and then C/Rc :3 V/Ry is clearly a
category, inheriting associativity and unit laws from E.

. Rg C Rc,soE/RE——"—léC/Rc in B, son: G—> Cis agraph
homomorphism in E.

Suppose now that D = (D, ? Dy) is a category object in E and
suppose further that ¢ : G —> D is a graph homomorphism in E.
Then

diogy =¢10d; and dogo¢) =¢y0dg

80

In view of Lemma 5.72, we can assume WLOG that these equations
also hold in E. Then ¢ is a graph homomorphism in E, so there is an
- E-internal functor ¢ with gon = .

=

¢ is trivially a functor in E which satisfies pon = ¢ in E. For
‘uniqueness, suppose that ¢ is a E-functor C —> D with Yon = goy.

Since 1o = idy g, , Yo = o in E.
For the arrow function, we need to show that
z = triple(vy, e1,v2)Retriple(vs, e2,v4) = y = ¢1Rp, ¥1(y)

As usual, we proceed by list induction on e;.

Base Case: e; = 0. Then e; = 0 by the reasoning in (1) above and
(v1,v2) = (v, v4), so the result is immediate.

Inductive Step: Assume that the statement is true for e; and sup-

.pose that
triple(vy, u(m(e), e1),v2) Rotriple(vs, p(m(e’), e2), vs)
Then by the definition of R¢,
eRge' and triple(vy,e;,va)Retriple(vs, eq, vq)
So ¢1(m(e))Rp,¥1(n1(e")) since
Yon=¢don and triple(vy, ey, ve)Retriple(vs e, vq)
So

mp, (¢1(m(e)), b1(triple(vy, e1,v2))) Rp,
mp, (¥1(m(e")), ¥1(triple(vy, e, v4)))

by Lemma 5.81.
It follows that

¢1(triple(vy, u(ni(e), e1), v1))Rp, Y1 (triple(vs, u(ni(e"), e2), ve))

since ¢ and 9 both preserve multiplication.

Hence, ¢ = 4, which completes the proof.

81

0

Corollary 5.83 The full inclusion C —> C preserves free category objects

over graph objects.
Proof Easy consequence of the above proof. a
Theorem 5.84 E has action variants.

3 -
Proof Suppose that G = E/Rg ____; V/Ry is a graph object in E and
81 -—
that (F,w,~') is a graph diagram over G in E.
We have by Lemma 5.72 an E-object W and an arrow i in E such that
' f
V/Ry = W/Aw with the property that if A/Ry4 3 V/Ry commutes in
9

E then i of =iogin E. WLOG, we assume that V = W, Ry = Aw.

.)
Then (F, 7, ~) is also a diagram in E over E "%; V and hence by Lemma
1

dy
5.63 lifts to a category diagram (F,x’,7') in E over C ; V, the free
do

9
category object over F ; V.
F

Since m 0y’ = dg o m; and 7' o (9 Xg, id) = v in E, this is clearly the

- 1
case in E, so (F,7,4') is a diagram over C/R¢ 2 V/Avy, the free cate ory
e 8
. . 0

B -
object over G = E/Rp :3 V/Ry in E and we need only prove uniqueness
&

to complete the proof. As we have chosen V canonically so that Ry = Ag,
this follows since any other internal diagram satisfying the required equality
would also be an internal diagram in E satisfying the same equality. O

Corollary 5.85 The full inclusion C —> C preserves action variants.

Proof Follows immediately from the preservation of free category objects

over graph objects and the above Lemma. O
Corollary 5.86 E has list objects.

Proof Immediate from Lemma 5.62. [m]

82

Chapter 6

Defining the Arithmetic

Universe

We will now attempt to give a definition of “Arithmetic Universe” by analogy
with the properties of E. Recall from the remarks in the introduction that
the construction of ¥ was first undertaken by André Joyal to build a category
which contained a model of itself, so that he could form categorical proofs of
Godel’s results about self-referential mathematical structures. To this end,
he took a simple category (the initial Skolem Theory) and added structure
until he had enough to mimick the external construction of the resultant
category (E‘) internally within that category.

We have seen that E has a number of nice recursive properties, but in
some sense, these were incidental to the construction - as we added the
structure needed to ¥, those properties started to appear. If Arithmetic
Universes are to have more general computational applications, we need to
isolate the properties of E which are most desirable and to present them as
a definition. This may then generate similar structures which are not of the
form E for a Skolem Theory E.

Therefore, let us recall the properties of E:

1. Eis finitely complete;

by

2. E has surjective images, which are stable under pullback;
h

3. E has quotients of equivalence relations;

83

4. E has finite disjoint co-products which are stable under pullback;

o
by

has free monoids;
6. E has list objects;
7. E has free category objects over graph objects;

8. E has action variants.
We will start by briefly reviewing the logical consequences of the above.
Definition 6.1 A categoryC which satisfies 1- above is called a pre-topos.

Definition 6.2 A first order formula is positive if it is built up from atomic
Jormulae using I,A,V, T, L. It does not contain V,= or .

Definition 6.3 A coherent theory is a first order theory definable by azioms
of the form ’
V.. Voo (P(zy,...,2,)2Q(z1,...,2,))

where P and Q are positive.

Coherent theories therefore have an observational nature, in the sense
that the truth of their statements can be determined by a user with a finite
amount of time available to him. They clearly have a relevance to compu-
tational theory. Makkai and Reyes ([MakRey 77]) showed that a pre topos
is a category in which a coherent theory may be interpreted.

It therefore follows that a category with the above properties is one in
which sensible recursive definitions can be formulated using coherent logic.
We would therefore like to define an Arithmetic Universe as a pre-topos
which satisfies 5-8 above. There remains some confusion about an appropri-

ate minimal set of axioms. We state a few simple Lemmas:

Lemma 6.4 Any pre-topos which satisfies (6) also satisfies (5).

Proof This is an immediate consequence of Lemma 2.23. 0
Lemma 6.5 A pre-topos which satisfies (8) also satisfies (7).

Proof By definition. O

84

Lemma 6.6 A pre-topos which satisfies (7) also satisfies (5).

~ Proof Suppose that £ is a pre-topos with free category objects over graph
!

objects. We claim that the free category object over the graph A ; 1is
‘ !

the free monoid over A.

Let M(A) be the object of arrows for the free category. Then M(A) x,
M(A) = M(A) x M(A) and so the composition operator m in the free
category is a map M(A) x M(A) —> M(A) which is associative with unit
e, where e is the unit map for the free category. It follows that (M(A), m,e)
.18 a monoid.

Suppose that (B, mp, eg) is a monoid object in £ and that f : A —> B
is an arrow in £. Then B is the object of arrows for a category with obje'ct of

objects 1. It is easy to see that f is a graph homomorphism from A -9 1

toB 9 1 and that the unique induced internal functor from M(A) to B is

I

the unique required monoid homomorphsxm (M(A),m,e) ——> (B,mp,eB).
: 0

Lemma 6.7 A pre-topos which satisfies (8) also satisfies (6).

Proof Thisis Lemma 5.62. ']
Here are some conjectures of non-implications, all of which are based on

obstacles to proof:
Conjecture 6.8 A pre-topos can satisfy (7) but not (8).

Justification The justification for this remark is founded upon the appar-
ent inability to perform inductive definitions over pullbacks in a recursive

category and is discussed in the proof of Theorem 5.63. - 0
Conjecture 6.9 A pre-topos can satisfy (7) but not (6).

Justification Suppose that a pre-topos £ has free category objects over
graph objects and suppose that we do not have action variants. If £ has list
objects then they coincide with the free monoids and to show the existence
of list objects, we therefore need to show that M(A) as defined in the proof
bf Lemma 6.6 is a list object.

85

As we do not have action variants, the only machinery with which we
can play appears to be the free category objects. Given recursive data
115 0 <2 ax C, we seem therefore to need a way of expressing C as
the object of arrows in a category which has object of objects 1. In other
words, we need to express C' as a monoid object with unit f and a monoid
homomorphism ¢ : M(E) —> C which respects the unit and which satisfies
pomo(nx A) = go(Ax¢). This does not in general appear to be possible.

O
If this conjecture is correct,
Corollary 6.10 A pre-topos can satisfy (5) but not (6).
Proof Immediate from the above. ’ 0

Conjecture 6.11 A pre-topos can satisfy (6) but not (7).

Justification This is again based upon the apparent inability to perform
recursive definitions over pullbacks and is discussed in the proof of Theorem
5.60. (m)

We will see in the next section that we really want to have property (8)
to enable us to construct free Lex Theories. As this implies all of the other
properties in our list, we formulate the following definition:

Definition 6.12 An Arithmetic Universe is any pre-topos which has action

variants.

Of course, if any of the above conjectures prove to be false, we may be

able to replace this with a simpler definition.
Lemma 6.13 Any category of the form E is an Arithmetic Universe.

Note that with our definition for AU'’s, the converse need not hold - for
example, Set is an AU but is not small. Any Arithmetic Universe of the
form F is small.

Definition 6.14 A functor between Arithmetic Universes which preserves
finite left limits, images, quotients, coproducts, list objects, free categories

and action variants is called a morphism of arithmetic universes.

86

Lemma 6.15 There is a bijective correspondence between morphisms of
Skolem Theories and morphisms of Arithmetic Universes of the form E.

It follows from the above definitions that we have a category of Arith-

metic Universes.
Lemma 6.16 £ is the initial A.U., A,

Proof Every AU Acontains the initial Skolem Theory £. By definition it
contains images and quotients of equivalence theories and so it contains an
isomorphic copy of £.]

87

Chapter 7

Theories 1in Arithmetic

Universes

In this chapter we will firstly give a precise definition of the notion of a
mathematical theory and we will consider the models of certain types of
theories (Lex theories) in an arbitary arithmetic universe A. In particular,
we will give part of a proof that finitely presented Lex theories can be freely

constructed within an Arithmetic Universe.

7.1 Theories

Broadly, we will define a theory to be a category and we will define a model
of the theory to be a functor which preserves some of the properties of the
theory. This approach clearly differs from the standard treatment in which
a “theory” is explained in terms of a formal language with rules of deduc-
tion and axioms. Our categorical approach was first suggested by Lawvere,
who considered finitary single-sorted equational theories. The work was ex-
tended to more complex theories by Freyd ([Frey72]), when he discussed es-
sentially algebraic theories. A greater degree of generality still was achieved
by Makkai and Reyes ([MakRey 77]) and later authors, but.we will not draw
' upon their work. Our approach, using sketches from which theories may be
induced, is largely derived from Barr and Wells ([BW 85]).

‘Deﬂnition 7.1 A sketch is a 4-tuple S = (G,U,D,C) where

88

8o
1. G is a graph Gy _..__; Gy,
o,

2. U: Gy —> G, is a function which maps each A € Gy to an arrow
A—> A eGy;

3. D is a class of diagrams in G;

4. C is a class of cones in G.

Definition 7.2 A cartesian sketch or FP-sketch is one in which there are

no arrows between distinct vertices in the base of any element of C.

Definition 7.3 A Lex sketch or LE-sketch is one in which every cone is

over a finite diagram.

Definition 7.4 A sketch morphism § —> &' = (¢, U',D',C") is a graph
homomorphism h: G —> G' such that :

1. hoU=U'oh;
2. Every diagram in D is mapped to a diagram of D';

3. Every cone in C is mapped to a cone in C'.

We will use U to establish the identity arrow in our theory, D to describe
the diagrams which must commute in the theory and C to describe limit
cones; this will be neccessary as the graph G has no notion of a limit.

Definition 7.5 If C is a category then the underlying sketch (G,U,D,C)
of C has the following elements:

1. G is the underlying graph of C;
2. U is the map which picks out the identity arrows of C;
3. D is the class of all commutative diagrams of C;

4. C 1is the class of all limit cones of C.

Definition 7.6 A model for a sketch S in a category C is a sketch morphism
from S to the underlying sketch of C. .

89

Note that a model forces all djagra.rx;s in the sketch to commute and all
of the cones of the sketch to be limit cones.

Lemma 7.7 The models of S in C form a category, Mod(S,C).

Proof Trivial - the morphisms are simply natural transformations (whose
definition does not require composition in the source category). 0O

Definition 7.8 The category of graph morphisms from S to C will be de-
noted CS. '

Lemma 7.9 Let S be a sketch with graph G and let Cat(S) be the category
which is freely generated by G. Then CS is equivalent to Fune(Cat(S),C).

Proof Trivial consequence of the definition of freely generated categories.

a

Barr and Wells ([BW 85]) show how one may use a sketch to generate

a theory for Set models - a cartesian sketch has an associated cartesian

category; models of the theory in Set are finite product-preserving functors

from the theory to Set. An LE-sketch has an associated Lex category as its

theory whose models are the Lex functors into Set. Constructions of the
theories rely upon the following:

Definition 7.10 C is a reflective subcategory of D if the inclusion functor
C —=>.D has a left adjoint.

Theorem 7.11 (Kennison’s Theorem) Let S be a small sketch. Then
Mod(S,Set) is a reflective subcategory of SetS.

Proof [BW 85, pp 146-149]. This proof and that of an extension by Freyd
and Kelly ([FreyKel 72]) rely upon Freyd’s Adjoint Functor Theorem; we
cannot apply this in an arbitary Arithmetic Universe A as we cannot in
general assume that A is complete and co-complete. a

We give two examples to illustrate the use of sketches:

Example - Theory of monoids

To sketch the theory of monoids we will require the following elements:

90

1. Objects 1, M, M? M3. Note that as yet M? is in no way a product -
we have merely adopted suggestive notation for it;

2. Identity arrows are required for the definition of U;

3. Arrows e : 1 —> M and p : M? —> M will be required for the
operations;

4. Projection arrows p;,p; : M2 —> M and ¢1,¢2,93 : M® —> M for

two cones in C with base the discrete diagram all of whose elements
are M,

5. An arrow M —> 1;

6: Arrows ry,ro : M —> M? which will be forced to be e x id and id X e
respectively; recall that we must explicitly assume them as M? is not

a product;
7. 51,82 : M® —> M? which will be forced to be id x x and TS id;
8. 1,13 : M —> M? which will be (id, e) and (e, id) respectively.

The G and U are given by the above. C will contain the cones for the
definition of the arrows p; and ¢; as above and an empty cone over 1. D
will contain the diagrams of definition 2.2 and forcing diagrams to define
1,72, 81, 82,11,1;. For example, the following diagram in D will force r; to
be e x id:

]
M——1
& [(4
M<B M2 P2 5y
Clearly, we can model any algebraic structure with finitary operations

which satisfy universal equiations in this way.

We have described here an FP-sketch. We could equally regard it as
an LE-sketch. It transpires ((BW 85, p. 156]) that every FP-theory has
an extension to an LE-theory whose models in any Lex-category are the
same as those of the FP-theory. The LE-theory of monoids will contain all

the powers and arrows of the FP-theory and all constructions which can

91

be made from those by forming finite limits, Since models of an LE-theory
preserve limits, homomorphisms of models of the LE-theory of monoids in
a fixed Lex category will preserve all constructions which can be made on
the monoids uéing finite limits in the LE-theory of monoids. For example,
homomorphisms of models of the LE-theory of monoids in Set will preserve
tl;e set {(z,y)|ey = yz}, since this is an equaliser diagram in the Lex-theory
of monoids.

As an example of Lex sketching, we have the following:
Lemma 7.12 The theory of Skolem categories is sketchable.

Proof Recall that the Theory of Skolem Categories is the theory of carte-
sian categories with Natural Numbers Objects.
We prove the Lemma in stages:

The theory of categories is sketchable using components A ‘j} O with

o -—-> A and A, —> O where A, is forced to be the pullback of 8; along
o with the obvious diagrams - these actually appear in [Mac 71, p. 49]

The existence of an initial object can be modelled; we need arrows

1 % Oo and O —t-o—T-g A and Eqer —=> A where E will be the equaliser of

ter

A -—-9 1 —> 0O and A ——-—> O and we will require the commutativity of
the following diagrams:

1 —————-—-—->O —>4
]
0 _ﬂg 4 toTer LoTer o
(@ 9o
0

To descrlbe finite products we will need arrows O x 0 —> prog OxAxA
and Ap --—> A to represent the product formation and the generation of
the unique arrow (p,¢) from B, L4 5 B;. We will force Ap to be
thde pullback of 9 along 8. For convenience, we define proj; : Ap —> A
and projs : Ap —> A to be the following concatenations:

92

proji = Ap &1Brd 6 Pl 4w 4
pronEAPMOXO!BgOXAXA—E-}A

We define an object Ep —> A X Ap in & and we force the following to be
a limit diagram:

in Set, E} would be the set of pairs (s, (ry,r;)), where C; <4350,
is a composable pair and 4 —> C; x Cy is an arrow. We then define
Ep —> Ep to be an arrow with the following forced to be a limit diagram:

v

Epc > Ep ¢

In Set,

Ep = {(f,(r1,r2)) : sre(r1) = src(rq) = src(f), tar(f) = tar(r;) x tar(rs)

projio f =ri}

The finite products will now come from the following commuting dia-
grams:

93

1. The source and targets of the projection arrows will be fixed by the
commutativity of this diagram:

0« 0x0—-"_50

o prod a3y

A 0xAxA 54

3 e
N
o
2. The source and target of (p,¢) will be fixed by commutativity of the
following:
 (d0p1,8 ' d "
a4, OromBion o 6 P4 a
j&o comb : LB
0 < A >)0
2 2 !

3. The above will guarantee that 8y o proj; = 8, o comb. We then require
co(projy,comb) = py and co (proja, comb) = py, to force =, o (p1,p2) =
P

4. We require the following diagram to commute, which willo give us the
uniqueness of (p, ¢): . '

EPL-—%AXAplZ—}AP

comb
%

A

To define the Natural Numbers Object, we employ similar techniques to
those used for finite products. The details are omitted. O
We can now prove in outline the following:

94

Theorem 7.13 Every Arithmetic Universe contains an initial Aritmetic
Universe object.

Proof Since an Arithmetic Universe A is a Lex category, there will be
a model from the Lex sketch of the initial Skolem Theory to A which will
be a model of ¥ in A. We can then mimic the construction of b internally.
We will show how this works for the inclusion & —> ¥; the details for the
inclusion £ —> ¥ are similar and we ommit them.

Suppose that S; g So —> S1, S1 X5, 51 25 5, is the model of &
)

in A. Then ¥ has as objects all predicates in X - the object of objects for
T in A is therefore the following equaliser:

Sy x S

Suoc———%sl "-"—Zi—'> Sy

The aﬁows from A to B in ¥ are equivalence classes of the set
{f:N—> N|A< Bof}

this collection is modelled in A as the following equaliser:

S1 X 5:0
(g, m o (my,m3) ' leg
' . .
SlL——>S]XSUXSO -—-—————-QTRUE So

DeﬁnedoES{C-%Slxgox.S‘o-PéSo
d}ESir——?S]XS:OXS-g-—E'}S-O

Then f ~ g iff A < eq(f,g). We represent $; = {(f,g)|f, g have the
same src,tar} by the following pullback:

5 —22 g
P21 (dUJd])

d z < .
S; <0,d1 S()XSU

95

Then the subset R of $; with

(f,9) € Rorsre(f) < eq(f,9)

is the following equaliser:

RS 5 TRUE > So

The arrow class of ¥ in A is then the coequaliser of B >—> §;.
Completion ¥ —> ¥ is similar- we ommit the details.]
Note that the reason we took the exact completion of ¥ was in order

that we might take the co-equaliser of the equivalence relation R >> §; in

the above proof - the exact completion process involves nothing more exotic
than a further use of coequalisers of equivalence relations and so we stopped
the construction process there.

7.2 Internal Categories in A.U.’s

Recall from Lemma 7.12 that the theory of categories is Lex-sketchable. We
already know what a model of the associated theory looks like - we defined
the notion of an internal category object in chapter 3; a homomorphism
between models of the theory is an internal functor. We will now examine
the relationship between internal categories in an Arithmetic Universe and

external categories generated freely by finite graphs.

Theorem 7.14 Suppose that S = (G,U,D,C) is a sketch with finite graph
G. Define Cat(S) to be the category generated by G. Then Cat(S) exists as
an internal category C in an arbitary Arithmetic Universe A in the sense
that ezternal functors Cat(S) —> A are in bijective correspondence with
category actions (F, 7, u) in A.

Proof § is finite. We can write Gy as {g1,...,9,} and G; as {fi,... Jm}
We represent G in A by Go = 1+1+...4+1 (n times)and G; by 1+1+...+1
(m times) with 8¢,8; : G4 2 Gy the obvious projections.

Since Cat(S) is free over G, functors Cat(S) —> A are entirely deter-
mined by their action as graph homomorphisms ¢ —> A, so it will suffice

96

to show that these correpond to internal G-actions - we then obtain our
correspondence by applying the A.U. definition to obtain a unique category
action over Free(G)%LC for each graph action over G.

Suppose that H : G —> A is a graph homomorphism.

Let Fe&fH(g)) + ...+ H(g,).

Define 7 : F —> Gy to be !+!+ ... 4! (n times).

To define an arrow G Xg, F —> F, note that by distributivity and
the finiteness of § that this is a finite sum of terms 1; x H(g;), where the
subscript on the 1 is included to indicate its providence. We therefore need
an arrow for each such term; as there are finitely many of them we can
clearly combine them to give us the desired arrow.

For a term 1; x H(g;), where 1; corresponds to f; : g —> gi, we define
¢ by the following sequence of arrows:

2 H(f; M
1; x H(g;) =2 H(g)) 23 H(gp) 25 F

Then 7 o pu = 4po! = dg o m;. We therefore have that (F,,) is a G-action;
this mapping is clearly bijective so the theorem is proved.]

Lemma 7.15 If Sc and Sp are sketches with finite graphs Gc and Gp and
C and D are the internal representations of Theorem 7.14 for Cat(Sc) and
Cat(Sp) respectively then functors Cat(Sg) —> Cat(Sp) are in bijective
correspondence with internal functors C —> D.

Proof This is trivial. Any functor F : Cat(S¢) —> Cat(Sp) is uniquely
determined by its behaviour as a graph homomorphism Go —> Gp. Sup-
pose that Ob(Gc) = {g1,...,9n}, Ar(Gc) = {f1,..., fin} and that Ob(Gp) =
{94, .0k}, Ar(Gc) = {fl,... foy} with F(g)) = g, and F(fi) = I,
Then F is represented on C by F', where ’

Fo — [2‘310!,.“,?:3“0!] and Fl - [iho!""?itmo!]

It is easy to show that this correspondence is bijective. a

We now draw upon chapter 2 of [John 77].

Lemma 7.16 Let A be any finitely complete category. Let (Fy, w,) be an
internal diagram on an object C of Cat(A). Define Fy to be Cy X¢, F, the
pullback of C, -&B’ Co along F SELEN Co. Then Fy,Fy are the arrow and

97

object classes respectively of an internal category F and n : Fy —> C,,
‘my : Fy —> Cy is an internal functor F —> C.

Proof

Define dg: Fy —> Fy =C) x¢, F 2> F
dy: Fy —> Fy = Cy x¢, F £ ¢
m = (C1 X, F) Xk, (C1 g, F) {omeelercnmop) paon o, Xco F
CEFU MC} XCOFO

It is easy to check that (Fg, Fy,do,dy, m,e) is a category in A and that
(m,m) is an internal functor: that the functor respects the source of F-
arrows is by definition of the pullback C} X ¢, Fy and the definition of x forces
the functor to respect targets. Commutativity of the unit and composition

diagrams is trivial.]
§

Definition 7.17 An object 7 : F —> C of Cat(A)/C is called a discrete
opfibration if the following diagram is a pullback:

d
R—25F
m™ To
do

Ci —> (G

Lemma 7.18 An object F —> C. of Cat(A)/C is isomorphic to one which
has been constructed from an internal diagram over C using the mechanism

of Lemma 7.16 iff it is a discrete opfibration.

Proof Trivial. o
- We can therefore identify up to equivalence IAct(C,.A) with the full
subcategory of Cat(A)/C whose objects are the discrete opfibrations.
The following is [John 77, Lemma 2.19]:

Lemma 7.19 Let C —L> D be o morphism of Cat(A). The puliback func-
tor f* : Cat(A)/D —> Cat(A)/C preserves discrete opfibrations and so
induces a functor f* : IAct(D, A) —> [Act(C, A).

98

In the case where A = Set, this corresponds to the right composition
functor Func(D,A) —> Func(C, A) induced by f. When C, D are free
categories over finite graphs and F' : ¢ —> D is a functor,

F* : Func(D, A) —> Func(C, A)

corresponds to
f*:TAct(D, A) —> I Act(C, A)

which is induced by the internal representation C -——f-> D of Fin A.
The following theorem is [John 77, Theorem 2.34]. Its proof is rather
lengthy and adds nothing to our exposition, so we ommit it.

Theorem 7.20 If A has finite limits and reflexive coequalisers which are
preserved under pullback then the f* which is induced from a morphism
C —L5 D of Cat(A) has a left adjoint f, : TAct(C, A) —> TAct(D, A).

If A is an Arithmetic Universe then it trivially satisfies these precondi-
~tions.

Corollary 7.21 If A is an Arithmetic Universe, C and D are categories
freely generated by finite graphs and F : C —> D is a functor then the in-
duced forgetful functor F* : Func(D, A) —> Func(C, A) has a left adjoint
Fy: Func(C,A) —> Func(D, A).

Proof F corresponds to an internal functor f : C —> D by Lemma 7.15.

This induces an internal functor f* : IAct(D, A) —> I Act(C,C) which has

a left adjoint fi : TAct(C, A) —> I Act(D,.A). This corresponds to a left

adjoint Fy: Func(C, A) —> Func(D, A) to F*. 0o
We now borrow from [BW 85, p. 151].

Lemma 7.22 In the following diagram of categories and functors, suppose
that L 4 J, I is full and faithful, E A F and FoJ is naturally equivalent to
Io Fy. Then EyLoEocIA+F,.

F
Xoé———o———-Yg

99

Proof

Hom(Lo E o Izg,yo) ® Hom(E o Iz, Jyp) & Hom(Izg,F o Jy)
isomHom(Ixzg, I o Foyo) = Hom(zy, Foyo)

]

We now make a conjecture which is énal‘ogous:to Kennison’s Theorem
(7.11): '

Conjecture 7.23 Let S be a finite LE-sketch and let A be an Arithmetic
Universe. Then Mod(S,A) is a reflective subcategory of AS.

A proof of the above has so far eluded me - we want to freely make the
diagrams of S commute and the cones to be limits in 4 for the image of any
graph morphism ¢ —> A. It certainly appears possible - one can see how
to deal with very simple cases. For example, if an element f of AS maps the
graph A «— C —> B which is a cone of S to D €«— E —> F in catA
then the unit 7 of the adjunction ahould send f to the element of M 0d(S, A)
which maps the graph to D «— D x F —> F. However, if this is only
a subgraph of G and A «— C —> B also forms a part of a commuting
diagram in A then the situation is more complicated; we have to define the
image of any subgraph which includes arrows with source or target C and
this may disturb other cones in the graph. However, as the source graph
is finite, I think that the problem may succumb eventually to an inductive
approach which recursively defines 7 at each stage of the induction.

Subject to the truth of the Conjecture, we can prove that A contains

freely generated finitely presented Lex theories, in the following sense:

Corollary 7.24 Suppose that Sy and S, are finite Lex sketches , that f :
81 —> 8, is a skeich morphism and that A is an Arithmetic Universe.
Then the map f* : Mod(S;, A) —> Mod(S,, A) has a left adjoint.

Proof The map f induces an arrow f* : 452 —> A5 which restricts
to a map with the same name from Mod(S;, A) to Mod(S;, A). By the
equivalence of Lemma 7.9, f* : 452 —> A5 can be regarded as an arrow

f* i Func(Cat(S;), A) —> Func(Cat(5;), A)

100

which is induced by the arrow f' : Ca#(S;) —> Cat(S;) which is derived
from f. By Corollary 7.21, f™ has a left adjoint fi. By the equivalence 7.9,
f* has a left adjoint f, : S{ —> S{!. We can therefore draw the following

diagram of categories and functors:
Mod(S,, A) “<f-— Mod(S,, A)

4 4

Ji
St ———9,{__}______ St

where the adjunction between the vertical arrows is that of Conjecture 7.23.
Then by Lemma 7.22, f* has a left adjoint. a

101

Chapter 8
Conclusions

This project was an attempt to find an appropriate definition for an Arith-
metic Universe and to determine the equivalence or non-eqﬂivalence of the
list of definitions which were mentioned in the introduction and then listed
in chapter 6. ‘

After carefully defining the other constructs in the list, we proved that
Joyal’s initial Arithmetic Universe 5 has all of the properties which appear
in the list and demonstrated that by defining an Arithmetic Universe in
general as a pre-topos with action variants we guarantee the presence of
all of the recursive properties which % has. While checking that)5 posesses
these properties we made a number of conjectures which are listed in chapter
6 and which together imply that this definition is the minimal one.

All of our conjectured non-equivalences are based upon the apparent
impossibility of performing a general recursive definition of an arrow ¢ with
the following form in a List- Arithmetic category:

1 >D <% Axp D

PN Ax

C(——g—AXCOC

The difficulties here are discussed in chapter 5 and they all relate to the
problems associated with building in pre-conditions via pullbacks in recur-
sive definitions. Regrettably, we were not able to produce a counter-example
which would prove this difficulty to be insurmountable and this is one of the

102

items which requires further work.

We stated Steve Vicker’s conjecture concerning finitely-generated Lex
Theories in the Introduction and one of the goals of this project was to
- prove it. In chapter 7 we split the work into two parts. We managed to
prove one part by using a theorem which allows us to represent a category C
freely generated by a finite graph in an Arithmetic Universe A in the sense)
that the internal functors between the internal representation and those
of other finitely generated categories and the diagrams over it correspond
exactly to external functors between finitely generated categories and C and
functors C —> A respectively. ’

The proof of the second half is still outstanding, although we conjectured
its truth. In view of the remarks in chapter 7, if the conjecture ¢s true then
it is likely to be because the sketches concerned are finite and not because
A is an Arithmetic Universe. As we stated in chapter 7, all previous work
devoted to similar theories has required the cocompletenss of A so that
Freyd’s Adjoint Functor Theorem can be applied. It seems likely that the
existence of the left adjoint which we seek will have to be demonstrated
constructively and so a different angle of attack will be required.

The other remaining unproved conjecture was the correspondence the-
orem for the semantics of PRIM in a Skolem Theory. Demonstrating this
could perhaps give us a route into a categorical treatment of computability
theory. This would be in line with Joyal’s original approach to the subject,
which was motivated by a desire to prove Godel’s incompleteness theorem
without recourse to the concrete numbering schema which bedevil tradi-
tional recursion theory.

I have not touched here upon the interpretation of programs with WHILE
loops in Arithmetic Universes. [GCW Notes] makes some interesting re-
marks about the interpretability of such programs in the category of partial
arrows of an Arithmetic Universe. It would be interesting to develop a de-
notational sematics for such programs in this context and to prove some
sort of correspondence result. This would give us a deeper understanding
of the categorical issues here and could conceivably connect these categories
to Domain Theoretic work.

In all of the above, the ability to interpret coherent logics in Arithmetic
Universes has largely been ignored. One potential application of all of this

103

in Computer Science has been suggested by Steve Vickers; since AU’s give
us all of the computational power that we need (modulo the proposed se-
mantic work in Part(A)), one could employ them to give the semantics of
a specification language which gave the specifier exactly enough power to
specify coherently and no more.

In summary, I am painfully aware that in conducting this work I have
only scratched the surface of a part of category theory which has the po-
tential to shed light upon some foundational issues and which is also of real
potential value to computer scientists. The above paragraphs give a small
sample of some of the possibilities for further work; I am sure that more will

be uncovered.

104

Bibliography

[BW 85)

[CLW 93]

[Co 90]
[Frey72]
[FreyKel 72]

[FreySce 90]

[Jay 93]

[John 77]

M.Barr, C.Wells Toposes, Triples and Theories, Springer-
Verlag, Berlin 1985

A. Carboni, S. Lack, R.F.C. Walters Introduciion to extensive
and distributive categories J. Pure and Applied Algebra 84
(1993) pp 145-158

J.R.B. Cockett List-Arithmetic Distributive Categories: Locoi
J. Pure and Applied Algebra, 66 (1990) pp 1-29.

P. Freyd Aspects of Topoi Bull. Austral.Math. Soc. 7 (1972)
pp. 1-72

P. Freyd, G.M. Kelly Categories of Continuous Functors J.
Pure and Applied Algebra 2:(1972) pp 169-191

P. Freyd, A. Scedrov Categories, Allegories North Holland

C.B. Jay Tatl recursion through universal invariants Theoret-
ical Computer Science 115 (1993) pp 151-189

P.T. Johnstone Topos Theory Academic Press, New York

[MakRey 77] M.Makkai, G.E. Reyes First-Order Categorical Logic, Springer

[McL 94]

[Mac 71}

LNM 611, Springer-Verlag, Berlin, 1977

C. McLarty Elementary Categories, Elementary Toposes OUP

S. MacLane Categories for the Working Mathematician Spr-
inger Verlag

[GCW Notes] G.C. Wraith A.U. Notes Unpublished notes about Arithmetic

Universes

105

{—\U - = AL

