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Abstract

When one uses a particular logical formalism, one makes an ontological
commitment to being able to interpret the symbols involved. We discuss
this in a case study of geometric logic, being aided by a presentation of the
logic as a sequent calculus. We also discuss the connections of geometric
logic with topology and algebra.
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1 Introduction

In my book “Topology via Logic” [Vic89] I motivated the application of topol-
ogy to computer science by presenting topologies as observational accounts of
(e.g.) computer programs, with open sets representing observable properties
and the axioms of topology reflecting a logic of observations. This developed
ideas of Smyth and Abramsky, and seemed to provide a useful explanation of
how topologies were used in denotational semantics.

The logic involved (geometric logic) is well known in topos theory, and has a
predicate form going somewhat beyond the propositional logic of my book. This
chapter is presented as an ontological examination of the logic, developing the
observational ideas in my book. (To some extent these were already sketched
in [Vic92].)

The title mentions logic, algebra and topology, which together cover vast
parts of mathematics, and indeed geometric logic does have deep and subtle
connections with all those. It should, however, be clear that a short chapter
such as this cannot give a comprehensive survey of the connections between
those parts of mathematics and ontology. Instead, we shall focus on geometric
logic as a case study for an ontological examination, and briefly mention its
connections with those broader fields. The logic brings together topology and
algebra in some rather remarkable ways, and has an inherent continuity.

We shall describe in fair detail the presentation of geometric logic as given in
[Joh02b], and from this technical point of view there is little new. However, we
shall also use that as the basis for a novel ontological discussion, with particular
emphasis on the question What is the ontological commitment of the logic? The
logic in itself avoids certain ontological problems with classical logic, and that
is our primary reason for choosing it as a case study. However, we shall also see
that the mode of presentation in [Joh02b], using sequents rather than sentences,
in itself facilitates the analysis. This is because it makes a clear distinction be-
tween formulae and axioms, and that reflects an ontological distinction between
observations and hypotheses.

Our naive view of ontological questions is that they concern the connection
between symbols and the world. Russell [Rus45, Chap. XVIII, Knowledge
and Perception in Plato] says that for a symbolic formula to exist we must
demonstrate an instance of it in the world. If we say “lions exist, but unicorns
don’t”, then to prove our point with regard to lions, we go to the zoo and
identify something that we can agree is an instance of “lion”. Of course, this
presupposes an understanding of what would constitute such an instance, but
we think the scenario is a plausible one. Another day we instead go looking
for a unicorn and this time our outing is less successful. Despite our seeing a
rhinoceros, a goat with a horn missing, a plastic toy unicorn and a royal coat
of arms, none of these seems truly satisfactory and we return home still not
knowing whether unicorns exist. Nonetheless, we can agree it was still worth
trying.

This ontological connection between symbols and world is clearly not in itself
part of formal logic. Nonetheless, we shall argue informally how formal features
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of the logic can make it easier to analyse the informal connection.
Our main thesis has two parts.
First, we shall be arguing that a formal logic (with connectives and rules

of inference) carries a certain ontological commitment to how it could be inter-
preted “in the real world”. Classical first-order logic uses various symbols that
on the face of it have a straightforward relationship with concepts of everyday
life: ∧ (conjunction) means “and”, ∨ (disjunction) means “or”, ¬ (negation)
means “not”, → (implication) means “implies”, ∀ (universal quantification)
means “for all” and ∃ (existential quantification) means “for some”.However,
we shall argue that the way classical logic deals with these adds up to a very
strong ontological commitment that could be problematic in reality. Specifi-
cally, negation (¬), implication (→) and universal quantification (∀) cannot be
expected to have a uniform interpretation on the same level as conjunction (∧)
and disjunction (∨). This suggests a need to consider other less standard logics
to describe “the real world”.

In fact, even in formal mathematics this need can make itself felt. The strong
ontological commitment of classical logic can be sustained in formal mathemat-
ics (in particular, in set theory), but only because that ontological commitment
is already built in to the way set theory is formalized. In other settings it may
cause problems. One example we shall briefly mention later (Section 6.1) is
sheaves over a topological space X. The geometric logic that we shall describe
was invented to be used with sheaves, and indeed for more general contexts
known as toposes. That background is not needed here, but it means there is
a well established mathematical setting in which geometric logic can be inter-
preted.

The second part of our thesis is that it is fruitful to examine the ontological
commitment of geometric logic, and explore how it might be interpreted in “the
real world”. We do not claim that it is the right logic to use, but it avoids the
more immediate problems of classical logic.

2 Ingredients of logic

We first review the ingredients of logic. We shall adopt a sequent approach,
specifically that set out in [Joh02b]. Technically, this is all well established
(apart from some of the notation); what is new is the ontological discussion.
We include enough in this Section to show how the sequent approach facilitates
a more careful ontological analysis. In Section 3 we shall discuss in more detail
geometric logic and an ontology for it.

A many-sorted, first-order signature has a set of sorts, a set of predicate
symbols, and a set of function symbols. Each predicate or function symbol has
an arity stipulating the number and sorts of its arguments, and (for a function)
the sort of its result. A predicate symbol with no arguments is propositional,
while a function with no arguments is a constant. We shall express the arities
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of predicates and functions thus:

P ⊆ A1, ..., An (for a predicate)
P ⊆ 1 (for a proposition)
f : A1, ..., An → B (for a function)
c : B (for a constant)

These symbols in the signature are extra-logical – outside the logic. They
are meaningless until interpreted. Since the nature of the interpretation will be
very important in our ontological discussion, we shall introduce a non-standard
notation that makes the interpretation quite explicit. Suppose we have an in-
terpretation that we call M . Mathematically, M must interpret each sort A as
a set, the carrier for A, which we shall write as {M |A}.

Note that we do not presume that {M |A} has any elements. The normal ac-
count of classical logic requires each carrier to be non-empty, but this is actually
a big ontological commitment.

A function symbol f : A1, ..., An → B is used to construct terms of sort
B by applying f to n arguments of sorts A1, . . . , An. In M , therefore, the
interpretation of f should tell us how, if we are given arguments in the form of
values ai ∈ {M |Ai}, there is then a corresponding result f(a1, . . . , an) ∈ {M |B}.
Hence f is interpreted as a function from the cartesian product

∏n
i=1{M |Ai} to

{M |B}. To simplify notation we shall write {M |A1, . . . , An} for that cartesian
product, and to simplify it further we shall often use vector notation {M | ~A}.
Then the vector (a1, . . . , an) = ~a ∈ {M | ~A} and the interpretation of f is as a
function

{M |f} : {M | ~A} → {M |B}.

A constant c : B is a function in the special case of having no arguments and
so is interpreted as an element

{M |c} ∈ {M |B}.

For a predicate P ⊆ A1, ..., An, the interpretation needs to say for which
argument tuples ~a ∈ ~A the predicate P (a1, . . . , an) is true. Hence it is equivalent
to specifying a subset of the set of all tuples (of the right sorts):

{M |P} ⊆ {M | ~A}.

Just as with constants, a proposition P ⊆ 1 is a predicate in the special
case of having no arguments. This is, as one would expect, interpreted as a
truth value. However, we can also see this as a special case of predicates with
arguments. If the vector ~A is empty – its length is zero – then for {M | ~A} we are
looking for the “cartesian product of no sets”. The most natural interpretation
of this is the 1-element set whose only element is the empty (zero length) vector
ε (say). A subset {M |P} ⊆ {ε} is determined solely by the truth value of
ε ∈ {M |P}. If the truth value is true then {M |P} = {ε}, while if the truth
value is false then {M |P} = ∅. Any one-element set will do for this purpose,
which is why we write P ⊆ 1 to say that P is a propositional symbol.
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Once the signature is given, terms can be built up in the usual way. A term
will usually contain variables, and if ~x is a list of distinct variables xi, each
with a stipulated sort σ(xi), then we say that a term t is in context ~x if all its
variables are amongst the xis. We also say that (~x.t) is a term in context.

• Each variable x is a term of sort σ(x).

• Suppose f : A1, ..., An → B is a function symbol in the signature, and for
each i (1 ≤ i ≤ n), ti is a term in context ~x of sort Ai. Then f(t1, . . . tn)(or
f(~t)) is a term in context ~x of sort B.

If an interpretation M is given for the signature, then it extends to all terms.
Consider a term in context (~x.t) of sort σ(t). If values ~a ∈ {M |σ(~x)} are given,
then they can be substituted for the variables ~x and then the whole expression
can be evaluated in an obvious way to get an element of {M |σ(t)}. Thus the
term in context is interpreted as a function

{M |~x.t} : {M |σ(~x)} → {M |σ(t)}.

More systematically, we can say how to evaluate this using the structure of t.
The simplest case is when t is just one of the variables, say xi. Then the

function is the projection function

{M |~x.xi}(~a) = ai.

Note something important here. The context has variables that are not used in
the term, but they still influence the way the term is interpreted. We cannot
define the interpretation of the term xi without also knowing what context ~x it
is taken to be in.

Now suppose we have a term of the form f(~t) where each ti is a term in
context ~x. Once we have calculated {M |~x.ti}(~a) for these subterms, then we
can say

{M |~x.f(~t)}(~a) = {M |f}({M |~x.t1}(~a), . . . , {M |~x.tn}(~a)).

In the special case where the context ~x is empty (so the term is closed – it has
no variables), we use exactly the same procedure but bearing in mind that the
vector ~a is empty (ε). This gives us a function from {ε} to {M |σ(t)}, which is
equivalent to picking out an element {M |ε.f(~t)} ∈ {M |σ(f(~t))}.

Next we look at formulae in context. We start by describing all the ways that
formulae can be constructed in classical first-order predicate logic. However,
we shall later retreat from this in the face of problems that are essentially
ontological in nature, problems of what kind of interpretations are envisaged.
The standard account does not meet these problems. The reason is that it
takes its interpretation in the formal set theory of mathematics, and that formal
theory already presupposes the ontological commitment of classical logic.

• > (true) and ⊥ (false) are formulae in any context.
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• Suppose P ⊆ A1, ..., An is a predicate in the signature, and for each i
(1 ≤ i ≤ n), ti is a term in context ~x of sort Ai. Then P (t1, . . . tn) is a
formula in context ~x.

• If s and t are terms in context ~x, and their sorts σ(s) and σ(t) are the
same, then s = t is a formula in context ~x. (We make equality an explicit
part of the logic, rather than relying on its introduction as a predicate in
the signature.)

• If φ and ψ are formulae in context ~x, then so too are φ ∧ ψ (φ and ψ),
φ ∨ ψ (or), φ→ ψ (implies) and others to taste.

• If φ is a formula in context ~x, then so is ¬φ.

• If φ is a formula in context ~xy, then (∃y)φ and (∀y)φ are formulae in
context ~x.

Note that it is the free variables of a formula that appear in its context – the
bound variables do not. However, it is possible for a context to include variables
that are not used in the formula. For example, > and ⊥ have no free variables
but can be considered in any context.

Just as with terms, the interpretation {M |~x.φ} of a formula in context
depends on the context, not just the formula. {M |~x.φ} will be a subset of
{M |σ(~x)} =

∏n
i=1{M |σ(xi)}. This allows us to discuss the interpretation of

formulae in a more discerning way than if we just took the free variables of a
formula to be its context (which is what the standard account in effect does).

The interpretation of formulae in context can now be defined from their
structure. Here are the rules. We take ~a ∈ {M |σ(~x)}, in other words ~a is a list
with each ai in {M |σ(xi)}.
{M |~x.>} = {M |σ(~x)}, {M |~x.⊥} = ∅. (Note how the interpretation depends

on the context.)
~a ∈ {M |~x.s = t} if {M |~x.s}(~a) = {M |~x.t}(~a) as elements of {M |σ(s)}.
~a ∈ {M |~x.φ ∧ ψ} if ~a ∈ {M |~x.φ} and ~a ∈ {M |~x.ψ}.
~a ∈ {M |~x.φ ∨ ψ} if ~a ∈ {M |~x.φ} or ~a ∈ {M |~x.ψ}.
~a ∈ {M |~x.¬φ} if ~a /∈ {M |~x.φ}.
~a ∈ {M |~x.φ→ ψ} if ~a /∈ {M |~x.φ} or ~a ∈ {M |~x.ψ}. (This conforms with the

logical equivalence (φ→ ψ) ≡ (¬φ ∨ ψ).)
~a ∈ {M |~x.(∃y)φ} if there is some b ∈ {M |σ(y)} such that ~ab ∈ {M |~xy.φ}.
~a ∈ {M |~x.(∀y)φ} if for every b ∈ {M |σ(y)} we have ~ab ∈ {M |~xy.φ}.
In essence, this is the Tarskian definition of semantics: ∧ is “and”, ∨ is “or”,

etc.

2.1 Interpretations and ontology

If ontology is the discussion of being, or existence, then our position is that inter-
pretations are the basis of this discussion. It is the interpretation that provides
the instances of formulae. As we have stated it, these instances are elements
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of sets, and at first we understand those as mathematical constructs in formal
set theory. However, for any kind of philosophical or applicational discussion
we shall want to be able to conceive of M as the “real-world interpretation” of
the signature, with each {M |~x.φ} a collection of real-world things. Though this
connection is informal, we shall later look at how this ambition might affect the
formal logic.

The use of particular connectives represents an ontological commitment that
those connectives should have meaning in the setting where we find our inter-
pretations. To see how this could be a problem, let us examine negation. In the
example of “there is a lion”, we went to the zoo, saw a lion, and believed. But
what about its negation, “there is no lion”? How do we ascertain the truth of
that? Certainly it is not enough to visit the zoo and fail to see a lion. Maybe
there are lions at the zoo, but they all happen to be asleep in a private part of
the cage, or we looked in the sealion pool by mistake. Or maybe there are no
lions at the zoo, but there are some on the African savannah. We know how
to recognize lions, and we know how to ascertain their existence by seeing one.
But that does not tell us at all how to ascertain their non-existence. In other
words, there is no uniform ontological account of negation.

Implication is even worse than negation, since negation is a special case of
it – ¬φ is equivalent to φ→ ⊥.

Similarly, there is no uniform ontological account of universal quantification.
We might know how to recognize brownness in lions, but that would not tell us
how to ascertain the truth of “all lions are brown”.

We shall admit only those formulae that use the connectives to which we
are prepared to make the ontological commitment in the interpretations we are
considering. For those connectives, we shall take it that the rules given above
for determining {M |~x.φ} still make sense, so {M |~x.φ} is well defined as a “set”
in what ever interpretational sense it is that we have in mind.

2.2 Theories and models

If Σ is a signature, it is usual to define a theory over Σ to be a set of sentences
over Σ, where a sentence is a formula in the empty context. However, we have
now envisaged making an ontological restriction to the admissible formulae, and
that may rule out implication and negation. It is hardly possible to conduct
logic without them, since they lie at the heart of the notion of logical deduction.
We shall give a slightly different definition of “theory” that allows for this. This
sequent form of logic is well known. We shall follow closely the presentation in
[Joh02b].

Definition 1 A sequent over Σ is an expression φ `~x ψ where φ and ψ are
formulae (with whatever connectives we are using) in context ~x.

This can be read as meaning the sentence (∀x1 · · · ∀xn)(φ→ ψ), but in logics
without → and ∀ this will not be a formula.
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Definition 2 A theory over Σ is a set T of sequents over Σ, called the axioms
of T . An interpretation M satisfies the sequent φ `~x ψ if {M |~x.φ} ⊆ {M |~x.ψ},
and it is a model of a theory T if it satisfies every axiom in T .

As part of the logic, we shall need to say not only what are the admissible
connectives but also what are the rules of inference. Each will be presented in
the form of a schema

α1 · · · αn
β

where each αi (a premiss) and β (the conclusion) is a sequent. We shall not list
rules yet, but typical would be the cut rule

φ `~x ψ ψ `~x χ
φ `~x χ

The soundness of a rule is then that if an interpretation satisfies all the premisses
it must also satisfy the conclusion. This would normally have to be justified in
terms of the ontological explanation of the connectives. For the cut rule it
would usually be plain that if {M |~x.φ} ⊆ {M |~x.ψ} and {M |~x.ψ} ⊆ {M |~x.χ}
then {M |~x.φ} ⊆ {M |~x.χ}.

Using the rules of inference, one can infer, or derive, many more sequents
from the axioms of a theory. If the rules are all sound, then a model of a theory
also satisfies all the sequents derived from the axioms.

Note that the sequent formulation (and in particular the explicit context
on the turnstile) makes it easier to deal correctly with empty carriers. As an
example, consider the two valid entailments (∀y)φ `x φ[x/y] and φ[x/y] `x
(∃y)φ. Applying the cut rule to these we obtain (∀y)φ `x (∃y)φ. Even if σ(x)
has an empty carrier this is valid, since then {M |x} is the empty set and so
are both {M |x.(∀y)φ} and {M |x.(∃y)φ}. However, the rules do not allow us to
deduce (∀y)φ ` (∃y)φ (with empty context), and it would not be valid with the
empty carrier because we would have {M |ε.(∀y)φ} = 1 but {M |ε.(∃y)φ} = ∅.

Unlike the case with formulae, with axioms we make no ontological com-
mitment to being able to ascertain that an interpretation satisfies even a single
sequent, let alone a possibly infinite set of them in a theory. There is thus a
definite ontological distinction between formulae and sequents. We should un-
derstand theories as being like scientific hypotheses or background assumptions.
In fact there is a Popperian flavour to theories.

Suppose we have a theory T and an interpretation M . Suppose also we find
some elements in M and ascertain for them some properties from the signature
of T . This amounts to finding an element of {M |~x.φ} for some formula in
context (~x.φ). The ontological commitment is that we know what is required
for our claim to have found such elements. Now suppose also that from the
axioms of T we can, using the inference rules, logically deduce the sequent
φ `~x ⊥. It should follow that {M |~x.φ} ⊆ {M |~x.⊥}. But this is nonsense, since
{M |~x.⊥} is by definition empty but we have found an element of {M |~x.φ}. Thus
the interpretation M cannot possibly be a model of T . If M is a “real world”
interpretation, then we cannot simply reject it. Possibly we made a mistake
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in the way we interpreted φ. But if not, then we were mistaken in thinking
the axioms of T would apply in the real world. Our observations have led to a
Popperian Big No to our theory T .

Note that this process can be carried through only if a sequent φ `~x ⊥ can
be derived from the theory T , with φ not logically equivalent to ⊥. In other
words, T must be falsifiable. In the example of geometric logic, to which we
turn next, this can happen only if T has explicit axioms of the form φ `~x ⊥.

3 Geometric logic

We now turn to geometric logic, a positive logic that rejects negation (and also
implication and universal quantification) in its formulae. Its ontological com-
mitment is to conjunction, disjunction, equality and existential quantification.
Note that we are not claiming it as the absolute irreducible logic. We just say
that, because of problems with negation and universal quantification, geomet-
ric logic is more likely to be applicable in “real world interpretations”. It still
carries ontological commitments of its own. For example, consider conjunction.
We said that, if φ and ψ are formulae in context ~x, then to ascertain that ~a is
in φ ∧ ψ we have to ascertain that ~a is in φ and ~a is in ψ. This makes assump-
tions about our ability to form tuples of things. The logic also presupposes that
the two tasks, ascertaining that ~a is in φ and ascertaining that ~a is in ψ, do
not interfere with each other and can be done in either order. Also, our use of
equality means that we expect to be able to ascertain equality between things,
but not necessarily inequality. This says something about the kind of things we
are prepared to talk about.

The connectives of geometric logic are >, ⊥, ∧, ∨, = and ∃. However, note
one peculiarity: we allow infinitary disjunctions

∨
. If S is a set of formu-

lae, then
∨
S is also a formula, the disjunction of all the elements of S, and

{M |~x.
∨
S} is defined in the obvious way. This does lead to subtle ontological

questions of its own, since we should examine the nature of the set S and how
its members are found. Is S also intended to be a “real-world” collection? If
it is purely a mathematical construct, what mathematics are we using? Once
we start thinking about different logics, it raises the question of what logic to
use for mathematics itself. We shall largely ignore these questions here, except
(Section 5) to say some brief hints about a fascinating connection between the
infinitary disjunctions and algebra.

We shall first present the formal logic, still following [Joh02b], and then
(Section 3.4) discuss its ontology.

3.1 Rules of inference

The rules of inference for geometric logic as given here are taken from [Joh02b].
The first group are propositional, in the sense that they have no essential inter-
action with the terms or variables. The propositional rules are identity

φ `~x φ,
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cut
φ `~x ψ ψ `~x χ

φ `~x χ
,

the conjunction rules

φ `~x >, φ ∧ ψ `~x φ, φ ∧ ψ `~x ψ,
φ `~x ψ φ `~x χ
φ `~x ψ ∧ χ

,

the disjunction rules

φ `~x
∨
S (φ ∈ S),

φ `~x ψ (all φ ∈ S)∨
S `~x ψ

and frame distributivity

φ ∧
∨
S `~x

∨
{φ ∧ ψ | ψ ∈ S}.

Note that
∨
∅ plays the role of ⊥ (false). To find an element of {M |~x.

∨
∅}

we must find a formula φ in ∅ and then find an element of {M |~x.φ}. But clearly
there can be no such φ, so {M |~x.

∨
∅} is empty. From the general disjunction

rules we can then derive the rule of ex falso quodlibet,

⊥ `~x ψ

for any ψ in context ~x.
Next come the rules specific to predicate logic. These involve terms and

variables.
For the first rule, substitution, we use the following notation. Suppose φ is a

formula in context ~x, and ~s is a vector of terms in another context ~y such that
the vector ~s has the same length and sorts as ~x – we can write σ(~s) = σ(~x).
Then φ[~s/~x] is φ with ~s substituted for ~x – the variables in ~x are all replaced by
the corresponding terms in ~s. Some notes:

• Since the terms si may have their own free variables, taken from ~y, φ[~s/~x]
is in the context ~y instead of ~x.

• There is no particular problem if ~x and ~y have variables in common. For
example, suppose φ is the formula (in context x) g(x) = a and s is the
term f(x) where f : σ(x)→ σ(x). We can substitute f(x) for x,

(g(x) = a)[f(x)/x] ≡ (g(f(x)) = a).

• There can be a problem of “capture of variables” if one of the context
variables in ~y is also used as a bound (quantified) variable in φ. To avoid
this, the bound variables should be renamed to be distinct from the context
variables.
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The substitution rule is

φ `~x ψ
φ[~s/~x] `~y ψ[~s/~x]

The next rules are: the equality rules

> `x x = x, (~x = ~y) ∧ φ `~z φ[~y/~x]

In the second ~z has to include all the variables in ~x and ~y, as well as those free
in φ, and the variables in ~x have to be distinct. Our substitution φ[~y/~x] is not
quite in accordance with the definition, since ~x is not the whole of the context.
However, we can easily replace it by a licit substitution φ[~t/~z] where ~t is defined
as follows. If zi is xj for some j, then ti is defined to be yj . Otherwise, ti is
defined to be zi.

The substitution rule justifies context weakening

φ `~x ψ
φ `~x,y ψ

.

In other words, a deduction in one context will still be valid if we add extra
variables, though not if we remove unused variables (which is what would be
done for a deduction of (∀x) φ(x) ` (∃x) φ(x)). Note that φ here (and ψ
likewise) is in two separate contexts: ~xy and ~x. We shall consider it given as in
context ~x. Then since ~x can be considered to be a vector of terms in context
~xy, we can get φ in the extended context as (~xy.φ[~x/~x]).

The existential rules are

φ `~x,y ψ
(∃y)φ `~x ψ

,
(∃y)φ `~x ψ
φ `~x,y ψ

.

The Frobenius rule is

φ ∧ (∃y)ψ `~x (∃y)(φ ∧ ψ).

3.2 Soundness

In a mathematical semantics, the soundness of most of the rules can be readily
justified from the semantics of connectives given above. For example, for the
final conjunctive rule one has that if {M |~x.φ} ⊆ {M |~x.ψ} and {M |~x.φ} ⊆
{M |~x.χ} then

{M |~x.φ} ⊆ {M |~x.ψ} ∩ {M |~x.χ} = {M |~x.ψ ∧ χ}

from the definition of {M |~x.ψ∧χ}. (In more general semantics we shall see how
the rules have subtle consequences for the ontological commitment.)

However, where substitution is involved we have to be more careful. The
semantics of a formula is defined in terms of how that formula is structured
using the connectives. When a formula is described using a substitution, as in
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φ[~s/~x], that substitution is not part of the connective structure of the formula
and so we do not have a direct definition of the “semantics of substitution”.
It is nevertheless possible to describe the semantic effect of substitution, but it
has to be proved as a Substitution Lemma. The Substitution Lemma in effect
analyses how substitution interacts with the different connectives.

Recall that each term in context (~y.si) gets interpreted as a function {M |~y.si} :
{M |σ(~y)} → {M |σ(si)}. Putting these together, we get

{M |~y.~s} : {M |σ(~y)} →
∏

i
{M |σ(si)} = {M |σ(~s)} = {M |σ(~x)}

defined by {M |~y.~s}(~a) = ({M |~y.s1}(~a), . . . , {M |~y.sn}(~a)).

Lemma 3 (Substitution Lemma) Let ~x and ~y be contexts, and let ~s be a
vector of terms in context ~y with σ(~s) = σ(~x).

1. If ~t is a vector of terms in context ~x then {M |~y.~t[~s/~x]} is the composite

{M |~x.~t} ◦ {M |~y.~s} : {M |σ(~y)} → {M |σ(~s)} = {M |σ(~x)} → {M |σ(~t)}.

2. If φ is a formula in context ~x, then {M |~y.φ[~s/~x]} is the inverse image
under {M |~y.~s} of {M |~x.φ}, in other words if ~a ∈ {M |σ(~y)} then

~a ∈ {M |~y.φ[~s/~x]} iff {M |~y.~s}(~a) ∈ {M |~y.φ}.

Proof. Induction on the structure of t or φ.
This Lemma is needed for the soundness of the substitution and equality

rules. As an illustration of how it is used, consider the substitution rule

φ `~x ψ
φ[~s/~x] `~y ψ[~s/~x]

If {M |~x.φ} ⊆ {M |~x.ψ} then

~a ∈ {M |~y.φ[~s/~x]} ⇔ {M |~y.~s}(~a) ∈ {M |~y.φ}
⇒ {M |~y.~s}(~a) ∈ {M |~y.ψ} ⇔ ~a ∈ {M |~y.φ[~s/~x]}.

One of the more interesting rules here is the second equality rule,

(~x = ~y) ∧ φ `~z φ[~y/~x].

Recall that ~x here is a sequence of distinct variables from the context ~z, and ~y is
a sequence of variables from ~z, not necessarily distinct, that is sort-compatible
with ~x. Actually, we might as well assume that ~x is the whole of ~z, since
by reflexivity we can add extra equations, for the variables of ~z that are not
in ~x, to say that they are equal to themselves. We are therefore justifying
(~x = ~y)∧φ `~x φ[~y/~x] where each yi is a variable xα(i), say. Now an element ~a ∈
{M |~x.(~x = ~y)∧ φ} is an element ~a ∈ {M |~x.φ} such that for each possible index
i of the sequence ~x, we have ai = aα(i). Now consider {M |~x.φ[~y/~x]}. Since each
yi is a term in context ~x we have a substitution function {M |~x.~y} : {M |σ(~x)} →
{M |σ(~x)} mapping~b to ~c, defined by ci = bα(i). By the Substitution Lemma, we
have ~b ∈ {M |~x.φ[~y/~x]} if ~c ∈ {M |~x.φ}. Now given our ~a as above, we can take
~b = ~c = ~a and the required conditions are satisfied. Hence ~a ∈ {M |~x.φ[~y/~x]}.
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3.3 Beyond rules of inference

Each inference rule operates within a single signature, and this imposes a limit
on what can be expressed with them. There are more subtle intensions regarding
the way different signatures relate to each other. Our main example of this for
the moment is the property for mathematical sets that a function is equivalent
to a total, single-valued relation – its graph. To express this in logical terms,
suppose (~xy.Γ) is a formula in context that is total and single-valued. In other
words, it satisfies the properties

> `~x (∃y)Γ

Γ ∧ Γ[y′/y] `~xyy
′
y = y′.

Then in any model there is a unique function f : σ(~x) → σ(y) such that Γ
holds iff y = f(~x). This principle is not a consequence of the rules of geometric
logic. Indeed, there are mathematical systems (geometric categories [Joh02a]
that happen not to be toposes) in which the rules are all sound, but the principle
does not hold. Nonetheless, the principle does hold in those systems (toposes)
in which geometric logic was first identified, and we take it to be an implicit part
of geometric logic. In other words, geometric logic is not just logic (connectives
and inference rules). We shall not try to give a complete account of these non-
logical principles, though we shall meet some more later.

These principles carry their own ontological commitments. In the above
example, the interpretation of a function symbol must be the same an that of a
total, single-valued predicate.

3.4 Geometric ontology

We now examine, as carefully as we can, the ontological commitments implicit
in geometric logic.

The ontological commitment of the connectives as such does not seem deep.
Their interpretation as given above is more or less that of Tarski: ∧ is “and”, ∨
is “or”, ∃ is “there exists”, etc. But note that the logic does expect something
of the “sets” used as carriers. Clearly we must know something about how to
find elements of them – how to apprehend elements, to use the word of [Vic92].
To form cartesian products {M | ~A}, we must also know how to form tuples of
elements. This is perhaps not so obvious as it seems. How do you apprehend a
tuple of lions? Is it just a bunch of lions? But that would not allow a tuple with
the same lion in more than one component (e.g. 〈Elsa, Lenny, Elsa, Parsley〉),
which is certainly allowed by the logic. (Otherwise the equality relation is
empty.) So clearly the components of the tuple are more like pointers, “that
lion over there, Elsa”. And is it properly understood how the interpretation
works with observations made at different times? Next, because = (though not
6=) is built in to the logic, we must know something about how to ascertain
equality between a pair of apprehended elements.

Let us suppose – in some interpretation M – we know how to apprehend
elements and ascertain equality for each sort. (The discussion is not quite
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finished yet, because we need to examine what properties these ingredients have.
We shall return to it later.) Let us suppose we also know how to form tuples.
Equality between tuples will be ascertained componentwise. This will then tell
us about the sets {M | ~A} for each sort tuple ~A. For a predicate P ⊆ ~A, the
interpretation {M |P} ⊆ {M | ~A} must tell us what it takes to ascertain P (~a) for
~a ∈ {M | ~A}. This then lifts to formulae in context (~x.φ).

Note that there may be different ways of ascertaining φ(~a) for the same ~a,
hence different manifestations of the same element of {M |~x.φ}. What is impor-
tant is that equality between them is determined by equality for the underlying
~a. An illuminating example is when φ is of the form (∃y)ψ. To ascertain that ~a
is in {M |~x.φ}, one must actually apprehend an element ~ab of {M |~xy.ψ}. Hence
apprehending an element of {M |~x.φ} is exactly the same as apprehending an
element of {M |~xy.ψ}. But ascertaining equality between them is different, since
in the former case the y component is ignored.

Now there is a rather fundamental question about the meaning of a sequent
φ `~x ψ. We have already explained it as meaning {M |~x.φ} ⊆ {M |~x.ψ}. But
what does this mean in terms of apprehension? Suppose an element ~a is appre-
hended in {M |~x.φ}. What does it mean to say it is also in {M |~x.ψ}? To put
it another way, is it possible to apprehend some ~b in {M |~x.ψ} such that ~b and
~a are equal as elements of {M |σ(~x)}? Three possible interpretations spring to
mind.

1. “Already done”: Whatever it took to apprehend ~a as an element of
{M |~x.φ}, that is already enough to apprehend a suitable ~b.

2. “Nearly done”: A well defined program of extra work will yield a suitable
~b given ~a.

3. “Can be done”: There is some suitable ~b, though we don’t necessarily
know how to find it.

The “already done” interpretation would be extremely strong, since it means
that validity of sequents follows directly from knowing how formulae are inter-
preted. This is clearly incompatible with the idea mentioned above that theory
axioms represent background assumptions, or scientific hypotheses.

The “nearly done” interpretation is less strong, since some ingenuity might
be required to find the “well defined program of extra work”. In fact, this inter-
pretation is roughly speaking the standard one for intuitionistic logic. There one
thinks of the elements of {M |~x.φ} as the proofs of φ. A proof of (∀~x)(φ → ψ)
(and so of the sequent φ `~x ψ) is an algorithm that takes a tuple ~a and a proof
of φ(~a) (in other words, an element of {M |~x.φ} for some M) and returns a proof
of ψ(~a). Nonetheless, it is hard to see this as compatible with the idea of axioms
as scientific hypotheses.

We shall follow the “can be done” interpretation.
Note that this makes the cut rule,

φ `~x ψ ψ `~x χ
φ `~x χ

,
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more subtle than it looks. Suppose we believe the sequents φ `~x ψ and ψ `~x χ
for an interpretation M , and we want to justify φ `~x χ. Suppose we have ~a in
{M |~x.φ}. The first sequent tells us that there is, somewhere out there waiting
to be found, a ~b in {M |~x.ψ} equal to ~a as elements of {M |~x.ψ}. However, it
does not tell us how to find it. The second sequent tells us that when we do find
it, we can then believe there is a ~c in {M |~x.χ} equal to ~b. The cut rule asserts
that we do not have to go to the trouble of finding ~b. Our belief that it is there,
and one day might be found, is already enough to justify us in believing in ~c.
Hence we justify the sequent φ `~x χ.

We can put this another way. Our explanation of the “can be done” inter-
pretation of a sequent φ `~x ψ, was that if we have an element of {M |~x.φ}, then
there is (out there somewhere) an equal element of {M |~x.ψ}. The cut rule uses
the idea that we can equivalently weaken on the left hand side, and start from
there is an element of {M |~x.φ}.

For geometric logic, “can be done” governs how we interpret function sym-
bols. Recall that a function f : ~A→ B is expected to be logically equivalent to
its graph, a predicate Γf ⊆ ~A,B (or, more generally, a formula in context) that
is total and single-valued:

> `~x (∃y)Γf (~x, y)

Γf (~x, y) ∧ Γf (~x, y′) `~x,y,y
′
y = y′.

These sequents too are given a “can be done” interpretation. Think of the graph
Γf as being a specification of the function. Given arguments ~a and a candidate
result b, Γf provides a way for ascertaining whether b is indeed the result for
f(~a), but it does not in any way tell us how to find b. (That would in fact be a
“nearly done” interpretation.) The totality axiom tells us (or hypothesizes) that
there is such a b waiting to be found, and single-valuedness says that any two
such bs are equal. It follows that when we talk about a “function” between “real
world sets”, we must not in general expect this to be a method or algorithm.

This style of interpretation can actually be internalized in the logic by elim-
inating function symbols in favour of predicates for their graphs (together with
axioms for totality and single-valuedness). Suppose we have a graph predicate
Γf for each function symbol f , characterized by

Γf (~x, y) a`~xy y = f(~x).

Then we can define a graph formula in context (~x~y.Γ~t) for each term tuple in
context (~x.~t), where σ(~y) = σ(~t). For a single term t, if t is a variable xi then
Γt is just the formula y = xi. If t is f(~s), suppose we have defined Γ~s in context
~x~z. Then we can define Γf(~s) in context ~xy as (∃~z)(Γ~s ∧ Γf (~z, y)). Once that is
done, formulae can be replaced by alternatives without function symbols. For
example, P (~t) can be replaced by (∃~y)(Γ~t ∧ P (~y)).

If we look at the inference rules, we find that some of them are obvious, but
some have hidden subtleties. We have already mention the cut rule.

The next interesting ones are the conjunction rules. Examining conjunction
itself in more detail, to apprehend an element of {M |~x.φ∧ψ}, we must apprehend
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elements ~a and~b of {M |~x.φ} and {M |~x.ψ} and then ascertain that they are equal
as elements of {M |σ(~x)}. Now consider the rule

φ `~x ψ φ `~x χ
φ `~x ψ ∧ χ

.

For the conclusion, suppose we have apprehended ~a in {M |~x.φ}. The premiss
sequents tell us that there are~b and ~c in {M |~x.ψ} and {M |~x.χ} such that~b and ~a
are equal in {M |σ(~x)}, and so are ~c and ~a. To deduce that there is an element of
{M |~x.ψ∧χ}, clearly we need to make assumptions about “ascertaining equality”
– it needs to be symmetric and transitive. In fact the equality rule > `x x = x
will need it to be reflexive too, so it must be an equivalence relation.

For the rules involving substitution, we need to consider the Substitution
Lemma. This is most conveniently understood in terms of the logical style
explained above, in which function symbols are replaced by predicates for their
graphs. The Substitution Lemma (or at least, part (ii) of it) then says the
following. Suppose φ is in context ~x, and ~s in context ~y is sort compatible with
~x. Then finding an element ~a ∈ {M |~y.φ[~s/~x]} is equivalent (in the “can be
done” sense) to finding elements ~a~b ∈ {M |~y~x.Γ~s} and ~c ∈ {M |~x.φ} such that ~b
is equal to ~c.

4 Topology

The links between geometric logic and topology arise from a very direct cor-
respondence: the disjunctions and finite conjunctions in the logic correspond
to the unions and finite intersection that characterize the behaviour of open
sets. There is a then a rough correspondence between propositional geometric
theories and topological spaces: the space is the space of models for the theory,
topologized using the logical formulae.

Using the theories instead of topological spaces is generally known as “point-
free topology”, and has been found useful in various fields, especially in con-
structive mathematics (e.g. as “locales” [Joh82], in topos theory, and as “formal
topologies” [Sam87] in predicative type theory). The applications in computer
science, based on ideas of observational theory, could even be read as suggesting
that topology in some sense arises from an ontological shift in the understanding
of propositions.

A major idea in topos theory is to generalize this correspondence to pred-
icate theories, leading to Grothendieck’s new notion of topos as “generalized
topological space”. The theory then corresponds to its “classifying topos”, rep-
resenting (in an indirect way) the “space of models”. These ideas are implicit
in the standard texts on toposes, such as [MLM92], [Joh02a], [Joh02b], though
often hidden. [Vic07] attempts to bring them out more explicitly.

In the space available here it has only been possible to hint at the deep
connections between geometric logic and topology, but the curious reader is
encouraged to explore the references suggested.
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5 Algebra

We now turn to a feature of geometric logic that makes essential use of the
infinitary disjunctions, and sets it quite apart from finitary logics. The effect
is that geometric logic can be considered to embrace a variety of set-theoretic
constructions on sorts, and we shall examine the ontological aspects of this.

5.1 Lists and finite sets

In any geometric theory T , suppose A is a sort. Consider now an extended
theory that also has a sort B, together with function symbols

ε : B
γ : A×B → B.

We shall in fact use infix notation for γ, writing x ◦ y for γ(x, y). We also add
axioms

x ◦ y = ε `xy ⊥

x ◦ y = x′ ◦ y′ `xyx
′y′
x = x′ ∧ y = y′

> `y
∨
n∈N

(∃x1) · · · (∃xn)(y = x1 ◦ . . . ◦ xn ◦ ε).

Here N denotes the set {0, 1, 2, 3, . . .} of natural numbers, so the right hand side
of the last axiom is

y = ε ∨ (∃x1)y = x1 ◦ ε ∨ (∃x1)(∃x2)y = x1 ◦ (x2 ◦ ε) ∨ · · · .

In any model M of this extended theory, each list (a1, . . . , an) of elements of
{M |A} gives an element a1 ◦ · · · ◦ an ◦ ε of {M |B}. The third axiom says that
any element of {M |B} can be got this way, and the first two axioms say that
the list is unique – if

a1 ◦ · · · ◦ am ◦ ε = a′1 ◦ · · · ◦ a′n ◦ ε

then m = n and each ai = a′i. It follows that {M |B} is isomorphic with the set
of finite lists of elements of {M |A}, which we write {M |A}∗.

This ability to characterize list sets (up to isomorphism) by logic relies es-
sentially on the infinitary disjunctions in geometric logic. It cannot be done in
finitary logic. It means that in effect geometric logic embraces sort constructors.
Instead of adding all the axioms explicitly, we could allow ourselves to write a
derived sort A∗, with the interpretation {M |A∗} = {M |A}∗.

Moreover, this fits with our previous ontology. To apprehend an element of
{M |A∗}, we should apprehend a tuple ~a of elements of {M |A}. The tuple can
have any finite length. To ascertain that ~a and ~a′ are equal, we should find that
they have the same length and then that each component of ~a is equal to the
corresponding component of ~a′.
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In a similar way, we can use geometric logic to characterize the finite power
set, FA. We use the same symbols ε and ◦, but now ε is to mean the empty set
∅ and a ◦ b means {a} ∪ b. Hence a1 ◦ · · · ◦ an ◦ ε means {a1, . . . an}. We keep
the third axiom, but we replace the first two so as to give a different definition
of equality. For this we take axioms

x1 ◦ · · · ◦ xm ◦ ε = x′1 ◦ · · · ◦ x′n ◦ ε a`~x~x
′
m∧
i=1

n∨
j=1

xi = x′j ∧
n∧
j=1

m∨
i=1

x′j = xi

for all possiblem, n. This in effect says {a1, . . . am} = {a′1, . . . a′n} iff {a1, . . . am} ⊆
{a′1, . . . a′n} (i.e. every ai is equal to at least one of the a′js) and {a′1, . . . a′n} ⊆
{a1, . . . am}.

Again, this fits our ontology. To apprehend an element of {M |FA}, we
should apprehend a tuple ~a of elements of {M |A}, just as we did for {M |A∗}.
However, this time the equality is different.

5.2 Free algebras

The list sets and finite power sets are both examples of a much more general
construction, of free algebras. These arise from a particular kind of geometric
theory, namely algebraic theories. An algebraic theory is defined by operators
and equational laws, and in terms of geometric theories as defined above this
means there are no predicates, and the axioms are all of the form

> `~x s = t.

The models are then often called algebras.
Many examples are widely known, for example the theories of groups, rings,

vector spaces and Boolean algebras.
The fact that algebraic theories are geometric is interesting, but not very

deep. A much more significant fact about geometric theories emerges when
one considers free algebras, and this is something that relies on very specific
properties of geometric logic, and in particular its use of infinitary disjunctions.

Let T be an algebraic theory, with only one sort, A. (Similar results hold
for theories with more than one sort, but they are more complicated to state.)
A free algebra, on a set X, is constructed in two stages. First, we consider all
the terms that can be formed, in the empty context, using the operators of T ,
and also using the elements of X as constants. Next, we define two terms s and
t to be congruent if the sequent > ` s = t can be inferred (using the inference
rules of geometric logic) from the axioms of T . The set of congruence classes is
an algebra for T , and is called the free T -algebra on X, denoted T 〈X〉. It can
be proved to have a characteristic property that is actually rather fundamental:
given any T -algebra A, then any function f : X → A extends uniquely to a T -
homomorphism from T 〈X〉, got by evaluating the terms (representing elements
of T 〈X〉) in A.

List sets and finite powersets are both examples of free algebras.
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The logical significance of these constructions is that in geometric theories,
geometric structure and axioms can be used to constrain the carrier for one
sort to be isomorphic to a free algebra over the carrier of another. (This is not
possible in finitary first order predicate logic.) Hence geometric logic may be
understood as including an inherent type theory, with constructions that can
be applied to sorts. The list sets and finite powersets were the first examples.
This again is something that goes beyond the strict logic, analogous to issues
discussed in Section 3.3.

On the other hand, there is also an ontological significance. Construction
of terms can be understood as a process of apprehending elements (by gather-
ing together other elements in a structured way), and then finding a proof of
congruence is ascertaining equality between elements. Thus we may see a “real-
world” significance in the free algebra constructions, as typified by list sets and
finite powersets.

6 Categories

We have described a connection between, on the one hand, the formal structure
of formulae, constructed using formal symbols such as ∧ and ∨, and, on the
other, the informal ideas of how we might interpret those formulae in the real
world. At first sight the interpretation is straightforward, once we have assigned
meaning to the primitive symbols of the signature. After that one might think
it is just a matter of interpreting ∧ as ‘and’, ∨ as ‘or’, and so on. However, we
saw that particular connectives could easily be problematic. Having particular
connectives and particular logical rules about their use imposes an ontological
commitment on our interpretations.

This comparison between the logic and the real world may seem unavoid-
ably vague, because of the transformation from formal to informal. However,
it actually has two separate transformations bundled up together: one is from
formal to informal, but the other is from a logical formalism of terms and for-
mulae to an explanation that is more about collections and functions. There is
a way to separate these out using category theory. A category is a mathemat-
ical structure whose ‘objects’ and ‘morphisms’ may embody intuitive ideas of
collections and functions between them. In the formal world, we can transform
from the logical style to the collections style, by interpreting the logic inside a
category. This is known as categorical logic. The ontological commitment can
now be discussed in a precise mathematical way in terms of the properties of
the category. The transformation from formal to informal still has to be made,
but the formal category structure may now be closer in kind to the informal
structure of the real world that we want to capture.

For example, one of the assumptions we made, in Section 3.4, of real world
objects was that it is possible to yoke them together in pairs or longer tuples.
This corresponds directly to the categorical idea of product. If X and Y are
two collections, then there should be another collection X × Y whose elements
are pairs of elements, one from X and one from Y . More generally, if we have

19



two functions f : Z → X and g : Z → Y , then we should be able to pair their
results to get a function 〈f, g〉 : Z → X × Y . Category theory uses this idea
to characterize X × Y as the “product” of X and Y , so the informal idea of
pairing elements corresponds naturally to the formal idea that the category has
products.

Other chapters in this book describe categories in more technical detail. For
a fuller description of how geometric logic corresponds to categorical structure,
and for pointers to further reading, see [Vic07].

6.1 Sheaves

Sheaves provide a fundamental example of a formal setting where geometric
logic can be interpreted, but other parts of ordinary logic – including negation
– go wrong. They cannot support the ontological commitment of full classical
logic.

We shall not define sheaves in detail here. A good intuition is that if we have
a topological space X, then a sheaf over it is a set “continuously parametrized”
by a point of x. For each x there is a set Ax (the stalk of the sheaf at x), and as
x varies, the stalk, the set Ax, varies with it in a continuous way – no sudden
jumps. If a ∈ Ax then there is a neighbourhood U of x such that for each y ∈ U ,
the stalk Ay has an element corresponding to a. Also, if there are two such ways
of choosing “elements corresponding to a”, then there is some neighbourhood of
x where the two choices agree. That is very vague, but it can be made precise
and defines the notion of “local homeomorphism” (see, e.g., [Vic07] again).

Without saying any more about the general notion, we can describe a very
simple example where the problems with negation are easy to see. Sierpinski
space has two points, ⊥ and >. The topology can be described using the idea
of neighbourhoods, referred to above. {>} is a neighbourhood of >, but the
only neighbourhood of ⊥ is {⊥,>}. When one works out what a sheaf is, it
turns out to be a pair of sets A⊥ and A> (the stalks), together with a function
f : A⊥ → A>. The function is needed because, for each a ∈ A⊥, the definition of
sheaf requires a neighbourhood U of ⊥ (and in this case U can only be {⊥,>}),
and an element a> ∈ A> corresponding to a. The function f shows how to pick
a> for each a.

Subsheaves are analogous to subsets. A subsheaf of the sheaf A (given by
f : A⊥ → A>) is a pair of subsets B⊥ ⊆ A⊥ and B> ⊆ A> such that when f is
restricted to B⊥, it maps into B>:

B⊥ ⊆ A⊥
↓ ↓ f
B> ⊆ A>

Now suppose we have another subsheaf, C. We can try to define more
subsheaves B ∪ C and B ∩ C “stalkwise” by

(B ∪ C)x = Bx ∪ Cx,
(B ∩ C)x = Bx ∩ Cx.
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for x = ⊥,>. But are these subsheaves? The question is whether f restricts
properly. In fact, for ∪ and ∩ it works. This shows that the geometric connec-
tives ∨ and ∧ can be interpreted in the expected way.

Now let us look at ¬. We try to define a subsheaf ¬B by (¬B)x = Ax−Bx =
{a ∈ Ax | a /∈ Bx}. Our question about f now amounts to the following. We
know that if a ∈ B⊥ then f(a) ∈ B>. Can we deduce that if a /∈ B⊥ then
f(a) /∈ B>? No, in general. For a simple example, take B⊥ = ∅, B> = A>.

For an intuitive idea of what is happening here, think of A> as “the reality
of A”, and A⊥ as “what we have seen of it”. f translates our observations
into real things. However, (i) we may not have seen everything – there may be
elements of A> that are not f of anything; and (ii) we may have observed two
things that are in reality one and the same. Now ∨ and ∧ work just as well for
our observations as for reality, but ¬ doesn’t. Failure to observe (calculating
A⊥ −B⊥) does not map to non-existence (A> −B>).
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