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�Partial Horn logic and cartesian categories�

Palmgren and Vickers 2007 [PV07]

Background: Initial Model Theorem (IMT) (see [BW84])

Every cartesian theory has an initial model
Cartesian = essentially algebraic = �nite limit theory
Hence also free algebras, generators and relations.

[PV07] Simplify using logic of partial terms

Theories simpli�ed by Horn clause axioms in a partial logic of = and ∧.
Proof of IMT uses simple �term/congruence� construction from

algebraic case

Example: Classifying categories as initial models.
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Outline

Part I: AUs home of free algebras

Part II: Algebraic approach to classifying categories

Part III: Generalized topological spaces

AUs as foundations for continuous mathematics.
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Pt I: AUs home of free algebras

Arithmetic universe (AU) = pretopos with parametrized list
objects [Mai10]

They hit sweet spot of Initial Model Theorem:

I Theory of AUs is cartesian.

I Internal logic of AUs supports IMT [Mai05, Mai06].
� and even term/congruence construction.

More general than elementary toposes with nno.
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History of AUs

Early work (Joyal, Wraith) largely unpublished � apologies for any
misrepresentations!

Joyal � used initial AU for account of Gödel's Incompleteness
Theorem. (See [vG20].)

Wraith � reported it at 1985 �Categories in Computer Science� � but
didn't write it up.

Both were aware of potential for internal free algebras.

Vickers [Vic99] suggested AUs for base-independent geometric
reasoning.

Maietti (eg [Mai10, Mai06]) was the �rst to set out the current
de�nition, and proved its major properties.

Maietti, Vickers, Hazratpour [MV12, Vic19, Vic17, HV20]
develop ideas of AUs as generalized spaces.

Taylor [Tay05] � category of overt discrete spaces in ASD is an AU.
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Initial model theorem � simple case

Algebraic theory = �nitary operators + equational axioms

Theorem
Every algebraic theory has an initial model.

Proof.
�Term/congruence� construction.

1. Form term algebra to interpret signature (operators).

2. Generate congruence inductively from axioms.

3. Factor out congruence to model axioms.
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Initial models ⇒ free algebras, and generators and relations

T-model T〈G | R〉 presented by generators and relations

Take theory for T
+ constants for generators in G

+ axioms for relations in R .

Model of this = T-model equipped with a function from G that
respects relations in R .

T〈G | R〉 is the initial such.

Free models are for the case R = ∅.
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From algebraic to essentially algebraic (cartesian)
The following are equivalent to each other, and to �nite limit
sketches. (Overview in [PV07].)

Essentially algebraic theories

I Finitary partial operators, each with domain of de�nition
de�ned using equations involving previous operators.

I Axioms s = t whenever both sides de�ned.

Cartesian theories [Joh02, D1.3.4]

I Regular �rst order theories (logic of =,∧, ∃).

I Axioms are sequents φ
−→x|−−−− ψ in context −→x listing available

free variables.

I Each ∃ in an axiom must be for unique existence, provably
from previous axioms.

Every cartesian theory has an initial model [BW84].
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Examples of cartesian theories

Categories

Two sorts: objects and arrows
Composition is partial binary operator on arrows. De�nedness,
composability, given by an equation.

Categories + structure

eg pullback cones, given as partial binary operators on arrows
forming cospan.
eg enrichment as operators on hom-sets.

eg elementary toposes with nno

Underlies methods of Lambek and Scott [LS86]

eg arithmetic universes (AUs)
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Example of cartesian theory: Arithmetic universes (AUs)

= pretoposes with parametrized list objects [Mai10]

Parametrized list object listA
listA type of �nite lists of elements of A
ε : 1→ listA empty list []
cons : A× listA→ listA a : l is l with a appended at front.

listA× B (A× listA)× B

A× (listA× B)

B Y A× Y

r=recA(y ,g)

cons×B
∼=

A×recA(y ,g)

〈ε,B〉

y

g

r([], b) = y(b)
r(a : x , b) = g(a, r(x , b))

nno N = list 1
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Example of cartesian theory: Arithmetic universes (AUs)

Pretoposes

Finite limits, �nite coproducts, coequalizers of equivalence relations.
Axioms to make them cooperate.
In presence of list objects, they have transitive closures of binary
relations and (hence) all �nite coequalizers.

Theory of AUs is cartesian
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Initial models: every cartesian theory has one [BW84]

BUT ... term/congruence construction has problems.

Take essentially algebraic theory, with partial operators.

1. Form term algebra to
interpret signature
(operators).

2. Generate congruence
inductively from axioms.

3. Factor out congruence to
model axioms.

(1) � want de�ned terms.

(3) � creates more equations,
hence more de�ned terms.

Iterate???
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Initial models: every cartesian theory has one [PV07]

Use logic of partial terms

I Existence is self-equality.

I Straightforward adaptation of �rst-order logic as presented in
[Joh02, D1.3]

Term/congruence using partial terms.

1. Form term algebra to
interpret signature
(operators).

2. Generate congruence
inductively from axioms.

3. Factor out congruence to
model axioms.

(1) � use partial terms.
(2) � generate partial congruence,
not necessarily re�exive.
(3) � factor out partial
congruence, ie congruence on
self-equal terms.
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Quasi-equational theories [PV07]

Quasi-equational theory is Horn theory.

I Signature is sorts S and operators O � no relation symbols.

I Logical connectives are =,∧
I Axioms are sequents in context.

conjunction of equations
−→y|−−−− conjunction of equations

They are equivalent to cartesian theories.

Term/congruence proof of IMT [PV07].

1. Express cartesian theory in quasi-equational form.

2. Use term/congruence construction for partial terms.
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AUs support �

I Usual list operations for listA �

I � including concatenation ++, making listA free monoid on A.

I Arithmetic on N = list 1.

I [Mai10] Free categories on graphs, free category action from
graph actions.

Initial models

I Maietti [Mai05, Mai06] using type theory

I Can also replicate term/congruence construction.
Use reverse Polish notation to represent partial terms and
proof terms.

AUs as �sweet spot� for IMT

IMT both � valid within AUs
� and can be used to present them.
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Internalization

Special case:

The initial AU has an internal initial AU.
Original motivation.
Joyal (unpublished; but see [vG20]): explicit concrete construction.
Existence of N gives arithmetic.
Exhibits Gödel incompleteness � external = truth, internal = proof.

More generally � nested internalization

Constructions in AU logic can be carried out at di�erent levels.
Mathematical consequences? Still little understood.
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Pt II: Algebraic approach to classifying (syntactic) categories

Let L (for logic) be a cartesian theory of categories+structure
Algebra Logic

Presentation T �L-theory�
Generators Signature (sorts and symbols)
Relations Axioms

Correspondence fuzzy!
eg relations can say some sorts derived from other ingredients.
Assumption: presentation more important than separation
signature/axioms. � cf. sketches

eg L = AU

Sorts can be derived as limits, colimits, list objects, and more
general free constructions.

L〈T〉 = classifying category for T (wrt L)
L-functors (L〈T〉 → C) correspond to T-models in C
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Classifying category as �class of T-models�

L-functors F : L〈T0〉 ← L〈T1〉 as model transformers

Composition with F maps T0-models into T1-models (in any C).

C L〈T0〉 L〈T1〉M F

F (M)

How is F de�ned? � T1-model in L〈T0〉
Let M0 be a model of T0.

... various L-constructions ...

... �nish with T1-model.
Call it F (M0).

Formal parameter M0 is generic
(walking) model in L〈T0〉.
� L-constructions all in L〈T0〉

F (M) is substitution F (M/M0).
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Questions

Can this be made to work for type theory?

Does AU〈T〉 classify models in ambient AU?

Each C is small � internal in ambient logic.
Can a model with sorts etc. indexed by T be extended to
indexation by AU〈T〉?

Strictness
Problem � see [MV12]
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Strictness

L〈T〉 = classifying category for T (wrt L)
L-functors (L〈T〉 → C) correspond to T-models in C
Strict L-functors? Strict T-models?

�Corresponds� � up to isomorphism or (usual interpretation)
equivalence?

For algebra, syntax: require up to iso, and everything strict

For semantics: require non-strict, so up to equivalence.

Using sketches to handle both strict and non-strict [Vic19]

Restricted sketches, �contexts�, have
every non-strict model has a canonical strict isomorph.
Then L〈T〉 also classi�es non-strict models (up to equivalance).
2-cat Con of AU-contexts as generalized spaces.
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Pt III: Generalized topological spaces

Classifying toposes are same idea

� but complicated by need for in�nite disjunctions.
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Classifying topos as �(generalized) space of T-models�

L: Logic L needs arbitrary
disjunctions, to match
unions of opens �
L = geometric logic
(Need arbitrary coproducts
too.)

T: Point-free topology. T =
geometric theory of points.

S: �Arbitrary� = S-indexed, S
= your favourite elementary
topos + nno �of sets�.

S[T]: Classifying topos.

point-set = points are elements
of a set
point-free = points are models
of a geometric theory
pointwise = reason with points
pointless = reason without
points
generalized = �rst-order
geometric theories
ungeneralized = localic =
propositional geometric theories

Geometric reasoning: pointwise treatment of point-free spaces
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AUs: Algebraic approach to in�nite disjunctions

Theory of bounded S-toposes not cartesian §
S[T] de�ned concretely (sheaves); characterized only up to
equivalence.

AU-contexts su�cient in practice � eg R [MV12]

Use internal N to express countable joins in logic.

[T]: notation for formal dual of AU〈T〉 � �space of T-models�

T gives site in any S with nno

S[T]: category of Sheaves with respect to S [Vic99]
2-functor S[−] : Con→ BTop/S

Choice of S now irrelevant! ©
Get base-independent treatment of classifying toposes [Vic17],
�brationally over choice of base.
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Dependent type = bundle = (base point 7→ �bre)

Context extensions
T1 [T1]

T0 [T0]

⋃
p

T1 is extension of T0

p is model reduction.

As bundle: base point x (in S) 7→ �bre S[T1/x ]

S ′[T1/f
∗(x)] S[T1/x ]

S ′ S

y

f

x model of T0 in S (elementary
topos with nno).
T1/x : S-geometric theory of
T1-models y with p(y) = x
= substitution x for T0 in T1.

Construction preserved by bipullback along geometric
morphisms [Vic17]

= substitution f ∗(x) for x in T1/x ... so DTT somewhere?
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General examples: sites

Localic S-toposes as �bres
T0 = theory of GRD-systems (frame presentations) [Vic04]

T1 = theory of GRD-systems equipped with point

Application: Powerlocale constructions on bundles work �brewise.
(Dependent types!) Represent powerlocale as endomap on [T0].

General bounded S-toposes as �bres
T0 = theory of sites

T1 = theory of sites equipped with continuous, �at presheaf

AU-logic has potential to address topos theory

? How to address continuous maps?
Not every space exponentiable, ∴ can't classify them.
eg why are powerlocales functorial?

? Exploit internalization, use theory of AUs equipped with sites?
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How to exploit the continuity of AU reasoning?

Some non-AU constructions on sets are intrinsically
discontinuous!

Y X Natural topology on Y X is compact-open, not discrete.
If Y X still locally compact, then set-theoretic ZY X

disagrees
with topological answer.

Ω,PX Similar. Topology is Scott.

U Universe U is just one discrete approximation (out of many) to
the generalized space [set], the object classi�er.
(cf. Garner [Gar12] ionads = point-set toposes.)
Topologically, any map out of [set] must be functorial and
preserve �ltered colimits. [set][set] is the space of diagrams
over Fin. UU won't be.
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Two foundational approaches, from sets to spaces

Sets including arrow types

Start by allowing discontinuities.

Introduce bureaucracy to disallow
them: eg point-set spaces,
frames, sites, geometric
reasoning.

Discontinuity can still appear in
construction of sites � eg space
of non-trivial rings apparently of
presheaf type.
And often we don't know how
else to do the topos theory!

AU-logic for sets

⇒ no bureaucracy needed for
(point-free) spaces � no
discontinuity to disallow.

Pointwise:
map is point 7→ point,
bundle is base point 7→ (theory
for) space.

? dependent type theory of
spaces.

Introduce discontinuity later � if
you need it.
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AU-mathematics?

Pros

I Pointwise reasoning for point-free spaces (cf. geometric
techniqes)

I Fibrewise topology of bundles (base point 7→ �bre as point-free
map)

I Hence dependent type theory of spaces

Cons

I Uses of eg arrow types must be justi�ed
eg Y X as space

I Can we regain deep applications of topos theory? Known
proofs often rely on discontinuous construction of sites.
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The mathematics is di�erent!

eg Excluded middle holds [MV12]

P a proposition, subset (= open subspace) of 1 = {∗}.
¬P = ∅P is not a proposition � it's a closed subspace of 1.

Its topology is Stone, not discrete � Boolean algebra of clopens

B = BA〈 | 0 = 1 (∗ ∈ P)〉.

Over P , B is degenerate, so no prime �lters.

¬¬P = ∅∅P = P . BA hom from degenerate BA to B exists where P
holds.

∨ exists as join of subspaces.
P ∨ ¬P = >.

∧ exists too.
P ∧ ¬P = ⊥
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Conclusions

pt I: I IMT for cartesian theories, straightforward term/congruence
proof using partial logic [PV07]

I AUs as �sweet spot� for IMT [Mai05, MV12]

pt II: I Algebraic approach to classifying categories, in particular
classifying AUs [PV07]

I Now characterized up to isomorphism (not just equivalence).
I Strictness issues addressed by restricting AU-theories to

�AU-contexts� [Vic19]

pt III: I Usual constructive foundational approaches (elementary
toposes, type theory) allow discontinuities, then use
bureaucracy to disallow them.

I AU-logic intrinsically continuous (geometric).
I Vision: Do all continuous mathematics (of generalized

spaces) in AU-logic without bureaucracy [Vic99, Vic17]
I Can that include deep applications of topos theory?
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