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Abstract

Preframes (directed complete posets with finite meets that distribute over the directed
joins) are the algebras for an infinitary essentially algebraic theory, and can be presented
by generators and relations. This result is combined with a general argument concerning
categories of commutative monoids to give a very short proof of the localic Tychonoff
Theorem.

It is also shown how frames can be presented as preframes, a result analogous to
Johnstone’s construction of frames from sites, and an application is given.

1. Introduction

It is well known (Joyal and Tierney [84]) that a coproduct of frames is a tensor product
in a rather conventional sense, for it is universal for functions with a certain bilinear
property:

Let A and B be frames, let C be a sup-lattice, and let !: A×B " C preserve all joins
in each argument. Then there is a unique sup-lattice homomorphism !': A#B " C
such that !'(a#b) = !(a, b) for all a $ A, b $ B.

(A sup-lattice is a complete join semilattice, and a function between sup-lattices is a
homomorphism if it preserves all joins.)

To put it another way, suppose for sup-lattices A and B the tensor product A#B is
presented as

SupLat % a#b (a $ A, b $ B) |
S # b = {a#b: a $ S} (S & A)

a # T = {a#b: b $ T} (T & B) '



If A and B are actually frames, then this tensor product serves as a frame coproduct.
(This is directly analogous to the case of commutative rings, where coproducts are
constructed as tensor products of Abelian groups.)

The uniqueness part of this universal property is obvious. Every element of A#B is
a join of elements a#b, so a sup-lattice homomorphism is determined by its values on
these elements.

There is another representation of elements of A#B. Let us write a b (a “par” b)
for the element a#true ( true#b. It is easily verified that

•  preserves finite meets and non-empty joins (in particular, directed joins) in each
argument.

•  preserves all joins jointly in its two arguments.
• a#b = a false )  false b

Now a finite join of elements a#b is a finite join of finite meets of elements a b, and
hence, by finite distributivity, a finite meet of finite joins of elements a b, hence a finite
meet of elements a b. Hence every element of A#B is a directed join of finite meets of
elements a b. We are going to investigate the possibility of defining functions from
A#B that preserve finite meets and directed joins, by defining the values at elements
a b. A major purpose of this paper is to present the corresponding existence result,
Theorem 4.3, and to use it to give what is probably the simplest proof yet discovered of
the Localic Tychonoff Theorem.

What is happening here is that instead of the sup-lattice structure (joins) of frames,
we are considering the preframe structure: following Banaschewski [88], we call a poset
A a preframe if it has all finite meets and directed joins, with binary meets distributing
over directed joins; and we call a function between preframes a preframe
homomorphism if it preserves finite meets and directed joins. (Note – Gierz et al. [80]
call preframes “meet continuous semilattices”.)

The original result for the sup-lattice structure is quite cheap. The sup-lattice tensor
product A#B can be presented as above, and it is then easy to prove that it is in fact a
frame, the frame coproduct of A and B. The essential fact, that the presentation does
indeed present a sup-lattice, comes from standard universal algebra, with only minor
hitches from the infinitary joins in the theory of sup-lattices.

Our corresponding result for preframes follows a somewhat parallel route (put in a
quite general setting in Section 4), but it is much harder to show that the same method of
presentations works. The mathematical core of this paper lies in our result that for
preframes also, a presentation by generators and relations does indeed present a
preframe (Section 3). The underlying idea is that the theory of preframes is essentially
algebraic. For small essentially algebraic theories, presentations by generators and
relations do present, so for large theories (such as preframes) one can expect the same,
provided that cardinality problems can be circumvented. For convenience, we
summarize results about essentially algebraic theories in Section 2.



Finally, we prove a preframe analogue of the coverage theorem for frames
(Johnstone [82]), which is best seen in a sup-lattice context, and use it in some
applications.

2. Essentially algebraic theories

The infinitary analogue of finitary algebraic (or equational) theories has been fairly
extensively studied by several people from Sl*ominski [59] and Linton [66] onward; but
much less attention has been paid to the infinitary analogue of what are variously called
essentially algebraic theories (Freyd [72]), lim-theories (Coste [79]) or left exact theories
(McLarty [86]): essentially the only works in this area are the paper of Isbell [72] and
the monograph of Gabriel and Ulmer [71], neither of which takes an explicitly syntactic
point of view (and the work of Gabriel and Ulmer applies only to small theories, which
are insufficient for our purposes). However, in order to understand the theory of
preframes, which is our main concern in this paper, it is necessary to regard it in this
general context; so we devote this section to developing as much of the general theory as
we shall need.

We shall follow the approach of Freyd [72] in presenting the syntax via partial
operations whose domains are specified by equations, rather than that of Coste using
primitive predicates and a “provably unique” existential quantifier. It is not hard to show
that the expressive powers of the two approaches are identical, provided one allows
many-sorted theories (partially ordered sets are a single-sorted theory in Coste’s sense,
but in our approach we must take two primitive sorts, one for the underlying set and one
for the set of instances of the order relation).

An essentially algebraic theory, then, is specified by the following data:

(i) A set S of sorts.
(ii) A class O of operation-symbols +, each of which is equipped with an arity f+

which is a function from some index set I to S, and a type t+ which is a single
sort. (The intended interpretation is that, if the sorts have been interpreted by
sets As, s�$ S, then + $ O will be interpreted as a partial function +A from
,i$I Af+(i) to At+.)

(iii) A well-founded partial ordering < on O, with the property that the
<-predecessors of any given operation-symbol form a set.

(iv) For each + $ O, a domain declaration which is a (possibly infinite) conjunction
of equations (t = t'), where t and t' are terms of the same type, constructed in
the usual way from variables and operation-symbols that preced + in the
ordering <. (The intended interpretation is that +A is defined exactly at those I-
tuples where, for each equation (t = t'), the terms tA and t'A are defined and



equal; if the domain declaration of + is the empty conjunction, then the domain
of +A is to be the whole of ,i$I Af+(i).)

(v) A class A of axioms, which are equations (t = t') between pairs of terms of the
same type. (The intended interpretation is that a structure A for the language, as
so far defined, will be a model for the theory provided, for each axiom (t = t'),
the interpretations tA and t'A are equal at all tuples of elements of A where they
are both defined.)

Of course, we say the theory is single-sorted if the set S is a singleton; in what
follows we shall generally deal with the single-sorted theories in order to simplify
notation. We say that the theory is small if the class O is a set (in which case A will also
be a set, since we have only a set of possible terms).

The reader may have been surprised to see that our axioms all have the form of
equations rather than Horn sequents; however, the presence of domain declarations
allows us to achieve the effect of Horn sequents, by introducing extra operations that are
restrictions of projections. For example, if we wish to assert that an equation (t = t')
holds conditionally upon an equation (s = s'), we introduce a new operation - (whose
arity includes the sorts of all the variables appearing in s or s', and whose type is that of
one of the variables appearing in t or t'), with domain declaration (s = s'); we then add a
new axiom (-(xi)i$I = xi0) and substitute -(xi)i$I for xi0 somewhere in t or t'.

The same device may also be used to turn all the axioms into directed equalities (t 
t') in the sense of Freyd and Scedrov [90] (intended interpretation: “if t is defined, then
t' is also defined and equal to it”) – though we cannot, in general, reduce them to
assertions of the form “one side is defined iff the other is, and then they are equal”.

Example 2.1 As previously mentioned, our primary interest in this paper is in the
notion of preframe introduced by Banaschewski [88]: a preframe is a partially ordered
set having finite meets (including a top element 1) and directed joins, such that binary
meets distribute over directed joins. We give here a presentation of the theory of
preframes as a (single-sorted) essentially algebraic theory. At the lowest level of the
ordering on operations, we have a constant 1 and a binary operation ), both with empty
domain declarations (and we shall have axioms that say that (), 1) defines a semilattice
structure on our underlying set A). To handle directed joins, we next introduce an
operation .P of arity |P| (the underlying set of P) for each directed poset P; the
domain declaration for .P will be the conjunction, over all pairs (p, q) in P with p / q,
of the equations (xp ) xq = xp), so that .P (f) is defined, for a function f: P " A, iff f
is order preserving. To ensure that .P (f) is the least upper bound of the image of f, it
suffices to write down the axioms

.{p} (xp) = xp

for a singleton poset {p}, and
.P (xp)p$P ) .Q (xh(q))q$Q = .Q (xh(q))q$Q



whenever h: Q " P is an order-preserving map between directed posets. Finally, we
write down the distributive law as a scheme of axioms, one for each directed poset P:

x ) .P (yp)p$P = .P (x ) yp)p$P

For a small essentially algebraic theory TT, the forgetful functor from TT-models to
Set (or to Setn if TT is many-sorted) has a left adjoint, just as in the algebraic case: the
free TT-model on a set X is constructed in the usual way as the set of words (i.e. terms)
in the elements of X, modulo TT-provable equality. The adjunction will not be monadic
unless TT is algebraic (i.e. has a presentation on which all the domain declarations are
empty), but it will be possible to factor it as a tower of monadic adjunctions in the style
of MacDonald and Stone [82], by expressing TT as a union (indexed by some ordinal) of
subtheories 00-, corresponding to the levels in the ordering on primitive operations, and
successively constructing free functors from TT--Mod to TT-+1-Mod. The tower may be
of arbitrary height, as is shown by the following example:

Example 2.2 Let - be an ordinal, and let TT- denote the theory having one unary
operation +1  for each 1 < - (ordered in the obvious way), the domain declaration of
+1 being the conjunction over all 2 < 1 of (+2(x) = x), and no axioms. It is clear that,
after 1 ordinal steps starting from Set, we cannot get any further than TT1-Mod; in the
free TT--model on a TT1-model, the operation +1+1 has no fixed points, and so the later
operations are never defined.

For large theories, even when the forgetful functor to Set has a left adjoint (and
even when the arities of the generating operations, and the lengths of chains in the
ordering on these operations, are bounded), it may not be possible to decompose the
adjunction as a tower of monadic ones, as is shown by the following simple modification
of the previous example: take a single unary operation +0 with empty domain
declaration, and then a proper class of unary operations +-, all with domain declaration
(+0(x) = x). The forgetful functor from TT-Mod to Set has a left adjoint, which sends a
set X to the free TT1-model on X; but the comparison functor from TT-Mod to TT1-Mod
has no left adjoint. Note, in particular, that the existence of free TT-models on sets is no
guarantee of the existence of colimits (in particular, coequalizers) in TT-Mod.

Since the theory in which we are interested, that of preframes, is a large one, we
shall have to investigate whether its category of models possesses this sort of structure.
As far as colimits are concerned, Banaschewski [88] gave an explicit construction of
coproducts; and we shall be able to infer the existence of coequalizers (though not to
describe them all that explicitly) from our presentation theorem in the next section. For
monadicity, the questions are more easily answered.

Lemma 2.3 The forgetful functor from PreFrm to Set has a left adjoint.
Moreover, the monadic length of the adjunction is 2.

Proof
The forgetful functor may be factored as



PreFrm " SLat " Set

where SLat is the category of meet-semilattices. Now SLat " Set has a left adjoint that
sends a set X to the set 3fin(X) of finite subsets of X, ordered by reverse inclusion, and
PreFrm " SLat has a left adjoint sending a semilattice P to the set Idl(P) of ideals of
P, ordered by inclusion (see Vickers [89], Theorem 9.1.5). Now SLat " Set is
monadic, since semilattices are an algebraic theory; but in a free semilattice 3fin(X) the
upward closure of each element is finite, from which it follows easily that every ideal is
principal, and so the monad on Set induced by the composite adjunction is (isomorphic
to) the free semilattice monad. In other words, SLat is exactly the algebraic part of the
essentially algebraic theory of preframes.

To complete the proof, we must show that the forgetful functor PreFrm " SLat is
monadic; but we may do this directly, as follows. Let P be a semilattice, and suppose it
has an algebra structure -: Idl(P) " P for the monad on SLat induced by the
adjunction. Since - sends principal ideals to their generators and is order-preserving, we
see that it must send each ideal of P to its join in P; so P has directed joins. Moreover,
since - preserves binary meets, we see that binary meets distribute over directed joins in
P, so it is a preframe; and its Idl-algebra structure is uniquely determined by its
preframe structure. ]]

We note in passing that, once we have established the existence of coequalizers in
PreFrm, Lemma 2.3 combined with Linton’s theorem (Linton [69]) will enable us to
“lift” more general colimits from SLat to PreFrm, without making use of
Banaschewski’s construction of coproducts.

In the case of a small theory TT, the decomposition of TT-Mod " Set into a tower of
monadic functors, plus the fact that these functors have rank (i.e preserve --filtered
colimits for some cardinal - – just take a regular cardinal greater than the arities of all
the generating operations of TT), ensure that the category TT-Mod is locally presentable
(cf. Gabriel-Ulmer [71], Satz 10.3). Indeed, there is a converse: any locally --
presentable category is equivalent to the category of --continuous set-valued functors on
a small --complete category C, and the theory of such functors may readily be presented
as a (many-sorted) essentially algebraic theory (cf. Coste [79], Theorem 2.3.2, for the
case - = 40). Thus the categories of models of small essentially algebraic theories are,
up to equivalence, exactly the locally presentable categories. In particular, all such
categories are cocomplete.

Given a morphism f: A " B of models of an essentially algebraic theory TT, the set-
theoretic image I of f is not in general a TT-model: the identifications made in passing
from A to I may create “new” tuples of elements satisfying the domain declaration of
some operation of TT, none of whose pre-images in A do so. However, TT-Mod does have
image factorizations (even if TT is large): that is, every morphism factors as a strong
epimorphism followed by a monomorphism. To obtain the image of f: A " B in TT-

Mod, we simply take the sub-TT-model I- of B generated by the set-theoretic image I, i.e.



the intersection of all submodels that contain I. This factorization is not, in general,
stable under pullback (and so the category TT-Mod is not in general regular), but it is at
least functorial: that is, a commutative square

A

A'

B

B'

f

g h

f '

gives rise to a (unique) morphism from the TT-model image of f to that of f', since the
inverse image of the latter under h is a sub-TT-model of B containing the set-theoretic
image of f. (We shall need this observation, in the case of preframes, in our proof of the
presentation theorem.)

Another point that should be noted is that strong epimorphisms in TT-Mod (that is,
morphisms f: A " B that do not factor through any proper sub-TT-model of their
codomain) need not be regular epimorphisms (that is, coequalizers): the coequalizer of
the kernel-pair of f, if it exists, will be the TT-model freely generated by the set-theoretic
image I, modulo the preservation of as much of the TT-model structure as exists in I, and
this may not map injectively to B. This is another indication that, for large theories TT,
the construction of coequalizers in TT-Mod can be expected to be a delicate matter.

Leaving this question aside for the moment, we conclude this section by briefly
considering the notion of commutativity for essentially algebraic theories. For algebraic
theories, the notion is well understood, but it is perhaps less widely appreciated that it
makes perfectly good sense in our more general context. We say that a single-sorted
essentially algebraic theory TT is commutative if any two of its operations commute with
each other, or, equivalently, if each operation is a homomorphism of TT-models. (To
make sense of this second formulation, note that the commutativity of the subtheory TT1

generated by the operations that precede a given operation + ensures that the domain of
+A is a sub-TT1-model of the power of A corresponding to its arity.)

Proposition 2.4 Let TT be a commutative essentially algebraic theory.

(i) The category TT-Mod has a symmetric closed structure, in which the internal
hom [A, B] is the set of TT-model homomorphisms from A to B with operations
defined pointwise.

(ii) If TT-Mod has a free functor and coequalizers (for instance, if TT is small), then
it also has a symmetric monoidal structure (#, I), where I is the free TT-model
on one generator and (-)#A is left adjoint to [A, -].

Proof



(i) Commutativity of TT  (plus an induction over the ordering on operations) implies that
if + is an operation of TT (of arity J, say) and (fj)j$J is a family of homomorphisms
from A to B that (pointwise) satisfy the domain declaration of +, then the function

a 5" +B(fj(a))j$J

is again a homomorphism from A to B. So [A, B] has the structure required for a
TT-model, and it satisfies the axioms since B does. Moreover, the assignment (A, B) 5"
[A, B] is easily seen to be a bifunctor, contravariant in the first argument and covariant
in the second. For the symmetry, we observe that homomorphisms from A to [B, C]
correspond to functions from A×B to C that are bihomomorphisms, i.e. are
homomorphic in each variable provided the other is held constant, and these in turn
correspond to homomorphisms from B to [A, C], yielding a natural isomorphism

[A, [B, C]] 6 [B, [A, C]]

(ii) To obtain the monoidal structure, we need to construct a universal
bihomomorphism from A×B to A#B, i.e. one through which every bihomomorphism
from A×B to C factors by a unique homomorphism from A#B to C. Under the extra
hypotheses on TT, we may do this by first forming the free TT-model F on A×B, and then
forming the coequalizer F�"�A#B of R "" F, where R is the smallest congruence on F
such that the composite A×B�" F " A#B is bihomomorphic. The remaining details
are straightforward. ]]

Example 2.5 The theory of preframes, as defined earlier in this section, is
commutative. It is well known that the theory of meet-semilattices is commutative, and
the directed join operations commute with each other (and with themselves); so we need
only verify that directed joins commute with finite meets. Now the distributive law tells
us that, if (xi)i$I and (yi)i$I are monotone nets indexed by the same directed set I, we
have

.I (xi)i$I ) .I (yi)i$I = .I×I (xi ) yj)(i,j)$I×I

Then directedness of I tells us that the (xi ) yi), i $ I, are cofinal among the (xi ) yj)
and so have the same join.

Although the commutativity of the theory of preframes does not seem to have been
explicitly observed before, it is not exactly a new idea; in particular, it underlies the
“Lawson duality” of continuous semilattices (see Johnstone [82], VII 2.11). A continuous
semilattice is just a preframe which satisfies the additional requirement of continuity
(expressed in the usual way in terms of the way-below relation); the dual of a continuous
semilattice A is the poset Â of Scott open filters of A (i.e. subsets that are upper closed,
closed under finite meets and inaccessible by directed joins), ordered by inclusion. But a
subset of A is a Scott open filter iff its characteristic function is a preframe
homomorphism from A to 22 = {0, 1}, so we may identify  Â with [A, 22] as defined in



Proposition 2.4. Lawson duality is then the assertion that, for a continuous semilattice A,
[A, 22] is also continuous, and the canonical mapping from A to [[A,�22],�22] is an
isomorphism. (We note in passing that this duality cannot be extended to any larger class
of preframes, since a preframe is continuous iff its Scott-open sets separate its points.)

The theory of frames, unlike that of preframes, is not commutative: although the
distributive law implies that finite meets commute with directed joins, finite meets and
finite joins can never commute in a nontrivial lattice. (If a = d / b = c, then
(a)b)((c)d) = a, but (a(c))(b(d) = b. Also, the presence of two distinct constants 0
and 1 is incompatible with commutativity.) In fact, the theory of preframes is a maximal
commutative subtheory of frames. It is not unique with this property. Another such is
the theory of complete join-semilattices (sup-lattices), obtained by retaining all the join
operations (including 0) and discarding the finite meets. We shall see that in many ways
the relationship between frames and preframes is similar to that between frames and
sup-lattices. The latter was extensively investigated by Joyal and Tierney [84], and their
work has served as a model for a large part of ours.

3. Preframe presentations present

First, recall Banaschewski’s [88] theory of prenuclei on a frame: if A is a frame and 70
is a function from A to itself that is monotone and inflationary (70(a) 8 a), then 70 is a
prenucleus if

9a, b $ A. 70(a) ) b / 70(a)b)

If, in addition, 70 is idempotent, then it is a nucleus in the usual sense (see Johnstone
[82]).

Banaschewski proves that for each prenucleus 70, there is a nucleus 7 characterized
by the property that each 7(a) is the least fixpoint of 70 greater than a. 70 and 7 have
the same fixpoints, which – by the standard theory for the nucleus 7 – form a frame; it
has the universal property of

Frm % A (qua Frm) | 70(a) / a (a $ A) '

Next, let us summarize some free constructions. Note for all of them that the
concrete constructions show that the injections of generators are all 1-1.

Proposition 3.1

(i) The free preframe over a meet semilattice S is the ideal completion Idl(S).
(ii) The free frame over a meet semilattice S is the set Alex(Sop) of lower closed

sets of S.
(iii) The free frame over a preframe A is the set of Scott closed subsets of A.

Proof (i) This has already been mentioned; it is Theorem 9.1.5 in Vickers [89].



(ii) This comes immediately from the coverage theorem (Johnstone [82] Proposition
II.2.11).
(iii) Banaschewski [88], Proposition 1. ]]

Proposition 3.2 Let S be a meet semilattice, and let R be a set each of whose elements
has the form (X, a) where X = (xi)i$P is a monotone net in S and a is an upper bound in
S for {xi: i $ P}.

Then PreFrm % S (qua meet semilattice) | . X = a ((X, a) $ R) ' exists.
Proof

A1 = Idl(S)

&

µ

A2 = Alex(Sop) A4 = Fix( )µ

A3

&

S

B 1

:

f

B 2
&

g1

g2

g3

g4

Let A1 and A2 be the free preframe and frame over the meet semilattice S. We define
µ:�A2 " A2 by

µ(U) = U ; {a)b: b $ S, <X. (X, a) $ R, 9i. xi)b $ U}

Then µ is monotone and inflationary. It’s also a prenucleus, for suppose a)b $ µ(U)=V
with (X,�a) in R and all xi)b in U. Then each xi)b / a)b $ V, so a)b $ µ(U=V).

Let A4 be the set of fixpoints of µ, the corresponding sublocale, let :: A2 " A4 be
the natural frame homomorphism, and let A3 be the subpreframe of A4 generated by the
image of A1 under : (the preframe image of A1 under :, in the sense of Section 2). A3
is the preframe we are trying to present. A1 " A3 is a preframe epimorphism, and this
will prove uniqueness in the universal property.

For existence, suppose B1 is a preframe, and f: S " B1 is a meet semilattice
homomorphism such that if (X, a) $ R, then f(a) / . (f X). f factors via a preframe
homomorphism g1: A1 " B1. Let B2 be the free frame over the preframe B1; note that
the concrete construction of Proposition 3.1 tells us that the injection B1 " B2 is 1-1. g1
lifts to a frame homomorphism g2: A2 " B2, and g2 µ = g2, so that g2 factors as g2 =
g4 :, where g4 is a frame homomorphism. The inverse image of B1 under g4 is a
subpreframe of B4 containing the image of A1, and hence containing A3; so g4 restricts
to a preframe homomorphism g3: A3 " B1. ]]

Theorem 3.3 PreFrm has coequalizers.



Proof Let f, g: A " B be two preframe homomorphisms. Let h: B " S be the meet
semilattice coequalizer, and let R be generated by the set {(h(X), h(a)): X & B, X
directed, . X = a}. Then apply the previous Proposition. ]]

It follows that one can present preframes by generators and relations.

4. Frames as monoids in PreFrm

We have seen that the theory of preframes is commutative; so, thanks to the presentation
theorem of the last section, we can now assert that the category PreFrm has a
symmetric monoidal structure, left adjoint to its closed structure.

To construct the preframe tensor product A#B of A and B, we first construct their
meet-semilattice tensor product (P, say), and then equip it with the coverage R generated
by all pairs (X#b, a#b) and (a#Y, a#b) where X and Y are monotone nets in A and B,
with joins a and b, X#b denotes the monotone net (x#b | x $ X) and a#b denotes (for
the moment) the image of (a, b) under the universal bihomomorphism from A×B to P.
(Actually, as in the proof that the theory of preframes is commutative, we could
simplify the presentation by considering only covers of the form ((xi#yi | i $ I), a#b)
where (xi�|�i�$ I) and (yi | i $ I) are monotone nets in A and B with the same index s
I and with joins a and b. But we shall not have any use for this simplification.) Then the
preframe A#B is that presented as %P | R'. For the rest of this section, a#b will denote
the image of (a, b) under the universal preframe bihomomorphism from A×B to A#B.

The unit of the monoidal structure is the free preframe on one generator; this is
simply the two-element frame 22 = {0, 1}, the generator being the bottom element 0. The
fact that it is a frame and not just a preframe is no accident, as we shall see in a moment.

First, we need a general result on symmetric monoidal categories. This is surely
well-known, although we have not been able to find an explicit reference to it.

Lemma 4.1 Let C be a symmetric monoidal category. Then the category CMon(C) of
commutative monoids (with respect to the tensor product #) in C has finite coproducts,
which are given by # and the unit I.
Proof
First, we observe that CMon(C) is closed under tensor products, in an obvious sense: if
M and N are commutative monoids in C (with multiplications * and units e), then M#N
has multiplication and unit

(M#N)#(M#N) >>"6  (M#M)#(M#M) >>"?#?  M#N
I >>"6  I#I >>"e#e  M#N

Similarly, I carries a unique commutative monoid structure.
Moreover, there are canonical maps



M >>"6  M#I >>"Id#e  M#N
N >>"6  I#N >>"e#Id  M#N

and a codiagonal map from M#M to M given by * itself; it is easy to verify that these
are monoid homomorphisms, and that they define the unit and counit of an adjuction
between # (as a bifunctor from CMon(C) × CMon(C) to CMon(C)) and the diagonal
functor. Hence M#N is the coproduct of M and N in CMon(C); and a similar argument
establishes that I is initial in this category. ]]

The best known application of this Lemma occurs when C is the category of Abelian
groups. It then becomes the assertion that the coproduct of two commutative rings is
(founded on) the tensor product of their additive groups. Interpreted when C is the
category of sets (with its cartesian monoidal structure), it becomes the assertion that
finite products and coproducts coincide in the category of commutative monoids (or in
any full subcategory thereof that is closed under products, such as abelian groups or
semilattices).

Another application of Lemma 4.1 was exploited by Joyal and Tierney [84]. There
they considered frames as commutative monoids in the monoidal category SupLat of
complete join semilattices (their suplattices), the monoid structure being given by finite
meets. Of course, the general commutative monoid is a commutative quantale, not
necessarily a frame; but, as Joyal and Tierney observed, frames may be characterized as
those commutative quantales for which the multiplication is idempotent and the unit is
the top element. These conditions cannot be expressed by commutative diagrams in
SupLat – since the monoidal structure is not Cartesian, there is no diagonal map from
A to A#A, which would be needed to express the idea of idempotency. However, they
do suffice to recover the result (already known, of course, before the work of Joyal and
Tierney – cf. Wigner [79]) that the coproduct of two frames coincides with their tensor
product in SupLat.

Exactly the same arguments apply when we consider frames in relation to preframes.
In fact, we have –

Lemma 4.2

(i) Let A be a frame. Then the binary join map (: A×A " A is a preframe
bihomomorphism, and the induced map from A#A to A gives A the structure
of a commutative monoid in PreFrm.

(ii) A commutative monoid (A, *, e) in PreFrm is (derived in this way from) a
frame iff e(0) / a and *(a#a) = a for all a $ A.

(iii) The category Frm, regarded via (i) as a full subcategory of CMon(PreFrm),
is closed under finite coproducts.

Proof
(i) That ( is a bihomomorphism for finite meets is just the (finite) distributive law;
that it is a bihomomorphism for directed joins is a consequence of the fact that joins are



idempotent and commute with other joins. The rest follows from the fact that join is
associative and commutative, and has the bottom element of A as a unit.
(ii) This is easy, and is exactly like Proposition 1 on p. 21 of Joyal and Tierney [84].
(iii) Let A and B be frames. To verify that A#B, equipped with its commutative
monoid structure, is a frame, we note first that its unit is 0A#0B, which is clearly its
least element (let us write it as 0). Thus we have u*u 8 u*0 = u for all u $ A#B, and it
suffices to verify that u*u / u. But the set

{u $ A#B | u*u / u}

is a sub-preframe of A#B that contains all the generators a#b. ]]

Theorem 4.3  The (underlying preframe of the) coproduct of two frames is the tensor
product of their underlying preframes. ]]

We note in particular that if A and B are frames, then their tensor product in
PreFrm is order isomorphic to their tensor product in SupLat, because both are
isomorphic to the frame coproduct. However, the generators of the two tensor products
are different. If we think of A and B as the open-set lattices of locales X and Y, and of a
and b as corresponding to the open sublocales U and V, then the SupLat generator a#b
is the “open rectangle” U×V & X×Y. However, the PreFrm generators correspond to
the complements of closed rectangles: if we (temporarily) write a b for the PreFrm
generator corresponding to (a,b), to distinguish it from the SupLat generator a#b, then
we have

a b = (a#1B) ( (1A#b)

In other words, a b corresponds to the complement of the closed rectangle
(X\U)�×�(Y\V). Such complements of closed rectangles have been seen before, notably
in the description of the Vietoris locale (Johnstone [85]). (They also make a brief
appearance in the construction of the weak product of locales in Johnstone and Sun [88],
although this seems to be largely coincidental.)

A further useful result, again analogous to one observed by Joyal and Tierney, is

Theorem 4.4 The forgetful functor from Frm to PreFrm creates filtered colimits.
Proof
Consider a diagram of frames (Ai), indexed by some filtered category I, with colimit A
in PreFrm. Since the monoidal structure on PreFrm is closed, A#(–) preserves
colimits, whence we deduce that A#A is the I×I-indexed colimit of the Ai#Aj, and
hence (by filteredness of I) that it is the I-indexed colimit of the Ai#Ai. Thus the
#-monoid structures on the Ai induce a #-monoid structure on A, and arguments
similar to those of Lemma 4.2 (ii) ensure that it is a frame structure. The fact that A,
with this structure, is the colimit of the Ai in CMon(PreFrm) and hence in Frm is
easily verified. ]]



As an application of the last two results, we give what is probably the simplest proof
yet discovered of the Tychonoff theorem for locales (cf. Ehresmann [57], Papert [67],
Dowker and Strauss [76], Johnstone [81], Kr íz  [85], Banaschewski [88], Vermeulen [90],
Coquand [90]). We note, following Banaschewski, that compactness is easily defined for
preframes: a preframe A is compact iff its top element 1 is inaccessible by directed
joins, or, equivalently, iff {1} is a Scott open filter in A. But a subset U & A is a Scott
open filter iff its characteristic function is a preframe homomorphism from A to 22,
from which we deduce –

Lemma 4.5

(i) A tensor product of two compact preframes is compact.
(ii) A colimit of a diagram of compact preframes and injective preframe

homomorphisms is compact.

Proof
(i) Let A and B be compact preframes. The characteristic functions of {1A} and {1B}
induce a preframe homomorphism from A#B to 22#22; but  22#22 6 22, the isomorphisms
being induced by the binary join map from 22×22 to 22. Thus we have a homomorphism h
from A#B to 22 such that h(a#b) = 1 iff either a = 1 or b = 1, i.e. iff a#b is the top
element of A#B. The fact that, for an arbitrary u $ A#B, we have h(u) = 1 iff u = 1,
now follows from the fact that any such u may be reached from the generators a#b by
taking finite meets and directed joins, and h preserves directed joins.
(ii) Let the vertices of the diagram be (Ai | i $ I). Since the transition maps Ai " Aj
in the diagram are all injective, the characteristic functions hi: Ai " 22 of the top
elements of the Ais form a cone under the diagram, and so induce a homomorphism
from its colimit to 22. the fact that this homomorphism is the characteristic function of
the top element is proved as in (i). ]]

For the particular case of coproducts, the result of Lemma 4.5 (ii) is in
Banaschewski’s paper [88], although his proof is different – it involves an explicit
construction of coproducts in PreFrm.

Theorem 4.6 (The Localic Tychonoff Theorem)
A coproduct of compact frames is compact.
Proof
For finite coproducts, this is simply a special case of Lemma 4.5 (i), using Lemma
4.2�(iii). Just as in the case of rings (see, e.g., Bourbaki [70]), we may extend the result
to infinite coproducts by regarding an infinite coproduct as a filtered colimit of finite
coproducts (the transition maps being injective unless one of the factors in the product is
degenerate – in which case the coproduct is degenerate, and so certainly compact), and
using Theorem 4.4 and Lemma 4.5 (ii). ]]

Let us finish this section with an extension of Tychonoff that covers arbitrary Scott
open filters of A and B, not just the case (compactness) when {1} is Scott open.



Proposition 4.7 (cf. Vickers [89], Lemma 6.4.3.)
Let A and B be frames. Then there is an order isomorphism between Scott open

filters of A#B and subsets U & A×B satisfying –

• U is upper closed
• if (a, b) $ U for all a $ S, where S &fin A, then ( S, b) $ U
• if ( .X, b) $ U, where X & A is directed, then (a, b) $ U for some a $ X
• if (a, b) $ U for all b $ T, where T &fin B, then (a, T) $ U
• if (a, .Y) $ U, where Y & B is directed, then (a, b) $ U for some b $ Y

Proof Scott open filters of A#B are just preframe homomorphisms from A#B to the
two-element frame 22. The subsets U described are just the preframe bihomomorphisms
from A×B to 22. ]]

Corollary 4.8 Let A and B be frames, and let F and G be Scott open filters in A and
B. Then there is a Scott open filter H in A#B such that a b $ H iff a $ F or b $ G.
Proof Apply Proposition 4.7 to the set U = {(a, b): a $ F or b $ G}. ]]

This is actually another localic version of Tychonoff’s Theorem, for the following
reason. Let D and E be locales, and let F and G be Scott open filters in @D and @E. By
the Hofmann-Mislove Theorem ([81] – the restriction to the spatial case is unnecessary;
or see Vickers [89], Theorem 8.2.5), these correspond to compact saturated sets CF and
CG of points of D and E, and H corresponds to a set CH of points of D×E.

(x, y) $ CH A 9u $ H. (x, y)  u
A 9a $ A, b $ B. (a $ F or b $ G B (x, y)  a b)
A 9a $ A. (a $ F B (x, y)  a false) and 9b $ B. (b $ G B (x, y) 
false b)
A x $ CF and y $ CG

Hence CH = CF×CG. In other words, the product of compact saturated sets of points of
D and E is still compact.

Although apparently more general than the finite case of Theorem 4.6, Corollary 4.8
could alternatively have been deduced from it using Lemma 3.4 of Johnstone [85] which
enables one to reduce to compact sublocales of A and B.

5. The Preframe Version of the Coverage Theorem

In [82], Proposition II.2.11, Johnstone shows how to construct a frame as the set C-
Idl(P) of “C-ideals” in a meet semilattice P, where C, a “coverage”, is a set of relations
of the form “X covers u” where X & P and u $ P. C must also satisfy certain “meet
stability” properties. It is also shown that C-Idl(P) has the universal properties of

Frm % P (qua meet semilattice) | u / X (whenever X covers u in C) '



(“qua meet semilattice” means that all meet semilattice relations holding in P are to hold
also in the frame being presented.)

Abramsky and Vickers [90] show how this construction has a specific technical
meaning in the contex of sup-lattices. For regardless of whether P is a meet semilattice
or C has the meet stability properties, the same definition of C-ideals leads to

C-Idl(P) 6 SupLat % P (qua poset) | u / X (whenever X covers u in C) '

Hence the content of the result can be seen as being that provided P is a meet
semilattice and C is meet stable, then

Frm % P (qua meet semilattice) | u / X (whenever X covers u in C) '
6 SupLat % P (qua poset) | u / X (whenever X covers u in C) '

This facilitates the definition of sup-lattice homomorphisms out of frames, and is
particularly useful in the work of Abramsky and Vickers, where functions are defined
between frames and quantales. In practice, it is easy to work any frame presentation into
the required form by putting in all finite meets of generators and any extra relations
needed to give meet stability.

This understanding is related to a well-known result from the theory of rings. If R is
a ring and I is a subgroup (of R as an additive group), then, provided that I is an ideal,
we have

Ring % R (qua ring) | r = 0 (whenever r $ I) '
6 Abelian Group % R (qua Abelian Group) | r = 0 (whenever r $ I) '

The purpose of this section is to give an analogous result enabling one to present
frames as preframes, instead of sup-lattices.

Theorem 5.1 The Preframe Version of the Coverage Theorem.
Let P be a poset, and let C be a set of preframe relations of the form

S / .i Si

where the sets S, Si are all finite subsets of P. Let

A1 = PreFrm % P (qua poset) | C '

(Every preframe presentation can be reduced to this form.)
Suppose in addition that

• P is a join semilattice,
• C is join stable, i.e. if S / .i Si is a relation in C, and x $ P, then the

relation

{x(y: y $ S} / .i {x(y: y $ Si}

is also in C.



Then A1 is isomorphic to A2 = Frm % P (qua (-semilattice) | C ', the generators
corresponding under the isomorphism in the obvious way.
Proof
First, we show that A1 is a frame.

0 $ P is bottom in A1, for {a $ A1: a 8 0} is a subpreframe containing the
generators. (Hence there is a preframe homomorphism from A1 to this set which, when
composed with the inclusion, gives the identity map on A1: so the inclusion is onto.)

Next, if x $ P, we can define a preframe endomorphism :x of A1 by y 5" x(y. x 5"
:x is monotone and respects the relations in C, and so defines a preframe
homomorphism ! from A1 to [A1, A1]. Writing aCb for !(a)(b), C is a preframe
bihomomorphism and xCy = (x(y) for x, y $ P. Now,

• b / aCb, i.e. Id / !(a), i.e. y / !(a)(y) for all y $ P: for the set of such a is a
subpreframe containing the generators.

• aCb = bCa. For first, if x $ P then {b: xCb = bCx} is a subpreframe containing
the generators; then, fixing b, {a: aCb = bCa} is a subpreframe containing the
generators.

• aCa = a, {a: aCa = a} being a subpreframe containing the generators. For 1C1 8
1; if aCa = a and bCb = b, then

(a)b)C(a)b) = aCa ) bCb ) aCb ) bCa = a ) b ) aCb = a)b

and if S is a directed set of such elements, then

.S C .S = .{aCb: a, b $ S} = .{cCc: c $ S} = .S

We have now shown that C is a binary join in A1. We might as well write it as (.
( in A1 distributes over ), so A1 is a distributive lattice, and hence a frame; also, the

injection of generators preserves finite joins.
We now know that we can define a frame homomorphism -: A2 " A1 and a

preframe homomorphism 1: A1 " A2, both mapping generators to generators in the
obvious way. - is a preframe homomorphism, so 1;- is the identity on A1. It remains to
show that 1 is a frame homomorphism, after which we know that -;1 is also the
identity. Fixing y $ P, the set {a $ A1: 1(a(y) = 1(a) ( y} is a subpreframe containing
the generators; and then fixing a, the set {b $ A1: 1(a(b) = 1(a) ( 1(b)} is a
subpreframe containing the generators. ]]

This result could in fact have been used in the proof of Theorems 4.3 and 4.4,
though we preferred to put those results in a more general context. We give here
another sample application concerning the upper and lower power locales. These,
decomposing the Vietoris construction into two parts, were first studied as topologies in
Michael [51]. They are also well-known in computer science following the work of
Smyth [78, 83]; see, for instance, Vickers [89].



Suppose D is a locale. Following Vickers [89], we write @D for the corresponding
frame “of opens”, and if f: D " E is a continuous map between locales, we write
@f:�@E�" @D for its inverse image map.

The upper power locale PUD is defined by @PUD = Frm % @D (qua preframe) '.
The lower power locale PLD is defined by @PLD = Frm % @D (qua sup-lattice) '.
If a $ @D, then we write a and a for the corresponding generators of @PUD and

@PLD; so  preserves finite meets and directed joins, while  preserves all joins.

Proposition 5.2 The upper and lower power locale functors commute.
Let D be a locale. Then PUPLD 6 PLPUD.

Proof We define mutually inverse frame homomorphisms

@:: @PLPUD " @PUPLD @!: @PUPLD " @PLPUD

for which @: ( a) = a and @! ( a) = a.
@:: This must be equivalent to a sup-lattice homomorphism from @PUD to @PUPLD
taking a to a. Johnstone’s coverage theorem for frames, i.e. the “sup-lattice
version”, tells us that

@PUD 6 Frm % a (a $ @D qua )-semilattice) |  preserves . '
6 SupLat % a (a $ @D qua poset) |  preserves . '

and a 5" a does indeed preserve directed joins.
@!: This must be equivalent to a preframe homomorphism from @PLD to @PLPUD.
The preframe version of the coverage theorem tells us that

@PLD 6 Frm % a (a $ @D qua (-semilattice) |  preserves . '
6 PreFrm % a (a $ @D qua poset) |  preserves . '

and then, as before, a 5" a preserves directed joins. ]]
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