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Abstract

Various notions of observing and testing processes are placed in a uniform algebraic
framework in which observations are taken as constituting a quantale. General
completeness criteria are stated, and proved in our applications.
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1. Introduction
Our aim in this paper is to present a uniform algebraic framework for the study of
various notions of observing and testing processes, and the equivalences they induce.
Our approach differs from that of Hennessy (1988), in that we emphasize the logical
and lattice-theoretic aspects, and consider a much wider range of equivalences. Also,
our approach yields observational logics and denotational models for each of the
computational situations we study, in a uniform fashion.

Our work is a continuation of Abramsky (1987 a and 1991) and Vickers (1989),
but we expand on the remarks on p. 9 of Vickers (1989) to generalize and enrich the
framework and encompass observations that may change the state of the process
being observed. Algebraically, this corresponds to the passage from frames (also
known as locales or complete Heyting algebras) to quantales (Mulvey 1986, Niefield
and Rosenthal 1988, Rosenthal 1990); logically, to the passage from geometric logic
to a geometric form of Girard’s (1987) linear logic. Semantically, we are taking a
further step towards the rapprochement between operational and denotational
semantics that forms part of the programme of Abramsky (1987 a). Our detailed
work on testing equivalences can also be seen as a continuation of the programme of
Abramsky (1987 b).

The contents of the remainder of the paper are as follows, section by section.

2 @781(2"#+.,"3&3.?+*&",;&/.;)318&.21(&A)",#"318
We discuss how the observational justification of geometric logic and
frames generalizes to quantales when the observations may affect the object
observed, and how the object observed must then take its value in a /.;)31
that includes the different possible states.

3 B"*9?(.),;&.,&A)",#"318
A short historical account of quantales and related ideas.

4 C$1&"003+*"#+.,8&#.&0(.*18818
4.1 Basic transition system semantics
4.2 The subbasic observations and relations involving them

5 './1&#1*$,+*"3+#+18
5.1 Testing and duality
5.2 Coverages
5.3 Coherence
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6 D1";:&8+/)3"#+.,&D'
We develop the theory for this semantics, based on a relatively fine
equivalence, and then show how other coarser ones fit inside it.
6.1 The limited modal logic RS
6.2 The history-free fragment hf
6.3 The Ready Simulation quantale QRS

7 './1&*."(81(&81/",#+*8
7.1 Ready trace RT
7.2 Failure trace FT
7.3 Acceptance trace AT
7.4 Trace T
7.5 Simulation S

8 >)",#"3.+;8
This is a categorical generalization of quantales that can be applied to
semantics where processes are considered to have statically defined types.

9 C:01;&81/",#+*8
9.1 Failures F
9.2 Ready R
9.3 Acceptance A

10 -.,*3);+,?&(1/"(98

6*9,.E31;?1/1,#8

B+73+.?("0$:
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2. Observational logic and modules over quantales
In Abramsky (1987 a and 91) and Vickers (1989) it is argued that propositional
geometric logic (whose only connectives are finite conjunctions and arbitrary
disjunctions) is the logic of finitely observable properties. This idea is conveniently
presented in terms of the #.0.3.?+*"3&8:8#1/8 of Vickers (1989):

Definition 2.1 A #.0.3.?+*"3&8:8#1/ is a structure D = (pt D, , !D) where –

• pt D is a set of 0.+,#8 (to be understood here as denotations of processes)
• !D is a frame of .01,8 – a F("/1 is a complete lattice satisfying the frame

distributive law

a " S =  {a"b: b # S}

for arbitrary subsets S.
• $ pt D × !D is the 8"#+8F"*#+.,&(13"#+.,5 subject to the conditions

x  T (x # pt D)
x  a"b iff x  a and x  b (x # pt D, a, b # !D)
x S iff %a # S. x  a (x # pt D, S $ !D)

If D and E are two topological systems, then a *.,#+,).)8&/"0 from D to E is a
pair f = (pt f, !f) where pt f: pt D & pt E is a function, !f: !E & !D is a frame
homomorphism (preserving finite meets and arbitrary joins), and pt f(x)  a iff x 
!f(a).

Topological systems subsume both #.0.3.?+*"3&80"*185 in which !D $ '(pt D)
with x  a iff x # a, and 3.*"3185 in which pt D is the set of frame homomorphisms
from !D to 22 , with x  a iff x(a) = true.

The idea is that finitely observable properties are closed under finite conjunctions
and arbitrary disjunctions (to verify an infinite disjunction, we need only verify a
single one of the disjuncts), the propositional connectives of ?1./1#(+*&3.?+*5 but not
under the other propositional connectives. These ideas form the basis for a
computational interpretation of topology (since frames are the lattice-theoretic
abstractions of topologies) and the development of “domain theory in logical form”
using the ideas of Stone duality.

It is well known that frames are in fact complete Heyting algebras, but we
consider the non-geometric operations such as infinite meets, implication and
negation to be an accidental part of the structure. We therefore distinguish between
the F+(8#G*3"88 geometric operators, and the other 81*.,;G*3"88 operators of Heyting
algebras. This distinction is reflected technically in the definition of frame
homomorphisms, which are only required to preserve the first-class operations.
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Let us re-examine the axioms for these geometric connectives more closely. The
axioms for meets (other than distributivity over joins) can be presented as follows:

"88.*+"#+2+#:= a " (b " c) = (a " b) " c
),+#&3"E= a " T = a
*.//)#"#+2+#:= a " b = b " a
+;1/0.#1,*1= a " a = a
#.0&3"E= a ( T (i.e. a ) T = T)

(Proof: the first four give the frame a semilattice structure under " and T, and hence
show that these are the binary and nullary meets for an ordering (" defined by a (" b
iff a " b = a. But using in addition the top law and distributivity one can show that a
" b = a iff b = a ) b, and so that (" is the same as the original ordering (. Thus " and
T are binary and nullary meet for the original complete lattice.)

Of these, the first two give a monoid structure under " and T, and we shall leave
these in place. The remaining three, however, incorporate certain assumptions about
testing, and are worth closer scrutiny.

-.//)#"#+2+#: says that the order in which we carry out the observations or tests
is immaterial to the outcome.

H;1/0.#1,*1 says that the number of times we perform a test is immaterial to the
outcome.

The #.0&3"E says that in the situation in which we have observed either a or
nothing (T, the trivial observation), but we don’t know which, we have exactly the
same knowledge as if we had observed nothing. This amounts to saying that all the
possibilities that are consistent with the knowledge that a has been observed are also
consistent with the knowledge that nothing has been observed.

These assumptions are sound provided that we stipulate that *"((:+,?&.)#&",
.781(2"#+.,&.(&#18#&$"8&,.&1FF1*#&.,&#$1&.7I1*#&71+,?&.781(21;&.(&#18#1;% If the object
is conceived as a static, mathematical entity, this stipulation goes without saying; but
if the object is a 0(.*1885&computational or physical, it is open to question. If we
assume that processes have state, and change it as a result of our testing or observing
them – and thereby interacting with them in some fashion – then these assumptions
must be discarded.

Example 2.2 In a labelled transition system, as used extensively in work on the
semantics of concurrency (see, e.g., Milner 1989), the transition p &*  q combines the
observation that p can perform the action * with p changing its state to q.

Thus we are led to the following definitions.

Definition 2.3 (Joyal and Tierney 1984) A 8)0G3"##+*1 is a complete join semilattice.
We write 0 and T for its bottom and top elements.



6 67("/89:&",;&<+*91(8=&>)",#"3185&.781(2"#+.,"3&3.?+*&",;&0(.*188&81/",#+*8

A homomorphism between sup-lattices is a function that preserves all joins.

Of course, a sup-lattice is in fact a complete lattice, but the joins are the first-
class operators, preserved by homomorphisms.

Definition 2.4 A A)",#"31 is a sup-lattice Q equipped with a monoid structure
(Q,�·,�1) and satisfying both complete distributive laws

a · S =  {a·b: b # S}
S · a=  {b·a: b # S}

A homomorphism between quantales is a function that preserves the first-class
operations, namely 1, · and all joins.

The multiplication · can almost always be pronounced “then”. Note that the
identity 1 is to be a genuinely trivial observation under which nothing at all happens.
It does not formalize silent actions such as Milner’s +.

The appropriate generalization of the notion of topological system must allow for
states and their change. Thus instead of a satisfaction 0(1;+*"#1 : X × Q & 22

(where X contains the processes), we need a map

_·_: X × Q & X x·a = “what x changes to when the observation a is made”

However, we also need some structure on X.

Examples 2.5
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z

*

*

fig. 2.1

x

y

z

*

,

fig 2.2

(i) If a transition is non-deterministic, e.g. fig. 2.1, then we want to say
x·*�=�y�)�z.

(ii) Note the special case where the action * is not possible from y: then y·* = 0.
(iii) Even if the system is deterministic, e.g. fig. 2.2, we still want to collect the

results of disjunctive observations: x·(* ) ,) = y ) z.

Thus we are led to:

Definition 2.6 Let Q be a quantale. A J(+?$#K&/.;)31 over Q is a sup-lattice M,
together with a /.;)31&"*#+., _·_: M × Q & M satisfying

• x·1 = x
• x·(a·b) = (x·a)·b
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• x · S =  {x·a: a # S} (S $ Q)
• S · a =  {x·a: x # S} (S $ M)

Let M and N be modules over Q, and let f: M & N be a sup-lattice
homomorphism. f is a /.;)31&$././.(0$+8/ iff f(x·a) = f(x)·a for all x # M, a # Q.

Note that the term “module” is taken from ring theory (based on the analogy
between quantales and rings exploited in Joyal and Tierney (1984)), and is nothing to
do with the idea of modularization in computer programming.

As an immediate example, Q is a module over itself. The action is just
multiplication. More generally, if f: Q0 & Q is a quantale homomorphism, then Q is
a module over Q0 by x·a = x·f(a) (x # Q, a # Q0).

A simple but important fact is that, as Q-module, Q is freely generated by 1: if M
is any Q-module and x # M, then there is a unique module homomorphism from Q
to M that maps 1 to x (and a to x·a).

Example 2.7 Let M be a sup-lattice. The set E of all sup-lattice endomorphisms of M
is a quantale, in which join is defined pointwise and product is composition. For any
quantale Q, right Q-module structures on M are equivalent to quantale
homomorphisms from Q to E.

Left modules are defined similarly, but with the action on the left. The only
difference lies in the order in which multiplicands are applied, so if Q is commutative
then right and left modules amount to the same thing.

We shall now give two families of examples. In the first, which arise from
topology, observations are assumed not to affect the system being observed. All the
same, the module structure is an important one in showing how our knowledge is
changed by the observations we make. In the second family, which is essentially the
theory of automata, we cannot observe anything without changing the system.

Examples 2.8
(i) C.0.3.?+*"3&8:8#1/8
Let D be a topological system.

• M = '(pt D), ordered by set inclusion, is a module over !D, with the action
given by

X·a = {x # X: x  a} = X - extent(a)

This is the 8)780"*1&/.;)31 for D.
We do not expect anything here to change when we observe it. But the

subspace X represents a whole range of possibilities for what is actually in
front of us, and observing a enables us to cut it down to X·a.

• The open subsets form a submodule Mo.
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•  The closed subsets form a quotient module Mc of M under the closure
mapping, so that the action in Mc is defined by

X·a = Cl({x # X: x  a}) = Cl(X - extent(a))

We leave it to the reader to verify that this defines an !D-module structure.

(ii) L.*"318
Let D be a locale. We can define !D-modules by reference to the points as in the
previous examples, but there are some rather more localic constructions.

• We have already remarked that !D, the set of opens for D, is a module over
itself. This is analogous to Mo above, and in fact is isomorphic to it if D is
spatial.

• The opposite lattice to !D, which we write as (!D)^, is also a module over
!D. Let us write x̂ # (!D)^ for the element corresponding to x # !D; then

x̂·a = (a&x)^

where & is the (second-class) Heyting arrow operation in !D. Again, we
leave it to the reader to verify that this makes a module. It is a special case of
the duality theory in Section 5.1.

We can interpret this action in terms of ?)"(",#118% If x̂ is a guarantee
that x won’t be observed, then observing a converts it to a stronger guarantee,
that nothing that meets a in x (i.e. nothing as strong as a&x) will be observed.

• We shall see a localic version of the subspace module in Example 5.1.4.

We now move on to the other family of examples.

Example 2.9 C(",8+#+.,&8:8#1/8
Let Act be a set, of "#./+*&"*#+.,8% A&#(",8+#+.,&8:8#1/ (3"71331;&.21(&Act)&is a

set Proc equipped with a #(",8+#+.,&(13"#+., & $ Proc × Act × Proc. We write –

p &*  q iff (p, *, q) # & (p, q # Proc, * # Act)
p &* iff %q # Proc. p &*  q

For s # Act*, we also define p &s  q by structural induction on s:

p &1  q iff q = p
p &*·s q iff %r # Proc. (p &*  r " r &s  q)

(Here we are writing 1 for the empty list and · for list concatenation, and we are
identifying each element * of Act with the corresponding singleton list. We are
really thinking of Act* in abstract terms as the free monoid generated by the
elements of Act.)
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Let Q = '(Act*), the set of sets of finite sequences of actions. Q is a quantale,
with joins given by unions, and multiplication calculated pointwise:

A · B = {s·t: s # A, t # B}
1 = {1}

If Proc is a transition system over Act, then we can define a Q-module M =
'(Proc), with the module action given by

X·A = {q # Proc: %p # X, s # A. p &s  q}

It’s unfortunate that the word “action” has established different meanings in the
theories of processes and modules; we shall try our best to avoid confusion.

The significance of these examples is that they show that modules over quantales
provide a common generalization of topological spaces – including the principal
structures used in denotational semantics – and labelled transition systems – the basic
structures of operational semantics.

We can say more about '(Act*).

Theorem 2.10

(i) Let S be a monoid. Then '(S), with multiplication defined elementwise, is
the free quantale over the monoid S. (In other words, the construction S�.&
'(S) is a functor from monoids to quantales, left adjoint to the forgetful
functor.)

(ii) Let Act be a set. Then '(Act*) is the free quantale over the set Act.

Proof (i) Let f: S & Q be a monoid homomorphism, with Q a quantale. If f is to
factor via '(S), then it must extend to f(X) = {f(x): x # X} for X $ S; this proves
uniqueness in the universal property. For existence, we must show that this does
indeed define a quantale homomorphism, but this is readily checked.
(ii) This follows from (i), because Act* is the free monoid over Act. ]]

The existence of free quantales justifies us in 0(181,#+,? quantales with
generators and relations, a technique taken from universal algebra and used
extensively for frames in Vickers (1989). We shall use the notation

Qu / G | R 0

for the quantale generated by a set G of ?1,1("#.(85 subject to a set R of (13"#+.,8 on
them (equations between expressions involving the generators).

We shall often work with presentations in which G (or some subset of generators)
is not just a set, but has algebraic structure of its own which we want preserved in the
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quantale being presented. For instance, G may be a frame, hence itself a quantale.
Then we use the notation

Qu / G (qua quantale) | R 0

for the presentation Qu / G | R' 0 in which R' contains the relations from R together
with all relations i ai1·ai2·…·aiki = ( i j aij) that express quantale relations
already holding in G.

On the other hand, we may want only some of the structure of G preserved in the
new quantale. Then we use notation such as Qu / G (qua poset) | R 0 for the
presentation with implicit relations of the form a ) b = b (a ( b in G).

Modules can also be presented by generators and relations.
In presentations, we use the following abbreviations for algebraic theories:

Fr frame
Qu quantale
Qud quantaloid
Q-Mod left module over quantale Q
Mod-Q right module over quantale Q
SupL sup-lattice
SemiL semilattice
Mon monoid

Finally, we look at a particular case of Example 2.7, of quantales of sup-lattice
endomorphisms.

Proposition 2.11 Let X be a set, and let M = 'X be the free sup-lattice on X. The
quantale E of sup-lattice endomorphisms of M is isomorphic to '(X×X), the set of
relations from X to itself, where the unit 1 is equality, and multiplication is relational
composition.

The set of subidentity endomorphisms is a subF("/1 of E.
Proof By freeness, the endomorphisms of M correspond to the functions from X to
'X. Such a function is subidentity iff every x is mapped either to {x} or to Ø, and
hence is determined by the set of elements x mapped to {x}. Union and composition
correspond to union and intersection of these sets, so the subidentity endomorphisms
form a subquantale of commuting idempotents. ]]

Using this, we can deduce –

Proposition 2.12 Let Proc and Act be sets, let Q be the quantale '(Act*) and let M
be the sup-lattice '(Proc). Then there is a bijection between –

• transition system structures on Proc labelled over Act, and
• right Q-module structures on the sup-lattice M.
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Proof
A Q-module structure on M is a quantale homomorphism from Q to E, the set of sup-
lattice endomorphisms of M, which is isomorphic to '(Proc×Proc). Since Q is free,
such a quantale homomorphism is equivalent to a function from Act to
'(Proc×Proc), i.e. a transition system structure on Proc. ]]

We have seen that quantales generalize both topological spaces and transition
systems, and the combination of the two ideas will form the basis of our applications
to processes in Section 4. Example 2.9 is used for the trace theory, and various
refinements of it will yield a whole family of #18#+,?&1A)+2"31,*18 on processes that
have been studied in the literature, in a uniform fashion, as instances of an
algebraically formulated axiomatic framework.
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3. Background on quantales
Although the term A)",#"31 was introduced very recently (Mulvey 1986), these
structures have been studied for some time, in a surprising variety of contexts. The
most topical connection is with Girard’s linear logic (Girard 1987). We can enunciate
the following slogan:

>)",#"318&"(1&#.&3+,1"(&3.?+*&"8&F("/18&"(1&#.&+,#)+#+.,+8#+*&3.?+*%

To see this, recall that linear logic arises by dumping the structural rules for
*.,#("*#+., and #$+,,+,?=

1,�A,�A,�2� �B
1,�A,�2� �B

1,�2� �B
1,�A,�2� �B

while we can also consider non-commutative linear logic (Girard 1989 a), which in
addition dumps 1M*$",?1=

1,�A,�B,�2� �C
1,�B,�A,�2� �C

Algebraically, these three structural rules correspond precisely to the axioms for
idempotence, top and commutativity, which we jettisoned to get quantales. Thus
quantales give an algebraic semantics for non-commutative linear logic (and
commutative quantales do the same for commutative linear logic). We interpret the
additives 3 and & by join and meet, and 4 by the quantale multiplication.

We have the left and right linear implication interpreted as the (18+;)"#+.,
operations

a\b =  {c: a·c ( b} b/a =  {c: c·a ( b}

so that c ( a\b 5 a·c ( b and c ( b/a 5 c·a ( b. (Categorically, since multiplying by
a on the left preserves all joins, it has a right adjoint b |& a\b; similarly for
multiplying on the right.) These coincide precisely when the quantale multiplication
is commutative, yielding an interpretation of linear implication –o.

The .F&*.)(81 operator, !(_), is interpreted in the commutative case by forcing
idempotence and top; we can define !a as the greatest fixpoint of

!a = a " 1 " (!a · !a)

Technically, we are taking the greatest localic conucleus of the quantale (Niefield
and Rosenthal 1988). Lafont (1988) develops a similar interpretation of .F&*.)(81 in
more categorical terms as the cofree commutative comonoid.

Finally, given a commutative quantale Q and an element 6 # Q (“perphood”; this
is not to be confused with the bottom element 0), we can define
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a6 = a –o 6

One then verifies that a |& a66 is a quantic nucleus on Q (Niefield and Rosenthal
1988) and that the induced quotient quantale interprets full linear logic with
involution. (Girard’s phase semantics (e.g. Girard 1987) does this construction in the
case where Q is 'M, the free quantale over a commutative monoid M.)

'./1&0(1*)(8.(8&.F&A)",#"318
The term A)",#"31 was introduced by Mulvey (1986) in connection with his work on
non-commutative C*-algebras: he constructs quantales analogous to the spectra
(which are locales) of commutative C*-algebras.

(Mulvey’s definition does not assume the existence of a unit, 1 – this is reserved
for ),+#"3 quantales. Various slightly different definitions can be found in the
literature, and the notion of quantale homomorphism may also vary.)

The earliest abstract definition we know of (non-unital) quantales is in Ward and
Dilworth (1939). For any commutative ring, the set of its ideals is a quantale – this
gives one of the most important families of examples –, and Ward and Dilworth used
the abstract setting to discuss properties of ideals.

As we have seen in Theorem 2.10, another important class of quantales is that of
the free quantales over monoids. For these, the residuations are defined by

A/B = {c: 7b # B. c·b # A}
B\A = {c: 7b # B. b·c # A}

An obvious example is when the monoid is itself free, the monoid of strings over
some alphabet. Some old work of Lambek (1958) on “categorial grammars” uses
precisely these two notions of implication, / and \. As an example, consider the
sentence “John never works.” Let us start with the fact that “John” is a noun. We
could follow by introducing notions of predicate, verb and adverb, but let us instead
say that “works” is a kind of word that converts nouns into sentences when appended
on the right (perhaps this is the definition of predicate):

works: noun \ sentence

Now we can use a higher order construction to express the idea that “never”
qualifies predicates on the left:

never: (noun \ sentence) / (noun \ sentence)

Hence Lambek’s work is related to non-commutative linear logic.
It is clear also that the * operator of regular algebra, defined on sets of words by

A* =  {An: 0 ( n}
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is definable in the more general context of quantales. Conway (1971) makes this
plain by defining quantales as “standard Kleene algebras”. (However, his
axiomatization on p.27 is incomplete – it’s insufficient to justify his own theorems.
With the extra axiom 8{E} = E, his standard Kleene algebras are equivalent to
quantales.) In particular, for free quantales, Conway’s “derivatives” are linear
implication: 9E/9a = {a}\E, and his “constant parts” compute the of course operator:
o[E] = !E. He uses this notation to state an analogue of Taylor’s Theorem.

Another example is the calculus of relations. Given a set X, the relations on X
form a quantale '(X×X) in which join is union and the product is relational
composition (Proposition 2.11).

x R·S y 5 %z. x R z and z S y
x R/S y 5 7z. (y S z : x R z)
x R\S y 5 7z. (z R x : z S y)

These last two operations have been investigated recently by Hoare and He
Jifeng (1987) as “weakest pre- and post-specifications”. Their notation is different
from Lambek’s. If their ; is seen as the product, then they write Q\R for our R/Q and
vice versa. Alternatively, their operators / and \ mean the same as Lambek’s if the
product is defined by R·S = S;R.

A precursor of linear logic is relevance logic, which dumps the thinning rule.
This has a semilattice semantics, a special case of Girard’s phase semantics. Some
relevant aspects are treated in Dunn (1986).

Joyal and Tierney (1984) have investigated commutative quantales and their
modules, and from their work it is plain that the theory of quantales is in many
respects very similar to that of rings. Readers familiar with ring theory will find this
helpful.
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4. The applications to processes

N%O&B"8+*&#(",8+#+.,&8:8#1/&81/",#+*8
We first map out the family of equivalences we shall consider. We are presently
ignoring termination, divergence and internal – “+” – actions, but, bearing that in
mind, as far as we know the equivalences presented here include all those that have
been proposed to date.

Our quantale methods deal with all these equivalences except bisimulation. After
seeing the complexities of Section 6 (on the Ready Simulation), the reader will
understand why we prefer to postpone a detailed treatment of bisimulation, but in
any case it is by no means clear whether the same methods are applicable.

We can exhibit the following lattice diagram. It is partly inspired by R. van
Glabbeek, whose terminology we follow.

B •

RS •

RT •

R •
• AT

• A

• S

T •

F •

FT •

The top of the lattice represents the F+,18# equivalence (fewest processes
identified), and the bottom, the coarsest.

B: bisimulation equivalence (Milner 1980, Park 1981)
RS: ready-simulation

= 2/3 bisimulation (Larsen and Skou 1989)
= denials equivalence (Bloom, Istrail and Meyer 1988)

S: simulation
RT: ready traces (Baeten, Bergstra and Klop 1985)

= barbed traces (Pnueli 1985)
FT: failure traces

= refusal equivalence (Phillips 1987)
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AT: acceptance traces
R: ready sets (Olderog and Hoare 1986)
F: failures (Brookes, Hoare and Roscoe 1984)

= testing equivalence (Hennessy 1988)
A: acceptances
T: trace equivalence (Hoare 1985)

We recall some definitions.

Definition 4.1.1 Let Proc be a transition system over Act, p # Proc.

traces(p) = {s # Act*: p &s  }
R(p) = {* # Act: p &*  } = traces(p) - Act
F(p) = Act – R(p)
accepts(p) = {(s, X) # Act* × 'fin(Act): %q. (p &s  q " X $ R(q)}
failures(p) = {(s, X) # Act* × 'fin(Act): %q. (p &s  q " X $ F(q)}
readies(p) = {(s, X) # Act* × '(Act): %q. (p &s  q " X = R(q)}
accept-traces(p) = {(X0, *1, …, Xn): %q0, …, qn.

(p = q0 &
*1 q1 &

*2 … &
*n qn

" Xi $fin R(qi) (0 ( i ( n))}
failure-traces(p) = {(X0, *1, …, Xn): %q0, …, qn.

(p = q0 &
*1 q1 &

*2 … &
*n qn

" Xi $fin F(qi) (0 ( i ( n))}
ready-traces(p) = {(X0, *1, …, Xn): %q0, …, qn.

(p = q0 &
*1 q1 &

*2 … &
*n qn

" Xi = R(qi) (0 ( i ( n))}

p ;<T q 5 traces(p) $ traces(q)
p ;<A q 5 accepts(p) $ accepts(q)
p ;<F q 5 failures(p) $ failures(q)
p ;<R q 5 readies(p) $ readies(q)
p ;<AT q 5 accept-traces(p) $ accept-traces(q)
p ;<FT q 5 failure-traces(p) $ failure-traces(q)
p ;<RT q 5 ready-traces(p) $ ready-traces(q)

p ;<S q 5 7p'.(p &*  p' : %q'.(q &*  q' " p' ;<S q'))

p ;<RS q 5 F(p) $ F(q) " 7p'.(p &*  p' : %q'.(q &*  q' " p' ;<RS q'))

Note that all these relations are 0(1.(;1(8 (reflexive and transitive); each preorder
;<E has an associated equivalence ~E defined by
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p ~E q 5 p ;<E q and q ;<E p

Also note that ;<S and ;<RS are defined recursively; the ?(1"#18# fixpoints of the

associated monotone inductive definitions are intended (cf. the definition of strong
bisimulation in Milner (1989)).

(We haven’t defined ;<B; this is 7+8+/)3"#+.,% The preorder is symmetric and so

coincides with ~B. (See Milner 1989.))
An alternative description of these equivalences is furnished by the use of a

modal logic, Hennessy-Milner logic (HML; Hennessy and Milner 1985). The idea is
that two processes are equivalent iff they satisfy the same properties.

Given a set Act of atomic actions *, formulas = of HML have the syntax

= ::= true | false | ="> | =)> | [*]= | /*0=

Given a transition system Proc over Act, a satisfaction relation  between
processes p # Proc and formulas = is defined by

p  true always
p  false never
p  ="> 5 p  = and p  >
p  =)> 5 p  = or p  >

p  [*]= 5 7q. (p &*  q : q  =)

p  /*0= 5 %q. (p &*  q and q  =)

We define a number of sets of formulas of HML (for LR and LRT, we must
assume that Act is finite):

LB – all formulas
LRS – formulas in which [*] occurs only in subformulas of the form [*]false
LS – formulas with no occurrence of [*]
LRT – the smallest class of formulas containing true and such that if = is in LRT

then so also, for each S $ Act (assumed finite), is

/*10…/*m0( ,#S [,]false " ,?S /,0true " =)

LFT – the smallest class of formulas containing true and such that if = is in LFT
then so also are [*]false " = and /*0=

LAT – the smallest class of formulas containing true and such that if = is in LAT
then so also are /*0true " = and /*0=

LR – formulas of the form

/*10…/*m0( ,#S [,]false " ,?S /,0true)

where S $ Act (assumed finite)
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LF – formulas of the form /*10…/*m0( j [,j]false)
LA – formulas of the form /*10…/*m0( j /,j0true)
LT – formulas of the form /*10…/*m0true

The following !.;"3&-$"("*#1(+P"#+.,&C$1.(1/ summarizes some of the known
results relating process equivalences to fragments of HML.

Theorem 4.1.2 Let Act be a finite set, and let Proc be an image-finite transition
system over Act (i.e. {q: p &*  q} is finite for every p # Proc, * # Act). Let E be a
process equivalence in {B, RS, S, RT, FT, AT, R, F, A, T}. Then for all p, q # Proc,

p ;<E q 5 7=#LE.(p  = : q  =)

Proof
B,S: Hennessy and Milner (1985)
RS: Bloom, Istrail and Meyer (1988), Larsen and Skou (1989)
FT: Phillips (1987)
RT,AT: Minor modifications to the argument for FT
F,T: Brookes and Rounds (1983)
R,A: Minor modifications to the argument for F ]]

N%Q C$1&8)77"8+*&.781(2"#+.,8&",;&(13"#+.,8&+,2.32+,?&#$1/
It was suggested in Abramsky (1987 b) that different process equivalences represent
equivalence of behaviour under different notions of how the processes can be tested
or observed. Our algebraic treatment makes this very explicit by formalizing certain
observations as the generators of quantales. On the analogy with topology, where a
generating set of open sets is called a 8)77"8+85 we call our most fundamental
observations 8)77"8+*% Fixing a set Act of process actions *, ,, …, we define the
following observations.

* is the observation that the action * has been performed, along with any
associated change of state. The action may have been initiated by us or by
the process autonomously; the observation is simply that, for whatever
reason, it has happened.

*× is the (1F)8"3 of *, the observation that the process has signalled its inability
to perform *. The process does not change its state, although our state of
knowledge about it changes (improves). This corresponds to the HML
formula [*]false.

*@ is the "**10#",*1 of *, the observation that the process has signalled its
ability to perform *, although it hasn’t done it yet. For instance, we may
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have discovered * on a menu. Again, the process does not change its state.
This corresponds to the HML formula /*0true.

A is the observation that the process has ),;.,1 its last action, returning to the
state it was in before the action was done. Operationally, this represents the
process’s response to our pressing an “oops” button; in Section 6 we shall
see it as the key to reducing a significant amount of our theory to topology.

We shall construct quantales out of various mixtures of these generators. We also
want to make modules M out of transition systems Proc, so we must say how the
subbasic observations act on them. The basic scheme takes M to be '(Proc). We
extend Example 2.9 by defining

{p}·* = {q # Proc: p &*  q}

{p}·*@ = 
 B
C
D{p} if�p�&* �
Ø otherwise

{p}·*× = 
 B
C
D{p} if�¬(p�&* �)�
Ø otherwise

In all cases, this is extended to general subsets of Proc by distributivity over joins.
To implement A, we must take M = '(Proc×Proc*). In the pair (p, ps), p is the

active process and ps, a list of processes, is a return stack. Then our actions are
modified to

{(p, ps)}·* = {(q, p::ps): p &*  q}

{(p, ps)}·*@ = 
 B
C
D{(p,�ps)} if�p�&* �
Ø otherwise

{(p, ps)}·*× = 
 B
C
D{(p,�ps)} if�¬(p�&* �)
Ø otherwise

{(p, nil)}·A = Ø
{(p, q::qs)}·A = {(q, qs)}

(We write “::” for the list “cons” operator.)
Without A, we can forget the return stack and regain the previous module.
In using these subbasics to generate a quantale, we must also specify some

relations to hold between them.
The first relations stem from the fact that the refusals and acceptances are purely

“propositional” in nature. This has two aspects. First, the process does not change its
state when it affords such an observation, =, say, and so we can say that = ( 1. This
means that any transition that could have taken place under = could also have taken
place under 1 – it is no transition at all. Second, =’s use to us lies only in what it tells
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us about the passive process. This means that order and multiplicity of such
observations are immaterial. We now have relations

*× ( 1 (hence *×·*× ( *×)
*× ( *×·*× (hence *×·*× = *×)
*×·,× = ,×·*×

*@ ( 1
*@ ( *@·*@

*@·,@ = ,@·*@

*×·,@ = ,@·*×

On the basis of these we extend our notation: if X $fin Act, then

X× = E {*×: * # X}
X@ = E {*@: * # X}

The property that A returns the process to a previous state tells us that if = is a
“propositional” observation then so is *·=·A. We postpone the detailed description of
this to Section 6, but note for the present that we can define

*@ = *·A

The effect of this is that we can eliminate the generator *@ when * and A are both
present.

Next, we must say more specifically how these observations perform their
intended roles. First, if a process refuses an action, it is not allowed then to do it.

*×·* = 0
*×·*@ = 0

Next, if a process has done *, then it must have been willing to do it.

* ( *@·* (hence * = *@·*)

Again, more complicated considerations apply when A is present.
Finally, a process must always be prepared either to refuse or accept a process.

1 ( *@ ) *× (hence 1 = *@ ) *×)

Proposition 4.2.1 All these relations are respected by the module actions we have
defined.
Proof What this means is that when we interpret the subbasics as sup-lattice
endomorphisms of M (= '(Proc) or '(Proc×Proc*)), they satisfy the relations. This
is routine verification for the actions on singletons, as defined, and then it holds more
generally by distributivity. For instance, take the relation *×·* = 0.
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{p}·*×·* = 
 BF
C
FDØ if�p�&*

{p}·* if�¬(p�&* )
= Ø in either case ]]

This (with Example 2.7) assures us that when we present a quantale Q using a
selection of these generators and relations, we can make a module over Q out of any
transition system labelled over Act. Let us write LC' for the class of these modules
over Q.

At this point, we can define two processes to be equivalent iff they “have the
same capabilities in Q”, i.e.

p ~ q iff 7a # Q. {p}·a G Ø 5 {q}·a G Ø

Our F+(8#&*./031#1,188&*(+#1(+., is then that this equivalence should be some chosen
equivalence E from the list in 4.1.1. This is a rather weak completeness (though there
are cases where we need to assume finiteness of Act for it to be valid) that essentially
says that we have chosen the right set of generators for Q.

Stronger is our 81*.,;&*./031#1,188&*(+#1(+.,5 which says that we have enough
relations. Soundness has already appeared, the idea that if a ( b in Q then we should
have x·a ( x·b for every x in any LTS module; completeness is the converse.

There remains a further step. Inherent in our definition of equivalence is the idea
that the /1",+,? of a process p is the set of its “capabilities”, those a in Q for which
{p}·a G Ø. By pursuing this idea, we shall construct out of Q a semantic domain for
processes. The crucial question is when two elements of Q are equivalent as process
capabilities: in other words, given a and b in Q, when do we have that for every
process p, {p}·a G Ø�iff {p}·b G Ø? We approach this through the preorder (', a (' b
meaning “if a process can do a then it can also do b”:

a (' b iff 7x # M # LTS. (x·a G Ø : x·b G Ø)

Here are some examples. (i)-(iv) are quite general, the rest are specific to our
context with processes.

(i) if a ( b, then a (' b
(ii) a (' 1
(iii) if ai (' b for all i in some indexing set, then i ai (' b
(iv) if a (' b then c·a (' c·b

(v) b (' * ) *×·b
(vi) *@ (' * (' *@

It’s important to understand that the corresponding equivalence relation =', i.e. ('
- H', is not a quantale congruence, and we could not have included the primed
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relations in the presentation of Q. Intuitively, the difference between ( and (' is that
( “constrains the processes both before and after”: if a ( b and p &a  q (by which we
mean q # {p}·a), then p &b  q. On the other hand, if a (' b and p &a  q, then all we
know is that p &b  q' F.(&8./1 q'. In a sense, ( takes care to respect the ;:,"/+*8 of
the transitions, whereas (' is more 8#"#+* – it is about properties of individual
processes, what they can and cannot do.

Technically, the problem is seen as the one-sidedness of example (iv) above: a�('
b does ,.# necessarily imply a·c (' b·c. (For instance, * (' 1, but *·, (/ ' , as one can
see by considering a transition system p &*  q &,  r.) However, it is clear from the rest
that Q' = Q/=' is a 31F#&/.;)31 over Q, and in fact a left module homomorphic image
of Q. Our #$+(;&*./031#1,188&*(+#1(+., is that the relations we give for (' (together
with example (ii) above, which forces 1 to be top) are sufficient to present Q' as a left
module homomorphic image of Q. We shall usually write j: Q & Q' for the natural
homomorphism. Then Q' is generated by j(1) (with j(a) = a·j(1)), so we require

Q' I Q-Mod / j(1) | j(a) ( j(1) (a # Q)

 JF
K
FLj(a)�(�j(*)�)�j(*×·a)

j(*)�(�j(*@)
j(*@)�(�j(*)
:

 as required 0

From the definition of Q', it is clear that for each x # M # LTS we have a sup-
lattice homomorphism from Q' to 22, mapping j(a) to T iff x·a G 0. The set of these

homomorphisms (which we write Q'^ ) is our semantic domain for processes, and in
fact if we pick out the homomorphisms that arise from x’s of the form {p}, then we
can make them into a “master” transition system that is fully abstract in the sense that
equivalence is just equality. Quite apart from any interest of its own, this is also a
crucial step in our proofs of third completeness.

')//"(:
We now give an overview of our programme of using the algebraic framework of
modules over quantales to analyse a process equivalence E. We set out the
programme for the simpler cases when E is RT, AT, FT or T; for the others, certain
modifications are made.

We assume that E includes a preorder ;<E on any transition system Proc over Act,

and proceed in the following steps.
First we analyse E as arising from some combination of atomic observations. Let

the quantale Q (or QE) be generated from these subbasic observations subject to the
relevant relations, and let Q' (or Q'E) be the left Q-module homomorphic image



!"#$%&'#()*#%&+,&-./0)#1(&'*+1,*1 (1993), 2.3%&45&00%&161-227 23

presented using the relevant primed relations. For each transition system Proc, we
can define a Q-module structure on M = '(Proc).

We can now encapsulate what we need to show that Q, together with the
homomorphism j: Q & Q', indeed fully captures E in three *./031#1,188&*(+#1(+"=

R+(8#&*./031#1,188&*(+#1(+.,= First, we show that if p and q are elements of a
transition system Proc, then

p ;<E q 5 7a#Q.({p}·a G Ø : {q}·a G Ø)

This shows that the quantale characterizes the equivalence E.

'1*.,;&*./031#1,188&*(+#1(+.,= Next, we show that our “axiomatization” of the
observational logic of E by the generators and relations presenting Q was
indeed complete. This is the statement:

7a, b # Q. (a ( b M 7x # M # LTS. x·a ( x·b)

Algebraically, this is the statement that the modules of LTS are I.+,#3:
F"+#$F)3 over Q.

C$+(;&*./031#1,188&*(+#1(+.,= Finally, following the idea of the First Criterion, we
note that each element a of Q can be thought of as an observable property of
processes, satisfied by p iff {p}·a G Ø. This suggests a preorder on Q:

a (' b iff 7x # M # LTS. (x·a G Ø : x·b G Ø)

The Third Completeness Criterion is that a (' b iff j(a) ( j(b). We can use
this axiomatization of (' to build back a process model from the quantale
itself, and this is F)33:&"78#("*# with respect to ;<E in the sense that ~E

coincides with equality in the model.
What we shall see is that as we perform this construction in various

specific cases, it yields various ;1,.#"#+.,"3 process models, presented in
the literature in fairly ad hoc fashion (e.g. failures, failure traces, etc), thus
confirming our unification of the operational and denotational approaches.

We summarize in a table the different semantics we treat, and the generators and
relations that they use. For brevity, we write the following for certain blocks of
relations:

“*× propositional”: *× ( 1
*× ( *×·*×

*×·,× = ,×·*×

“*@ propositional” is similar.
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'1/",#+*8 S1,1("#+,? D13"#+.,8&F.(&( D13"#+.,8&F.(&(T
8)77"8+*8 (include a (' 1)

T – Trace *
F – Failures *, *×, *× propositional •·X× (' *)•·*×·X× (2)

(Testing equivalence) • (1) 1 (' •
FT – Failure trace *, *× *× propositional s (' * ) *×·s (2)

(Refusal equivalence) *×·* = 0
A – Acceptance *, *@, *@ propositional •·*@ =' *

• (1) 1 (' •
AT – Acceptance trace *, *@ *@ propositional *@ (' *

* ( *@·*
R – Ready *, *@, *×, *@ propositional •·*@ =' *

• (1) *× propositional 1 (' •
*×·,@ = ,@·*×

*×·*@ = 0
1 ( *@ ) �*×

RT – Ready trace *, *@, *× *@ propositional *@ (' *
* ( *@·*
*× propositional
*×·,@ = ,@·*×

*×·*@ = 0
1 ( *@ ) �*×

S – Simulation *, A (3)

RS – Ready simulation *, *×, A (3)

(2/3 Bisimulation, *×·* = 0
Denials equivalence) 1 ( *·A)�*×

(1) The failure, acceptance and ready semantics have the property that
propositional observations come right at the end, and cannot be followed by
actions. Our treatment uses a categorical generalization, Sections 8 and 9, in
which there are two #:018 of process, live (and active) and dead (but subject
to postmortem observation). • (“death”, symbolized by a bullet) is the
observation that a live process has changed into a dead one.

(2) X× means a product of refusals ,×, s means a product of refusals ,× and
actions ,.

(3) In the simulation and ready simulation semantics, which use the “undo”
observation A, quite complicated propositional observations can be
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constructed of the form *·…·A. These are required to be commuting
subidentity idempotents. Details of the relations required are given in
Section�6.3.
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5. Some technicalities

U%O&C18#+,?&",;&;)"3+#:
We first summarize the duality theory for modules over quantales. This is well-
known and is covered – at least for commutative quantales – in Joyal and Tierney
(1984).

First, if M is any sup-lattice then we write M̂, the ;)"3 of M, for the opposite
lattice (still a sup-lattice); and if x # M we write x̂ for x treated as an element of M̂.
Furthermore, if f: M & N is a sup-lattice homomorphism, then f has a right adjoint g:
N & M that preserves meets and hence can be considered a sup-lattice
homomorphism f̂ : N̂ & M̂:

f̂ (ŷ) = ( {x: f(x) ( y})^

In fact, ^ gives an order isomorphism between sup-lattice homomorphisms from M
to N, and those from N̂ to M̂.

Note that elements of M̂ are equivalent to sup-lattice homomorphisms
from 22 to M̂ (0 must map to 0, and T can map to anything) and hence to sup-lattice
homomorphisms from M to 22, which we view as “tests” on elements of M.

Proposition 5.1.1 Let f: M & N and g: N & L be sup-lattice homomorphisms.

(i) x̂(y) = 0 iff y ( x (x, y # M, so x̂: M & 22)

(ii) f̂ (v)(x) = v(f(x)) (x # M, v # N̂, so v: N & 22)

(iii) M̂̂ = M and f̂̂  = f
(iv) (f;g)^ = ĝ; f̂
(v) f is onto iff f̂  is 1-1.

Proof (i)-(iv) are easily checked; we shall prove (v).
:: Suppose f̂ (v) = f̂ (v'). For any y # N we can find x such that y = f(x), and then

v(y) = v(f(x)) = (f̂ (v))(x) = ( f̂ (v'))(x) = v'(f(x)) = v'(y)

Therefore, v = v'.
M: We show that if f is 1-1 then f̂  is onto, and then use (iii). If x # M, then for all z
# M

x̂(z) = 0 5 z ( x 5 f(z) ( f(x)
5 f̂ ((f(x))^)(z) = (f(x))^(f(z)) = 0

Hence x̂ = f̂ ((f(x))^) and f̂  is onto. ]]
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Definition 5.1.2 Let Q be a quantale.
Let M be a 31F# module over Q. Its dual M̂ is a (+?$# Q-module by:

(u·a)(x) = u(a·x) (u # M̂, a # Q, x # M)

(Any a # Q gives a sup-lattice endomorphism of M, and hence a dual sup-lattice
endomorphism of M̂. It acts on the opposite side because of the contravariance in
5.1.1 (iv).)

Note that if f is a homomorphism of (left) Q-modules, then f̂  is a homomorphism
of right Q-modules.

Part (v) of 5.1.1 tells us that quotient modules of M correspond to submodules of
M̂. This is a natural development of the ideas of #18#+,?&1A)+2"31,*1 presented in
Hennessy and Plotkin (1987), where tests are understood as homomorphisms of
finitary join semilattices. Each element of M̂ can be thought of as a test on the
elements of M for which x passes u iff u(x) = T. A subset S of M̂ gives rise naturally
to a preorder on M,

x ( y iff 7u # S. (u(x) = T : u(y) = T)

The equivalence corresponding to this preorder is a sup-lattice congruence, and so
defines a quotient sup-lattice. We can replace S by the sub-sup-lattice it generates in
M̂, without changing the preorder. Finally, if S is a submodule of M̂, then the
quotient sup-lattice of M is a quotient module.

Example 5.1.3 ')73.*"318
Let A be a frame. It is not hard to show, using commutativity, that the frame
homomorphic images of A are the same as the A-module homomorphic images of A,
and hence correspond to the A-submodules of Â. These are the subsets S of A that
are closed under arbitrary meets, and for which if x # S and a # A, then a&x # S;
these are precisely the 8)73.*"318 of A as described by Johnstone (1982) (or see
Vickers 1989).

Example 5.1.4 C$1&8)73.*"31&/.;)31 (cf. Example 2.8)
Let D be a locale. N(!D) is the frame obtained by adjoining to !D complements ac

for every a�#�!D, and the frame homomorphism to N(!D) from !D makes it an
!D-module. Hence N(!D)^, which is isomorphic to the set of sublocales of D, is
also an !D-module. If a # !D, then, in N(!D)^, â and aĉ are (1801*#+213: the closed
and open sublocales corresponding to a.

The dual homomorphism makes (!D)^ a homomorphic image of N(!D)^, and
this is the analogue of what in spatial terms gives the closure of a subspace (see
Example 2.8).
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We can also show that the function a .& aĉ makes !D a submodule of N(!D)^,
i.e. that (a"b)c^ = aĉ·b. For aĉ·b = ĉ, where c = {e"fc: b"e"fc ( ac}, but

b"e"fc ( ac 5 b"e"a ( f

so

c = {e"(b"e"a)c: e # !D} = {e"(b"a)c: e # !D} = (a"b)c

Example 5.1.5 @)(&/"+,&0(.?("//1
Suppose Q is a quantale, and M a right Q-module. We can define a 31F# Q-module
homomorphism from Q to M̂ by mapping 1 to 0̂, i.e. a .& a·0̂, i.e.

a .& (x .& 0 iff x·a = 0)

This dualizes to give a right Q-module homomorphism CapM: M & Q̂,

CapM(x)(a) = 0 iff x·a = 0

We think of Cap(x) (we shall usually omit the subscript M) as showing the
*"0"7+3+#+18 of x, the a’s that x “can do” (x·a G 0).

Viewing Q̂ as Qop, we have that Cap(x) = (Ann(x))^, where Ann(x), the
",,+$+3"#.( of x in Q, is {a # Q: x·a = 0}.

From the Cap homomorphisms, we get a notion of equivalence on elements of Q-
modules, for we can define x <~ y iff Cap(x) ( Cap(y) – “anything x can do, so can
y”. In other words, for all a in Q, if y·a = 0 then x·a = 0. Note that every a in Q is a
join of products of generators, so we get Cap(x) ( Cap(y) iff for every product s of
generators, if y·s = 0 then x·s = 0.

In our contexts, M will usually be of the form 'Proc, where Proc is a transition
system. However, Q will vary, giving different orders on processes. Our first
completeness for each Q will be that the induced order should be the same as some
specified order on processes. Often, first completeness is trivial: for in many
semantics, the capability (or meaning) of a process is defined to be a set of possible
behaviours. We find that the behaviours correspond to products of generators for the
quantale, and then a behaviour s is possible for a process iff {p}·s G Ø.

Now, let j: Q & Q' be a surjective 31F# Q-module homomorphism. (To present
such a Q' as left Q-module, you need a single generator j(1), and some relations of
the form a·j(1) ( b·j(1).) Depending on M, the homomorphism from Q to M̂ that
maps 1 to 0̂ may factor via j and Q' – what we need to show is that if a·j(1) ( b·j(1) is
a presenting relation for Q', then a·0̂ ( b·0̂ in M̂, i.e. for all x # M, if x·a G 0 then x·b
G 0 – “if x can do a, then it can do b”.

(Note that the relations a·j(1) ( j(1), or, more generally, a·b·j(1) (�a·j(1), are
automatically respected for arbitrary M. When we present our modules Q', we take
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these relations a·j(1) ( j(1) as understood, and possibly present some more, a·j(1) (
b·j(1), in the form “a (' b”.)

If this homomorphism does factor via Q', j(a) .& a·0̂, then we get a dual
homomorphism from M to Q'^ , x .& (j(a) .& 0 iff x·a =0). Q'^  is a right submodule of
Q̂, so this map is essentially Cap with restricted target.

We aim with each process semantics to capture the Q'^  that is large enough to
contain each image Cap(M) for M = 'Proc, but no larger – in other words, it’s the
submodule N ( Q̂ generated by those images. Because each Cap(M) is a submodule,
the elements of N are joins of elements of Cap(M)’s. Now let j': Q & N̂ be the dual
of the inclusion N ( Q̂. Then

j'(a) ( j'(b) 5 7n # N. (n(b) = 0 : n(a) = 0)
5 7Proc. 7S $ Proc. (Cap(S)(b) = 0 : Cap(S)(a) = 0)
5 7Proc. 7S $ Proc. (S·b = Ø : S·a = Ø)
5 7Proc. 7p # Proc. ({p}·b = Ø : {p}·a = Ø) (*)

Hence our third completeness criterion will be that, for j: Q & Q', j(a) ( j(b) iff (*)
holds.

U%Q&-.21("?18
When a frame is presented by generators and relations, it is well-known that every
element can be written as a join of finite meets of generators. Hence, if the generators
are closed under finite meets, every element is a join of generators and so can be
represented by the set of generators less than it.

Now the relations can be written so that each takes the form X ( Y for sets X
and Y of generators, and this is equivalent to the set of relations x ( Y (x # X).
Then, by replacing Y by U = {x"y: y # Y}, we can bring the relation to the form x =

U.
Johnstone (1982), in his -.21("?1&C$1.(1/5 uses this idea to represent the

elements of the frame precisely as sets of generators:

Consider a presentation

A = Fr / S (qua meet semilattice) | U = x (U –| x in C) 0

where –

• S is a meet semilattice
• “qua meet semilattice” means that the finite meets in S are to be preserved in A
• C $ S × 'S; we write U –| x in C (U *.21(8 x) if (x, U) # C
• If U –| x then u ( x for all u # U
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• C is a *.21("?1 in the following sense, that if U –| x and y # S then {u"y: u #
U} –| x"y

Then A is isomorphic to the set C-Idl(S) of -G+;1"38 of S, those lower closed
subsets I of S such that if U –| x and U $ I, then x # I.

There is something else that is not brought out in Johnstone’s account. If S is any
0.81#5 and C is ",: set of cover relations, coverage or not, such that if U –| x in C
then x is an upper bound for U, then C-Idl(S) can be defined in the usual way; it is
not hard to show that it satisfies

C-Idl(S) = SupL / S (qua poset) | U = x (U –| x in C) 0

Thus the content of the coverage theorem is that certain presentations of frames can
be converted directly into presentations of sup-lattices, and it enables us to define
sup-lattice homomorphisms from abstractly presented frames into sup-lattices. This
is a useful trick when we have quantales and modules around.

There is a good analogue from the algebra of rings. If R is an Abelian group and I
is a subgroup, then the quotient group, constructed concretely as the set of cosets of
I, is presentable as

R/I = Group / R (qua group) | x = 0 (x # I) 0

If it happens that R is a (+,?5&and I an +;1"35 then the very same construction makes a
quotient (+,?5 presentable as

R/I = Ring / R (qua ring) | x = 0 (x # I) 0

The coverage theorem generalizes to quantales and modules, and we shall make
extensive use of it.

Definition 5.2.1 Let S be a monoid.
A *.21(&(13"#+., on S is a pair U –| x (“U *.21(8 x”) where x # S, U $ S.
A *.21("?1 on S is a set C of cover relations such that

(U –| x in C and y, z # S) : {yuz: u # U} –| yxz in C

A -G+;1"3 in S is a subset I $ S such that if U –| x is in C and U $ I, then x # I.
We write C-Idl(S) for the set of C-ideals in S.
If U $ S, then we write C-/U0 for the C-ideal generated by U, i.e. the intersection

of all the C-ideals containing U.
Let Q be a quantale. A monoid homomorphism f: S & Q #(",8F.(/8&*.21(8&#.

I.+,8 (with respect to C) iff

f(x) (  {f(u): u # U} whenever U –| x in C
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Note that although we still use Johnstone’s language here, there are three related
changes in meaning:

• For a cover relation U –| x, we do not require x to be an upper bound. (Of
course, we couldn’t anyway, because S is not ordered.)

• C-ideals are not required to be lower closed.
• In Theorem 5.2.2 (below), C-Idl(S) is generated by S qua set, not qua poset.

Theorem 5.2.2 Let S be a set, and C a set of cover relations on it (C need not be a
coverage in any sense here). Then C-Idl(S) can be presented as

SupL / S (qua set) | U H x (U –| x in C) 0

The injection of generators is s .& C-/{s}0.
Proof
Let M be a sup-lattice, and let f: S & M be a function respecting the relations: if U –|
x in C, then {f(s): s # U} H f(x).

If f factors via a sup-lattice homomorphism f': C-Idl(S) & M, then it must be
defined by

f'(I) = f'( {C-/{s}0: s # I}) = {f(s): s # I}

This proves uniqueness.
For existence, we must show that f' defined thus preserves joins and makes

f'(C-/{s}0) = f(s).

Lemma 5.2.2.1 If T $ S, then {f(s): s # T} = {f(s): s # C-/T0}.
Proof
( is clear. For H, let a # M be the LHS, and let J = {s # S: f(s) ( a}. J is a C-ideal
containing T so s # C-/T0 : f(s) ( a. ]]

Returning to the proof of Theorem 5.2.2, clearly f'(C-/{s}0) = f(s). If IN is a C-
ideal for each N # O, then

f'( N IN) = {f(s): s # N IN} = { {f(s): s # IN}: N # O}
= {f'(IN): N # O}

In other words, f' preserves joins. ]] ]]

Theorem 5.2.3 Let S be a monoid and C a coverage on it. Then C-Idl(S) is a
quantale, and it can be presented as

Qu / S (qua monoid) | U H x (U –| x in C) 0

The injection of generators is again s .& C-/{s}0.
Proof
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We now forget the concrete description of C-Idl(S), and treat it as being ;1F+,1; by
the presentation in Theorem 5.2.2.

Fix s # S. We map S & C-Idl(S) by t .& s·t. If U –| x is in C, then so also is
{s·t:�t�# U} –| s·x, and so {s·t: t # U} H s·x: hence we get a sup-lattice
homomorphism from C-Idl(S) to itself, T .& {s·t: t # T}. We now have a
function ·: S×C-Idl(S) & C-Idl(S) that distributes over joins on the right.

Now fix a # C-Idl(S). The function s .& s·a similarly respects the relations, for
suppose U –| x in C and a = T.

{s·a: s # U} = { {s·t: t # T}: s # U} = { {s·t: s # U}: t # T}
H {x·t: t # T} = x·a

Hence we get a binary multiplication on C-Idl(S) that extends the multiplication on S
and distributes over joins on both sides.

Now 1· T = {1·t: t # T} = T and similarly ( T)·1 = T, so 1 (i.e. the unit
of S considered as a generator of C-Idl(S), i.e. C-/{1}0) is a unit.

Also, · is associative, for

( T1 · T2) · T3 = {t1·t2: t1 # T1, t2 # T2} · T3
= {t1·t2·t3: t1 # T1, t2 # T2, t3 # T3} = … = T1 · ( T2 · T3)

This proves that C-Idl(S) is a quantale.
As for the universal property, let Q be a quantale, and f: S & Q a monoid

homomorphism that respects the relations. There is a unique sup-lattice
homomorphism f': C-Idl(S) & Q extending this. Then f'(1) = f(1) = 1, and

f'( T1 · T2) = f'( {t1·t2: t1 # T1, t2 # T2})
= {f(t1·t2): t1 # T1, t2 # T2} = {f(t1)·f(t2): t1 # T1, t2 # T2}
= {f(t1): t1 # T1}· {f(t2): t2 # T2} = f'( T1) · f'( T2)

Hence f' is a quantale homomorphism. ]]

Let us repeat: under the hypotheses of Theorem 5.2.3,

Qu / S (qua monoid) | U H x (U –| x in C) 0
I SupL / S (qua set) | U H x (U –| x in C) 0

An arbitrary presentation Qu / G | R 0 can be constructed by a coverage on G*,
the free monoid on G. Each relation in R can be expressed in the form

N#O sN = µ#P tµ (sN, tµ # G*)

i.e. sN ( µ tµ and tµ ( N sN. The corresponding cover relations generate a
coverage C, comprising

{u·tµ·v: µ # P} –| u·sN·v
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{u·sN·v: N # O} –| u·tµ·v

for all u, v # G*, and then Qu / G | R 0 is isomorphic to C-Idl(G*).

U%4&-.$1(1,*1
We use in a number of places the properties of spectral locales, i.e. locales D for
which !D is *.$1(1,# in the following equivalent senses:

(i) !D can be presented without using infinite joins in the relations.
(ii) The compact opens K!D are closed under finitary meets (note that compact

elements are always closed under finitary joins; hence K!D is a sublattice
of !D), and every open is the directed join of the compact opens below it.

(iii) !D is the ideal completion of a distributive lattice.

Moreover, in a presentation as in (i), the generators and their finite meets are all
compact. Further details may be found in, e.g., Johnstone (1982) or Vickers (1989).
The most important property is that spectral locales are spatial.

Similar results hold, and with essentially the same proofs, for quantales. Let us
define notions analogous to quantales and modules, but without infinitary joins:

• A F+,+#"(:&A)",#"31 is a set equipped with both a join semilattice structure and
a monoid structure, multiplication distributing over finite joins.

• If Q is a finitary quantale, then a (left) /.;)31 M over Q is a join semilattice
equipped with an action: Q×M & M, with all the obvious laws holding.

Theorem 5.3.1 The following properties of a quantale Q are equivalent.

(i) Q can be presented without using infinite joins in the relations. (For such a
presentation, the generators and their products are compact in Q.)

(ii) The compact elements KQ of Q are closed under products, and every
element of Q is the directed join of the compact elements below it.

(iii) Q is the ideal completion of a finitary quantale.
Proof
The proof is essentially the same as for frames. The important steps are as follows.
First, if Q0 is a finitary quantale, then Idl(Q0) is a quantale and in fact it is the free
quantale over Q0. Secondly, if Q I Qu /G | R0 is a quantale presentation that doesn’t
mention infinitary joins, then it can also be used to present a finitary quantale Q0 I
FinQu /G | R0. Then Q I Idl(Q0). (i) : (iii) is now immediate, and (iii) : (i) follows
by taking a finitary quantale presentation of KQ and using it to present Q qua
quantale. (ii) 5 (iii) is clear from the standard theory of ideal completions. ]]

Definition 5.3.2 Q is *.$1(1,# if it satisfies the equivalent conditions of the
Theorem.
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V.#1&W each quantale we present for the process semantics is coherent, and any
product of generators is compact.

Theorem 5.3.3 Let Q be a coherent quantale, and let M be a left (or right) module
over it. Then the following conditions on M are equivalent.

(i) M can be presented, qua Q-module, without using infinite joins or non-
compact elements of Q in the relations. (For such a presentation, the
generators are compact in M.)

(ii) The compact elements KM of M are closed under the actions of KQ, and
every element of M is the directed join of the compact elements below it.

(iii) M is the ideal completion of a module over KQ.

Proof – Completely analogous. ]]

Definition 5.3.4 M is *.$1(1,# if it satisfies the equivalent conditions of the
Theorem.

V.#1&W Let Q be one of the quantales we present for process semantics. For each one,
we also present a left Q-module Q', a module homomorphic image of Q by a
homomorphism j: Q & Q'. Q' is generated by a single element j(1), and can be
presented using relations a·j(1) ( j(1) (where it suffices for a to be a product of
generators of Q) and certain other relations of the form stated in 5.3.3 (i). It follows
that Q' is coherent, and if a is a product of generators in Q then j(a) is compact. We
shall use this fact extensively.
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6 Ready simulation RS
The key idea is that the structure of QRS can be seen as analogous to that of
polynomial rings. Any polynomial is a sum of monomials, each being a coefficient
multiplied by a power (the ;1?(11 of the monomial) of the indeterminate; any
element of QRS is a join of “monomials”, products of generators, which we shall
now explain.

*× and *·A are “propositional” in nature in the sense that they observe properties
of a process without (in the end) changing it. More generally, so are products of these
(propositional conjunction) and those of the form *·=·A (which observes /*0= in
Hennessy-Milner logic) where = is propositional. In fact, we can always undo the
actions of an observation to discover a property of the original process without
changing it. These propositional observations constitute an important subF("/1 of
QRS.

* and A, on the other hand, are “transformational” in the sense that they almost
certainly change the process.

Given any product x of generators *, A and *×, we can eliminate its
propositional parts by crossing out all *×s and then, repeatedly, all occurrences of
*·A. What is left at the end is the “pure transformational part” of the original x, and it
will be of the form Ae·s where s # Act*. We call this the ;1?(11 of x; x had
propositional products (jointly playing the role of coefficient) interpolated between
the symbols of its degree.

An important property of the degree is that it is representation invariant. If the
relations of QRS allow us to rewrite x as y, then y is a join of products with the same
degree as x.

Let us call a join of products of degree g a /.,./+"3 of degree g, and write
QRS(g) for the set of them, which is a sub-sup-lattice of QRS. Then every element of
QRS can be written uniquely as a join of monomials of different degrees:

QRS I Eg QRS(g)

Moreover, multiplication respects this decomposition in the sense that

QRS(g)·QRS(h) $ QRS(degree g·h)

This ?(";1; structure of QRS is crucial, because each QRS(g) is a coherent frame
(hence a quantale, though not a subquantale of QRS), so that QRS is also a frame with
spatial locale (though frame meet is not the quantale product). The spatiality helps in
proving our completeness results. The graded structure is proved by presenting QRS
by a coverage in which all the products of generators occurring in a given cover
relation have the same degree. This allows us to conclude that as a sup-lattice, QRS is
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a coproduct of sup-lattices (and coproducts of sup-lattices are also products), one for
each degree.

Q'RS has a similar graded structure. As far as capabilities go, an observation x of
degree Ae·s is equivalent to x·Alength s (i.e. undo all the actions), which has degree
Ae. In fact, it turns out that

Q'RS I Ee QRS(Ae)

In our development, we find it convenient first to study QRS(1), the frame of
“propositional” observations. (“1” here is A0·1, the identity element in the monoid of
degrees.) This turns out to be isomorphic to a frame !DRS, which we study in 6.1,
which arises from the fragment LRS of Hennessy-Milner logic (using *×, /*0, " and

). (The corresponding locale DRS is spatial, so it is perfectly in order to think of it
as a topological space.) These observations are properties that can be applied to
processes from arbitrary transition systems, so an arbitrary process p can be
considered to denote a point [[p]]  of the locale. But the points can be made into a
transition system by

p &*  q iff 7=. (q = : p  /*0=)

and this /"8#1(&#(",8+#+.,&8:8#1/&is in some sense characteristic for RS. It is thus
possible to think of DRS as being a semantic domain for processes, although
(because we have not accounted for divergence) it has no bottom and the topology is
not the Scott topology.

In 6.2 we study Qhf, the part of QRS generated by monomials whose degrees do
not contain A – they are in Act*. This part is thought of as “history-free” (hf) in the
sense that the observations do not assume anything to be on the return stack. The
LTS modules can therefore be of the simple form 'Proc, not '(Proc×Proc*). Q'hf
is the frame QRS(1), i.e. !DRS. The corresponding preorder on processes is ;<RS, but
we do not consider Qhf a full observational analysis of ;<RS because it does not

“explain how to observe /*0”. (In QRS /*0= is *·=·A.)
Although for these reasons we see Qhf as unsatisfactory from an observational

point of view, we still feel it worthwhile to give a full treatment of it. First, it
prepares the reader for the techniques (6.3) used for RS by presenting the same
methods in a simpler setting; and, second, it will be mathematically useful when we
come to the other history-free fragments (RT, FT, AT and T) in Section 7.

The first completeness result requires a restriction (“image closedness”) to the
transition systems, as would be expected from the theory of HML.

The second completeness result for Qhf relies on a proof that it has the graded
structure described above. As for the third completeness result, the quotient module
Q'hf is isomorphic to !DRS: this is because an element of Q'hf is supposed to
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represent abstractly an observation on processes p, “p·a G 0” where a # Qhf, and
these are in fact the same properties of processes as the RS propositions in !DRS. It
follows that Q̂'hf is isomorphic to the set of closed subsets of DRS, and in fact the
capability homomorphism Cap: 'Proc & Q̂'hf maps X to the closure of {[[p]] :�p�#
X}. Third completeness follows when one takes Proc to be the master transition
system.

In 6.3 we construct QRS by including the “undo” observation A, and the results
are similar but more complicated. Degrees now must include A’s, and Q'RS is the
frame of opens for a locale of stacks of points from DRS.

X%O&C$1&3+/+#1;&/.;"3&3.?+*&D'
Recall that Hennessy-Milner logic, HML, is a propositional logic of processes that
uses finite conjunctions and disjunctions, and, for each action * # Act, two
modalities /*0 (“possibly after * …”) and [*] (“necessarily after * …”). When
applied to a process p, /*0 = is interpreted as meaning that there is some q such that p
&*  q and q satisfies =, while [*] = means that for every q such that p &*  q, q satisfies
=. We shall study a fragment D' that uses [*] false (written as *×), and /*0.

This has been studied previously by Larsen and Skou (1989) and Bloom, Istrail
and Meyer (1988) under the name of “limited modal logic”; but since much of our
work here can be seen as investigating limitations on the modal logic, we shall give a
more precise name RS: it is the fragment of HML corresponding to ready simulation.
In Section 7.5 we shall introduce the logic S corresponding to simulation, and
implicit in the treatments of ready traces, failure traces, acceptance traces and traces,
are the fragments of HML (no longer modal) corresponding to them.

Definition 6.1.1 An D'GF("/1&(over some tacitly understood set Act) is a frame A
equipped with constants *× and unary operations /*0 (* # Act) such that –

• /*0 preserves all joins
• *× is the complement of /*0true.

A homomorphism of RS-frames is a frame homomorphism that also preserves *×

and /*0.

This describes an infinitary algebraic theory, RS-Fr: its operators are the frame
operators (joins of arbitrary arity and finite meets), *× and /*0.

Definition 6.1.2 An D'G3.*"31 is a locale whose frame of opens is equipped with an
RS-frame structure.

An D'G/"0 between RS-locales is a continuous map whose inverse image part is
an RS-frame homomorphism.
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Example 6.1.3 Let Proc be a transition system over Act. Then considered as a
discrete space (i.e. with frame 'Proc), it is an RS-locale. For we can define

*× = {p # Proc: ¬(p &*  )}

/*0 S = {p # Proc: %q # S. p &*  q} (S # 'Proc)

Note that, rather trivially, the transition structure can be recovered from the RS-
locale structure: for

p &*  q 5 7S # 'Proc. (q # S : p # /*0 S)

(For M, take S = {q}.) We extend this to arbitrary RS-locales.

Definition 6.1.4 Let D be an RS-locale. Then pt D is a transition system over Act,
with

p &*  q iff 7= # !D. (q  = : p  /*0 =)

Proposition 6.1.5 Let D be a spatial RS-locale.

(i) For each point p, the set p·* = {q: p &*  q} is closed.

(ii) p /*0 = 5 %q # pt D. (q  = " p &*  q)

p  *× 5 ¬(p &*  )
In other words, the 1M#1,# homomorphism from !D to '(pt D),

extent(=) being {p # pt D: p  =}, is an RS-frame homomorphism.
Proof
(i) Suppose q # Cl(p·*). If q  =, then = meets p·*: so we can find q'  = with

p�&* �q', and so p  /*0 =. Hence p &*  q and q # p·*.
(ii) Consider the first equivalence. M is easy. For :, suppose the RHS does not
hold: then for all q = we have ¬(p \O\AC(&,*) q), so there is some > such that q

 > but p�/ �/*0 >. Hence = (  {>: p�/ �/*0 >}; then /*0= (  {/*0>: p�/ �/*0 >},
so p�/ �/*0 =.

The second equivalence follows because p  *× 5 p�/ �/*0 true. ]]

These results provide the link between transition systems and RS-locales; and the
RS-frames give us an algebraic (or logical) handle on them.

Theorem 6.1.6 There is a final RS-locale DRS. It is spectral, and each operation /*0
preserves compactness.
Proof We construct an initial RS-frame !DRS.

First, consider the theory RSDL of “RS-distributive lattices”, defined by
forgetting the possibility of infinite joins in RS-frames. An RSDL is a distributive
lattice, equipped with *× and /*0, such *× is the complement of /*0true and /*0
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preserves all F+,+#1 joins. We show that the forgetful functor from RS-Fr to RSDL
has a left adjoint, namely the ideal completion functor (see, for example, Vickers
1989, chapter 9).

Let K be an RSDL. The unary operation /*0 on K, preserving finite joins, extends
uniquely to a unary operation on Idl(K) preserving all joins, so Idl(K) is an RS-
frame. Now let A be another, with f': K & A an RSDL homomorphism. As a
distributive lattice homomorphism this extends uniquely to a frame homomorphism
f:�Idl(K) & A, which, it is not hard to show, is an RS-frame homomorphism.

RSDL is a finitary algebraic theory, so ordinary universal algebra shows that
there is an initial RSDL. Let us call it K!DRS, in other words we are defining DRS
to be its spectrum. By construction, DRS is spectral and /*0 preserves compactness.
Then !DRS = Idl(K!DRS) is the initial RS-frame and DRS is the final RS-locale.

]]

Corollary 6.1.7 Let Proc be a transition system. Then Proc can be made into a
topological system D = (Proc, !DRS) satisfying conditions (ii) of Proposition 6.1.5
(p # Proc, = # !DRS).

In other words, the opens of DRS can be treated as observations on the processes
of ",: transition system.

Or – in other words, any process p in any transition system denotes a point [[p]]  of
DRS: we think of the points of DRS as being abstract processes.
Proof The discrete space Proc is an RS-locale (Example 6.1.3), so there is a unique
RS-frame homomorphism from !DRS to 'Proc. This makes D a topological
system. The rest comes from the definition of *× and /*0 in 'Proc. ]]

Now consider 6.1.7 in the case where Proc = pt DRS. By 6.1.5 (ii), the unique
RS-frame homomorphism from !DRS to 'Proc is the extent homomorphism, and it
follows that the topological system constructed in 6.1.7 is the original locale DRS.
Note also that if p # pt DRS, then [[p]] = p.

We call pt DRS the JD'GK&/"8#1(&#(",8+#+.,&8:8#1/ for Act.
A set X of points affords the observation = iff {x # X: x  =} G Ø, i.e. iff

X� � =. This implies that we cannot distinguish between X and its closure, so the
more general elements of modules '(Proc) denote closed subsets of DRS, i.e. points
of PL DRS, where PL is the lower(or “Hoare”) power locale construction, defined by

!PL D = Fr / a (a # !D) |  preserves all joins 0 I Fr / !D (qua SupL) 0

For any transition system Proc, the topological system (Proc, !DRS) induces a
topology on Proc, and an associated specialization preorder .

Definition 6.1.8 Let Proc be a transition system over Act. Proc is +/"?1&*3.81; (with
respect to RS) iff for all p # Proc and * # Act, the set
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p·* = {q # Proc. p &*  q}

satisfies Q(p·*) = Cl(p·*): its downward closure in the specialization preorder  is
equal to its topological closure. (Equivalently, Q(p·*) is topologically closed.)

The following proposition is the core of first completeness for RS, which will be
proved in Theorem 6.3.11.

Proposition 6.1.9 Let Proc be an image closed transition system over Act.
Then for all p, q # Proc,

p  q 5  p ;<RS q

Proof
We use the usual analysis of the definition (4.1.1) of ;<RS, defining an operation G

on relations on Proc by

p G(R) q iff F(p) $ F(q) " 7p'.(p &*  p' : %q'.(q &*  q' " p' R q'))

Then ;<RS is the largest relation R satisfying R $ G(R).
Even without image closedness, we can show that ;<RS is contained in . For let

U be the set

{= # !DRS: 7p, q # Proc. (p ;<RS q " p = : q  =)}

U contains every refusal *×, and is closed under finite meets and arbitrary joins. Also

if = # U then /*0= # U, for suppose p ;<RS q and p /*0= . Then for some p', p &*  p'

and p'  =, so for some q', q�&* �q' and p' ;<RS q', so q'  =, and q  /*0=. It follows
that U is the whole of !DRS, so for all = in !DRS, if p ;<RS q and p = then q  =.

We next show that  $ G( ). Suppose p  q; certainly F(p) $ F(q). Suppose

p�&*  p'. If p'  = # !DRS, then p  /*0= and so also q  /*0=. Therefore there is
some q' # q·* such that q'  =. It follows that p' is in the topological closure of q·*,
but by assumption this coincides with the lower closure. Hence there is some q' #
q·* such that p'  q', as required. ]]

Note two particularly important cases. In any topological space, the lower closure
of a finite set of points is closed, and so the theorem can be applied to any +/"?1G
F+,+#1 transition system, one in which p·* is always finite. Secondly, it can be applied
when p·* is always closed, because a closed set is its own lower closure; and this
covers by definition the case of the master transition system pt DRS.
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X%Q&C$1&$+8#.(:GF(11&F("?/1,#&$F
We saw in the previous paragraph how to view the opens of DRS as observations on
an arbitrary transition system Proc; hence the frame !DRS, A)" quantale, acts on a
module M = 'Proc:

X·= = {p # X: p  =}

(It is routine to check that this makes M a right !DRS module.) We now investigate
the quantale that incorporates both these observations and the elements of Act.

Definition 6.2.1 The $+8#.(:GF(11&A)",#"31 (over Act) is

Qhf = Qu /!DRS (qua quantale), Act |
*·= = /*0=·*·= 0

We also define the left quotient module Q'hf of Qhf·T by

/*0= (' *·=

Recall how this means a presentation of Q'hf as left Qhf module:

Q'hf = Qhf-Mod / Qhf (qua Qhf-Mod) |
a ( 1 (a # Qhf)
/*0= ( *·= (= # !DRS, * �# Act) 0

Note that in Q'hf we actually have equality between /*0= and *·=, for

*·= = /*0=·*·= (' /*0=

Theorem 6.2.2
(i) !DRS is a left Qhf module isomorphic to Q'hf.
(ii) The corresponding quotient map t: Qhf & !DRS is then given by

=0·*1·=1·…·*n·=n .& =0 " /*10(=1 " /*20( … /*n0=n)…))

(Note: as a left module over itself, Qhf is freely generated by 1. Hence as a
left Qhf-module homomorphism, t is uniquely determined by its mapping 1
to true.)

(iii) If p is a process in any transition system Proc labelled over Act, and a # Qhf,
then {p}·a G Ø 5 p  t(a).

Proof
(i) The action of Qhf on !DRS is defined by

=·> = = " >
*·> = /*0>

Some checking needs to be done here. What we are doing is using the universal
property of Qhf (deriving from its presentation by generators and relations) to define
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a quantale homomorphism from Qhf to the sup-lattice endomorphism quantale of
!DRS. The checks, all routine, are –

• =·– and *·– are both sup-lattice endomorphisms (they preserve all joins)
• that “qua quantale” is respected for the generators of Qhf that come from
!DRS, i.e.

true·> = >
(=1 " =2)·> = =1·(=2·>)
( i =i)·> = i (=i·>)

• that the other relations are respected, i.e.

*·(=·>) = /*0=·(*·(=·>))

We now define maps in this diagram:

Qhf

Q'hf D! RS

j
i

t

k

i;j

Here (and by “module” we mean “left Qhf module”),

• i is the injection of generators. It is a A)",#"31 homomorphism.
• t is the module homomorphism determined by 1 .& true (using the fact that

Qhf is freely generated by 1).
• j is the module quotient homomorphism.
• k is the module homomorphism determined by t = j;k. This exists because t

respects the relations given in presenting Q'hf.

Now although i is only a quantale homomorphism, it is nonetheless the case that i;j is
a module homomorphism: for (we need check only the actions of the generators of
Qhf, and we shall also be more explicit than usual about i)

*·(i;j)(>) = j(*·i(>)) = j(i(/*0>)) = (i;j)(*·>)
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i(=)·(i;j)(>) = j(i(=)·i(>)) = j(i(=">)) = (i;j)(i(=)·>)

We show that the module homomorphisms k and i;j are mutually inverse.
Since j is onto, to show that k;i;j = Id it suffices to show that j;k;i;j = j; and for

that, because Qhf is freely generated as a module by 1, it suffices to show that 1 has
the same image under the two homomorphisms.

(j;k;i;j)(1) = (t;i;j)(1) = (i;j)(true) = j(1)

To show that i;j;k = Id, we have

(i;j;k)(>) = (i;t)(>) = t(i(>)·1) = i(>)·true = >"true = >

(ii) is clear from the module action on !DRS.
(iii) By definition of the action of !DRS on M = 'Proc, p  t(a) iff {p}·i(t(a)) G Ø;
and because j(i(t(a))) = (j;k;i;j)(a) = j(a), and using the arguments of Example 5.1.5,
this occurs iff {p}·a G Ø. ]]

Immediately, we have –

Theorem 6.2.3 hf satisfies the third completeness criterion.
Proof
Let Proc be the master transition system pt DRS, and let M = 'Proc.

Suppose we have a, b # Qhf with t(a) (/  t(b). By spatiality of DRS we can find a
point x # Proc that satisfies t(a) but not t(b), so by (iii) of the above theorem we have
{x}·a G Ø, but {x}·b = Ø. ]]

Another consequence of Theorem 6.2.2 is (using spatiality of DRS) that Q̂'hf is
isomorphic to the sup-lattice of closed subsets of DRS, i.e. elements of (!DRS)op.
We can therefore consider the capability maps CapRS: M & Q̂'hf as giving each
element of M a meaning as a closed set of points of DRS.

Proposition 6.2.4 Let Proc be a transition system labelled over Act, and let M =
'Proc. Then CapRS: M & (!DRS)op can be defined by

Cap(X) = Cl({[[p]] : p # X})

Proof First note that Cap preserves joins, so it suffices to show that Cap({p}) is
Cl({[[p]]}) for each p in Proc.

Considering Cl({[[p]]}) as an element of (!DRS)^ $ Q̂hf, and writing t as in 6.2.2
(ii), we have

Cl({[[p]]})(a) = 0 5 t(a) ( Cl({[[p]]})c = {=#!DRS: p /  =}
5 p /  t(a)
5 {p}·a = Ø by 6.2.2 (iii)



44 67("/89:&",;&<+*91(8=&>)",#"3185&.781(2"#+.,"3&3.?+*&",;&0(.*188&81/",#+*8

5 Cap({p})(a) = 0 by definition of Cap ]]

Theorem 6.2.5 (1st completeness for hf)
Let Proc be an image closed transition system over Act.

Then for all p, q # Proc,

p  q 5  Caphf({p}) ( Caphf({q}) 5 p ;<RS q

Proof This just extends Proposition 6.1.9 in the light of Proposition 6.2.4:

Caphf({p}) ( Caphf({q}) 5 [[p]]   [[q]] 5 p  q ]]

'1*.,;&*./031#1,188&F.(&$F
We now concentrate on the graded structure of Qhf and second completeness. For
each s = *1·…·*n # Act* we first define a locale D(s), a sublocale of the product
locale (DRS)n+1, whose points are the sequences (p0, … , pn) of points of DRS such

that for each 0 ( i < n we have pi�&
*i+1�pi+1. The generating opens are symbols =(i) (=

# !DRS, 0 ( i ( n) with

(p0, … , pn)  =(i) iff pi  =

Definition 6.2.6 Let s = *1·…·*n # Act*. Define the locale D(s) by

!D(s) = Fr /=(i) (= # !DRS, 0 ( i ( n) |
for each i, the frame relations in !DRS are preserved in the =(i)’s,
=(i+1) ( (/*i+10=)(i) 0

The locale D(s) is spectral, for, using the fact that /*0 preserves compactness, it
can also be presented as

!D(s) = Fr /=(i) (= # K!DRS, 0 ( i ( n) |
for each i, the lattice relations in K!DRS are preserved in the =(i)’s,
=(i+1) ( (/*i+10=)(i) 0

Anticipating the next proposition, given =i # !DRS (0 ( i ( n), we shall write
=0·*1·…·*n·=n for  {(=i)(i)} in !D(s). This is the image of the open =04…4=n of
(DRS)n+1 and so such opens form a basis for D(s). (The symbol “4” is used here, as
in Vickers (1989), to represent what in spatial terms would be the Cartesian product
of open sets.)

Proposition 6.2.7 Qhf I Es#Act* !D(s) as sup-lattices.
Proof First, note that the category of sup-lattices has 7+0(.;)*#8= a Cartesian product
A×B is also a coproduct, with injections

a .& (a, 0) b .& (0, b)
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 (See MacLane (1971). For sup-lattices, this works for infinitary products too. See
Joyal and Tierney (1984).) Therefore, to get the homomorphism from right to left,
we define its restrictions to the !D(s)’s.

If s = *1·…·*n, then from the coverage theorem for frames we have

 !D(s) I Fr / (!DRS)n+1 (qua meet semilattice) |
(=0, …, S, …, =n) (  {(=0, …, =, …, =n): = # S}
(=0, …, =i, =i+1, …, =n) ( (=0, …, =i"/*i+10=i+1, =i+1, …, =n)��0

 I SupL / (!DRS)n+1 (qua poset) | the same relations 0

This maps into Qhf by (=0, …, =n) .& =0·*1·…·*n·=n (as suggested by our notation
introduced above).

For the morphism from left to right, note that the RHS is actually a quantale.
Given s and t = ,1·…·,m in Act*, we have a pairing from !D(s)4!D(t) to !D(s·t),

(=0·*1·…·*n·=n, >0·,1·…·,m·>m)
.& =0·*1·…·*n·(=n">0)·,1·…·,m·>m

and this extends by distributivity to a quantale multiplication on the whole biproduct.
Now we can map from left to right by

= .& = # !D(1)

* .& true·*·true # !D(*)

It is not hard to show that these two maps are mutually inverse. ]]

We call the elements of !D(s) /.,./+"385 of ;1?(11 s and say that Qhf is ?(";1;
over Act*.

Corollary 6.2.8 As a sup-lattice, Qhf is a frame. We write D(*) for the corresponding
locale; it is the disjoint sum (union) 8s#Act* D(s) and is spatial. ]]

Theorem 6.2.9 hf satisfies the second completeness criterion.
Proof Consider the transition system Proc, the disjoint union of pt DRS and pt�D(*),
with

((p0, p1, …, pn), *·s) &*  ((p1, …, pn), s)

((p0, …, pn), s) &*  q provided p0 &*  q in DRS

p &*  q provided p &*  q in DRS

We think of the points of D(*) as being pairs

(p, s) = ((p0, p1, …, pn), *1·…·*n)

where s # Act* and p # pt D(s) (see Definition 6.2.6 for a concrete description). The
idea is that among these points, (p, s) should be thought of as p0 with its transitions
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closely constrained to follow the *i’s to pn but satisfying all the observations in
!DRS that p0 does. It is to make this second part work that we need the separate
copy of pt DRS. There are in effect two copies of each point p of DRS: once “bald”,
and once as a pair ((p),�1).

Next, before continuing the proof of the Theorem, we prove two lemmas.

Lemma 6.2.9.1

(i) [[p]]  = p
(ii) [[(p, s)]]  = p0

Proof (i) is clear from the remarks after Corollary 6.1.7.
(ii): Let U be the subframe of !DRS comprising those elements = such that for all
(p,�s), (p, s)  = iff p0  =. We show that U is an RS-subframe of !DRS, and hence
is the whole of !DRS.

Suppose = # U; we show /*0= # U. If p0 &*  q  = then (p, s) &*  q  = and

conversely. If (p, s) &*  (p', s')  =, then p0 &*  p1  =.
The refusal *× is in U because it is the complement of /*0true. ]]

Lemma 6.2.9.2 If a �# !D(s), then

(pn, 1) # {(p, s)}·a 5 p  a

Proof – by induction on n; the base case follows from Lemma 6.2.9.1 (ii).
Without loss of generality, we can assume a is a product of generators, not just a

join of such:

a = =0·*1·…·*n·=n

Let p', s' and a' be defined by p' = (p1, …, pn) and so on. Then

(pn, 1) # {(p, s)}·a 5 {(p, s)}·=0 G Ø & (pn, 1) # {(p', s')}·a'
5 p0  =0 & p'  a' (by 6.2.9.1 (ii) and by induction)
5 p  a ]]

We continue the proof of the Theorem 6.2.9 by showing that M = 'Proc is
faithful over Qhf. Suppose a (/  b in Qhf. Then for some s = *1·…·*n, we have as (/  bs
where as and bs are the components in !D(s), so by spatiality there is some p =
(p0,�p1, …, pn) # pt D(s) satisfying as but not bs. Then (pn, 1) is in {(p, s)}·as but not
{(p, s)}·bs, so {(p, s)}·as (/  {(p, s)}·bs. ]] ]]

We conjecture that the module '(pt DRS) is also faithful for Qhf.
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X%4&C$1&D1";:&'+/)3"#+.,&A)",#"31&>D'
The structure and completeness results for QRS are handled in a similar way to those
for Qhf, so we shall be less detailed. The main process-theoretic issues seem to be
covered by hf; what RS does is to explain the generating observations in Qhf, which
include the whole system of opens for !DRS, in terms of the much simpler
generators using A.

Definition 6.3.1 Let Act be a set, and let E be the alphabet {*, *×: * # Act}R{A}.
Certain elements of E* are defined to be 7"3",*1;5 inductively as follows:

• 1, the empty string, is balanced.
• *× is balanced for each *.
• if s and t are balanced, then so is s·t
• if s is balanced, then so is *·s·A for each *.

Definition 6.3.2 Let Act be a set. The quantale Q = QRS(Act) is presented by

Q = Qu / *, *×, A (* # Act) |
s·s = s ( 1 if s is balanced
s·t = t·s if s and t are balanced
*×·* = 0
*·s ( *·s·A·* if s is balanced (hence *·s = *·s·A·*·s)
1 ( *·A ) �*× (hence equality here) 0

No extra relations are needed for the testing preorder: Q' is just Q·T.

Proposition 6.3.3
QRS I Qu / Qhf (qua quantale), A | *·=·A = /*0= (= # !DRS)0

Proof
The relations of QRS imply that the joins of balanced products of generators form a
subframe of QRS, and moreover it is an RS-frame with /*0= = *·=·A. There is
therefore a unique RS-frame homomorphism to it from !DRS. Together with the
assignments *�.& * and A .& A, this defines quantale homorphisms first from Qhf to
QRS, and next from the RHS to QRS.

The inverse homomorphism is more obvious. ]]

Given a transition system Proc, we have already seen in Section 4 how to define
the right QRS-module structure on M = '(Proc × Proc*).

We next show how, like Qhf, QRS can be graded. This time the degrees are
elements not of Act*, but of the monoid

GRS = Mon / Act, A | *·A = 1 (* # Act) 0
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One can show that the elements of this can be reduced uniquely to the form Ae·s
where s # Act*, and (writing |s| for the length of s)

Ae·s·Af·t = 
 B
C
DAe+f–|s|·t if�f�H�|s|
Ae·s'·t if�s�=�s'·s"�where�|s"|�=�f

Proposition 6.3.4 QRS I EeH0,s#Act* !(DRSe × D(s)) as sup-lattices.
If g = Ae·s # GRS, then we shall write DRS(g) for DRSe × D(s).

Proof
From the coverage theorem for frames, we have

 !DRS(g) I SupL / (!DRS)e+n+1 (qua poset) |
(=0, …, S, …, =n) (  {(=0, …, =, …, =n): = # S}
(=0, …, =i, =i+1, …, =n) ( (=0, …, =i"/*i+1–e0=i+1, =i+1, …, =n)

(e ( i < e+n)��0

This maps into QRS by

(=0, …, =e+n) .& =0·A·…·A·=e·*1·…·*n·=e+n

For the morphism from left to right, again the RHS can be made a quantale.
Given g = Ae·*1·…·*m and h = Af·,1·…·,n in GRS, we have an associative pairing
µg,h�:!DRS(g)4!DRS(h) & !DRS(g·h), defined by

µg,h((=0, …, =e+m), (>0, …, >f+n))

= 

 BF
C
FD

(=0,�…,�=e+m">0,�…,�>f+n) if�f�=�0�or�m�=�0
�
µg',h'((=0,�…,�=e+m–1"/*m0(=e+m">0)),�(>1,�…,�>f+n))

otherwise,�where g'�=�Ae·*1·…·*m–1
h'�=�Af–1·,1·…·,n

and this extends by distributivity to a quantale multiplication on the whole biproduct.
Now we can map from left to right by

*× .& (*×) # !DRS(1)

* .& (true, true) # !DRS(*)

A .& (true, true) # !DRS(A)

It is not hard to show that these two maps are mutually inverse. ]]

We call the elements of !DRS(g) /.,./+"385 of ;1?(11 g.

Theorem 6.3.5 RS satisfies the second completeness criterion.
Proof
Suppose a (/  b in QRS; without loss of generality we can assume they are monomials,
of degree g = Ae·s. Then there is a point of DRS(g) satisfying a but not b; it is of the

form (p0, …, pe, …, pe+|s|) where pe+i�&
*i+1�pe+i+1 (0 ( i < |s|). Let Proc be the
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transition system constructed in Theorem 6.2.9 (second completeness for hf). The
corresponding module for RS is '(Proc×Proc*), i.e. the set of sets of non-empty
lists of processes from Proc. Let P be the list (p0, …, pe–1, (p', s)), where pi (0 ( i <
e) is the “bald” process pi in Proc, and p' is the sequence (pe, …, pe+|s|). Then for all
c�#�!DRS(g) we have P  c iff (pe+|s|) # P·c, so P·a (/  P·b. ]]

To deal with third completeness, we look more closely at the structure of Q'RS.
Just as with Q'hf, it is the set of opens for a locale, this time that of non-empty finite
and infinite lists of points of DRS.

Definition 6.3.6 The locale DRS+S is defined by

!DRS+S = Fr / =(k) (= # !(lift DRS) (qua frame); k H 0) |
(lift true)(0) = true
(lift true)(k+1) ( (lift true)(k) 0

(Recall that if D is a locale, then lift D, or D6, has the points of D together with a
new bottom 6, and the opens of D together with a new true. Strictly, if = is an open
in D, then the corresponding open in lift D is written 3+F# =; but we shall normally
only bother with this in the uniquely necessary case when = = true. lift�true is
satisfied by all points except the new 6.)

Proposition 6.3.7 DRS+S is spectral, and its points are the sequences (pk)kH0 where
either pk = 6 or pk is a point of DRS, p0 G 6, and if pk = 6 then pk+1 = 6. (Hence the
points are the finite and infinite non-empty lists of points of DRS.) ]]

Proposition 6.3.8 Q'RS I !DRS+S as sup-lattices.
Proof
We first give a coverage presentation for !DRS+S, which will enable us to show that
it is a left QRS-module.

Let S be the set

S = {(=k)kH0 # (!lift DRS)S:
=0 ( lift true
7k. (=k+1 ( lift true : =k ( lift true)
%k. =k = true }

This is a meet semilattice. It inherits its binary meets from (!lift DRS)S, and its
top element is (lift true, true, …). We can now use the coverage theorem for frames
to show that

!DRS+S I SupL / S (qua poset) |
(…,  X, …) (  {(…, =, …): = # X} 0
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This presentation as a 8)0G3"##+*1 enables us to define a left QRS-action on
!DRS+S as follows.

>·(=0, =1, …) = (>"=0, =1, …) (> # !DRS)
*·(=0, =1, =2, …) = (/*0=0"=1, =2, …)
A·(=0, =1, =2, …) = (lift true, =0, =1, =2, …)

We can now define a left QRS module homomorphism t from QRS itself to
!DRS+S by mapping 1 to true, and this obviously factors via Q'RS as t = j;t' where j:
QRS & Q'RS is the quotient map. t' is an isomorphism. For its inverse f, consider an
element (=i) of S, where =i ( lift true if i ( k, and =i = true otherwise. Then f((=i)) =
j(=0·A·…·A·=k). The sup-lattice presentation of !DRS+S enables us to see that this
defines a sup-lattice morphism, and then it is readily checked that it is a left QRS
module homomorphism and that it is inverse to t'. ]]

Proposition 6.3.9 The elements of Q̂'RS can be identified with the closed sets of
points of DRS+S. ]]

Theorem 6.3.10 RS satisfies the third completeness criterion.
Proof
Let M = '(Proc×Proc*) be the QRS-module derived from the master transition
system Proc = pt DRS. We can then identify Proc×Proc* with a subset of pt�DRS+S,
and Q̂'RS with the set of closed sets in DRS+S, and just as in Theorem 6.2.4 we show
that the homomorphism Cap coincides with topological closure.

If F is a closed subset of pt DRS+S, then it is the topological closure of
F-(Proc×Proc*), i.e. the set of finite lists in F. Hence if a, b # QRS with j(a) (/  j(b)
then, considering j(a)^ and j(b)^ as closed sets, there is a finite list x # Proc×Proc* in
j(b)^–j(a)^. {x}·b = Ø but {x}·a G Ø. ]]

Theorem 6.3.11 Let Proc be an image closed transition system, and p, q # Proc.
Then

CapRS(p) ( CapRS(q) 5 p ;<RS q

Proof [[p]]  and [[q]] can be considered singleton sequences of points of DRS, i.e. points
of DRS+S in the image of the continuous map (-): DRS & DRS+S; but this has a
postinverse, Head: DRS+S & DRS, and it follows that

CapRS(p) ( CapRS(q) 5 Caphf(p) ( Caphf(q)

We can now use Theorem 6.2.5. ]]
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7. Some coarser semantics
We discuss next the following semantics: Ready Trace (RT), Failure Trace (FT),
Acceptance Trace (AT), Trace (T) and Simulation (S). S is somewhat different from
the others, in that it uses the “undo” mechanism A and hence needs a return stack in
the same way as RS did. Its treatment (Section 7.5) follows the same lines as RS, but
more simply. The other four (RT, FT, AT and T) bear many resemblances to each
other, so let us first sketch their treatment.

'1*.,;&*./031#1,188 is handled by comparison with hf (which was one reason for
treating hf fully). We have a system of quantale homomorphisms:

QT

QAT

QFT

QRT Qhf

and the main burden of the proof is to show that they are all 1-1. Given (Theorem
6.2.9) that hf has second completeness, we can then use the following simple lemma:

Lemma 7.0.1 Let Q be a quantale, and let M be a jointly faithful class of right Q-
modules (so when Q is one of our quantales for process semantics and M is the class
of modules arising from transition systems, this is second completeness).

Let R be a subquantale of Q. All Q-modules are then also R-modules; let MR be
the class of right R-modules corresponding to the Q-modules in M.

Then MR is jointly faithful for R.
Proof
Suppose a (/  b in R: then a (/  b in Q, so there are some M # M and some x # M such
that x·a (/  x·b. Then M # MR. ]]

To prove that the quantale homomorphisms are 1-1, we show that the quantales
are actually graded subquantales of Qhf. Recall that the elements of Qhf of degree s
(a sequence of elements of Act) formed a coherent frame !D(s). We use localic
methods to show that the elements of Q (QRT, QFT, etc.) of degree s form a subF("/1
of !D(s).

For #$+(;&*./031#1,1885 the proofs run by constructing transitions systems out of Q'^ .
What we should like to say is that Q'^  is a transition system with x &*  y iff y ( x·*,
and then if j(a) (/  j(b) (writing j for the natural homomorphism from Q to Q'), then x
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= j(b)^ is a process that can do a but not b. This is nonsense as it stands; for instance,
we always have x &*  0, so every x can do every *. But by restricting the x’s
(omitting 0, for a start) we can construct a suitable /"8#1(&#(",8+#+.,&8:8#1/ whose
processes are certain elements of Q'^ .

Recall that for each semantics there is a homomorphism Cap: 'Proc & Q'^  for
any transition system Proc, which gives a meaning to each process. However, not
every element of Q'^  can arise as Cap({p}) for p a single process in Proc. For the
“propositional observations” =, such as refusals *× and acceptances *@, we must
have that if {p}·= G Ø then {p}·= = {p}, and this property must also hold for
Cap({p}). For each semantics (the precise definition will vary according to the
semantics), we therefore define an element p # Q'^  to be 0.+,#3+91 iff

p G 0 and for every propositional observation =. (p·= G 0 : p·= = p)

Lemma 7.0.2 Suppose p # Q̂'RT is pointlike and * # Act. Then –

(i) If p·* = 0, then p·*@ = 0 and p·*× = p.
(ii) If p·* G 0, then p·*@ = p and p·*× = 0.

Proof We give a proof that also works (as appropriate) in FT and AT.
Recall that ^ converts elements of Q' into the corresponding elements of Q'^  I

(Q')op. If x # Q'^  and a # Q, then

x·a = 0 5 x(j(a)) = x(a·j(1)) = (x·a)(j(1)) = 0 5 j(a) ( x̂ 5 x ( j(a)^

where we write j: Q & Q' for the natural homomorphism.
(i) p·* = 0 iff j(*) ( p̂; but *@ (' *, i.e. j(*@) ( j(*), so p·*@ = 0.

1 (' * ) *×, so if p·*× = 0 we have j(*) and j(*×) both ( p̂, so j(1) ( p̂, i.e. p = 0
– contradiction.
(ii) * = *@·*, so if p·*@ = 0 then p·* = 0.

*×·* = 0, so if p·*× = p then p·* = 0. ]]

The pointlike elements of Q'^  can be made into a transition system by

p &*  q iff q ( p·*

The crucial property of the pointlikes is the following, proved separately for the
different semantics:

121(:&131/1,#&.F Q'^  +8&"&I.+,&.F&0.+,#3+918

This implies that ¬(p &*  ) iff p·* = 0; also, it allows us to prove third completeness
once we have the following result, which we shall prove for RT, although the proofs



!"#$%&'#()*#%&+,&-./0)#1(&'*+1,*1 (1993), 2.3%&45&00%&161-227 53

are similar in the other semantics. It shows that a pointlike p, considered as an
element of the master transition system, is its own capability.

Lemma 7.0.3 Suppose p # Q̂'RT is pointlike and a # QRT. Then p·a = 0 iff {p}·a =
Ø.
Proof Without loss of generality we can assume a is a product of generators, so it
suffices to prove the result first when a = 1 (this is obvious), and then for a of the
form *·a', *×·a' or *@·a' where the result is assumed for a'.

p·*·a' = 0 5 7 pointlike q ( p·*. q·a' = 0
5 7q # {p}·*. {q}·a' = Ø 5 {p}·*·a' = Ø

When p·* = 0, we have (using Lemma 7.0.2) both p·*@·a' = 0 and {p}·*@·a' = Ø,
while

p·*×·a' = 0 5 p·a' = 0 5 {p}·a' = Ø 5 {p}·*×·a' = Ø

The case p·* G�0 is similar. ]]

Theorem 7.0.4 C$+(;&-./031#1,188
Proof
Suppose a (/ ' b in Q, i.e. j(b)^ (/  j(a)^. Then there is a pointlike p such that p ( j(b)^,
i.e. p·b = 0, but p (/  j(a)^, i.e. p·a G 0. In terms of the master transition system, this
can be restated as {p}·b = Ø, but {p}·a G Ø. ]]

Let us also prove the following:

Lemma 7.0.5 If Proc is the master transition system, then Cap: 'Proc & Q'^  is the
join map, Cap(S) = S.
Proof Since Cap preserves joins, it suffices to prove that for a singleton {p} we have
Cap({p}) = p. This follows because, using Lemma 7.0.3, if a # Q then

Cap({p})(a) = 0 5 {p}·a = Ø 5 p·a = 0 ]]

Using this lemma, we can now characterize the pointlike elements as precisely
those than can arise as Cap({p}) for p a process in some transition system.

This definition of the “pointlike elements” of Q'^  is quite general once one is
given the quantale Q, the left module homomorphism j: Q & Q', and a subframe A
of Q (comprising the propositional observations in our cases; for S and RS, A is
isomorphic to Q'): x # Q'^  is pointlike iff it is non-zero and for every = # A, x·= is
either x or 0. This generalizes the definition of points of a locale, for suppose that Q,
Q' and A are all the same, namely a frame A. â·b = (b&a)^, and one can then show
that â # Â is pointlike (i.e. non-zero and â·b is always either 0 or â) iff a is a prime
element of A. Our central lemma, that every element of Q'^  is a join of pointlikes,
becomes here just a statement of spatiality of the locale of A. (Then A is the frame of
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opens for a sober topological space, and Â is the family of closed sets. The pointlike
elements of Â correspond to the irreducible closed sets, which – by sobriety – are in
bijection with the points.)

We can relate some of these techniques to existing results on the failures
semantics F. Brookes 1#&"3% (1984) describe a complete semilattice of failure sets, i.e.
subsets of Act* × 'finAct satisfying certain conditions. We shall see in Proposition
9.1.10 that this complete semilattice is isomorphic to what we might as well for the
moment call Q̂'F (though for technical reasons it appears in Section 9.1 as (Q̂'F)*).
Then Brookes 1#&"3% explicitly identify our ) (their ) with non-deterministic choice,

and our H (their &/0  ) with the resolution of non-deterministic choice by internal,
invisible changes. In these terms, a pointlike element represents a process that is
+,+#+"33: deterministic, in other words it has no internal choices than can be resolved
before an action takes place. The actions are still non-deterministic, so a transition p
&*  q between pointlikes (q (�p·*) represents an action followed by a resolution of
internal choice.

This view is also reflected in DeNicola and Hennessy (1987).
Brookes 1#&"3% consider a stronger notion of determinism, that the process will

never display any internal choice (though it may display non-determinism governed
by external choice). This is formalized in the following way. The trace semantics T
cannot distinguish between (in CCS notation) *·p + *·q and *·(p+q), and so does not
require us to consider actions to be non-deterministic. The master transition system
for the trace semantics comprises "33 non-zero elements of Q̂'T), and so gives a

deterministic transition system by p &*  q iff q = p·*. The deterministic elements of
Q̂'F are defined to be those of the form CapF({p}) where 0 G p # Q̂'T.

For the failure semantics, our result (Theorem 9.1.8) that every element of Q̂'F is
a join of pointlikes can be strengthened: every element is a join of deterministic
elements in the strong sense (Blamey 1991). This corresponds to the Deistic idea,
expressed in Hoare (1985) as well as in Blamey (1991), that non-determinism can
(often, at least) be viewed as an implementor’s choice between deterministic
processes. Since the formalization of determinism makes sense also for the other
semantics we deal with, it would be interesting to know whether it is still true for
them that every element of Q'^  is a join of deterministic elements.

Y%O&D1";:&#("*1&81/",#+*8&DC

Definition 7.1.1 Let Act be a set. We present the quantale

Q = QRT(Act) = Qu / *, *×, *@ (* # Act) |
*×·*× = *× ( 1
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*@·*@ = *@ ( 1
*×·,× = ,×·*×

*@·,@ = ,@·*@

*×·,@ = ,@·*×

*×·*@ = 0
* ( *@·*
1 ( *@ ) �*× 0

The testing preorder is presented by

*@ (' * (* # Act)

In other words,

Q' = Q'RT(Act) = Q-Mod / Q (qua Q-Mod) |
T ( 1
*@ ( * (* # Act) 0

If Act is finite, then an entire menu X can be observed as a finite product of
acceptances and refusals, X@·(Act–X)×.

Proposition 7.1.2 The above system is presented in terms of coverages by –

• S = SRT is the monoid generated by symbols *, *@ and *× (* # Act), subject
to relations making the *@s and ,×s commuting idempotents. Its elements can
be written uniquely as =0·*1·=1· …·*n·=n where each =i is of the form Xi@·Yi×

for some Xi, Yi $fin Act.

• The coverage C = CRT comprises the cover relations (with s, t # SRT)

{s·t} –| s·*@·t
{s·t} –| s·*×·t
{s·*@·*·t} –| s·*·t
Ø –| s·*@·*×·t
{s·,@·t, s·,×·t} –| s·t

Proof
Q is mapped to C-Idl(S) in the obvious way. For the inverse isomorphism, the
obvious monoid homomorphism from SRT to Q clearly transforms covers to joins.
These homomorphisms are mutually inverse. ]]

Proposition 7.1.3 The obvious homomorphism from QRT to Qhf is 1-1.
Proof
We show that QRT has a graded structure, each component of which is contained in a
component of Qhf.
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First, define the Stone locale DRT by

!DRT = Fr / *×, *@ (* # Act) |
*@ " *× = false
*@ ) �*× = true 0

Its points are the subsets Z of Act, with Z  *× iff * ? Z, Z  *@ iff * # Z.
If s = *1·…·*n # Act*, then the elements of SRT of the form =0·*1· …·*n·=n

constitute a "-semilattice, with

=0·*1· …·*n·=n ( =0'·*1· …·*n·=n' iff each Xi T Xi', Yi T Yi'
(=i = Xi@·Yi×, =i' = Xi'@·Yi'×)

C restricts to a coverage in Johnstone’s sense on this semilattice, presenting a frame
!DRT(s). The corresponding locale DRT(s) is spectral, a sublocale of (DRT)n+1, and
its points are the sequences (Zi) (0 ( i ( n; Zi $ Act) such that *i+1 # Zi (0 ( i < n).

Because the cover relations in C do not mix elements from different components
(different values of s), it follows that QRT I Es#Act* !DRT(s) as sup-lattices.

The homomorphism from QRT to Qhf restricts to a frame homomorphism from
!DRT(s) to !Dhf(s), corresponding to the continuous map from Dhf(s) to DRT(s) that
takes (p0, …, pn) to (R(p0), …, R(pn)). By spatiality, to show that this is 1-1 on
opens we show that it is surjective on points.

Let (Zi)0
n be a point of DRT(s), and define a transition system

Proc = {pi: 0 ( i ( n}R{q}

pi &
*i+1 pi+1 (0 ( i < n)

pi &,  q (, # Zi)

Then the sequence ([[pi]])0
n is a point of Dhf(s) mapping to (Zi)0

n. ]]

This proves second completeness; we now turn to third completeness.

Definition 7.1.4 An element p # Q̂'RT is 0.+,#3+91 iff p G 0 and for every = # !DRT,
p·= is either 0 or p.

Note that for any x and *,

x·*× = 0 : x = x·(*@ ) *×) = x·*@

x·*× = x : 0 = x·*×·*@ = x·*@

Hence in the definition it suffices to consider = of the form *×, or, alternatively, = of
the form *@.

Lemma 7.1.5 Let x # Q̂'RT, and let U $ Act. Define –

p = x " *#U j(*×)^ " *?U j(*@)^
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(i) Provided p is non-zero, then it is pointlike and U = {*: p·*@ = p}.
(ii) Let q ( x be a pointlike such that U = {*: q·*@ = q}. Then q ( p.
Proof
(i) If * # U, then p·*× ( j(*×)^·*× = 0, so p = p·(*@ ) *×) = p·*@.

If * ? U, then p·*@ ( j(*@)^·*@ = 0.
(ii) q ( x. If * # U then q·,× = 0, so q ( j(,×)^. Similarly, if * ? U, then q ( j(*@)^.
Hence q ( p. ]]

Lemma 7.1.6 Let u, v # Q'RT and * # Act.
If both v ( u ) j(*@) and v ( u ) j(*×), then v ( u.

Proof
v = (*@ ) *×)·v ( *@·(u ) j(*×)) ) *×·(u ) j(*@)) = (*@ ) *×)·u = u ]]

Theorem 7.1.7 Every element of Q̂'RT is a join of pointlikes.
Proof Let Proc be the set of pointlike elements of Q̂'RT, and let x # Q̂'RT. We must
show that x = {p # Proc: p ( x}, i.e. x̂ H {p̂: p # Proc, x̂ ( p̂}. In other words, if
v # Q'RT and v (/  x̂, then there is a pointlike p ( x such that v (/  p̂. Using Lemma
7.1.5, it suffices to find U $ Act such that

v (/  x̂ ) *?U j(*@) ) *#U j(*×)

By coherence of Q and Q', we can assume without loss of generality that v is
compact.

Now call a pair (U, V) of subsets of Act ?..; iff

v (/  x̂ ) *#V j(*@) ) *#U j(*×)

(Ø, Ø) is good, and if (U, V) is good then U and V are disjoint –�for j(*@) ) j(*×) =
j(1). Also, using compactness of v, if we have a chain of good pairs then the
(componentwise) union is also good. We can therefore apply Zorn’s lemma to find a
maximal good pair (U, V). Write u = x̂ ) *#V j(*@) ) *#U j(*×). If U is in Act –
(URV), then by maximality we have v ( u ) j(*@) and v ( u ) j(*×). Hence by
Lemma 7.1.6 v ( u, a contradiction. Therefore Act = URV and we are done. ]]

Now using the discussion at the start of Section 7, we have –

Theorem 7.1.8 The second and third completeness criteria hold for RT. ]]

Theorem 7.1.9 Let Proc be a transition system over a F+,+#1 set Act, and let p, q be
elements of Proc. Then

CapRT(p) ( CapRT(q) 5 p ;<RT q



58 67("/89:&",;&<+*91(8=&>)",#"3185&.781(2"#+.,"3&3.?+*&",;&0(.*188&81/",#+*8

 Proof M (the argument here works even when Act is infinite): If each =i is Ui@·Vi×,
then CapRT(p)(=0·*1·=1·…·*n·=n) G 0 iff there is some (X0, *1, …, Xn) in ready-
traces(p) such that Ui $ Xi and Vi $ Xi

c, so CapRT(p) is determined by ready-
traces(p).
:: (X0, *1, …, Xn) # ready-traces(p) iff CapRT(p)(=0·*1·=1·…·*n·=n) G 0 where
=i�= Xi@·(Act–Xi)×. ]]

Example 7.1.10 Some restriction is necessary in 7.1.9, for consider –

Act = {*} R {,i: i # S}
Proc = {p} R {p'} R {qS: S $ S} R {r}

p &
*  qS if S is finite

p' &
*  qS for all S

qS &
,i  r iff i # S

Then Cap(p) = Cap(p'), ready-traces(p) G ready-traces(p').

Y%Q&R"+3)(1&#("*1&81/",#+*8&RC

Definition 7.2.1 If Act is a set, then we define the quantale

Q = QFT(Act) = Qu /*, *× (* # Act) |
*× ( 1
*× ( *×·*×

*×·,× = ,×·*×

*×·* = 0 0

The testing preorder is presented by

s (' * ) *×·s (s a product of actions and refusals)

There is an obvious homomorphism from QFT to QRT, and in Q'RT we have

s = 1·s ( *@·s ) *×·s ( *@ ) *×·s ( * ) *×·s

so that the composite homomorphism from QFT to Q'RT factors via Q'FT.

Proposition 7.2.2 The above system is presented in terms of coverages by –

• The monoid S = SFT is generated by symbols * and *× (* # Act) subject to
relations requiring the *×’s to be commuting idempotents. Every element can
be expressed uniquely as X0×·*1·X1×· …·*n·Xn× with Xi $fin Act.

• The coverage C = CFT comprises the cover relations

{s·t} –| s·*×·t
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Ø –| s·*×·*·t ]]

Theorem 7.2.3 FT satisfies the second completeness criterion.
Proof We use the coverage presentation to describe the graded structure of QFT and
hence show that the obvious homomorphism from QFT to QRT is 1-1.

First, a spectral locale DFT is defined by

!DFT = Fr / *× (* # Act) 0

Its points are the subsets Z of Act, the same as for DRT, with Z  *× iff * ? Z. In
fact DRT is patch DFT.

Next, iff s = *1·…·*n # Act*, then the elements of S of the form
X0×·*1·X1×·…·*n·Xn× constitute a "-semilattice S(s); and the joins of such elements
in QFT constitute a frame !DFT(s). The corresponding locale DFT(s) is spectral, and
its points are the same as those of DRT(s). Hence !DFT(s) can be considered a
subframe of !DRT(s).

Finally, QFT I Es#Act* !DFT(s) as sup-lattices, so QFT is a subquantale of QRT.
]]

Definition 7.2.4 An element p of Q̂'FT is 0.+,#3+91 iff p G 0 and for all * # Act, p·*×

is either 0 or p.

We shall prove, as usual (Theorem 7.2.8), that every element of Q̂'FT is a join of
pointlikes; but first let us prove some analogues of Lemmas 7.1.5 and 7.1.6.

Lemma 7.2.5 Let x # Q̂'FT, and let U $ Act. Define –

p = x " *#U j(*×)^ " *?U j(*)^

(i) Provided p is non-zero, then it is pointlike and U = {*: p·*× = 0}.
(ii) Let q ( x be a pointlike such that U = {*: q·*× = 0}. Then q ( p.
Proof
(i) If * # U, then p·*× = 0. Now suppose * ? U, so j(*) ( p̂: we must show p (
p·*×, i.e. for all products of generators s # QFT, if j(s) ( (p·*×)^, i.e. p·*×·s = 0, i.e.
j(*×·s) ( p̂, then j(s) ( p̂, i.e. p·s = 0. This is clear, because j(s) ( j(* ) *×·s).
(ii) As in Lemma 7.1.5, with – if * ? U, then q·* = q·*×·* = 0, so q ( j(*)^. ]]

For an analogue of 7.1.6, we must do more work. In fact, we show how Q'FT may
be constructed concretely using Theorem 5.2.2.

Lemma 7.2.6 Let SFT be as described in Proposition 7.2.2, and let C' be the set of
cover relations (with s, t # SFT)

{s} –| s·t
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{s·t} –| s·*×·t
Ø –| s·*×·*·t
{s·*, s·*×·t} –| s·t

Then C'-Idl(SFT) is isomorphic to Q'FT, with s (as generator in C'-Idl(SFT))
corresponding to j(s).
Proof
Let us write M for C'-Idl(SFT), which we may think of (by Theorem 5.2.2) as the
sup-lattice generated by SFT subject to relations s·t ( s, etc. Let us write k(s) for s #
SFT considered as a generator of M; concretely, k(s) = C'-/{s}0.

Each s defines a sup-lattice homomorphism of M by k(t) .& k(s·t). Considering
the particular cases of s = * and s = *×, we see that this makes M a left QFT-module.

Consider the module homomorphism from QFT to M defined by mapping 1 to
k(1) = SFT, i.e. a .& a·k(1). This maps s to s·k(1) = k(s), so we shall write k: QFT &
M for this homomorphism. k respects the defining relations for Q'FT, so factors as k
= j;k'. k' maps j(s) to k(s).

Now define the sup-lattice homomorphism j': M & Q'FT by k(s) .& j(s). This
preserves the actions of * and *×, and so is a QFT-module homomorphism.

QFT

Q'FT M = C'-Idl(S FT )

j k

k'

j'

j;k';j' = j (they both map 1 to j(1)), so k';j' = id. Also, k'(j'(k(s))) = k(s) for every s
# SFT, so j';k' = id. Hence M I Q'FT with k(s) V j(s). ]]

Lemma 7.2.7 Let v, u # Q'FT, and * # Act.
If both v ( u ) j(*) and v ( u ) j(*×), then v ( u.

Proof
It suffices to take v of the form j(s), s # SFT. It follows that in C'-Idl(SFT) (as defined
in Lemma 7.2.6), s # C'-/I R {*×}0 where I is {s # SFT: j(s) ( u}, the C'-ideal
corresponding to u. We show that for any C'-ideal I,

C'-/I R {*×}0 = I R {X×·r: X×·* # I, r # SFT} (*)

Let us write J for the RHS of this equation.
T: Suppose X×·* # I. Then X×·*×·r # C'-/{*×}0, so X×·r # C'-/I R {*×}0 .
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$: *×·* # I, so *× # J. It remains to show that J is a C'-ideal. The only part of
difficulty is to show that if s·, and s·,×·t are both in J, then so is s·t.

If s·, = X×·r, where X×·* # I, then s begins with X× so s·t does too.
Otherwise, s·, # I. If s·,×·t # I, then s·t # I because I is a C'-ideal. Otherwise,

s·,×·t = X×·r, where X×·* # I. Again, if s starts with X× then we are done. The only
other possibility is that s = Y×·Y'×, t = Z×·t' and X = YR{,}RZ. s·, and s·,×·Z×·*
are both in I, so s·Z×·* is too, and it follows that s·t = s·Z×·t' # J.

This completes the proof of the claim (*). Let us return to the main result.
Because j(s) ( u ) j(*×), (*) tells us that either j(s) ( u or s = X×·s' where j(X×·*) (
u; and in the latter case, we have j(s) = j(X×·s) ( X×·u ) X×·j(*) ( u. ]]

Theorem 7.2.8 Every element x of Q̂'FT is a join of pointlikes.
Proof
The proof is very similar to that of Theorem 7.1.7. After Lemma 7.2.5, it suffices to
show that if v # Q'FT is compact and v (/  x̂, then there is some U $ Act such that v (/
x̂ ) *#U j(*×) ) *?U j(*). Just as in 7.1.7, we can find a pair (U, V) of subsets
of Act, maximal with respect to

v (/  x̂ ) *#U j(*×) ) *#V j(*),

and then use Lemma 7.2.7 to show that Act is the disjoint union of U and V. ]]

Theorem 7.2.9 The second and third completeness criteria hold for FT. ]]

V.#1&W Lemma 7.2.6 can be put in a more general setting – as indeed we did in a
previous draft of this paper (Abramsky and Vickers 1990). What makes C'-Idl(SFT) a
left module over QFT is really a one-sided coverage condition:

if X –| u in C', then {s·x: x # X} –| s·u for all s # SFT

The same method can be used for other semantics that we treat, giving more concrete
representations of Q'.

One interesting byproduct is a more concrete representation of Q'^ , and hence of
“abstract processes”. An element of Q'FT can be represented as a C'-ideal of SFT. An
element of Q̂'FT is the same, but to make the representation reflect the reversed
ordering, let us represent it by a C'-*.ideal, i.e. the complement in SFT of a C'-ideal.
Elements of Q̂'FT are then represented by sets F of sequences

s = X0×·*1·X1×·…·*n·Xn×

such that if s # F then –

• if k ( n and Yi $ Xi (0 ( i ( k), then Y0×·*1·Y1×·…·*k·Yk× # F
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• *i+1 ? Xi
• for every k ( n and every , # Act, F contains at least one of

X0×·*1·X1×·…·*k·Xk×·,
X0×·*1·X1×·…·*k·Xk×·,×·*k+1·…·*n·Xn×

This is exactly the sort of treatment that is traditionally given for the failures
semantics F (see Section 9.1). Since C'-ideals are closed under arbitrary intersections,
join in Q̂'FT is represented by ),+., of C'-coideals. The right action of QFT on Q'FT
is represented by

F·s = {t # SFT: s·t # F}

If Proc is a transition system and X $ Proc, then CapFT(X) is represented by the
C'-coideal {s # SFT: X·s G Ø}; in particular, CapFT({p}) = failure-traces(p) for p #
Proc. We deduce –

Theorem 7.2.10 Let Proc be a transition system and p, q # Proc. Then

CapFT(p) ( CapFT(q) 5 p ;<FT q ]]

Y%4&6**10#",*1&#("*1&81/",#+*8&6C

Definition 7.3.1 If Act is a set, then we define the quantale

Q = QAT(Act) = Qu / *, *@: * # Act |
*@ ( 1
*@ ( *@·*@

*@·,@ = ,@·*@

* ( *@·* 0

The testing preorder is presented by

*@ (' *

Theorem 7.3.2 The above system is presented in terms of coverages by –

• The monoid S = SAT is generated by symbols * and *@ (* # Act), subject to
relations requiring the *@’s to be commuting idempotents. Every element can
be expressed uniquely as X0@·*1·X1@· …·*n·Xn@ with Xi $fin Act.

• The coverage C = CAT comprises the cover relations (with s, t # SAT)

{s·t} –| s·*@·t
{s·*@·*·t} –| s·*·t ]]

Theorem 7.3.3 AT satisfies the second completeness criterion.
Proof Just like Theorem 7.2.3 for FT.
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First, a spectral locale DAT is defined by

!DAT = Fr / *@ (* # Act) 0

Again the points are the subsets Z of Act; this time Z  *@ iff * # Z. DAT is the
spectral dual of DFT. (K!DAT and K!DFT are opposite lattices – actually, here
they’re isomorphic as well as anti-isomorphic.)

For s = *1·…·*n # Act*, the elements of SAT of the form X0@·*1·X1@·…·*n·Xn@

constitute a "-semilattice SAT(s); and the joins of such elements in QAT constitute a
frame !DAT(s). The corresponding locale DAT(s) is spectral, and its points are the
same as those of DRT(s). The obvious homomorphism from QAT to QRT restricts to a
frame homomorphism from !DAT(s) to !DRT(s), corresponding to the continuous
map from DRT(s) to DAT(s) whose points part is the identity. By spatiality, it is
therefore 1-1 on opens.

Finally, QAT I Es#Act* !DAT(s) as sup-lattices, so QAT is a subquantale of
QRT, and second completeness follows using 7.0.1. ]]

Definition 7.3.4 An element p # Q̂'AT is 0.+,#3+91 iff p G 0 and for every * # Act,
p·*@ is either 0 or p.

Before we prove the main step (Theorem 7.3.6), that every element of Q̂'AT is a
join of pointlikes, let us prove two lemmas about the structure of Q'AT.

Lemma 7.3.5 Let s be a product of generators in QAT. Then –

(i) j(s) is completely coprime in Q'AT.
(ii) For all * # Act, if j(s) ( j(*@) then s = *@·s.

Proof
(i) The proof is by a kind of glueing, freely adjoining a new join structure. It relies
on the fact that there are no joins in the relations for QAT and Q'AT, so there is no
means by which j(s) can interact with joins in a non-trivial way.

Let R be the set of lower closed subsets of Q'AT. R is a sup-lattice, join just being
union; in fact, it is the free sup-lattice over Q'AT qua poset. Also, R can be made a
left QAT-module, with

*·S = Q{*·u: u # S}
*@·S = Q{*@·u: u # S}

(To prove this, observe that the actions *·– and *@·– as defined preserve all joins, so
we have mapped the generators of QAT into the sup-lattice endomorphism quantale
of R; and the relations of QAT are respected, so we have a quantale homomorphism
from QAT to the endomorphism quantale, i.e. a QAT-module structure on R. Note
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how the fact that the relations of QAT are respected relies on their containing no
joins.)

Now we can define a QAT-module homomorphism f from QAT to R by mapping
1 to Q'AT, i.e. the top element of R. By induction on the length of t, we can show that
if t is a product of generators in QAT, then f(t) = Qj(t). For t = 1 this holds by
definition. If it holds for t, then

f(*·t) = *·f(t) = *·Qj(t) = Q{*·u: u ( j(t)} = Q*·j(t) = Qj(*·t)

and similarly for f(*@·t).
f respects the relations used in presenting Q'AT, so f factors as j;g where g: Q'AT

& R is a QAT-module homomorphism.
Next write  for the join map from R to Q'AT. This respects the actions *·– and

*@·–, and hence is also a Q'AT-module homomorphism. j;g;  maps 1 to j(1), so
j;g;  = j and hence g;  is the identity on Q'AT.

Now suppose j(s) ( X, where X $ Q'AT. Applying g, we get

Qj(s) = f(s) $ {g(u): u # X}

Hence Qj(s) $ some g(u) with u # X. Applying , we get j(s) ( u.
(ii) Let s = X0@·*1·X1@·…·*n·Xn@ where Xi $ Act and Xi@ means the product of
the ,@s, , # Xi. Define a transition system Proc = {pi: 0 ( i ( n}R{q} with

pi &*i+1 pi+1

pi &,  q iff , # Xi

Then {p0}·s is non-empty (it contains pn), so because j(s) ( j(*@) we have {p0}·*@
also non-empty. Hence either * # X0 or * = *0; in each case, j(*@·s) = j(s). ]]

Theorem 7.3.6 Every element x of Q̂'AT is a join of pointlikes.
Proof
It suffices (cf. Theorem 7.1.7) to show for every product s of generators of QAT that
if j(s) (/  x̂ (i.e. x·s G 0), then there is some pointlike p ( x such that p·s G 0. Let U =
{*: s = *@·s}, i.e. X0 if s = X0@·*1·X1@·…·*n·Xn@, and define

p = (x " *?U j(*@)^)·U@

p ( x and p is either pointlike or 0 (p·*@ is 0 if * ? U, p if * # U). It remains to
show that p·s G 0, i.e. (because U@·s = s) (x " *?U j(*@)^)·s G 0, i.e.

j(s) (/  x̂ ) *?U j(*@)

But this is so, for otherwise (using Lemma 7.3.5 (i)) we’d have either j(s) ( x̂,
contradicting x·s G 0, or j(s) ( j(*@) for some * ? U, and by Lemma 7.3.5 (ii) this
contradicts the definition of U. ]]
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Theorem 7.3.7 Let Proc be a transition system and p, q # Proc. Then

CapAT(p) ( CapAT(q) 5 p ;<AT q

Proof If s # SAT, then

CapAT(p)(s) G 0 5 {p}·s G Ø 5 s # accept-traces(p)

Hence,

Cap(p) ( Cap(q) 5 accept-traces(p) $ accept-traces(q) ]]

Y%N&C("*1&81/",#+*8&C

Definition 7.4.1 Let Act be a set. Then the quantale Q = QT(Act) is the free quantale
on the set Act.

The testing preorder is presented with no relations.

This being the simplest case of all, the reader should have no trouble proving –

Theorem 7.4.2

(i) T satisfies the second and third completeness criteria.
(ii) For any transition system Proc, and processes p and q # Proc,

CapT(p) ( CapT(q) 5 p ;<T q ]]

For concreteness, let us note that –

• QT is '(Act*).
• Q'T is the set of subsets X of Act* such that if s # X then s·t # X; in other

words, the upper-closed subsets of Act* under the prefix ordering; in other
words the Alexandrov opens of Act*; in other words the Scott opens of the
Kahn domain Act*S of finite and infinite lists from Act.

• Q̂'T is the set of prefix-closed subsets of Act*; in other words the set of Scott
closed subsets of Act*S.

• The only “propositional” elements of QT are 0 and 1, so all elements of Q'T
can be considered pointlike.

Y%U&'+/)3"#+.,&81/",#+*8&'
This semantics uses just the actions * and A: not the refusals. Compared with RS,
there is therefore a restriction on the topological observations in !DRS that can arise.

Definition 7.5.1 Let Act be a set. We present the quantale

Q = QS(Act) = Qu / *, A (* # Act) |
s·s = s ( 1 if s is balanced
s·t = t·s if s and t are balanced
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*·s ( *·s·A·* if s is balanced (hence *·s = *·s·A·*·s) 0

No extra relations are needed for the testing preorder.
S is essentially a junior version of RS that lacks refusals. We sketch a theory of

“S-locales” exactly analogous to RS-locales, but without the refusals.

Definition 7.5.2 An 'GF("/1&(over Act) is a frame A equipped with operations /*0 (*
# Act) that preserve all joins.

A homomorphism of S-frames is a frame homomorphism that preserves /*0.

We can now develop a theory just as in Section 6.1:

• Define 'G3.*"318 and 'G/"08%
• Every transition system, considered as a discrete space, is an S-locale.
• The points of any S-locale form a transition system:

p &*  q iff 7= # !D. (q  = : p  /*0 =)

• If D is a spatial S-locale, then

p /*0 = 5 %q # pt D. (q  = " p &*  q)

• There is a final S-locale DS and it is spectral.
• Any transition system Proc can be made into a topological system D =

(Proc,�!DS).
• Hence an element p of a transition system denotes a point [[p]]S of DS.

Proposition 7.5.3 K!DS can be identified with the least sublattice of K!DRS that is
closed under /*0 for all *.
Proof
The proof of Theorem 6.1.6 used the theory of “RS-distributive lattices”, and in an
analogous way K!DS is the initial “S-distributive lattice”. K!DRS is also an S-
distributive lattice, so we get the unique homomorphism between them
corresponding to the unique S-map from DRS to DS. This is surjective on points: if p
# pt DS, then [[p]] # pt DRS maps to it. (Note that the function p .& [[p]]  is not
continuous.) Hence it is injective on opens. ]]

We can now grade QS over GRS just as in Section 6.3, but replacing DRS by DS
throughout. The obvious maps from DRS(x) to DS(x) are surjective on points, and
hence by spatiality (these locales are spectral) injective on opens; hence QS can be
considered a subquantale of QRS.

Similarly, Q'S can be identified with the opens of a spectral locale DS+S of non-
empty finite and infinite lists from DS, and the natural map from DRS+S to DS+S is
surjective on points.
 Hence,
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Theorem 7.5.4 S satisfies the second and third completeness criteria. ]]

Finally, we deal with the preorder on processes. As in RS, we must make
concessions to infinities in the transition system.

Definition 7.5.5 Let Proc be a transition system over Act. Proc is +/"?1&*3.81; (with
respect to S) iff for all p # Proc and * # Act, the set p·* = {q # Proc. p &*  q}
satisfies QS(p·*) = ClS(p·*): its downward closure in the specialization preorder S
is equal to its topological closure (equivalently, QSX is topologically closed). The
subscripts S mean that the topology is understood to be that imposed by !DS.

Theorem 7.5.6 Let Proc be a transition system over Act that is image closed with
respect to S. Then for all p, q # Proc,

p S  q 5 CapS({(p)}) ( CapS({(q)}) 5 p ;<S q

Proof The proof is similar to that of Theorems 6.2.5 and 6.3.11. ]]



68 67("/89:&",;&<+*91(8=&>)",#"3185&.781(2"#+.,"3&3.?+*&",;&0(.*188&81/",#+*8

8. Quantaloids
In this part, we show how to generalize the foregoing theory to include a notion of
typing on the processes. An observation has a source type and a target type, so that if
the observed object starts off with the source type, it afterwards has the target type.
This is obviously category theory. Our principal application is to the failure (F) and
similar semantics, where there are two types: “live” and “dead”. In this simple
context, the general theory is far more than is needed, but we sketch it for its
independent interest and in the expectation that it will find a use.

It is important to realise that although the new generalizations look forbiddingly
complex, the methods used are essentially the same.

The corresponding generalization in ring theory, from rings to (+,?.+;85 has
already been studied in, e.g., Mitchell (1972).

Definition 8.1 A A)",#"3.+; is a small sup-lattice enriched category, in other words,
a small category such that

• each hom set is a sup-lattice
• morphism composition (multiplication) distributes over all joins on both sides.

A homomorphism of quantaloids is a functor that preserves all joins.
If Q is a quantaloid (or indeed any category) and i, j are objects in it, then we

write Qij for the hom set Q(i,�j).
A (+?$#&>G/.;)31 is a functor from Q to the category SupL of sup-lattices that

preserves all joins (one can think of SupL as being a large quantaloid, so a right Q-
module is simply a quantaloid homomorphism from Q to SupL).

In more more concrete terms, a module M involves –

• for each object i of Q, a sup-lattice Mi
• for each pair of objects i, j, an action (_·_): Mi × Qij & Mj

and these satisfy –

• x·1 = x (x # Mi, 1 = 1i)
• x·(a·b) = (x·a)·b (x # Mi, a # Qij, b # Qjk)
• ( X)·a = {x·a: x # X} (X $ Mi, a # Qij)
• x·( Y) = {x·a: a # Y} (x # Mi, Y $ Qij)

A homomorphism from one Q-module, M, to another, N, is a natural
tranformation whose components preserve all joins. In other words,

• for each object i, there is a function fi (the i is often omitted here) from Mi to
Ni
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• f( X) = {f(x): x # X} (X $ Mi)
• f(x·a) = f(x)·a (x # Mi, a # Qij)

A 31F#&>G/.;)31 is a similar functor from Qop to SupL.

The duality theory for modules over quantaloids is similar to that for modules
over quantales. If M is a right module over a quantaloid Q, then the left module M̂ is
defined by (M̂)i = (Mi)^, and if a # Qij then its left action from (M̂)j to (M̂)i is the
dual of its right action from Mi to Mj.

S1,1("#.(8&",;&D13"#+.,8&F.(&>)",#"3.+;8
We state without proof that quantaloids can be presented by generators and relations.
What in the quantale case is a 81# of generators must here be a directed graph: the
nodes and edges of the graph are to become objects and morphisms of the quantaloid.
In deriving new expressions from these, we must take care to multiply and join only
when the products and joins are defined. Thus the general expression has a source i
and a target j, and is a join of paths from i to j through the graph. Each relation takes
the form e1 ( e2. Usually, e1 and e2 will have the same source and target as each
other; the only point in not doing this is to identify objects, and this might as well be
done in the original graph of generators.

The coverage theorem for quantales can be generalized to quantaloids (and in
fact this was done in Abramsky and Vickers (1990)). However, there is no great gain
in doing this in the simple cases we consider.

Z.,1;"[8&L1//"
In Section 2 it was mentioned that a quantale Q, qua left (or right) module over itself,
is freely generated by 1. We prove here a corresponding result for quantaloids that
can also be seen as an analogue of Yoneda’s Lemma.

Let Q be a quantaloid, and let j be an object of Q. We define the left Q-module
Q–j by (Q–j)i = Qij. The action is defined by multiplication in Q: if a # Qki and b #
(Q–j)i, then a·b # (Q–j)k. (Thinking of Q just as a category, Q–j is the representable
functor for object j.)

Theorem 8.2&J>)",#"3.+;&21(8+.,&.F&Z.,1;"[8&L1//"K
Q–j, qua left Q-module, is freely generated by 1j: in other words, if M is a left Q-

module and x # Mj, then there is a unique left Q-module homomorphism from Q–j to
M that maps 1j to x.
Proof If f is such a homomorphism and a # Qij, then f(a) = f(a·1j) = a·f(1j) = a·x.
This proves uniqueness. For existence, show that f thus defined is indeed a
homomorphism. ]]
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The quantaloid analogue of the Yoneda embedding is the quantaloid
homomorphism from Q to Q-Mod given on objects by j .& Q–j. Then Theorem 8.2
tells us that the elements of Qjk are in bijection with the Q-module homomorphisms
from Q–j to Q–k. It is easy to see that this defines a faithful quantaloid
homomorphism.

Of course, we can also define right Q-modules Qi– and get a right-handed version
of Theorem 8.2.

-"0"7+3+#+18
Let Q be a quantaloid and M a right Q-module. For each object j, we have a left Q-
module homomorphism from Q–j to M̂ defined by 1j .& 0j

^ , i.e. (for a # Qij)

a .& a·0j
^ , i.e. a .& (x .& 0 iff x·a = 0 (x # Mi))

Hence we have a homomorphism from Ej Q–j to M̂ (recall that for modules over a
quantale, products and coproducts coincide; the same goes for modules over
quantaloids). Its dual is CapM: M & (Ej Q–j)^, x .& (a .& 0 iff x·a = 0). Just as
described in Example 5.1.5, we wish to describe a left Q-module quotient Q' of EjQ–

j such that Q'^  is the submodule of (Ej Q–j)^ generated by the images of CapM as M
ranges over the modules derived from transition systems. We shall again write j for
the natural homomorphism from Ej Q–j to Q'.

If a # Qij, then j(a) # Q'i should be thought of as the observation a viewed as a
“static property”. If x # Mi, then the property x·a G 0 (“x can do a”) is a property of
x, static in the sense that it is not interested in the change to x·a. If b # Qik (notice
that b must have the same source i as a, but not necessarily the same target), then j(a)
should equal j(b) iff a and b represent the same static property, i.e. for all x, x·a = 0
iff x·b = 0.

We next generalize Lemma 7.0.1.

Lemma 8.3 Let f: R & Q be a quantaloid homomorphism.

(i) Every Q-module M gives rise to an R-module M(f), with

M
(f)
i = Mf(i), x·a = x·f(a)

(ii) If f is faithful, and M is a jointly faithful class of right modules for Q (i.e. if
a (/  b in Qij, then there are M # M and x # Mi such that x·a (/  x·b), then
{M(f): M # M} is jointly faithful for R. ]]
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9. Typed semantics
We deal here with three semantics: Ready (R), Failure (F) and Acceptance (A).
These are closely related to RT, FT and AT, but they have the property that after a
refusal or acceptance, no more pure actions are possible: the process has deadlocked
in some sense. This may be seen as somewhat user-unfriendly, but these semantics,
particularly the Failures equivalence F –�which we consider first, in most detail –,
have proved very popular (cf. Hoare 1985).

We discuss them as typed semantics, with two types (objects of the quantaloid)
3+21 (*) and ;1"; (†). Actions are observed of a live process, and refusals and
acceptances are postmortem observations. We also introduce an observation •
(“bullet”) to mark the transition from life to death. These ingredients can be
illustrated in a directed graph, which generates the Ready quantaloid QR:

* †
•

*

*×

*@

\%O&R"+3)(18&81/",#+*8&R

Definition 9.1.1 Let Act be a set. We present the quantaloid

Q = QF(Act) =
Qud / *: * & * (* # Act),

•: * & †,
*×: † & † (* # Act) |

*×·*× = *× ( 1†
*×·,× = ,×·*× 0

The testing preorder is presented by

1* (' •

•·X× (' * ) •·(XR{*})× (* # Act)

We shall describe the technical meaning of this testing preorder in more detail
later, but for the moment consider the intended statements about processes. The first
inequality (1* (' •) says that if a process is live, then it can die. For the second,

suppose that p is a live process, and that after its death, a postmortem examination
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reveals that it would refuse the actions in X: p·•·X× G 0. Consider whether p could
have done *. If so, then p·* G 0; if not, then a more careful postmortem examination
would reveal that p would refuse the actions in XR{*}: p·•·(XR{*})× G 0. Notice
how the quantaloid elements •·X×, * and •·(XR{*})× all have the same source (*),
but their targets vary. This is allowed in these “('” relations, which are really
comparing elements of Ej Qij for some i. (See Section 8.)

Let us now investigate the completeness criteria. First completeness is obvious,
for (s, X) # failures(p) iff {p}·s·•·X× G Ø (and also {p}·s G Ø iff {p}·s·•·Ø× G Ø). For
second completeness, we examine the structure of QF in more detail.

Proposition 9.1.2

(QF)** I '(Act*)
(QF)†† I !DFT (defined as in Theorem 7.2.3)
(QF)†* I 0
(QF)*† I '(Act*) 4 !DFT

Here, 4 represents the tensor product of sup-lattices (see Joyal and Tierney 1984).
Proof
We can use the four given sup-lattices to construct a quantaloid on objects * and †,
and then it is easy to define mutually inverse quantaloid homomorphisms between it
and QF. ]]

Theorem 9.1.3 The second completeness criterion holds for F.
Proof
We look at the four hom-sets of QF in turn. In each, we suppose we have a (/  b, and
then using 9.1.2 we construct a process p for which {p}·a $/  {p}·b.

**: a, b # '(Act*). Find s = *1·…·*n # a–b, and define Proc = {pi: 0 ( i ( n} with

pi &*i+1 pi+1. Then pn is in {p0}·a but not in {p0}·b.

††: a, b # !DFT, and this is spectral, and hence spatial. Therefore there is a point X
$ Act of DFT that satisfies a but not b (X  *× iff * ? X). Define Proc = {p, q} with

p &*  q iff * # X. Then for all = # !DFT we have that X  = iff p # {p}·=, and so p
is in {p}·a but not {p}·b.

*†: Because '(Act*) and !DFT are both frames, their sup-lattice tensor product is
the same as their frame coproduct, i.e. the frame of opens for the product locale
Act*×DFT. Because the two locales are locally compact, the product is spatial. Hence
we can find s = *1·…·*n # Act* and X # pt DFT such that (s, X) satisfies a but not

b. Let Proc = {pi: 0 ( i ( n} R {q}, with pi &*i+1 pi+1, pn &*  q iff * # X. Every
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element c of '(Act*) 4 !DFT can be expressed in the form N {tN}4UN× (where
tN # Act*, UN $fin Act). We have

(s, X)  c 5 %N. s = tN and X-UN = Ø 5 pn # {p0}·c

Hence pn is in {p0}·a but not {p0}·b.

†*: This is trivial. ]]

We now turn to third completeness. Recall from Section 8 that Q'F is to be a left
module over QF, so that it has two sup-lattices (Q'F)* and (Q'F)†. Moreover, Q'F is a
quotient of Q–* × Q–†, so we have –

j*: Q** × Q*† & (Q'F)*
j†: Q†* × Q†† & (Q'F)†

The map j† is not interesting. Q†* is the 0 sup-lattice, and there are no (' relations
at † except for those requiring j(1†) to be top, which it is anyway (Q†† is a frame).
Hence (Q'F)† I Q†† I !DFT. Third completeness at † requires that if a (/  b in Q††,
then there is a process p with {p}·a G 0 but {p}·b G 0; the process constructed in 9.1.3
for second completeness (case ††) also suffices here.

For j* we prove an analogue of Lemma 7.2.6. Note that j(1*) = j(•), so that (Q'F)*
is generated by the image of Q*† under j*.

Lemma 9.1.4 Let SF = Act* × 'fin(Act); we write (s, X) # SF as s·•·X× as though it
were a product of generators of QF, and feel free to omit s if it is 1, or X× if X is Ø.
Let C' be the set of cover relations (with s, t # Act*)

{s·•} –| s·t·•·X×

{s·•·X×} –| s·•·*×·X×

{s·*·•, s·•·*×·X×} –| s·•·X×

Then C'-Idl(SF) is isomorphic to (Q'F)*, with s·•·X× (as generator in C'-Idl(SF))
corresponding to j(s·•·X×).
Proof
Let us write M* for C'-Idl(SF) and M† for !DFT. One can then show that M (with
these two components) is a left QF-module. Much as in Lemma 7.2.6, one can then
define left QF-module homomorphisms
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Q'F

j k

k'

j'
M = (C'-Idl(S F),!DFT)

(QF)–*
(QF)–†×

and show that j' and k' are mutually inverse. ]]

Lemma 9.1.5 Let v, u # (Q'F)*, and * # Act.
If both v ( u ) j(*) and v ( u ) j(•·*×), then v ( u.

Proof The obvious quantaloid homomorphism from QF to QFT makes Q'FT a left
QF-module, and we get a QF-module homomorphism f: Q'F & Q'FT. On C'-ideals
(Lemmas 7.2.6 and 9.1.4), f* maps a C'F ideal I to {s·X×·t: s·•·X× # I, t # SFT}. This
is readily checked to be 1-1. Hence if we have v, u and * as stated, then in Q'FT we
have

f*(v) ( f*(u) ) j(*) and f*(v) ( f*(u) ) j(*×)

It follows from Lemma 7.2.7 that f*(v) ( f*(u), and so v ( u. ]]

Definition 9.1.6 Let p # (Q̂'F)*. Then p is 0.+,#3+91 iff p G 0, and for all * # Act, if
p·•·*× G 0 then p·* = 0.

Lemma 9.1.7 Let x # (Q̂'F)*. If x·* = 0, then x·•·*× = x·•.
Proof
We must show (x·•·*×)^ ( (x·•)^. Suppose j(X×) ( (x·•·*×)^, i.e. x·•·*×·X× = 0. Then
j(•·X×) ( j(*) ) j(•·*×·X×) ( x̂ and j(X×) ( (x·•)^. ]]

In FT we could also prove the converse of the analogue of this result by
straightforward algebraic means (using *×·* = 0), but that does not seem to be
possible here – though the converse is still true, and follows from the next theorem.
Hence we need a formally stronger definition of pointlikeness.

Theorem 9.1.8 Every element x of (Q̂'F)* is a join of pointlikes.
Proof
Let v # (Q'F)* be compact, with v (/  x̂ (the usual coherence arguments still work).
We must show that v (/  p̂ for some pointlike p ( x. Just as with FT, it suffices to find
a set U $ Act such that v (/  p̂ where p = x " *#U j(•·*×)^ " *?U j(*)^. By
Zorn’s lemma we find a pair (U, V) of subsets of Act maximal with respect to



!"#$%&'#()*#%&+,&-./0)#1(&'*+1,*1 (1993), 2.3%&45&00%&161-227 75

v (/  x̂ ) *#U j(•·*×) ) *#V j(*)

and then Lemma 9.1.5 shows that Act is the disjoint union of U and V. ]]

Theorem 9.1.9 F satisfies the third completeness criterion.
Proof
Just as in Section 7. Let Proc be the set of pointlike elements of (Q̂'F)*, made into a
transition system by p &*  q iff q ( p·*. Then for every a in Q with source *, we have
{p}·a = Ø iff p·a = 0. (As before, reduce to the case where a is a product of
generators, and then use induction on the length.) Now suppose a and b have source
*, and j(a) (/  j(b). Then there is some pointlike p with p ( j(b)^, p (/  j(a)^, so {p}·a G
Ø, {p}·b = Ø. ]]

Let us conclude this section by observing that Lemma 9.1.4 provides us with a
direct link to existing work.

Proposition 9.1.10 The elements of (Q̂'F)* are in 1-1 order-preserving
correspondence with the sets F $ Act*×'fin(Act) satisfying:

(F1) (s·t, X) # F : (s, Ø) # F
(F2) if (s, Y) # F and X $ Y then (s, X) # F
(F3) if (s, X) # F then (s, XR{*}) # F or (s·*, Ø) # F) (* # Act)

Proof
Act*×'fin(Act) is the SF of Lemma 9.1.4, and then the sets F described above are
the complements of the C'-ideals (let us call them C'-*.ideals). The C'-ideals
themselves are in 1-1 order-preserving correspondence with the elements of (Q'F)*.

Note that the set of coideals is closed under unions, and hence that joins in (Q̂'F)*
are represented by unions of the corresponding coideals. ]]

The conditions in this proposition are taken directly from Brookes, Hoare and
Roscoe (1984) (or from Hoare 1985, p. 130). They also include the condition:

(F0) (1, Ø) # F

which is to say that F is non-empty. Of course, the empty coideal plays an essential
part in our mathematics. As to its process theoretic meaning, it can perhaps be
thought of as a “nullary internal choice” that cannot even exist, let alone perform any
actions or refusals.

The extra work in our account has related the formalism based on failure sets
(satisfying F1-3 above) both to the algebra with generators and relations (using the
coverage theorem) and to the transitions systems (results analogous to Blamey’s
(1991)).
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\%Q&D1";:&81/",#+*8&D
The development here is very similar to that for F, so we shall do no more than
sketch the sequence of results.

Definition 9.2.1 Let Act be a set. We present the quantaloid

Q = QR(Act) =
Qud / *: * & * (* # Act),

•: * & †,
*×, *@: † & † (* # Act) |

*×·*× = *× ( 1†
*@·*@ = *@ ( 1†
*×·,× = ,×·*×

*@·,@ = ,@·*@

*×·,@ = ,@·*×

*×·*@ = 0††
1† ( *@ ) �*× 0

The testing preorder is presented by

•·*@ =' * (* # Act)
1* (' •

Theorem 9.2.2 JR+(8#&*./031#1,188&F.(&DK
If Act is finite, then the R-order on processes is ;<R.

Proof (s, X) is in readies(p) iff {p}·s·X@·(Act–X)× G Ø, and {p}·s·Y@·Z× G Ø iff there
is some X $ Act such that (s, X) # readies(p), Y $ X and Z-X = Ø. ]]

Proposition 9.2.3

(QR)** I '(Act*)
(QR)†† I !DRT (defined as in Proposition 7.1.3)
(QR)†* I 0
(QR)*† I '(Act*) 4 !DRT ]]

Theorem 9.2.4 The second completeness criterion criterion holds for R. ]]

Lemma 9.2.5 Let SR = Act* × 'fin(Act) × 'fin(Act); we write (s, X, Y) # SR as
s·•·X@·Y× as though it were a product of generators of QR. Let C' be the set of cover
relations (with s, t # Act*, = = X@·Y× for some X, Y)

Ø –| s·•·*@·*×·=
{s·•·*@·=, s·•·*×·=} –| s·•·=
{s·•} –| s·t·•·=
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{s·•·=} –| s·•·*@·=
{s·•·=} –| s·•·*×·=
{s·*·•} –| s·•·*@

{s·•·*@} –| s·*·•

Then C'-Idl(SR) is isomorphic to (Q'R)*, with s·•·X@·Y× (as generator in
C'-Idl(SR)) corresponding to j(s·•·X@·Y×). ]]

Lemma 9.2.6 Let v, u # (Q'R)*, and * # Act.
If both v ( u ) j(•·*@) and v ( u ) j(•·*×), then v ( u.

Proof The crucial calculations are that if I is a C'-ideal in SR, then –

(i) C'-/I R {•·*@}0 = 
 BF
C
FDSR if�•·*×�#�I

I�R�{,·s·•·=:�s·•·=�#�SR,�•·*×·,@�#�I}
R�{•·=:�•·*×·=�#�I} otherwise

(ii) C'-/I R {•·*×}0 = 
 BF
C
FD
SR if�•·*@�#�I
I�R�{,·s·•·=:�s·•·=�#�SR,�•·*@·,@�#�I}

R�{•·=:�•·*@·=�#�I} otherwise

It is then not hard to show that the intersection of these two is I. ]]

Definition 9.2.7 Let p # (Q̂'R)*. Then p is 0.+,#3+91 iff p G 0, and for all * # Act, one
of p·•·*@ and p·•·*× is zero (so the other is p·•).

Theorem 9.2.8 Every element x of (Q̂'R)* is a join of pointlikes. ]]

Theorem 9.2.9 R satisfies the third completeness criterion. ]]

\%4&6**10#",*1&81/",#+*8&6

Definition 9.3.1 Let Act be a set. We present the quantaloid

Q = QA(Act) =
Qud / *: * & * (* # Act),

•: * & †,
*@: † & † (* # Act) |

*@·*@ = *@ ( 1†
*@·,@ = ,@·*@ 0

The testing preorder is presented by

•·*@ =' * (* # Act)
1* (' •

First completeness is obvious.
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Proposition 9.3.2

(QA)** I '(Act*)
(QA)†† I !DAT (defined as in Proposition 7.3.3)
(QA)†* I 0
(QA)*† I '(Act*) 4 !DAT ]]

Theorem 9.3.3 The second completeness criterion criterion holds for A. ]]

Lemma 9.3.4 Let SA = Act* × 'fin(Act); we write (s, X) # SA as s·•·X@ as though it
were a product of generators of QA. Let C' be the set of cover relations (with s, t #
Act*)

{s·•} –| s·t·•·=
{s·•·=} –| s·•·*@·=
{s·•·=} –| s·•·*×·=
{s·*·•} –| s·•·*@

{s·•·*@} –| s·*·•

Then C'-Idl(SA) is isomorphic to (Q'A)*, with s·•·X@ (as generator in C'-Idl(SA))
corresponding to j(s·•·X@). ]]

Lemma 9.3.5

(i) j(s·•·X@) is completely coprime in (Q'A)*.
(ii) If j(s·•·X@) ( j(•·*@) in (Q'A)*, then either s = *·s' for some s', or s = 1 and *

# X.

Proof
(i) C'-ideals in SA are closed under arbitrary union.
(ii) C'-/{•·*@}0 = {*·t·•·Y@: t·•·Y@ # SA} R {•·Y@: * # Y $fin Act}. ]]

Definition 9.3.6 Let p # (Q̂'A)*. Then p is 0.+,#3+91 iff p G 0, and for all * # Act,
p·•·*@ is either 0 or p·•.

Theorem 9.3.7 Every element x of (Q̂'A)* is a join of pointlikes.
Proof
We must show that if j(s·•·X@) (/  x̂, then there is a pointlike p ( x such that j(s·•·X@) (/
p̂. Define U $fin Act to be {*} if s = *·s', X if s = 1: so j(s·•·X@) ( j(•·U@). Define

p = x " ,?U j(•·,@)^

If , ? U then p·•·,@ = 0; we show that if U # U then p·•·U@ = p·•, i.e. if Y $fin Act
and p·•·Y@ G 0, then p·•·U@·Y@ G 0. But if p·•·Y@ G 0 then Y $ U, so it suffices to
show that p·•·U@·U@ G 0, i.e. (because U # U) p·•·U@ G 0. If p·•·U@ = 0, then
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j(•·U@) ( x̂ ) ,?U j(•·,@)

By Lemma 9.3.5 (i), we have either j(•·U@) ( x̂, which contradicts j(s·•·X@) (/  x̂, or
j(•·U@) ( j(•·,@) for some , ? U, which gives a contradiction by 9.3.5 (ii). ]]

Theorem 9.3.8 A satisfies the third completeness criterion. ]]
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10. Concluding remarks
There are some obvious directions in which our results need to be extended to give a
fully adequate treatment of process semantics.

First, we have not considered unobservable actions (+) and divergence in this
paper. Furthermore, we have taken a “syntax-free” approach to transition systems,
ignoring the algebraic structure of process expressions. Finally, we have not
considered *")8"3 semantics, as we have focused purely on sequential observations.

One tantalizing question left open is whether bisimulation yields to the methods
of analysis and description available in our framework. We hope that an answer to
this question, in either direction, will shed some light on the current debate about
which process equivalences are based on reasonable notions of observation
(Abramsky 1987 b, Bloom, Istrail and Meyer 1988, Larsen and Skou 1989).
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