Real analysis via logic

Steve Vickers

School of Computer Science University of Birmingham

British Logic Colloquium, Birmingham, 7 September 2024

- \triangleright Topology and continuity as *logical* phenomena (geometric logic).
- \triangleright Now applying logical approach to real analysis.
- \blacktriangleright Gives fresh perspective on the analysis.

Topology, continuity as logical phenomena

Usual approach: maths is discrete Topological space (point-set) = set + extra structure

Continuous map $=$ function respecting that structure

Geometric logic: "all" maths is continuous Discrete maths of sets very restricted – eg $\mathbb Q$ is a set, real line $\mathbb R$ isn't. Can still access $\mathbb R$, by taking logical, *point-free* approach -

Topological space $=$ logical theory (point $=$ model of theory)

Continuity of map $=$ definition respects logical constraints

Example: real line $\mathbb R$ as logical theory

Signature

For each rational $q \in \mathbb{Q}$: two propositional symbols $\lceil \cdot \langle q \rceil \rceil$, $\lceil q \langle \cdot \rceil \rceil$. Axioms $-$ eg

$$
[\cdot < q'] \vdash [\cdot < q] \quad (\text{if } q' < q)
$$
\n
$$
[\cdot < q] \land [q < \cdot] \vdash \bot
$$
\n
$$
\top \vdash [q < \cdot] \lor [\cdot < r] \quad (\text{if } q < r)
$$
\n
$$
\vdots
$$
\n
$$
[\cdot < q] \vdash \bigvee_{q' < q} [\cdot < q']
$$

Model x is real number as Dedekind cut: Specify truth values $[x < q]$ and $[q < x]$ for every q, ie which rationals are bigger than x , which are smaller.

Defining maps

Think of maps $f: \mathbb{R} \to \mathbb{R}$ in a style of programming languages.

Declare formal parameter x. Do some auxiliary calulations. Define result $f(x)$ as model: ▶ specify truth values $[f(x) < q]$, $[q < f(x)]$,

 \blacktriangleright prove that axioms hold.

eg absolute value $|\cdot|: \mathbb{R} \to \mathbb{R}$

Let $x:\mathbb{R}$ $[|x| < q] := [x < q] \wedge [-q < x]$ $[q < |x|] := [q < x] \vee [x < -q]$... and prove axioms

Inside the box, in scope of x , is a different mathematics!

1. Lots of non-standard truth values $[x < q]$, $[q < x]$ (for each rational q)

Each expresses where (ie for which models x) something is true.

2. Continuity $=$ different logic

Continuity: inverse image of open is open

 $f^{-1}([{\times} < q]) = [f({\times}) < q]$ is made from truth values of form $[x < r]$ and $[s < x]$ using \wedge and \bigvee . Similarly for $[q < f(x)]$.

We want continuity, therefore restrict mathematics inside box to limit how we construct $f(x)$.

Geometricity

Pure logic

Restricted formulae: $\bigvee, \wedge, =, \exists$.

Axioms as sequents:

formula $\vdash_{\mathsf{context}}$ formula

 $Context = finite stock of free$ variables, with implicit ∀.

Corresponding maths

Restricted maths of sets: Disjoint unions, quotients, finite products, equalizers, free algebras.

Function spaces Y^X , powersets $\mathcal{P} X$, the real line $\mathbb R$ are not sets! They must be dealt with as spaces.

Infinite \bigvee can often be avoided by using \exists with an infinite set. eg

$$
[\cdot < q] \vdash_{q: \mathbb{Q}} (\exists q' : \mathbb{Q}) (q' < q \wedge [\cdot < q']) \text{ for } [\cdot < q] \vdash \bigvee_{q' < q} [\cdot < q'].
$$

Technicalities

- \blacktriangleright The "maths inside the box" is the geometric fragment of the internal mathematics of the classifying topos $S[X]$. "Map" = geometric morphism.
- \triangleright "Classifying topos" is slippery constructively $-$ depends on choice of a base topos S . To avoid that dependency, work without infinite disjunctions. [\[Vic17\]](#page-13-0)

[\[Vic99\]](#page-12-1) shows the technique in action in domain theory. [\[Vic07\]](#page-13-1) explains how standard topos results (eg [\[MLM92\]](#page-12-2)) arrive at this point of view.

[\[Vic22\]](#page-13-2) gives a more up-to-date discussion.

Logical manipulations I: Decomposing theories

Theory of Dedekind reals $=$

theory of lower reals to account for $[q < 1]$

+ theory of *upper reals* to account for $\lceil \cdot \langle q \rceil \rceil$

 $+$ two axioms to relate them

Good strategy for point-free analysis (eg exp, log, integration)

- 1. Deal with lower and upper cases separately,
- 2. then combine them.

Can provide fresh insights - eg Ostrowski's Theorem in number theory (Ng [\[Ng22,](#page-12-3) [NV\]](#page-12-4)).

Logical manipulations II: Building up theories

Declare formal parameter x. Do some auxiliary calculations. Define space $\mathbb{T}(x)$ as theory:

 \blacktriangleright define signature (as set)

: \blacktriangleright define axiom set (with appropriate structure). Geometricity suggests $\mathbb{T}(x)$ depends continuously on x.

Logically $-(\mathbb{T}(x))_{x:\mathbb{R}}$ defines extension of theory of reals. Models = pairs (x, y) , $x:\mathbb{R}$, y model of $\mathbb{T}(x)$. Dependent type theory: write $\sum_{x:\mathbb{R}} \mathbb{T}(x)$. Forgetful map $\sum_{x:\mathbb{R}} \mathbb{T}(x) \to \mathbb{R}$, $(x, y) \mapsto x$, makes a *bundle* over \mathbb{R} . None of this works satisfactorily in point-set topology Can't describe bundle as continuously indexed family of spaces.

Logical approach works better!

Logical manipulations III : Modal logic \rightarrow hyperspaces

Hyperspace¹ = space of subspaces

eg Use \Box modality to construct new theory, models are to be subspaces W .

 $\Box \phi$ assigned value true for those W in which every point has ϕ true in old theory.

Clearly $\square(\phi \wedge \psi) \equiv \square \phi \wedge \square \psi$.

For $\mathbb R$, signature has elements of the form $\Box \bot$, $\Box [q < \cdot]$, $\Box [\cdot < r]$ and $\square([q < \cdot] \vee [\cdot < r])$.

Under suitable axioms, model $=$ compact subspace of \mathbb{R} .

Application eg: Heine-Borel Theorem, closed intervals $[x, y]$ are compact

Using hyperspace, can demonstrate that $[x, y]$ depends continuously on x and y .

Other hyperspaces available; works for all spaces

¹Point-free hyperspaces aka powerlocales. For geometricity see [\[Vic04\]](#page-13-3).

Logic makes topology work ... better than topology does!

See [\[NV22\]](#page-12-0) "Point-free construction of real exponentiation" for introduction to putting this into practice.

Bibliography I

- [MLM92] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic, Springer-Verlag, 1992.
- [Ng22] Ming Ng, Adelic geometry via topos theory, Ph.D. thesis, School of Computer Science, University of Birmingham, 2022.
- [NV] Ming Ng and Steven Vickers, A point-free look at Ostrowski's Theorem and absolute values, Submitted for publication. Archived at arXiv:2308.14758.
- [NV22] , Point-free construction of real exponentiation, Logical Methods in Computer Science 18 (2022), no. 3, 15:115:32, DOI 10.46298/lmcs-18(3:15)2022.
- [Vic99] Steven Vickers, Topical categories of domains, Mathematical Structures in Computer Science 9 (1999), $569 - 616$.

Bibliography II

[Vic04] \Box , The double powerlocale and exponentiation: A case study in geometric reasoning, Theory and Applications of Categories 12 (2004), 372-422, Online at [http://www.tac.mta.ca/tac/index.html#vol12.](http://www.tac.mta.ca/tac/index.html#vol12)

[Vic07] [Wic07] **Example 2**, Locales and toposes as spaces, Handbook of Spatial Logics (Marco Aiello, Ian E. Pratt-Hartmann, and Johan F.A.K. van Benthem, eds.), Springer, 2007, pp. 429-496.

[Vic17] **Example 2**, Arithmetic universes and classifying toposes, Cahiers de topologie et géométrie différentielle catégorique 58 (2017), no. 4, 213-248.

[Vic22] , Generalized point-free spaces, pointwise, [https://arxiv.org/abs/2206.01113,](https://arxiv.org/abs/2206.01113) 2022.

[Vic23] , The fundamental theorem of calculus point-free, with applications to exponentials and logarithms, [https://arxiv.org/abs/2312.05228,](https://arxiv.org/abs/2312.05228) 2023.