Real analysis via logic

Steve Vickers

School of Computer Science University of Birmingham

British Logic Colloquium, Birmingham, 7 September 2024

- Topology and continuity as *logical* phenomena (geometric logic).
- Now applying logical approach to real analysis.
- Gives fresh perspective on the analysis.

Topology, continuity as *logical* phenomena

Usual approach: maths is discrete Topological space (point-set) = set + extra structure

Continuous map = function respecting that structure

Geometric logic: "all" maths is continuous Discrete maths of sets very restricted – eg \mathbb{Q} is a set, real line \mathbb{R} isn't. Can still access \mathbb{R} , by taking logical, *point-free* approach –

Topological space = logical theory (point = model of theory)

Continuity of map = definition respects logical constraints

Example: real line $\mathbb R$ as logical theory

Signature

For each rational $q \in \mathbb{Q}$: two propositional symbols $[\cdot < q]$, $[q < \cdot]$. Axioms – eg

Model x is real number as *Dedekind cut*: Specify truth values [x < q] and [q < x] for every q, ie which rationals are bigger than x, which are smaller.

Defining maps

Think of maps $f : \mathbb{R} \to \mathbb{R}$ in a style of programming languages.

Declare formal parameter x.
Do some auxiliary calulations.
Define result f(x) as model:
▶ specify truth values [f(x) < q], [q < f(x)],

prove that axioms hold.

eg absolute value $|\cdot| \colon \mathbb{R} \to \mathbb{R}$

Let $x:\mathbb{R}$ $[|x| < q] := [x < q] \land [-q < x]$ $[q < |x|] := [q < x] \lor [x < -q]$... and prove axioms Inside the box, in scope of x, is a *different mathematics!*

1. Lots of non-standard truth values [x < q], [q < x] (for each rational q)

Each expresses where (ie for which models x) something is true.

2. Continuity = different logic

Continuity: inverse image of open is open

 $f^{-1}([x < q]) = [f(x) < q]$ is made from truth values of form [x < r] and [s < x] using \land and \bigvee . Similarly for [q < f(x)].

We want continuity, therefore restrict mathematics inside box to limit how we construct f(x).

Geometricity

Pure logic Restricted formulae: \bigvee , \land , =, \exists .

Axioms as sequents:

formula ⊢_{context} formula

 $Context = finite stock of free variables, with implicit \forall.$

Corresponding maths

Restricted maths of sets: Disjoint unions, quotients, finite products, equalizers, free algebras.

Function spaces Y^X , powersets $\mathcal{P}X$, the real line \mathbb{R} are *not sets!* They must be dealt with as spaces.

Infinite \bigvee can often be avoided by using \exists with an infinite set. eg

$$[\cdot < q] \vdash_{q:\mathbb{Q}} (\exists q':\mathbb{Q})(q' < q \land [\cdot < q']) ext{ for } [\cdot < q] \vdash igvee_{q' < q} [\cdot < q'].$$

Technicalities

- The "maths inside the box" is the geometric fragment of the internal mathematics of the classifying topos S[X].
 "Map" = geometric morphism.
- "Classifying topos" is slippery constructively depends on choice of a base topos S. To avoid that dependency, work without infinite disjunctions. [Vic17]

[Vic99] shows the technique in action in domain theory. [Vic07] explains how standard topos results (eg [MLM92]) arrive at this point of view.

[Vic22] gives a more up-to-date discussion.

Logical manipulations I: Decomposing theories

Theory of Dedekind reals =

theory of *lower reals* to account for $[q < \cdot]$

+ theory of upper reals to account for $[\cdot < q]$

+ two axioms to relate them

Good strategy for point-free analysis (eg exp, log, integration)

- 1. Deal with lower and upper cases separately,
- 2. then combine them.

Can provide fresh insights – eg Ostrowski's Theorem in number theory (Ng [Ng22, NV]).

Logical manipulations II: Building up theories

Declare formal parameter x. Do some auxiliary calculations. Define space $\mathbb{T}(x)$ as theory:

define signature (as set)

Geometricity suggests $\mathbb{T}(x)$ depends continuously on x.

Logically $-(\mathbb{T}(x))_{x:\mathbb{R}}$ defines extension of theory of reals. Models = pairs (x, y), $x:\mathbb{R}$, y model of $\mathbb{T}(x)$. Dependent type theory: write $\sum_{x:\mathbb{R}} \mathbb{T}(x)$. Forgetful map $\sum_{x:\mathbb{R}} \mathbb{T}(x) \to \mathbb{R}$, $(x, y) \mapsto x$, makes a bundle over \mathbb{R} . None of this works satisfactorily in point-set topology

Can't describe bundle as continuously indexed family of spaces.

Logical approach works better!

Logical manipulations III: Modal logic \rightarrow hyperspaces

$Hyperspace^1 = space of subspaces$

eg Use \Box modality to construct new theory, models are to be subspaces W.

 $\Box \phi$ assigned value true for those W in which every point has ϕ true in old theory.

Clearly $\Box(\phi \land \psi) \equiv \Box \phi \land \Box \psi$.

For \mathbb{R} , signature has elements of the form $\Box \bot$, $\Box [q < \cdot]$, $\Box [\cdot < r]$ and $\Box ([q < \cdot] \lor [\cdot < r])$.

Under suitable axioms, model = compact subspace of \mathbb{R} .

Application eg: Heine-Borel Theorem, closed intervals [x, y] are compact

Using hyperspace, can demonstrate that [x, y] depends *continuously* on x and y.

Other hyperspaces available; works for all spaces

¹Point-free hyperspaces aka *powerlocales*. For geometricity see [Vic04].

Logic makes topology work ... better than topology does!

See [NV22] "Point-free construction of real exponentiation" for introduction to putting this into practice.

Bibliography I

- [MLM92] S. Mac Lane and I. Moerdijk, *Sheaves in geometry and logic*, Springer-Verlag, 1992.
- [Ng22] Ming Ng, Adelic geometry via topos theory, Ph.D. thesis, School of Computer Science, University of Birmingham, 2022.
- [NV] Ming Ng and Steven Vickers, A point-free look at Ostrowski's Theorem and absolute values, Submitted for publication. Archived at arXiv:2308.14758.
- [NV22] _____, Point-free construction of real exponentiation, Logical Methods in Computer Science **18** (2022), no. 3, 15:1–15:32, DOI 10.46298/lmcs-18(3:15)2022.
- [Vic99] Steven Vickers, Topical categories of domains, Mathematical Structures in Computer Science 9 (1999), 569-616.

Bibliography II

[Vic04] _____, The double powerlocale and exponentiation: A case study in geometric reasoning, Theory and Applications of Categories 12 (2004), 372-422, Online at http://www.tac.mta.ca/tac/index.html#vol12.

[Vic07] _____, Locales and toposes as spaces, Handbook of Spatial Logics (Marco Aiello, Ian E. Pratt-Hartmann, and Johan F.A.K. van Benthem, eds.), Springer, 2007, pp. 429–496.

[Vic17] _____, Arithmetic universes and classifying toposes, Cahiers de topologie et géométrie différentielle catégorique **58** (2017), no. 4, 213-248.

[Vic22] _____, Generalized point-free spaces, pointwise, https://arxiv.org/abs/2206.01113, 2022.

Bibliography III

[Vic23] _____, The fundamental theorem of calculus point-free, with applications to exponentials and logarithms, https://arxiv.org/abs/2312.05228, 2023.