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Abstract

If X is a locale then its valuation locale VX has for its points the
valuations on X. V is the functor part of a strong monad on the category
of locales, a localic analogue of the Giry monad. It is commutative, i.e.
product valuations exist and a Fubini Theorem holds. An analogue of the
Riesz Representation Theorem holds. Concrete representations are given
for the tensor product of lattices and for the modular monoid. The work
conforms with the constructive constraints of geometric logic.

1 Introduction

In point-free topology, a theory of integration can be got with measures replaced
by valuations. These are like measures, but defined on the opens; and the
condition of σ-additivity is replaced by Scott continuity. This approach avoids
set-theoretic issues of measure theory, such as the question of whether there are
unmeasurable sets, that would be extremely problematic in a point-free setting.
It also avoids the need for a notion of measurable function, since in point-
free topology all maps are continuous (although apparently discontinuous maps
often arise because the reals are in many situations in effect given topologies
of semicontinuity). However, it is restricted to those measures for which it is
enough to define the measure on the opens.

Given a locale X, there is a valuation locale VX whose points are the val-
uations on X. This was first described by Heckmann [Hec94], anticipated by
work on the probabilistic powerdomain [JP89], and subsequently developed in
[Vic08] and [CS09]. (There are minor variations in that some treatments re-
strict to probability valuations, where the mass of X is 1.) Our aim here is
to develop the theory, showing that V is the functor part of a commutative
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monad, and proving analogues of the Riesz Representation Theorem and the
Fubini Theorem.

It is already known that some aspects of measure and integration can be
conveniently summarized as a monad on a category of measurable spaces, based
on a functor that, for each space, provides a space of measures on it. A well
known example is the Giry monad [Gir81] on the category of measurable spaces.
Another example on Sets is the distribution monad of [AB11] where, given a
semiring R, the functor gives for each set X the set of functions X → R with
finite support. In these examples the monad needs a strength in order that
one may calculate double integrals, and be commutative to provide product
measures and a Fubini Theorem.

A point-free analogue becomes particularly necessary for a topos-valid treat-
ment, and it has been used in [HLS09] to introduce probability into quantum
theory in a topos approach. Further developments [FRV11] have made it im-
perative to establish the basic properties of V.

On the way to showing that V is a monad we also show a version of the
Riesz Representation Theorem (33). Apart from its intrinsic interest, we also
use it to justify our definition of the multiplication of the monad, defining it as
a linear functional. The usual Riesz Theorem can be summarized roughly as
follows. Suppose X is a measurable space, with σ-algebra MX of measurable
subsets. A measure on X is then an assignment of non-negative reals to the
measurable subsets and so lives in a subset MeasX of RMX . More general than
the measurable subsets, however, are the measurable functionsMRX from X to
R – in fact, the measurable sets A correspond bijectively with their characteristic
functions χA, which are the measurable functions from X to {0, 1}.

If a measure m assigns real values m(A) to measurable sets A, integration
extends this assignment to one that assigns real values

∫
f dm to measurable

functions, in such a way that
∫
χA dm = m(A). Thus one may understand∫

− dm as a functional Int(m) fromMRX to R, so Int : MeasX → RMRX . A
Riesz Theorem says that its image is precisely the linear functionals.

Coquand and Spitters [CS09] prove a version of this for the valuation locale.
(Note that their valuation locale VAL(X) is a subspace of ours, being restricted
to probability valuations with total mass 1. This has the important effect of
enabling a theory of upper integrals and hence of Riemann integrals, since all
their valuations are finite in the sense of [Vic08].) Their Riesz Theorem is
restricted to the case where X is compact completely regular, and so, by a
constructive version of a form of Gelfand-Naimark duality, corresponds to a
Riesz space R = C(X), the set of continuous maps X → R. They then show
that their valuation locale VAL(X) is homeomorphic to a locale INT(R) of
integrals on R, i.e. certain linear functions R→ R.

In this paper we describe another localic Riesz Theorem, differing from the
treatment in [CS09] in two main ways. First of all, it is completely general,
working for arbitrary locales X. However, ours is not a simple generalization
because we change the integrands (the integrable functions). In our construc-
tive setting it is important to be clear which reals are in use. For instance,
a valuation takes its values not in the extended, non-negative, Dedekind reals
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R, but in the lower reals
−−−→
[0,∞]. Constructively these are approximated from

below, while classically they may be thought of as having the topology of lower
semicontinuity. In our notation, the arrow shows the direction of the specializa-
tion order. For the lower reals it is the numerical order, for the upper reals it is
the opposite. In [CS09] the integrands – the elements of their Riesz space – are
maps from X to the Dedekind reals R, possibly negative. They can integrate
such functions (getting a Dedekind real), but the ability to do so depends on
the compactness of X and the finiteness of their probability valuations. We
instead integrate maps to the non-negative lower reals, using the lower integral
of [Vic08].

We embed VX in a locale whose points may be considered to be functionals
defined on maps fromX to the non-negative lower reals, and show thatVX then
comprises the linear functionals. Our proof uses a detailed algebraic analysis of
finitary lattices, including one whose elements play the role of simple functions.

2 Geometricity

The notion of geometricity will be important throughout this work, both in
the development and in applications such as [FRV11] (which uses the valuation
locale applied fibrewise in bundles). The technical foundation is set out in
[Vic04], which relies heavily on geometricity of the double powerlocale, and we
shall outline it here because similar considerations apply to the valuation locale.

Point-free topology in the form of locale theory works well in arbitrary
toposes (even elementary toposes, though Grothendieck toposes are our main
interest), and in fact works even better than point-set topology. There is a
topos-valid notion of frame, in which, without going into details, the arbitrary
joins in a frame A are expressed as a join morphism PA → A. To appreciate
better the later discussion, we can divide the structure into a finitary part (A
is a distributive lattice) and an infinitary part, the existence of directed joins,
expressed as a morphism to A from the object of its directed subsets.

The well known technique of presenting a frame by generators and relations
also works in toposes, so that given a presentation T, it presents a frame Ω[T].
There is a range of possibilities for what T might be concretely. One very
general one (Definition 1) is the GRD-system of [Vic04]. Another scheme that
will be useful in the present paper is to structure T as DL-site (Definition 5),
where the generators form a distributive lattice, with finitary meets and joins
to be preserved, and the relations are of the form a ≤

∨↑
i ai, the superscript ↑

denoting that the join is directed.
A core result is what we shall refer to as the Localic Bundle Theorem ([FS79],

[JT84]). This says that, for any topos E , there is an dual equivalence between
internal frames in E and localic geometric morphisms with codomain E – we
shall think of these as localic bundles over E . Given an internal presentation
T in E we thus also get an internal frame Ω[T] (or locale [T]) and a bundle
(external) for which we shall write E [T] → E . The topos E [T] is got from E by
freely adjoining an internal model of T.
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The issue of geometricity arises when we consider how the relation between
these three different accounts of internal locales – frames, presentations and
bundles – is preserved under pullback along a geometric morphism f : F → E .
By definition part of f is its inverse image functor f∗ : E → F , and this can
be applied to the ingredients of the presentation T to get a presentation f∗T in
F . It can also be applied to the frame Ω[T] to get an object f∗(Ω[T]) but one
should note that although this is a distributive lattice, it is not a frame in F .
The basic issue is with the existence of “all” joins, or, more carefully, all directed
joins – the meaning of “all” is determined by the topos, and f∗(Ω[T]) has only
the joins arising from E . More technically, the join structure in E is given by a
join map PΩ[T] → Ω[T]. We can apply f∗ to get f∗(PΩ[T]) → f∗(Ω[T]), but
since P is not preserved by inverse image functors (it is not geometric), we do
not get all joins in F .

On the other hand, pullback of bundles is just the categorical operation
(strictly speaking: pseudopullback, so the squares commute up to isomorphism)
in the category of toposes.

The inverse image functor f∗ agrees with pullback of bundles in the follow-
ing way. Each object X of E has a powerset PX, and that is a frame; the
bundles corresponding to frames of that kind are those for which the bundle
map is a local homeomorphism. This gives an equivalence between objects of
E and local homeomorphisms to E , and the equivalence is preserved by the two
forms of pullback. Thus geometricity as a property of constructions on topos
objects, meaning preservation by inverse image functors f∗, can also be un-
derstood as preservation under pullback of the equivalent construction on local
homeomorphisms.

Given a presentation T in E , in F we have f∗T, f∗Ω[T] and f∗p : f∗E [T]→
F . However, the connection between them has been lost because f∗Ω[T] is not
a frame, so is not Ω[f∗T]. Nonetheless, it is a fact [Vic04] that the frame Ω[f∗T]
corresponds to the bundle f∗p: in other words, f∗E [T] ∼= F [f∗T] over F . Thus
the connection between presentation and bundle is preserved by pullback.

For this reason, when we are interested in geometricity (as we are), there are
good reasons for focusing on the presentation rather than the frame. Ideally we
should like to ignore the frame altogether, and focus on the presentation T as
presenting the bundle E [T]→ E . In other words, we work as though the internal
locale is the bundle, rather than that it is the frame. Experience shows that
calculating the frame Ω[T] as an object of E is often complicated and unhelpful
and can be misleading, although in our current state of knowledge we still have
to make use of the frame in some places. We discuss this below.1

1In predicative mathematics, where the powerclass is not a powerset, the frame is also foun-
dationally questionable. [MV10] has some first explorations of a setting where Grothendieck
toposes are replaced by Joyal’s arithmetic universes, pretoposes with parametrized list ob-
jects, which do not in general have powerobjects or exponentiation. Here the analogue of
E[T] is produced directly, by universal algebra. Interpreting maths in this setting corresponds
to a very pure geometricity, in the fragment where the non-finite joins can be expressed in-
ternally in terms of algebraic objects such as the natural numbers object. The first results
are encouraging but are still a long way from covering the geometricity needed in the present
paper.
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Geometricity as a property of topos-valid constructions on sets (objects of
the toposes) is defined as preservation by inverse image functors f∗. In terms
of bundles this readily extends to constructions on locales, or even toposes.
Suppose X 7→ F (X) is a topos-valid construction on locales, defined in terms
of their frames. By the localic bundle theorem it translates into a construction
on localic bundles: if X → E is a bundle, then we get FEX → E by applying F
to the internal frame of X → E in E . An especially good situation is where the
bundle construction works fibrewise, since if we think of the bundle X → E as
a variable space parametrized by points of E then FEX → E is got by applying
F to this variable space. The fibres of a bundle are got by pulling back along
the points of E , and in order to deal with sensibly with the case where E has
insufficient (global) points, we ask that F should be preserved by all pullbacks
of bundles. Then we say that F is geometric.

There is an obvious issue of coherence here: if f : F → E then we want
f∗FEX ∼= FFf

∗X, but we must take care over the question of how the iso-
morphisms fit together. Specifically, we want naturality with respect to bundle
morphisms.

The major proof ingredient, as used in [Vic04] for geometricity of the double
powerlocale P, to to describe F by a geometric construction F ′ on presentations
T, so F [T] ∼= [F ′T]. See Lemma 6.

In order to address naturality for F ′ we must be able to work with mor-
phisms between presentations. However, to describe a locale map in terms of
presenting sites is complicated in general, for generators for one frame must be
mapped to joins of finite meets of generators of the other, and to describe the
way such an assignment respects the relations is not easy. Our work is much
simplified if the assignment can map generators to generators and relations to
relations, and this is most straightforward if we take the locales as presented
by DL-sites derived fom the frame. Thus we shall need to use the frames in
proving geometricity, in particular in proving functoriality of the construction
and naturality of geometricty isomorphism.

2.1 Technicalities on presentations

We first look at GRD-systems, a very general way to present propositional
geometric theories in a diagrammatic package.

Definition 1 A GRD-system [Vic04] is a triple of sets (G,R,D) (of genera-
tors, relations and disjuncts) equipped with functions

D
ρ↙ ↓ π

FG ←−
λ

R

where F is the Kuratowski finite powerset. This presents a frame

Ω[G,R,D] = Fr⟨G |
∧

λ(r) ≤
∨

π(d)=r

∧
ρ(d) (r ∈ R)⟩.
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GRD-systems are themselves models of a predicate geometric theory, and
so there is a natural notion of homomorphism for them. If Ti = (Gi, Ri, Di)
is a GRD-system (i = 1, 2), then a homomorphism θ : T1 → T2 is a triple of
carrier functions (θG, θR, θD) preserving the structure maps λ, ρ, π. Unfortu-
nately, these do not give rise to maps between the corresponding locales, either
covariantly or contravariantly. Contravariance is the obvious one to try, seeking
a frame homomorphism given by G1 → G2 → Ω[T2]. When we check whether
the relation for r is respected, we find it transforms to∧

FθG(λ(r)) ≤
∨

π(d)=r

∧
FθG(ρ(d)),

i.e. ∧
λ(θR(r)) ≤

∨
π(d)=r

∧
ρ(θD(d)).

The relation θR(r) tells us that
∧
λ(θR(r)) ≤

∨
π(d′)=θR(r)

∧
ρ(d′), but this is

not strong enough unless θD maps the fibre of r onto the fibre of θR(r).

Definition 2 A homomorphism θ : T1 → T2 of GRD-systems preserves rela-
tions iff, for each r ∈ R1, θD maps the fibre of r in D1 onto the fibre of θR(r)
in D2.

Proposition 3 Let a homomorphism θ : T1 → T2 of GRD-systems preserve
relations. Then θ defines a map [θ] : [T2]→ [T1] by Ω[θ](g) = θG(g).

Proof. The proof was outlined above.
Preserving relations is a geometric property of GRD-homomorphisms, and

we now show that the geometricity of presentations is natural with respect to
it.

Proposition 4 Let θ : T1 → T2 be a relation preserving homomorphism of
GRD-systems Ti = (Gi, Ri, Di) in a topos E, and let f : E ′ → E be a geometric
morphism. Then the following square commutes for locales over E ′.

f∗[T2] ∼= [f∗T2]
f∗[θ] ↓ ↓ [f∗θ]
f∗[T1] ∼= [f∗T1]

Proof. The proof in [Vic04] of the geometricity of presentations obtains the
isomorphism f∗[T] ∼= [f∗T] by showing that a certain square

E ′[f∗T] −→ E [T]
↓ ↓
E ′ −→ E
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is a (pseudo)pullback of toposes. In the case of a homomorphism θ it therefore
suffices to check commutativity of the square

E ′[f∗T2] −→ E [T2]
E ′[f∗θ] ↓ ↓ E [θ]
E ′[f∗T1] −→ E [T1]

and this can be deduced from the discussion in [Vic04].
We shall also be extensively using DL-sites, where the generators form a

distributive lattice. Note that for us “distributive lattice” will always assume
boundedness, i.e. both bottom and top. We shall use the phrase topless dis-
tributive lattice for an unbounded distributive lattice that has bottom but not
necessarily a top.

Definition 5 A DL-site is a pair (L,▹) where L is a distributive lattice and
the cover relation ▹ is a set of pairs (a, (ai)i) where a ∈ L and (ai)i is a directed
family in L. We also require that ▹ is join and meet stable: if a ▹ (ai)i, then
a ∨ b ▹ (ai ∨ b)i and a ∧ b ▹ (ai ∧ b)i for every b ∈ L.

The DL-site presents the locale X given by

ΩX = Fr⟨L (qua DL) | a ≤
∨↑

i
ai (for a ▹ (ai)i)⟩.

A topless DL-site has exactly the same definition, except that L may be a
topless distributive lattice. Its locale is given by

ΩX = Fr⟨L (qua topless DL) |⊤ ≤
∨↑

L,

a ≤
∨↑

i
ai (for a ▹ (ai)i)⟩.

Note that if the topless DL L happens to have a top element, then the same
locale is presented by both definitions.

If the cover relation is defined by sets R and D as in a GRD-system, then
DL-sites are again the models of a geometric theory and have a natural notion
of homomorphism. This time the carrier on the generators must be a lattice
homomorphism. We say that a homomorphism preserves relations (or preserves
covers) if it satisfies the condition as for GRD-systems. Note that the DL-
site can be expressed as a GRD-system by turning “qua distributive lattice”
(preservation of finitary meets and finitary joins) into relations; but preservation
of relations will amount to the same according to either definition.

For any localeX there is a canonical DL-site on the frame ΩX, with relations
(
∨↑

S) ≤
∨↑

a∈S a for each directed subset S of ΩX. Then a lattice homomor-
phism θG : ΩX1 → ΩX2 is a frame homomorphism iff it gives a cover preserving
homomorphism of DL-sites by taking θR(S) to be the image of S under θR. The
construction of canonical DL-sites is not geometric.

We can now put these results together into a pattern for proving geometricity
of locale constructions. It an elaboration of [Vic04, Proposition 5.5], taking more
care over the naturality.
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Lemma 6 Let F : Loc → Loc be an intuitionistically describable functorial
construction of locales, giving an endofunctor FE of each Loc/E. Let F ′ be a
geometric construction from DL-sites to GRD-systems that is functorial with
respect to relation preserving homomorphisms.

Suppose we have an intuitionistic proof (valid over any topos) that if T is
a DL-site then [F ′T] ∼= F [T], the isomorphism being natural with respect to
relation preserving homomorphisms. Then F is geometric: for any geometric
morphism f : E ′ → E there is a natural isomorphism f∗FE ∼= FE′f

∗.

Proof. For a given locale X, let T be its canonical DL-site so X = [T].
Then the isomorphism f∗FEX ∼= FE′f

∗X is given by a sequence

Ff∗[T] ∼=
(1)

F [f∗T] ∼=
(2)

[F ′f∗T] ∼=
(3)

[f∗F ′T] ∼=
(4)

f∗[F ′T] ∼=
(5)

f∗F [T].

The isomorphisms here depend on (1) functoriality of F together with geo-
metricity of presentations, (2) characterization of F ′, (3) geometricity of F ′, (4)
geometricity of presentations and (5) characterization of F ′ again. Any locale
map gives (non-geometrically) a relation preserving homomorphism between the
canonical sites, and we can examine naturality on 5 squares corresponding to
the division above. Commutativity for squares (1) and (4) follows from Proposi-
tion 4; for squares (2) and (5) by hypothesis; and for square (3) from naturality
of geometric constructions.

3 Valuations

The standard definition of valuation on a distributive lattice L is that it is a
function m : L→ [0,∞] such that m(⊥) = 0 and the modular law

mU +mV = m(U ∪ V ) +m(U ∩ V )

holds. Here we shall allow m to take its values in the lower reals
−−−→
[0,∞].

Note that the definition also makes sense when L is topless.
If L is a frame, then a valuation m is continuous if it preserves directed joins.

We shall take “continuous” as understood in this situation.
For a locale X, we say that a valuation on X is a continuous valuation

on its frame ΩX. [Vic08] defines a valuation locale VX whose points are the
valuations on X. A key result in that paper is a geometricity theorem for VX.
We have generalized it slightly to allow for topless distributive lattices – in fact,
the results can still be made to work for distributive ∨-semilattices.

Theorem 7 Let X be a locale presented by a topless DL-site (L,▹). Then

valuations on X are equivalent to valuations m on L satisfying m(a) ≤
∨↑

i m(ai)
if a ▹ (ai)i.

Proof. The proof in [Vic08] still works in the topless case. But note that
the conditions of join and meet stability should have been included in [Vic08] –
they are clearly expected in the cited proof in [VT04].
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This description can be formulated as a presentation for VX, and also gives
us a description of its generalized points. It will be important in our geometric
treatment.

Theorem 8 V is geometric as a functor.

Proof. We use Lemma 6. F is V, and the geometric construciton F ′ is
implicit in Theorem 7 and more explicit in [Vic08]. It transforms a DL-site
T = (L,▹) into a GRD-system with generators from L × {q ∈ Q | q > 0}.
The generator (a, q) corresponds to the open comprising those valuations m for
which m(a) > q. Now the isomorphism [F ′T] ∼= F [T] says that the propositional
theory of continuous valuations on Ω[T] is equivalent to that of valuations on
L respecting the covers, in other words the models of F ′T, and that is just the
content of Theorem 7.

For naturality, suppose we have a relation preserving homomorphism θ :
T1 → T2 between DL-sites. We want to show that the following square com-
mutes.

F [T2] ∼= [F ′T2]
F [θ] ↓ ↓ [F ′θ]
F [T1] ∼= [F ′T1]

Suppose m is a continuous valuation on ΩF [T2]. Its images in [F ′T1] are the
valuations on L1 got by composing m with the corresponding maps

Ω[T2] ←− L2

[θ]∗ ↑ ↑ θG
Ω[T1] ←− L1

and they are equal.

4 The frame of R′ ×X

2Throughout this section we fix a locale X, presented by a DL-site (L,▹).

The locale R =
−−−→
[0,∞] has linear structure but is also a lattice, and is not far

off being a Riesz algebra as described in [CS09]. The main difference, arising
from our use of lower reals instead of Dedekind, is that it has no subtraction.
Moreover, in order to be able to multiply continuously we must avoid the neg-
ative numbers. (Multiplying by negatives would be antitone with respect to
the specialization order for lower reals, and hence discontinuous.) R is a localic
semiring, and also a “localic frame” in that it is of the form SR′

for the locale

R′ =
←−−−
[0,∞). It follows that maps X → R inherit this linear and lattice struc-

ture, and we shall exploit this in dealing with integration. In particular, the
linear structure will be vital in formulating our Riesz Theorem, that valuations
are linear functionals.

2where R′ =
←−−−
[0,∞)
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From R ∼= SR′
, we see that maps X → R are equivalent to maps R′×X → S,

i.e. opens of R′×X, and so the linear and lattice structure on those maps must
be apparent in the structure of Ω(R′ ×X). In this section we examine this in
some technical detail.

We first find a topless DL-site for R′ × X. Writing Q for the set of non-
negative rationals, a topless distributive lattice, R′ is presented by a topless
DL-site on Q with covers q ▹ {q′ ∈ Q | q′ < q} (if q > 0).

Lemma 9 We can present Ω(R′ ×X) as

Fr⟨Q⊗ L (qua topless DL) | ⊤ ≤
∨↑

(Q⊗ L)

(q × a) ∨ u ≤
∨↑

q′<q
(q′ × a) ∨ u (if q > 0)

(q × a) ∨ u ≤
∨↑

i∈I
(q × ai) ∨ u (if a ▹ {ai | i ∈ I})⟩.

Here Q⊗L is the ∨-semilattice tensor of Q and L, described in more detail
in Section 4.1.

Proof. The first relation presents Idl(Q⊗L) ∼= IdlQ⊗ IdlL. The remaining
relations are the meet and join stabilized versions of the relations needed to give
ΩR′ and ΩX.

Corollary 10 A valuation on R′×X is equivalent to a valuation m : Q⊗X →−−−→
[0,∞] satisfying the following conditions.

1. m((q × a) ∨ u) =
∨↑

q′<q m((q′ × a) ∨ u) (q > 0).

2. m((q × a) ∨ u) ≤
∨↑

i∈I m((q × ai) ∨ u) if a ▹ {ai | i ∈ I}.

Proof. Combine Lemma 9 with Theorem 7.
In the rest of the Section we analyse Q⊗ L in more detail. This is in effect

an algebra of simple functions. It already appears in [CS09] in that role, though
we shall anlyse its structure more precisely.

In Section 4.1 we describe Q⊗ L concretely in a way that will relate to the
definition of lower integral in [Vic08].

In Section 4.2 we relate it to the “modular monoid” M(L), the free commu-
tative monoid over L subject to a + b = (a ∨ b) + (a ∧ b) and ⊥ = 0. [CS09]
derive a concrete representation of this from results in [HT48], and use its ratio-
nalization (with rational coefficients instead of integer) as an algebra of simple
functions. We shall show that this rationalization is order isomorphic to our
Q⊗ L.

In Section 5 this double characterization of Q⊗L will enable us to state and
prove our Riesz theorem by working within V(R′ ×X).
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4.1 Coproducts of distributive lattices

As is well known (see e.g. [Fra76]), if K and L are two distributive lattices
then their coproduct can be constructed as a tensor product K ⊗ L with re-
spect to their structure as ∧- or ∨-semilattices. (This is directly analogous to
the way a coproduct of commutative rings is their tensor product as Abelian
groups.) In more detail, we say a function θ from K ×L to a ∨-semilattice A is
a ∨-bimorphism if θ preserves finite joins in each argument of θ when the other
argument is fixed. Then the ∨-semilattice tensor K⊗L is characterized by being
equipped with a universal ∨-bimorphism from K × L, written (a, b) 7−→ a × b,
such that any ∨-bimorphism θ factors uniquely via a ∨-semilattice homomor-
phism from K⊗L, with a×b mapping to θ(a, b). This tensor exists for arbitrary
∨-semilattices K and L, but in the particular case where they are distributive
lattices, so too is K ⊗ L and it is the distributive lattice coproduct. a× b then
is the meet of the generators corresponding to a and b.

By a dual process, the coproduct can also be found as a ∧-semilattice tensor.
We shall still write K ⊗ L for that, since we know it is isomorphic to the ∨-
semilattice tensor, but note that the ∧-bimorphism is different. It maps (a, b)
to the join of the generators, which we shall write as a ⊙ b = a × ⊤ ∨ ⊤ × b.
Then also a× b = a⊙⊥ ∧⊥⊙ b.

RegardingK⊗L as ∨-semilattice tensor, a typical element can be expressed –
though not uniquely – as a finite join

∨
i ai×bi. Hence K⊗L can be represented

as a ∨-semilattice quotient of F(K × L), since the Kuratowski finite powerset
is a free semilattice, with ∪ as the semilattice operation. Our aim is to find its
corresponding congruence preorder, a description of when

∨
i ai×bi ≤

∨
j a
′
j×b′j .

Applying the distributive law,

n∨
j=1

a′j × b′j =
n∨

j=1

(a′j ⊙⊥ ∧⊥⊙ b′j)

=
∧

n=S∪T

a′S ⊙ b′T

where a′S =
∨

j∈S a′j and the meet is over pairs (S, T ) of finite sets such that
{1, . . . , n} = S ∪ T . (We do not assume that S and T are disjoint; the non-
disjoint pairs make no difference to the meet.) This redistribution reduces the
problem to that of when a×b ≤ c⊙d. Geometrically, if a and c are subspaces of
one space, and b and d subspaces of another, then a× b ≤ c⊙ d means that for
every x ∈ a and y ∈ b we have either x ∈ c or y ∈ d. Classically we could argue
as follows: if a � c then there is some x ∈ c − a, so for all y ∈ b we must have
y ∈ d and so b ≤ d. Hence a× b ≤ c⊙d iff a ≤ c or b ≤ d, thus giving a solution
to our problem. The classical argument has no direct application to current
situation, but nonetheless if we take it as a guess we shall find it validated by
our Proposition 11.

The statement of the proposition uses only the ∨-semilattice structure of K
and L, and we find it convenient to prove it in the greater generality of distribu-
tive ∨-semilattices – those ∨-semilattices K for which the ideal completion, a
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complete join semilattice, is a frame. This can be characterized internally in
two equivalent ways:

1. Whenever x ≤
∨n

i=1 yi, then there are xi ≤ yi such that x =
∨n

i=1 xi. (If
K is a distributive lattice then we can take xi = x ∧ yi.)

2. If z ≤ x ∨ yi (1 ≤ i ≤ n) then z ≤ x ∨ y for some y ≤ all yi.

Note that any topless distributive lattice is a distributive ∨-semilattice. That
is the main situation here in which we shall need the extra generality.

Proposition 11 Let K and L be distributive ∨-semilattices. We define a pre-
order ≤ on F(K×L) by A ≤ B if for all (a, b) ∈ A and decompositions B = S∪T
we have a ≤

∨
{c | (c, d) ∈ S} or b ≤

∨
{d | (c, d) ∈ T}. Then ≤ is a congru-

ence preorder on the ∨-semilattice (F(K × L),∪), and there is a bimorphism
K ×L→ F(K ×L)/ ≤, defined by (a, b) 7−→ {(a, b)}, that makes F(K ×L)/ ≤
a tensor product K ⊗ L.

Proof. It is easy to see that ≤ is a congruence preorder and that the function
defined is a bimorphism. It remains to show the universal property for a tensor
product. Let ϕ : K × L→M be a bimorphism to a ∨-semilattice M . If it is to
factor via F(K × L)/ ≤, then it has to be as ϕ̄(A) =

∨
(a,b)∈A ϕ(a, b). We must

show that this respects the preorder ≤.
For A ≤ B, it suffices to consider A a singleton {(a, b)} and B finitely

enumerated {(ci, di) | 1 ≤ i ≤ n}. We shall use induction on n. For the base
case, n = 0, and with the only decomposition of ∅, we see that either a ≤ 0 or
b ≤ 0. In either case ϕ(a, b) = 0 = ϕ̄(B).

Now suppose B = {(ci, di) | 1 ≤ i ≤ n + 1}. For every decomposition
n = S ∪ T , we get two decompositions of n + 1 (putting the final index n + 1
into either S or T ), and we obtain

a ≤ cS or b ≤ dT ∨ dn+1

a ≤ cS ∨ cn+1 or b ≤ dT

where we write cS =
∨
{c | (c, d) ∈ S} etc.3 Hence we see either a ≤ cS or

b ≤ dT or both a ≤ cS ∨ cn+1 and b ≤ dT ∨ dn+1.
It follows that the set of decompositions of n can be decomposed as D1 ∪

D2 ∪ D3 such that

(S, T ) ∈ D1 =⇒ a ≤ cS

(S, T ) ∈ D2 =⇒ b ≤ dT

(S, T ) ∈ D3 =⇒ a ≤ cS ∨ cn+1 and b ≤ dT ∨ dn+1.

For every (S, T ) ∈ D1 ∪ D3 we have a ≤ cS ∨ cn+1, and it follows by dis-
tributivity that there is some a′ such that a ≤ a′ ∨ cn+1 and a′ ≤ cS for all
(S, T ) ∈ D1 ∪ D3. Now we can find a = a1 ∨ a2 where a1 ≤ a′ and a2 ≤ cn+1.

3This notation is temporary. In Section 4.2 we shall use a similar notation but for meets.
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Similarly, we can find b = b1 ∨ b2 where b1 ≤ dT for all (S, T ) ∈ D2 ∪ D3,
b2 ≤ dn+1; also b2 ≤ dT for all (S, T ) ∈ D2.

Thus ϕ(a, b) = ϕ(a1, b1)∨ϕ(a1, b2)∨ϕ(a2, b1)∨ϕ(a2, b2). From the definitions,
and using the fact that D1, D2 and D3 cover all decompositions of n, we see that
{(a1, b1)}, {(a1, b2)} and {(a2, b1)} are all less than {(ci, di) | 1 ≤ i ≤ n} and so,
by induction, ϕ(a1, b1), ϕ(a1, b2) and ϕ(a2, b1) are all less than

∨n
i=1 ϕ(ci, di).

Also ϕ(a2, b2) ≤ ϕ(cn+1, dn+1). This completes the proof.

Example 12 Let Q be the ∨-semilattice of non-negative rationals, distributive
because it is linearly ordered. Let L be a distributive lattice, and let A and B be
in F(Q× L). Then A ≤ B iff for every (q, a) ∈ A we have a ≤

∨
{b | ∃(r, b) ∈

B. q ≤ r}. The condition of Proposition 11 says that for every decomposition
B = S ∪ T we have q ≤ max(r,b)∈S r or a ≤

∨
(r,b)∈T b, so we get the result by

taking S = {(r, b) ∈ B | r < q} and T = {(r, b) ∈ B | q ≤ r}. The converse is
also clear.

We can extend the order on F(Q× L) to one on (Q× L)∗ (the set of finite
lists in Q × L) in the obvious way. Now given (qi, ai)

n
i=1 we can assume up to

equivalence that the qis are in ascending order. Also, (qi, ai)i ≡ (qi, a
′
i)i where

a′i =
∨
{ai′ | qi ≤ qi′}, so we can assume up to equivalence that in addition

the ais are in descending order. We say that (qi, ai)i is sorted if the qis ascend
and the ais descend, so every element of (Q × L)∗ can be put in sorted form.
Furthermore, we can eliminate duplicates and copies of 0 amongst the qis. We
say that (qi, ai)i is strictly sorted if it is sorted and the qis are non-zero and
ascend strictly.

Lemma 13 Let (qi, ai)
n
i=1 and (qi, bi)

n
i=1 both be strictly sorted. Then (qi, ai)

n
i=1 ≤

(qi, bi)
n
i=1 iff ai ≤ bi for each i.

Proof. This follows from the calculation of the example, using
∨
{bj | qi ≤

qj} =
∨
{bj | i ≤ j} = bi.

Definition 14 Let (qi, ai)
n
i=1 be arbitrary and let (rj)

m
j=1 be a strictly ascending

sequence of non-zeros in Q that includes all the elements qi. Then the refinement

of (qi, ai)
n
i=1 to (rj)

m
j=1 is the sequence (rj , a

(r)
j )mj=1 where a

(r)
j =

∨
{ai | rj ≤ qi}.

It is obvious that (qi, ai)
n
i=1 ≡ (rj , a

(r)
j )mj=1.

4.2 The modular monoid

Definition 15 Let L be a distributive lattice (possibly topless). We write M(L)
for the modular monoid on L, presented as

CMon⟨L | a+ b = (a ∧ b) + (a ∨ b) (a, b ∈ L), 0 = ⊥⟩.

As [CS09] point out, this monoid, presented by universal algebra, can also
be given a concrete representation described in [HT48].
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Definition 16 Let L be a distributive lattice. We define a preorder ≤ on L∗

as follows. Suppose x = (xi)
m
i=1 and y = (yj)

n
j=1 are elements of L∗. If I ⊆ m

(understood as {1, . . . ,m}) we write xI for
∧

i∈I xi, and similarly yJ if J ⊆ n.
Then x ≤ y if, for every I ⊆ m, we have

xI ≤
∨
{yJ | J ∈ Fn, |J | = |I|}.

Clearly, x ≤ y iff for all k ∈ N we have∨
{xI | I ∈ Fm, |I| = k} ≤

∨
{yJ | J ∈ Fn, |J | = k}.

(Of course, it suffices to check the cases k ≤ m. Note that the cardinalities of
finite subsets of N are well defined, because N has decidable equality.) It follows
that ≤ is a preorder; we shall write ≡ for the corresponding equivalence relation.

Theorem 17 ≡ is a monoid congruence on L∗ and M(L) ∼= L∗/ ≡. It is a
partially ordered, commutative, cancellation monoid.

Proof. The result was stated in these terms in [CS09], using arguments
largely present in [HT48]. Although the results in [HT48] are more explicitly
stated for the case where L is a Boolean algebra, they have techniques for
generalizing to arbitrary distributive lattices by embedding them in Boolean
algebras. In any case, the proof techniques are general enough in themselves.

One central lemma is so important that we shall state it separately.

Lemma 18 (Generalized Modularity Lemma) Suppose xi ∈ L (1 ≤ i ≤
m). Then in M(L) we have

m∑
i=1

xi =
m∑

k=1

∨
{xI | I ∈ Fm, |I| = k}.

(Note that it makes no difference if the upper bound m of the summation on
the right is replaced any larger natural number.)

Proof. This is stated, with a proof sketch, in [HT48]. In more detail, one
can use a double induction on m and j to show

m+1∑
i=1

xi = uj +
∨

I∈Fm,|I|=j

xI∪{m+1} + vj

where

uj =

j∑
k=1

∨
I∈F(m+1),|I|=k

xI

vj =

m∑
k=j+1

∨
I∈Fm,|I|=k

xI .
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The case j = 0 is by using induction on m to see that v0 =
∑m

i=1 xi. For
1 ≤ j ≤ m we have, by induction on j,

m+1∑
i=1

xi = uj−1 +
∨

I∈Fm,|I|=j−1

xI∪{m+1} +
∨

I∈Fm,|I|=j

xI + vj

= uj−1 + (
∨

I∈Fm,|I|=j−1

xI∪{m+1} ∨
∨

I∈Fm,|I|=j

xI)

+ (
∨

I∈Fm,|I|=j−1

xI∪{m+1} ∧
∨

I∈Fm,|I|=j

xI) + vj

= uj + w + vj

where

w =
∨

I∈Fm,|I|=j−1

xI∪{m+1} ∧
∨

I∈Fm,|I|=j

xI

=
∨

I∈Fm,|I|=j−1

∨
I′∈Fm,|I′|=j

xI∪{m+1}∪I′ .

It therefore remains only to show that

w =
∨

I∈Fm,|I|=j

xI∪{m+1}.

Both directions are obvious.
The result now follows by taking j = m.

Proposition 19 Let L be a distributive lattice. Then in M(L) we have the
following.

1. Every element can be written in descending form as
∑m

k=1 yk with y1 ≥
· · · ≥ ym.

2. If a = (ai)
m
i=1 is in descending form then

∨
{aI | I ∈ Fm, |I| = k} = ak.

3. Suppose a = (ai)
m
i=1 and b = (bj)

n
j=1 are in descending form. Then a ≤ b

iff ai ≤ bi for every i (after padding out the shorter sequence with zeros).

4. M(L) is a topless distributive lattice, with binary meets and joins calcu-
lated termwise on descending forms.

5. M(L) is internally modular, in the sense that a+ b = (a∨ b) + (a∧ b) for
all a, b ∈M(L).

6. Suppose a = (ai)
m
i=1 and b = (bj)

n
j=1 are in descending form. Then, in

descending form,

(a+ b)k =
∨

k=k1+k2

ak1 ∧ bk2 .

(We take a0 = b0 = ⊤.)
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7. M(L) ∼= N⊗ L.

8. M(L) is a commutative semiring, with multiplication extended additively
from ab = a ∧ b (a, b ∈ L) and with ⊤L as the unit element.

Proof. (1) Given an arbitrary
∑m

i=1 xi, take yk =
∨
{xI | I ∈ Fm, |I| = k}

as in Lemma 18. If I ∈ Fm, |I| = k + 1, then we can write I = {i} ∪ I ′ where
i = min I and I ′ = I − {i}. Then xI = xi ∧ xI′ ≤ xI′ ≤ yk, so yk+1 ≤ yk.

(2) If I ∈ Fm, |I| = k then I has an element i ≥ k. Hence aI ≤ ai ≤ ak. On
the other hand, ak is amongst the aIs, by taking I = {1, . . . , k}.

(3) and (4) now follow immediately.
(5) Let a = (ai)

n
i=1 and b = (bj)

n
j=1 in descending form. Then

a+ b =
∑
i

(ai + bi) =
∑
i

((ai ∨ bi) + (ai ∧ bi)) = (a ∨ b) + (a ∧ b).

(6) Assume m = n, padding the shorter sequence with 0s. Then

a+ b =
n∑

i=1

ai + bi =
2n∑
k=1

∨
{amax I ∧ bmax J | I, J ∈ Fn, |I|+ |J | = k}

=

2n∑
k=1

∨
k1+k2=k

∨
{amax I ∧ bmax J | I, J ∈ Fn, |I| = k1, |J | = k2}

=
2n∑
k=1

∨
k1+k2=k

ak1 ∧ bk2 .

(7) Just as with Q, every element of N ⊗ L can be put into strictly sorted
form as

∨m
i=1 qi × ai with qi ∈ N. This can be refined to a form where the qis

are all the natural numbers from 1 to qm. We map

qm∨
i=1

i× ai ↔
∑
i

(i− (i− 1))ai =
∑
i

ai.

This is monotone in both directions and so gives an order isomorphism.
(8) If a ∈ L then the function αa : L → M(L) given by αa(b) = a ∧ b is

modular and so extends to a monoid homomorphism αa : M(L)→M(L). Now
if a ∈ M(L), a =

∑
i ai for ai ∈ L, define βa : L → M(L) by βa(b) = αb(a) =∑

i ai ∧ b. This too is modular and so extends to a monoid homomorphism
βa : M(L)→M(L). If b =

∑
j bj then we can define ab = βa(b) =

∑
ij ai ∧ bj .

From this formula one calculates that this multiplication is commutative and
associative and that ⊤L is the unit, and the derivation shows that it distributes
over addition.

We shall need to “rationalize” M(L), i.e. extend it by rational coefficients.

Definition 20 MQ(L) is the module of fractions of M(L), pairs (a, r) (a ∈
M(L), 1 ≤ r ∈ N) modulo the preorder (a, r) ≤ (b, s) if sa ≤ rb. We write a

r
for the equivalence class of (a, r).
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Proposition 21 Q⊗ L ∼= MQ(L).

Proof. We map θ : MQ(L) → Q ⊗ L by (
∑n

i=1 ai) /r 7→
∨n

i=1(
i
r × ai) if∑

i ai is in descending form.
First, we show that the value of θ is unchanged if we replace (

∑n
i=1 ai) /r

by (s
∑n

i=1 ai) /sr.

θ

(
s

(
n∑

i=1

ai

)
/sr

)
=

sn∨
j=1

(
j

sr
× a′j)

where a′j = ai, where i is the least such that j ≤ si. This is because s
∑n

i=1 ai,
in descending form, has s copies of a1, then s copies of a2, and so on. On the
other hand, we can also refine

∨n
i=1(

i
r × ai) to the same sequence of rationals

as
∨sn

j=1(
j
sr × a′′j ) where a′′j =

∨
{ai | j

sr ≤
i
r}. Hence a′′j = a′j .

Now suppose (
∑n

i=1 ai) /r ≤ (
∑n

i=1 bi) /s. By the previous argument we can
assume that r = s and so ra ≤ rb, so a ≤ b and it follows that θ

(
a
r

)
≤ θ

(
b
r

)
.

We have now defined θ as a monotone map MQ(L)→ Q⊗L. It is surjective,
since in any element of Q⊗L we can put the rational coefficients over a common
denominator and then refine to the form

∨n
i=1(

i
r × ai). Finally, it is injective,

since if
∨n

i=1(
i
r × ai) ≤

∨n
i=1(

i
r × bi) then a ≤ b.

Proposition 22 In Q ⊗ L we have, for all non-negative rationals ri and sj,
and ai, bj ∈ L, that

∑m
i=1 riai ≤

∑n
j=1 sjbj iff for all I ∈ Fm we have aI ≤∑

{bJ | J ∈ Fn, rI ≤ sJ}. (Here, e.g., rI =
∑

i∈I ri.)

Proof. Stated in [CS09]. It suffices to prove in the case where the coefficients
are all natural numbers.

We finish this section by proving the Principle of Inclusion and Exclusion in
the context of M(L).

Theorem 23 (Principle of inclusion and exclusion) In M(L) we have

n∨
i=1

ai +
∑

I∈F+n,|I| even

aI =
∑

I∈F+n,|I| odd

aI .

(F+n denotes the set of non-empty Kuratowski finite subsets of {1, . . . , n} – the
non-emptiness is signified by the + in F+.)

Proof. We use induction on n. The base case n = 0 is trivial, since both
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sides are 0. For n+ 1 we have

n+1∨
i=1

ai +
∑

I∈F+(n+1),|I| even

aI

=
n∨

i=1

ai ∨ an+1 +
∑

I∈F+n,|I| even

aI +
∑

I∈F+n,|I| odd

aI ∧ an+1

=
n∨

i=1

ai ∨ an+1 +
∑

I∈F+n,|I| even

aI +
n∨

i=1

(ai ∧ an+1) +
∑

I∈F+n,|I| even

aI ∧ an+1

=
n∨

i=1

ai ∨ an+1 + (
n∨

i=1

ai) ∧ an+1 +
∑

I∈F+n,|I| even

aI +
∑

I∈F+n,|I| even

aI ∧ an+1

=
n∨

i=1

ai + an+1 +
∑

I∈F+n,|I| even

aI +
∑

I∈F+n,|I| even

aI ∧ an+1

= an+1 +
∑

I∈F+n,|I| odd

aI +
∑

I∈F+n,|I| even

aI ∧ an+1

=
∑

I∈F+(n+1),|I| odd

aI .

In step 2 we are using induction for the n elements ai ∧ an+1, step 4 is the
modular law, and step 5 is induction on the first n elements ai.

5 The Riesz Theorem

We now turn to the Riesz Theorem. Again, throughout this section, X is a
locale presented by a DL-site (L,▹).

If m is a valuation on X then by universal algebra it gives a linear map
Q⊗ L ∼= MQ(L)→ R. This then gives a valuation on R′ ×X, so we get a map
I : VX → V(R′ ×X). From our structural analysis of Q⊗L we see that I(m)
agrees with the lower integral as defined in [Vic08].

But I(m) is not an arbitrary valuation on V(R′ × X), for it is defined by
linearity. We elucidate the notion of linearity to define a sublocale of V(R′×X)
comprising the linear valuations, and then our Riesz Theorem is that I is a
homeomorphism of VX onto that sublocale.

5.1 Defining I
Definition 24 Let L be a distributive lattice and m : L → R be a valuation.
Then we define m : MQ(L)→ R as the unique linear extension of m, i.e.

m

(
1

r

∑
i

ai

)
=

1

r

∑
i

m(ai).
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To see that this is well defined, first, by presentation of M(L), m extends
uniquely to a monoid homomorphism M(L) → R, and then the extension to
MQ(L) is clear.

Note from Proposition 19 (5) that any linear map MQ(L) → R is also a
valuation.

Proposition 25 Let L be a distributive lattice and m : L → R be a valuation.
If (qi, ai)i ∈ (Q× L)∗ is sorted, then

m

(
n∨

i=1

qi × ai

)
=

n∑
i=1

(qi − qi−1)m(ai),

where we write q0 = 0. Note that this lower real is unchanged if we remove
duplicates and copies of 0 from the qis.

Proof. Putting the rational coefficients qi over a common denominator,
it suffices to consider the case where they are all integers. Refining (see Def-
inition 14) to the sequence of all natural numbers from 1 to qn, and using
Proposition 21, we have

n∨
i=1

qi × ai =

qn∨
j=1

j × bj =

qn∑
j=1

bj

where bj =
∨
{ai | j ≤ qi}, so m (

∨n
i=1 qi × ai) =

∑qn
j=1 m(bj). Now

n∑
i=1

(qi − qi−1)m(ai) =
n∑

i=1

 ∑
qi−1<j≤qi

1

m(ai)

=
n∑

i=1

∑
qi−1<j≤qi

m(bj)

=
∑
j≤qn

m(bj).

Theorem 26 We can define a map I : VX → V(R′×X) so that I(m) extends
m. It is natural in X.

Proof. By Corollary 10 it remains to show that the relations described there
are respected.

First, we wantm((q×a)∨u) =
∨↑

q′<q m((q′×a)∨u). Let (sk)nk=1 be a strictly
sorted sequence that includes q = si and all the coefficients from u, and also a
value q′ = si−1, immediately before q, that is not q or any of those coefficients.
Let (sk, ck)k and (sk, c

′
k)k be the refinements of (q × a) ∨ u and (q′ × a) ∨ u to

(sk)k. Let c =
∨
{r | (r, b) listed in u, r ≥ q}. Then ci = ci−1 = c′i−1 = c ∨ a,

c′i = c, and for all other indexes j we have cj = c′j .
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The terms (sk − sk−1)m(ck) and (sk − sk−1)m(c′k) in the sums for m((q ×
a)∨ u) and m((q′× a)∨ u) agree for all k, and are independent of q′, except for
k = i and k = i− 1. Hence it suffices to show for those two terms that

(q′ − si−2)m(c ∨ a) + (q − q′)m(c ∨ a) = (q − si−2)m(c ∨ a)

=
∨↑

si−2<q′<q
((q′ − si−2)m(c ∨ a) + (q − q′)m(c)).

Suppose (q− si−2)m(c∨a) > p. We can suppose p ≥ 0, since the right hand
side is non-negative. Then we can find m(c ∨ a) > t > 0 with (q − si−2)t > p.
Choose q′ such that qt > q′t > si−2t+p. Then (q′−si−2)m(c∨a) > (q′−si−2)t >
p.

Next, we want m((q×a)∨u) ≤
∨↑

i m((q×ai)∨u) if a ▹ {ai}i. Let (sk, ck)k
be a strictly sorted form for (q × a) ∨ u. Then

ck = c′k ∨
{

a if sk ≤ q
⊥ if sk > q

where c′k =
∨
{b | (r, b) listed in u, r ≥ sk}. If sk ≤ q then by join stability

ck ▹ {c′k ∨ ai}i. Hence

m((q × a) ∨ u) =
∨↑

i

∑
sk≤q

(sk − sk−1)m(c′k ∨ ai) +
∑
sk>q

(sk − sk−1)m(c′k)


=
∨↑

i
m((q × ai) ∨ u).

Naturality can be checked by using the canonical DL-sites on the frames.
We must check that I agrees with the lower integral as already defined in

[Vic08].

Proposition 27 Let f : X → −−−→[0,∞] ∼= S
←−−−
[0,∞) correspond to U :

←−−−
[0,∞)×X → S,

i.e. U ∈ Ω(
←−−−
[0,∞)×X). Then for any valuation m on X, I(m)(U) =

∫
f dm.

Proof. I(m) and the lower integral both preserve directed joins, so it suffices
to check on opens U in the image of Q⊗L. Let (qi, ai)

n
i=1 be strictly sorted, so

U =
∨n

i=1(
←−−−
[0, qi)× ai) and I(m)(U) =

∑
i(qi − qi−1)m(ai). The corresponding

f is given by f(x) = sup{qi | x � ai}, and∫
f dm = sup

0<r1<···<rm

∑
j

(rj − rj−1)m(f∗
−−−−→
(rj ,∞])

= sup
0<r1<···<rm

m

∨
j

rj × bj


where bj = f∗

−−−−→
(rj ,∞] =

∨
{ai | rj < qi}. By Example 12 we see

∨
j rj × bj ≤∨

i qi×ai, so
∫
f dm ≤ I(m)(U). The reverse holds by taking ri = qi−ε, letting

ε tend to 0, and using continuity as in the proof of Theorem 26.
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Proposition 28 I is geometric. That is to say, if X → E is a localic bundle
over a topos, giving I : VEX → VE(R

′ × X) over E, and g : E ′ → E is a
geometric morphism, then over E ′ the following diagram commutes.

g∗VEX ∼= VE′g
∗X

g∗I ↓ ↓ I
g∗VE(R

′ ×X) ∼= VE′(R
′ × g∗X)

Proof. In fact this follows from the way I was defined in terms of DL-sites.

Remark 29 From this it follows that the lower integral is also geometric, be-
cause it can be defined from I. Hence structure defined using integration is
geometric.

5.2 Linear frames

For our Riesz Theorem we shall be interested in integrals, functionals that trans-
form maps X → R into lower reals linearly. As we have seen, maps X → R
are equivalent to opens of R′ ×X, so we are interested in the linear structure
– addition and scalar multiplication by non-negative rationals – on Ω(R′ ×X).
We shall also want to relate this to the same structure on Q⊗L, which we can
treat as an algebra of simple maps. We first look at this in an abstract setting.

Definition 30 A frame ΩX is linear if it is equipped with a binary operation
+ and scalar multiplication Q× ΩX → ΩX satisfying the following conditions.

1. + is Scott continuous, as is scalar multiplication by each q ∈ Q.

2. The operations make ΩX a module over the semiring Q, with ⊥ as the
zero element.

3. U + V = (U ∨ V ) + (U ∧ V ) for all U, V ∈ ΩX.

Similarly, we say a distributive lattice L is linear if it has the same construc-
tions and conditions, but with Scott continuity weakened to monotonicity.

Proposition 31 Let ΩX be a linear frame. Then any continuous linear map
m : ΩX → R is also modular.

Proof. m(U) +m(V ) = m(U + V ) = m((U ∨ V ) + (U ∧ V )) = m(U ∨ V ) +
m(U ∧ V ).

Clearly if ΩX is linear then the relations used to presentVX can be modified
to express linearity instead of modularity, and by the proposition they present
a sublocale LX of VX.

Now suppose ΩX is presented by a DL-site (L,▹) where L is linear. By
[JMV08], if ▹ is stable for addition and scalar multiplication then ΩX is a
linear frame and the continuous linear maps ΩX → R are equivalent to the
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monotone linear maps L → R that respect the covers. This enables us to
present LX geometrically, using generators derived from L instead of from the
whole of ΩX.

Now consider an arbitrary locale X, presented by DL-site (L,▹). Clearly
Ω(R′ ×X) ∼= Loc(X,R) inherits linear frame structure from R. By Lemma 9,
Ω(R′ × X) is presented by a topless DL-site (Q ⊗ L,▹′). As it stands, the
cover relation described in the Lemma is not +-stable. The problem is that
after adding elements, the directed joins have to be taken at several disjuncts
q × a instead of just one. This could easily be repaired, but in fact we don’t
need to because we already know the linear frame structure on Ω(R′×X). The
following proposition shows that if m : Q⊗L→ R is monotone and linear, then
the unique continuous lifting to Ω(R′ ×X) is also linear.

Proposition 32 With X presented by (L,▹) as above, the injection of gen-
erators Q ⊗ L → Ω(R′ × X) is a Q-algebra homomorphism (it is linear and
preserves multiplication).

Proof.
∨

i qi × ai maps to f : X → R defined by

f(x) = {q | (∃i) q < qi and x � ai} = sup{qi | x � ai}.

Suppose aα ∈ Q ⊗ L (α = 1, 2), aα = 1
n

∑
i a

α
i in descending form. Then

fα(x) = sup{ i
n | x � aαi }. We see

(
f1 + f2

)
(x) = sup{ i+ j

n
| x � a1i ∧ a2j}

= sup{k
n
| x �

∨
i+j=k

a1i ∧ a2j}

and by Proposition 19 this is the f corresponding to a1 + a2.
Clearly the injection of generators preserves scalar multiples. It remains to

check multiplication. For a ∈ L, the corresponding map is the characteristic
map χa(x) = sup({0} ∪ {1 | x � a}), which also has the property χaχb = χa∧b.
(Note that χa is continuous, becauseR has the topology of lower semicontinuity.)
From linearity, we have fα = 1

n

∑
i χaα

i
and so

f1f2 =
1

n2

∑
ij

χa1
i
χa2

j
=

1

n2

∑
ij

χa1
i∧a2

j

and this is the f got from a1a2 = 1
n2

∑
ij a

1
i ∧ a2j .

We can now put the results together into our Riesz Theorem. It asserts that
valuations on X are equivalent to linear functionals on maps X → R.

Theorem 33 (Riesz Theorem) Let X be a locale, presented by a DL-site
(L,▹). Then I : VX → V(R′×X) factors as VX ∼= L(R′×X) ↪→ V(R′×X).
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Proof. Suppose m is in VX. Since m is linear on Q ⊗ L by definition,
it follows by continuity and Proposition 32 that I(m) is linear on Ω(R′ × X).
Hence I factors via L(R′ × X). Note that m(a) = m(1 × a), so m can be
recovered from m.

In the reverse direction, if m′ is in L(R′ ×X) then by Proposition 32 m′ is
linear on Q ⊗ L and so is determined by a unique valuation m on L, m(a) =
m′(1× a). We see that m preserves covers because m′ does, so m extends to a
valuation on X. This gives a map L(R′ ×X) → VX. We see m′ = I(m), and
it follows that the two maps between VX and L(R′ ×X) are mutually inverse.

6 The valuation monad

We now show that V is the functor part of a monad on Loc. As before, through-

out this section, R will denote
−−−→
[0,∞].

The unit is straightforward; it is the Dirac measure.

Definition 34 Let X be a locale. Then δ : X → VX is defined by

δ(x)(U) = sup{1 | x � U}.

Although on the face of it this is non-geometric, it can be made geometric
by considering a presentation of ΩX.

Proposition 35 Let X be a locale. If x is a point of X, then δ(x) is charac-
terized as an integral by

∫
f dδ(x) = f(x).

Proof.
∑

i(qi − qi−1)δ(x)(f
∗−−−−→(qi,∞]) =

∑
i sup{qi − qi−1 | qi < f(x)} =

sup{qi | qi < f(x)}, so the lower integral is f(x). Uniqueness follows from the
equivalence between valuations and integrals.

Proposition 36 δ is natural in X.

Proof. Suppose g : X → Y and f : Y → R. Then∫
f dδY (g(x)) = f ◦ g(x) =

∫
f ◦ g dδ(x) =

∫
f dVg(δ(x))

and so δY (g(x)) = Vg(δ(x)).
We now turn to the multiplication µ : V2 → V. We shall reduce it to the

case X = 1, noting that V1 ∼= R.

Definition 37 The map µ1 : VR→ R is defined by µ1(m) =
∫
Id dm.

Proposition 38 Let X be a locale and M a point of V2X. Then there is a
unique valuation µ(M) on X such that∫

f dµ(M) =

∫
µ1 ◦Vf dM

for all f : X → R.
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Proof. By the Riesz Theorem, it suffices to show that µ1 ◦Vf is linear in
f , and this holds because µ1 ◦Vf(m) =

∫
Id dVf(m) =

∫
f dm.

Proposition 39 µ gives a natural transformation V2 → V.

Proof. Suppose g : X → Y , f : Y → R and M a point of V2X. Then∫
f dµ(V2g(M)) =

∫
µ1 ◦Vf dV2g(M) =

∫
µ1 ◦Vf ◦Vg dM

=

∫
µ1 ◦V(f ◦ g) dM =

∫
f ◦ g dµ(M)

=

∫
f dVg(µ(M))

and so µ(V2g(M)) = Vg(µ(M)).
Geometricity follows because in Proposition 38 it suffices to have the equa-

tion for simple f , i.e. (given a DL-site (L,C) for X) those arising from elements
of Q⊗ L.

Lemma 40 We note the following properties.

1. Suppose a : 1 → R and b is a point of V1. They may both be considered
points of R. Then

∫
a db = ab.

2. µ1 is the component µX for X = 1.

3. µ1 ◦Vµ1 = µ1 ◦ µR

Proof. (1) b = bδ(∗), where ∗ is the unique point of 1, and by linearity∫
a db = b

∫
a dδ(∗) = ba(∗) = ab.

(2) Let m be a point of V21 ∼= VR. If a : 1 → R then
∫
a dµ1(m) =

aµ1(m) = a
∫
Id dm. On the other hand, taking µ as defined for general X,∫

a dµ(m) = a

∫
1 dµ(m) = a

∫
µ1 ◦V1 dm.

It thus suffices to show that µ1 ◦V1 = Id. This holds because

µ1(V1(b)) =

∫
Id dV1(b) =

∫
1 db = b

by part (1).
(3) Let M be a point of V31 ∼= V2R. If a : 1→ R then∫

a dµ1(Vµ1(M)) = aµ1(Vµ1(M)) = a

∫
Id dVµ1(M)

= a

∫
µ1 dM

= a

∫
Id dµR(M) =

∫
a dµ1(µR(M)).
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Theorem 41 (V, δ, µ) form a monad on Loc.

Proof. We have three equations to prove. In each case we suppose f : X →
R.

µ ◦ δV = Id: If m is a point of VX then∫
f dµ(δ(m)) =

∫
µ1 ◦Vf dδ(m) = µ1(Vf(m)) =

∫
Id dVf(m) =

∫
f dm.

µ ◦Vδ = Id: If m is a point of VX then∫
f dµ(Vδ(m)) =

∫
µ1 ◦Vf dVδ(m) =

∫
µ1 ◦Vf ◦ δX dm

=

∫
µ1 ◦ δR ◦ f dm

=

∫
f dm by the first equation at X = 1.

µ ◦ µV = µ ◦Vµ: IfM is a point of V3X then∫
f dµ(µ(M)) =

∫
µ1 ◦Vf dµ(M) =

∫
µ1 ◦V(µ1) ◦V2f dM

=

∫
µ1 ◦ µR ◦V2f dM by the Lemma

=

∫
µ1 ◦Vf ◦ µX dM =

∫
µ1 ◦Vf dVµ(M)

=

∫
f dµ(Vµ(M)).

Remark 42 From Proposition 28 and Remark 29 we see that the monad struc-
ture is also geometric, since it was defined in terms of integration.

7 Product valuations

If m and n are valuations on X and Y , then the product valuation m × n on
X × Y is the unique one such that (m × n)(U × V ) = m(U)n(V ). However,
both existence and uniqueness here are non-trivial. We first look at existence
in a monad-theoretic way, using a strength of the monad V. This will give us
two maps VX × VY → V(X × Y ) that both satisfy the required condition
for making product valuations. Their equality is commutativity of the strong
monad, and for this we shall need a uniqueness result.

Definition 43 The strength tXY : X×VY → V(X×Y ) is defined by tXY (x,m) =
V⟨x, Y ⟩(m).
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Note that the definition is not special to V, but is a consequence of its
geometricity. Also, x here is a generalized point, so the definition is relying on
the geometricity of V in order to make sense.

Proposition 44 t is a strength for the monad V.

Proof. First we show that t interacts correctly with the product structure.
For the standard isomorphism 1×X ∼= X we show

V(∼=)(t1X(∗,m)) = V(∼= ◦⟨∗, X⟩)(m) = V(X)(m) = m.

Next, modulo the associativity isomorphism (X×Y )×Z ∼= X× (Y ×Z) we
have

tX,Y×Z((X × tY Z)(x, y,m)) = tX,Y×Z(x, tY Z(y,m))

= V⟨x, Y × Z⟩ ◦V⟨y, Z⟩(m)

= V⟨x, y, Z⟩(m) = tX×Y,Z(x, y,m).

Now we show that t interacts correctly with the monad structure. For the
unit, we have

tXY (x, δ(y)) = V⟨x, Y ⟩(δ(y)) = δ(⟨x, Y ⟩(y)) = δ(x, y).

Finally, for the multiplication, first note that tXY ◦ ⟨x,VY ⟩ = V⟨x, Y ⟩,
because

tXY ◦ ⟨x,VY ⟩(m) = tXY (x,m) = V⟨x, Y ⟩(m).

Hence

µ(VtXY (tX,VY (x,M))) = µ(VtXY ◦V⟨x,VY ⟩(M))

= µ(V2⟨x, Y ⟩(M)) = V⟨x, Y ⟩(µ(M))

= tXY (x, µ(M)).

The product valuation then would arise from commutativity of the monad,
i.e. commutativity of the diagram

VX ×VY
t′X,VY−→ V(X ×VY )

VtX,Y−→ V2(X × Y )
tVX,Y ↓ ↓ µ
V(VX × Y ) −→

Vt′X,Y

V2(X × Y )
µ−→ V(X × Y )

where the costrength t′XY : VX × Y → V(X × Y ) is defined from the strength
with the obvious swap morphisms.

Remark 45 Once commutativity is established, it will follow from abstract
monad theory that the strength can be defined as a product, tXY (x,m) = δ(x)×m
and similarly for t′XY .
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Let us temporarily write, for valuations m and n on X and Y ,

m ◃ n = µ ◦VtX,Y ◦ t′X,VY (m,n),

m ▹ n = µ ◦Vt′X,Y ◦ tVX,Y (m,n).

Proposition 46 If f : X × Y → R then∫
f d(m ◃ n) =

∫ ∫
f dn dm,∫

f d(m ▹ n) =

∫ ∫
f dm dn.

Proof. ∫
f d(m ◃ n) =

∫
f dµ(VtX,Y (t

′
X,VY (m,n)))

=

∫
µ0 ◦Vf ◦ tX,Y dt′X,VY (m,n)

=

∫
µ0 ◦Vf ◦ tX,Y ◦ ⟨X,n⟩ dm.

Now

µ0 ◦Vf ◦ tX,Y ◦ ⟨X,n⟩(x) = µ0 ◦Vf ◦ tX,Y (x, n) =

∫
Id dVf ◦ tX,Y (x, n)

=

∫
f dtX,Y (x, n) =

∫
f ◦ ⟨x, Y ⟩ dn.

It follows that
∫
f d(m ◃ n) is got as a double integral

∫ ∫
f dn dm. A

symmetric calculation shows that m ▹ n gives the double integral
∫ ∫

f dm dn.

Proposition 47 Let m and n be valuations on X and Y . Then both m◃n and
m ▹ n have the property required for a product valuation m× n.

Proof. Let U and V be opens of X and Y . Then

(m ◃ n)(U × V ) =

∫
χU×V d(m ◃ n) =

∫ ∫
χU×V dn dm

by Proposition 46. But the inner integral
∫
χU×V dn, evaluated at x, is n(V )χU (x).

Hence by linearity the double integral is m(U)n(V ). The proof for m ▹ n is by
symmetry.

This has proved existence for the product valuation. For uniqueness we first
prove some lemmas.

Lemma 48 Let ui (1 ≤ i ≤ n), x and y be lower reals such that
∑

i ui + x ≤∑
i ui + y and ui ≤ y for all i. Then x ≤ y.
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Proof. Note that the lower reals are not a cancellation monoid and some
kind of condition such as our ui ≤ y is needed. For if

∑
i ui =∞ then

∑
i ui+x ≤∑

i ui + y for all x and y. In this example, our extra condition implies that
∞ = 1

n

∑
i ui ≤ y and so x ≤ y. In the proof, the condition enables us to take

a bound on the rationals in the uis.
The case n = 0 is obvious, so we assume n > 0. Suppose p < x. Then

we have p < p + ε < x for some ε > 0. We show by induction on k that if
ui > qi ∈ Q (1 ≤ i ≤ n) and np −

∑
i qi ≤ kε, then p < y. For the base

case k = 0, we can find p ≤ qi for some i, and by our condition ui ≤ y we
have p < y. Now suppose k ≥ 1. We can find q′i < ui and p′ < y such that∑

i qi + p + ε =
∑

i q
′
i + p′. If p ≤ p′ then p < y. Otherwise p′ < p and so∑

i qi + ε <
∑

i q
′
i and

np−
∑
i

q′i < np−
∑
i

qi − ε ≤ (k − 1)ε,

so by induction p < y.

Corollary 49 Let ui (1 ≤ i ≤ n) and v be lower reals. Then the equation∑
i ui + x = v has at most one solution x such that ui ≤ x for all i.

Proposition 50 Let X and Y be locales presented with DL-sites on lattices L
and M . Then any valuation m on X × Y is uniquely determined by its values
on opens a× b (a ∈ L, b ∈M).

Proof. By continuity of valuations, it suffices to consider opens in L⊗M , i.e.
of the form

∨n
i=1 ai× bi. Now consider the Principle of Inclusion and Exclusion,

Theorem 23, in M(L⊗M): it says that

n∨
i=1

ai × bi +
∑
j

cj × dj =
∑
k

c′k × d′k

where each cj × dj or c′k × d′k is in that form because it is a meet of elements
ai × bi, and so is also less than

∨n
i=1 ai × bi. By linearity it follows that

m

(
n∨

i=1

ai × bi

)
+
∑
j

m(cj × dj) =
∑
k

m(c′k × d′k)

with eachm(cj×dj) ≤ m (
∨n

i=1 ai × bi). Hence by Corollary 49,m (
∨n

i=1 ai × bi)
is uniquely determined by the values m(cj × dj) and m(c′k × d′k).

Hence product measures are unique, and in particular m ▹ n = m ◃ n. We
shall henceforth write it as m× n.

Theorem 51 V is commutative.

Theorem 52 (Fubini Theorem) Let m and n be valuations on locales X and
Y , and let f : X × Y → R. Then∫ ∫

f dm dn =

∫ ∫
f dn dm =

∫
f d(m× n).
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Proof. Combine Proposition 46 with the uniqueness of product measures.

8 Probability and subprobability valuations

[Hec94] and [CS09] work with a locale of probability valuations m, for which
m(X) = 1. These are the points of a semifitted sublocale (i.e. a meets of
opens and closeds) V(1)X of VX, defined by relations ⊤ ⊢ m(X) > q (for all
q < 1) and m(X) > 1 ⊢ ⊥. Similarly there is a locale V(≤1)X of subprobability
valuations m with m(X) ≤ 1. It is a closed sublocale of VX. Our aim in this
section is to show that they too are monads.

Theorem 53 V(1) and V(≤1) are both commutative strong monads on Loc.

Proof. We prove the case of V(1) in detail; V(≤1) is similar.
First, V(1) is a functor, since if f : X → Y then Vf(m)(Y ) = m(f∗Y ) =

m(X): so Vf restricts to a map V(1)f : V(1)X → V(1)Y .
Next, for any x in X we have δ(x)(X) = 1 and so δ(x) in V(1)X. Hence δ is

a natural transformation from IdLoc to V(1).
Now we show that µ gives a multiplication. Suppose M is in V(1)V(1)X.

Let i : V(1)X ↪→ VX be the sublocale inclusion. Then we can make M a point
of V2X by applying Vi ◦ i : V(1)V(1)X → VV(1)X → VVX. Then

µ(Vi(i(M)))(X) =

∫
1 dµ(Vi(i(M))) =

∫
µ1 ◦V1 ◦ i di(M).

where 1 = χX : X → −−−→[0,∞] is the constant map 1. Now if m is in V(1)X then

µ1 ◦V1 ◦ i(m) =

∫
Id dV1 ◦ i(m) =

∫
Id ◦1 di(m) = m(X) = 1

so µ1 ◦V1 ◦ i = 1 and∫
µ1 ◦V1 ◦ i di(M) =

∫
1 di(M) = M(V(1)X) = 1.

Now for product valuations we have that if m and n are in V(1)X and V(1)Y
then (m× n)(X × Y ) = m(X)n(Y ) = 1. Then from Remark 45 it follows that
the strength tXY factors as X ×V(1)Y → V(1)(X × Y ).

9 Covaluations and upper integrals

As well as valuations, [Vic08] also discusses covaluations. In effect, a covaluation
on a localeX is a valuation on the closed sublocales ofX, defined as a continuous

map from ΩX to the upper reals
←−−−
[0,∞]. The covaluations are the points of a

locale CX. There is also a notion of upper integral, in which the integrand is a
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map from X to
←−−−
[0,∞] and the measure is a covaluation. The upper integral is

more complicated in that it has to be provided with a bound, and because of
this our results for valuations and the lower integral do not appear to transfer
in full. Nonetheless, the algebraic results of Section 4 can be applied in a dual
way to develop some analogous results for the covaluations and upper integrals,
and we outline some calculations here.

On a distributive lattice L, we define a covaluation to be a function m : L→←−−−
[0,∞] that is monotone with respect to the specialization order on the upper
reals (and hence numerically antitone), has m(⊤) = 0 and satisfies the modular
law.

We shall also need to deal with sites (L,▹) where L is a bottomless distribu-
tive lattice. This is because our construction analogous to that of Q ⊗ L will
use Qop, which is bottomless. For topless DL-sites, it was natural to require ⊤
in the presented frame to be

∨↑
L, and this meant that for a nominally topless

L that happened to have a top, the two sites – one as topless DL, one as DL
– present the same frame. In the bottomless case we do not have an analogous
candidate for ⊥, and so the ⊥ in the frame will not agree with a ⊥ that happens
to exist already in L. When it comes to dcpo homomorphisms from the frame,
this means we shall have to specifiy explicitly the image of the newly adjoined
⊥. To avoid confusion we shall not use sites based on bottomless distributive
lattices, but instead put in the bottoms explicitly.

Theorem 54 Let X be a locale.
Suppose X is presented by a DL-site (L,▹). Then covaluations on X are

equivalent to covaluations m on L satisfying m(a) ≥ infi m(ai) if a ▹ (ai)i.

Proof. As stated in [Vic08], the proof is analogous to that of Theorem 7.

In the rest of the section, we shall change our previous notation and reverse

the upper and lower roles of R and R′. R′ will be
−−−→
(0,∞] and R will be

←−−−
[0,∞] ∼=

SR′
. As before, Q is the set of non-negative rationals, and we shall write Q∞

for Q ∪ {∞}. Then R′ is presented by a DL-site on Qop
∞ with covers q ▹ {r ∈

Q | q < r} for each q ∈ Q.

Lemma 55 We can present R′ × X as a DL site on Qop
∞ ⊗ L, with covers

(q⊙a)∧u ▹ {(q′⊙a)∧u | q < q′} (q ∈ Q) and (q⊙a)∧u ▹ {(q⊙ai)∧u | i ∈ I}
if q ∈ Q∞ and a ▹ {ai | i ∈ I}.

Proof. The proof is analogous to that of Lemma 9, but this time we analyse
Qop
∞ ⊗ L as a tensor of ∧-semilattices when finding the meet and join stabilized

versions of the relations.

Corollary 56 A covaluation on R′×X is equivalent to a covaluation m : Qop
∞⊗

X →←−−−[0,∞] satisfying the following conditions.

1. m((q ⊙ a) ∧ u) =
∨↑

q<q′ m((q′ ⊙ a) ∧ u) for each q ∈ Q,

30



2. m((q ⊙ a) ∧ u) ≤
∨↑

i∈I m((q ⊙ ai) ∧ u) for each q ∈ Q∞, where a ▹ {ai |
i ∈ I}.

Proof. Combine Lemma 55 with Theorem 54.
We now wish to define an upper analogue of the integration map I : VX →

V(
←−−−
[0,∞)×X), of the form I : CX → C(

−−−→
(0,∞]×X). Suppose m is a covaluation

on X. Then as a map from Lop to R it is monotone (with respect to the
numerical order on R), modular, and maps bottom to 0, and hence factors via a
linear map m : MQ(L

op)→ R. By Proposition 21, MQ(L
op) ∼= Q⊗ Lop, where

the tensor is for ∨-semilattices; but this is (Qop ⊗ L)op using the ∧-semilattice
tensor, so we see that m : Qop⊗L→ R is a covaluation with m(q⊙a) = qm(a).
An element

∧n
i=1 qi ⊙ ai is now in sorted form if both the the qis and the ais

ascend with i, and

m

(
n∧

i=1

qi ⊙ ai

)
=

n∑
i=1

(qi − qi−1)m(ai)

We extend this linearly to Qop
∞⊗L by m(∞⊙a) =∞m(a) =∞. (Note that even

∞ · 0 = ∞ · infq>0 q = ∞ by continuity.) Thus m (
∧n

i=1 qi ⊙ ai ∧∞⊙ a) = ∞.
Then using Corollary 56 we get a covaluation I(m) on R′ × X, so we have

defined I : CX → C(
−−−→
(0,∞]×X).

Relating I to the upper integral as already defined in [Vic08] is slightly

complicated. The identity map Id :
←−−−
[0,∞]→←−−−[0,∞] uncurries to the evaluation

map ev :
−−−→
(0,∞] ×←−−−[0,∞] → S (with ev(q, r) = ⊤ iff r < q), so ev is an open of

−−−→
(0,∞] ×←−−−[0,∞]. If m is a covaluation on

←−−−
[0,∞] then we calculate I(m)(ev) as

the inf over values m(u) with u ∈ Qop
∞⊗L and u ≤ ev. Suppose u =

∧n
i=1 qi⊙ri

in strictly sorted form. Here each qi represents the open
−−−−→
(qi,∞] of

−−−→
(0,∞], and

ri is the open
←−−−
[0, ri) of

←−−−
[0,∞]. Redistributing, we find

u =
∨

n=S∪T
qmaxS × rminT = 0× r1 ∨

n−1∨
i=1

qi × ri+1 ∨ qn ×⊤.

From this we deduce that u ≤ ev iff (i) r1 = 0, (ii) ri+1 ≤ qi for each i, and (iii)
qn = ∞. Unfortunately, this implies that m(u) = ∞, so I(m)(ev) = ∞ for all
m – it is a consequence of linearity of I(m), in fact.

From the argument above, we may as well restrict our attention to those u
in which ri+1 = qi. Reindexing, we see that

ev =
∨↑
{

n∧
i=1

ri ⊙ ri−1 ∧∞⊙ r | 0 = r0 < r1 < · · · < rn and r ≤ rn}.

In [Vic08] the upper integral
∫
K
Id dm is parametrized by a compact fitted

sublocaleK of
←−−−
[0,∞] and is defined to be the infimum of the valuesm (

∧n
i=1 ri ⊙ ri−1)

such that 0 = r0 < r1 < · · · < rn as above and
←−−−
[0, rn) is a neighbourhood of K.
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It follows that ∫
K

Id dm = I(m)(νK(ev))

where νK is the nucleus corresponding to the sublocale K: νK(U) is the biggest
V such that V ≤ U moduloK. Note that in this situation νK is Scott continuous
[Esc01].

10 Conclusions

As a development of [Vic08] and [CS09] we have proved a comprehensive set of
new, constructive results for the valuation locale and the lower integral that are
analogous to those known in the standard theory of measures and integrals, but
with measurable spaces and measures replaced by locales and valuations, and
the Dedekind reals replaced by lower reals (general taken to be non-negative).
Our locales are completely unrestricted. The new results include the following.

1. A detailed algebraic analysis of the modular monoid and the algebra of
simple maps (which were defined in [CS09] from results in [HT48]), show-
ing their double nature as monoids and as semilattice tensors.

2. Our version of the Riesz Theorem, showing that valuations are equivalent
to integrals, i.e. linear functionals.

3. The valuation locale is the functor part V of a monad on the category of
locales. In proving this we made use of the Riesz Theorem in defining the
multiplication of the monad, with µ(M) defined as an integral.

4. V is a commutative strong monad, thus defining product valuations with
a Fubini Theorem holdiing.

5. (3) and (4) also hold for the probability valuation locale V(1), as used in
[CS09], and the subprobability valuation locale V(≤1).

Because of the “lower” nature of the theory, using lower reals and lower
integrals, this is not a true localic form of the standard theory, nor of the Riesz
Theorem in [CS09]. (In the [CS09] version the integrands take their values in the
Dedekind reals and the locales are restricted to be compact, completely regular.)
Nonetheless, we hope that the work here, together with parallel work on the
covaluations and upper integrals of [Vic08], will combine to give the results of
[CS09]. Preliminary calculations of Section 9 suggest that the “upper” theory
is not so clean as the lower in general.

Geometricity has played a pervasive role in the development here, allow-
ing us to deal with point-free locales in a natural manner as though they had
enough points. It is also essential in applications such as [?], where it allows the
valuation locale construction to be applied fibrewise to bundles.
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