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Certain “Finite Structure Conditions” on a geometric theory are shown to be sufficient
for its classifying topos to be a presheaf topos. The conditions assert that every
homomorphism from a finite structure of the theory to a model factors via a finite
model, and they hold in cases where the finitely presentable models are all finite.

The conditions are shown to hold for the theory of strongly algebraic (or SFP)
information systems and some variants, as well as for some other theories already known
to be classified by presheaf toposes.

The work adheres to geometric constructivism throughout and in consequence provides
“topical” categories of domains (internal in the category of toposes and geometric
morphisms) with an analogue of Plotkin’s double characterization of strongly algebraic
domains, by sets of minimal upper bounds and by sequences of finite posets.

1. Introduction

In (Vickers 1999), a constructive approach to domain theory is described in which the
constructivist flavour is geometric. Based on the infinitary geometric logic (Makkai and
Reyes 1977; Johnstone 1977), it relies on constructions that can not only be carried out
internally in toposes (more specifically, Grothendieck toposes), but are also preserved by
the inverse image functors of geometric morphisms. It is a stringent doctrine that in prac-
tice can avoid both the inherent choice of constructive type theory and the impredicativity
possible in toposes. Nonetheless, it has the benefit that it fits well with topology: any class
described geometrically has an intrinsic topology (possibly in Grothendieck’s generalized
sense of toposes), and any construction described geometrically is automatically continu-
ous (again, possibly generalized as a geometric morphism). In (Vickers 1999), the ability
to construct the limits characteristic of domain theory, including those used for solving
recursive domain equations, was shown to arise directly and for very general reasons out
of the geometric nature of the constructions. Moreover, the embedding-projection pairs,
used in domain theory apparently as a trick, were rationally reconstructed as homomor-
phisms between models of a geometric theory.

The effects on domain theory are illustrated by the solution of domain equations. If C
is a category of domains and F': C' — C' is a domain construction then one seeks D with
D = F(D) and it is calculated as a colimit of L — F(L) — F?(L) — --- for a suitable
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trivial domain L. This will not work for arbitrary categories and functors, and so the
general theory is complicated by explicit continuity structure and conditions such as the
dcpo enrichment in the O-categories of (Wand 1979), as well as the apparently ad hoc
use of embedding-projection pairs to get the right functoriality for F. By contrast, in a
geometric mathematics the class ob(C) of objects of C has to be the “class” (understood
appropriately as a generalized space) of models of a geometric theory, and F' has to
be constructed geometrically. Then the desired fixpoint exists in complete generality,
provided only that ob(C) has an initial point — this is the algebraic completeness result
of (Vickers 1999). The continuity structure is inherent in the geometric mathematics
itself.

The geometric constructivism therefore paves the way for important simplifications of
domain theory. In addition, an observational interpretation of it suggests its use as a
specification language (Vickers 1995), and for both these reasons there is some intrinsic
interest in testing out its scope in mathematical reasoning.

The present paper investigates a basic result of Plotkin’s (Plotkin 1976) that shows the
equivalence between two characterizations of his SFP domains. It requires some care even
to formulate this geometrically, and so as well as continuing the geometric refoundation of
domain theory the present work also explores new techniques for reasoning geometrically.

From a different perspective the work can also be interpreted as providing new answers
to an old question in topos theory: When is a topos a presheaf topos? It is already
known that classifiers for essentially algebraic theories are, and so are (toposes of sheaves
over) algebraic depos as well as various other particular instances. We present here some
new methods that give simple proofs not only for the domain-theoretic cases under
consideration but also for other geometric theories where every model is a filtered colimit
of finite models.

We call the approach “topical”, because its categories of domains are internal in the
category Top of Grothendieck toposes and geometric morphisms.

2. Technical background
2.1. Geometric constructivism

Geometric theories are described in various places such as (Makkai and Reyes 1977;
Johnstone 1977; Mac Lane and Moerdijk 1992):

Definition 2.1. A many-sorted, first-order logical theory with a vocabulary of func-
tion and predicate symbols is geometric iff all its extralogical axioms are of the form
Vaey---. (¢ — ), ¢ and @ being geometric formulae built using the connectives \/
(disjunction, possibly infinitary), false, A (finitary conjunction), true, = and 3.

Note that we shall need the full generality of the infinitary disjunctions — or, at least,
recursively infinite ones —, and not just the finitary coherent fragment (no infinitary
disjunctions) described in (Mac Lane and Moerdijk 1992). We shall present theories
using a notation influenced to some extent by the schemas of Z (Spivey 1989). Here is
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an example to present the theory of partially ordered sets.

Poset[X]

[< CXxX
Vo : X. (true —» z < )
Ve,y,z: X. (e <yAy<z—-oxz<2)
Ve,y: X. (z<yAy<z—>z=1y)

Here the top line names the theory, Poset, and lists the sorts (only one in this example)
in square brackets. The next section declares the symbols, using C for predicates (so <,
as a subset of X x X is a binary predicate) and — for functions (none in this case).
Finally come the axioms. For the first one we have written “Vz : X. (true — z < z)” to
emphasize its formal geometricity, but in practice one would write “Vz : X. z < 2”.

As explained in (Vickers 1999), we shall extend the logical notation by allowing our-
selves to use sort constructors for geometric constructions, that is to say for those con-
structions that can be characterized uniquely up to isomorphism using geometric struc-
ture and axioms. Equivalently, these are the constructions that can be carried out in
any Grothendieck topos and are preserved by the inverse image functors of geometric
morphisms, and it is then immediate that they include finite limits and arbitrary (small)
colimits. Less obvious, but proved in (Johnstone 1977), is that free algebras for finitary
algebraic theories are also geometric. In particular, this covers the finite powerset (F),
for it is a free semilattice, and we use this frequently in our theory presentations. A di-
rect characterization in geometric logic is given in (Vickers 1999). In addition, universal
quantification bounded over finite sets (i.e. Vx € S.--- when S is finite) can be expressed
geometrically and so can be used as a connective in geometric formulae.

The geometric constructions do not include powerset or exponentials, and so the dec-
larations of predicate and function symbols in schemas cannot be understood (a la Z) as
declaring them as symbols of a particular sort. Rather, they specify arities, the sorts of
arguments and results. Universal quantification bounded over arbitrary sets is also not
geometric.

In slightly more detail, if a geometric theory is presented with base sorts oy, ... , o
then a derived sort (o1, ... ,0k) is a geometric construction of a new set out of k old ones.
(This can be made precise topos-theoretically as a geometric morphism 7 : [Set]* — [Set]
where [Set] is the object classifier, and this shows that 7 is covariantly functorial in its
arguments.) These can be used in the arities of functions f : 71 — 7 and predicates R C 7
(this covers n-ary functions and predicates, because we can tuple up the arguments). They
can also appear in quantifications 3z : 7 and axioms Vz : 7. (¢(z) — ¢ (x)), and there
too we shall refer to such 7s as arities.

The following definitions are similar to those of classical logic. However it is important
to realise that the definition works not only in standard set theory, but, internally, in
some other categories (specifically, in Grothendieck toposes).

Definition 2.2. A structure for a geometric theory is defined in the usual way: with
a carrier set for each sort, and functions and subsets corresponding to function and
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predicate symbols. If in addition the axioms hold, then the structure is a model of the
theory.

If M and N are two structures (or models), then a homomorphism ¢ : M — N
comprises a family of functions, one for each sort, between the corresponding carriers
(once this is done for the base sorts, then it lifts to the derived sorts by their functoriality)
such that ¢ also respects the structure in the following sense: (i) if f is a function symbol
then f(é(z)) = ¢(f(x)), and, (ii), if P is a predicate symbol and P(z) holds in M then
P(¢(x)) holds in N.

2.2. Strongly algebraic domains

The SFP domains of (Plotkin 1976) have also been called “strongly algebraic” (e.g.
(Smyth 1983)), and it is convenient for us to use the two terms to refer to two equivalent
characterizations given by Plotkin.

Definition 2.3. (Classically) A strongly algebraic information system is a poset X sat-
isfying the following conditions.

1 X is countable.
X has a bottom element.

3 For each S € FX, its set MUB(S) of minimal upper bounds in X is finite, and also
complete in the sense that every upper bound of S is greater than a minimal one.

4 For each S € FX, there is some finite T such that S C T C X and T is closed under
MUB.

A strongly algebraic domain is a dcpo (directed complete poset) isomorphic to the
ideal completion IdI(X) of some strongly algebraic information system X. Its elements
are the lower closed, directed subsets of X.

In (Vickers 1999) it is shown how to give a classically equivalent geometric theory of
the information systems. It is not possible to characterize minimality of upper bounds
geometrically unless the order C is decidable, and so MUB is replaced by a binary
relation CUB (“complete set of upper bounds”) on finite subsets. CUB is characterized
geometrically, and condition (3) above is replaced by an axiom that every finite S has
a finite complete set of upper bounds. Similarly, condition (4) is replaced by an axiom
that every finite S is contained in a finite “CUB-closed” set.

A schema presentation follows. Notice the sort constructor F (finite powerset) and the
finitely bounded universal quantification, extending the pure geometric logic. Because
of these the theory is not necessarily coherent: even though no infinitary disjunctions
appear explicitly, they are implicit in the geometric characterization of F and V.

Definition 2.4. The theory IS of strongly algebraic information systems is presented by
the following schema.
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IS[X]

[CC X xX

| CUB C FX x FX

YVt X.tCt (1)
Vs,t,u: X. (sCtAtCu— sCu) (2)
Vs,t : X.(sCtAtCs—s=t) (3)
VS, T : FX. (CUB(S,T) » Vs € S.Vt € T. s C t) (4)
VS, T : FX,u:X. (CUB(S,T)AVse€ S. sCu—IFeT. tCu) (5)
VS : FX.3T : FX. CUB(S,T) 6)
VS, T,T': FX. (Vs € SVt € T. sCt)ACUB(S,T)A (V' e T'. Ft € T.t C t') (7)

— CUB(S,T))
| VS:FX.3T:FX.(SCTA WU € FT. 3V € FT. CUB(U,V))) ®)

Axioms (1)-(3) here say that C is a partial order. Axioms (4) and (5) say that if
CUB(S,T) then T is a (finite) complete set of upper bounds of S. Axiom (6) says that
for every finite S there is some T with CUB(S,T') (so (4)-(6) correspond to condition (3)
in Definition 2.3, sometimes known as the “2-SFP condition”), and (7) says that if T is a
complete set of upper bounds for S (tested by reference to some T for which CUB(S,T")
is already known), then CUB(S,T) holds. Axiom (8) says that every finite S has a fi-
nite CUB closure, i.e. a finite superset T for which YU € FT.3V € FT.CUB(U,V),
corresponding to 2.3(4). Note that if T is finite then so is FT (this is constructively
non-trivial) and so the universal quantification YU € FT is finitely bounded.

Although CUB is uniquely determined by C, geometrically it is structure and not just
a property. Having to preserve it therefore makes a difference to the homomorphisms
of information systems: they correspond to adjunctions between the ideal completions
(Vickers 1999). If we require the order to be decidable, then [Z is also part of the structure
and the homomorphisms turn out to correspond to embedding-projection pairs (as used
in Theorem 2.5).

We have also made two material changes to the notion in that we require neither a
bottom element nor countability of the basis (conditions (1) and (2) in Definition 2.3).
We shall return to the issue of the bottom in Theorem 4.8. In proving the main result
for more general domains without bottom we have taken on a harder task; with bottoms
there is a corresponding but easier result.

As for countability, to make this geometric would involve making the enumeration
part of the geometric structure. This is conceivably possible but we have chosen not to
attempt it. Dropping countability leads to changes in Plotkin’s SFP (“Sequence of Finite
Posets”) result, to which we now turn.

Theorem 2.5. (Classically) A dcpo with bottom is strongly algebraic iff it is a colimit
of a sequence of finite posets (with bottom) in the category of dcpos with bottom and
embedding-projection pairs (an embedding-projection pair from D to E is a pair (e, p)
where e : D — E is left adjoint to p and e;p = Id).
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It is this result that we make geometric in the present paper. The countability of basis
for such an SFP domain is clear. However, existence of the sequence cannot be stated
directly in a geometric form, and in effect we have to say instead that the domain is a
filtered colimit of a canonically determined diagram of finite posets. In this generality
it is quite natural to allow uncountable filtered diagrams and to forgo the countable
basis property. A related issue is that in the traditional treatment there is some virtue
in limiting the size of domains in order to get a small category of domains (or even a
dcpo of domains). Fortunately, the geometric techniques work without that kind of size
restriction and achieve the same purpose in a more constructive way.

2.3. Toposes as generalized spaces

We shall use geometric theories not as an exercise in formal logic, but to open up the
hidden aspect of toposes, as generalized topological spaces. Although this has always
been recognized as a fundamental part of their nature, it tends to get overshadowed by
their more concrete manifestation as generalized universes of sets. Our contention is that
the class of strongly algebraic information systems is captured better as a generalized
space of information systems, which we write [IS], and this is the classifying topos of the
geometric theory IS.

In an wungeneralized space, the topology can be described by stipulating the opens
(the open subsets), but an equivalent approach is by stipulating the sheaves. The opens
can then be recovered as the subsheaves of the terminal sheaf 1. This is, of course, an
uncommon approach, for sheaves are much more complicated. However, Grothendieck
uncovered a generalization of spaces in which the topological structure can only be de-
scribed through the sheaves, for the opens are not enough.

Ezample: For the space [gp] whose points are all groups, one can define the sheaves to
be the functors from Gp to Set that preserve filtered colimits. (The object part of such a
functor is then the stalk function, defining the stalk of the sheaf at each point.) Because
for any two groups G and H there is a homomorphism from G to H (for instance, the
one that maps every element of G to the identity element of H) it is easy to show that
a subsheaf of 1, a sheaf for which every stalk is a subsingleton, must be constant, and
it follows that the opens describe the indiscrete topology on [gp]. This is not enough to
yield the sheaves just described, and so [gp] cannot be understood as an ungeneralized
space.

Grothendieck also found examples where the sheaves were evident but the points were
obscure or lacking, and in consequence the technical expression of generalized spaces — of
toposes — has been austerely categorical and point-free. Nonetheless, in many situations
it is possible to give the points more prominence, and this has been discussed in, for
instance, (Moerdijk 1988). The geometric constructivism provides a systematic way of
doing this.

We shall keep the point-free discussions separate by reserving the word “topos” for
“generalized topological space” (as though topology were the study of toposes), and
using the phrase geometric universe for the generalized universe of sets (the category
of sheaves; so in the usual way of speaking the Grothendieck topos is the geometric
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universe). This is analogous to the distinction between locales and frames as made in
(Johnstone 1982) (or between spaces and locales in (Joyal and Tierney 1984)). If E is
a topos, we write SE for its category of sheaves, and also QF for the frame of opens
(subsheaves of 1). Then a map (geometric morphism) f from E to F' is an adjoint pair
(f*, f«) of functors between SE and SF such that the left adjoint (the inverse image
functor) f* : SF — SE preserves finite limits.

If T is a geometric theory then its models (Definition 2.2) are the points of a gener-
alized space [T, the classifying topos of T'. To understand this, consider its universal
characterization: for any topos E, maps from E to [T] are equivalent to models of T' in
SE. In particular, by taking FE to be the one-point ungeneralized space 1, whose cate-
gory of sheaves S1 is Set, we see that the maps from 1 to [T] (points of [T]) are just
the models of T in Set. If we generalize the notion of point to include arbitrary maps
targeted at [T, the source then being the stage of definition of the point, then the uni-
versal property of classifying topos says that the points of [T] (at whatever stage) are
equivalent to the models of T' (no matter where). S[T] is in effect the geometric universe
freely generated by the generic model of T (which corresponds to the identity map on
[T) and its construction is described in (Johnstone 1977; Mac Lane and Moerdijk 1992),
but for the present paper we can ignore its internal details.

Furthermore, suppose we can give a geometrically constructive transformation f of
models of T' to models of U. By applying this to the generic model M, of T'in S[T] we
get a model f(M,) of U in S[T] and hence a map from [T] to [U]. Without ambiguity
we can also call this map f: for suppose we have a model M of T in SE, corresponding
to a map z : E — [T]. Geometricity — preservation by inverse image functors — ensures
that the model f(M) of U corresponds to the map fz, so the construction f corresponds
everywhere to postcomposition with the map f.

Taking this one stage further, if f, g : [T] — [U] are two maps, then a natural trans-
formation « : f — g can be described as a geometric construction of a homomorphism
a(z) from f(z) to g(x), given a point x of [T]. Note that the points and homomorphisms
in effect put a category structure on [T'] (indexed by the stage of definition) that is quite
different from S[T.

To summarize:

— By describing a class of models geometrically, we give it an intrinsic topology (possibly
generalized).

— By constructing a transformation geometrically, we automatically ensure continuity
(possibly as a geometric morphism).

— By constructing a natural transformation geometrically, we automatically ensure nat-
urality.

Since the effect of these geometric techniques is to manipulate the points of the gener-
alized spaces while apparently ignoring the topologies, we sometimes refer to them under
the slogan of “topology-free spaces”.

Note that the sheaves over a topos F, in other words the objects of SE, are models in
SE of the theory Set with one sort and no other symbols or axioms. Hence each sheaf
corresponds to a map f : E — [Set] where the classifying topos [Set] is also often called
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the object classifier. Spatially, this map takes each point z of E to a set f(z), the stalk
at x for that sheaf.

2.4. Finite sets

We shall need to be careful about constructive variations of finiteness, so let us discuss
here three different notions that arise. Fuller details can be found in (Johnstone 1977),
and results in the geometric setting are summarized in (Vickers 1999).

Definition 2.6. We call a set X finite iff it is Kuratowski finite, i.e., as an element of
PX, it is in the U-subsemilattice FX generated by the singletons.

This is our basic notion and is the one used in Section 2.1 for finite powersets and
finitely bounded universal quantification. Since F X is a free semilattice over X, finiteness
amounts to saying that the free semilattice has a top element. In other words, finite sets
are the models of the following geometric theory:

FinSet[X]
[ T:FX
[ Ve: X.zeT

Note that, geometrically, finiteness is not a property of sets (i.e. extra axioms alone) but
structure (an extra symbol), albeit uniquely determined. A consequence of this is that
homomorphisms between finite sets, i.e. structure-preserving functions between models
of the theory FinSet, must preserve the constant 7" and hence must be surjective.

It is important to be aware that, by contrast with the classical situation, in a finite set
the subsets need not be finite. However, complemented subsets are finite.

Stronger than finiteness is finiteness with decidable equality:

FinDecSet[X]
T:FX
#ZCX xX
Ve: X.zeT
Vo : X. (z # x — false)
Ve,y: X. (xr=yVz#y)

The following result will be important.

Proposition 2.7. Let X and Y be sets, with X finite decidable. Then exponentiation
Y X is geometric.

Proof. The graph of any function from X is finite, so the functions from X to Y can
be identified with certain elements S of F(X x Y). Then the functionhood axioms of
totality and single-valuedness can be expressed as geometric formulae, namely

Ve X.JyeY. (z,y) €S
V(w1,y1) € S. V(w2,y2) € S. (T1 # 22V y1 = y2)
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Of course, the notion of decidable equality is independent of finiteness, so there is
a theory DecSet of sets with decidable equality (or, more briefly, decidable sets). Like
finiteness, having decidable equality is not just a property, geometrically, but requires
uniquely determined extra structure. A homomorphism of decidable sets must be monic,
since it preserves inequality as well as equality, and a homomorphism of finite decidable
sets must be an isomorphism.

Finally, stronger still is finiteness with a decidable total order, which we shall call
strong finiteness:

StrFin[X]
[T :FX
| <KCX xX
[ Vx: X.2zeT
Ve,y,z: X. (e <yAy<z—oxz<z)
Vo : X. (z < z — false)
| Vo,y: X. (z=yVaz<yVy<zx)

A homomorphism of such sets must be an order isomorphism.

Definition 2.8. If n is a natural number, we write s, for the set {i € N0 < i < n}
and call this the finite ordinal of n. This is identical to the “finite cardinal” [n] defined
elsewhere (Johnstone 1977), but we call it an ordinal to emphasize its ordering.

Proposition 2.9. StrFin is equivalent to the theory of a single natural number n.

Proof. Given n, then k, is a finite set with decidable total order. Conversely, if X is
such then it can be put in unique order isomorphism with k, where n is its cardinality.
(Note that cardinalities as natural numbers are well defined for finite decidable sets,
though not for finite sets in general.) ]

Thus although the class of strongly finite sets is large, it can for most purposes be
replaced by the set N of natural numbers. This fact is rather crucial in our subsequent
development, where we often need to find geometrically small categories.

Strong finiteness is preserved by some important geometric constructions, in particular
x, + and F. (More precisely, since the total order is not uniquely determined by the
rest of the structure, there are canonical ways of supplying an order.) Proofs that finite
decidability is preserved by x and F can be conveniently found in (Vickers 1999); + is
easy. K X A can be ordered by

(z,y) < (2',y) if x <2’ or (x =2" and y < y'),

while k¥ + A can be ordered by letting all the elements of x come before all the elements
of A — this is just ordinal arithmetic, of course.

As for Fk, we can show that the obvious function from the list monoid £* onto Fk
is a retraction, split by a function ¢ : Fx — k* defined using the set recursion scheme
described in (Vickers 1999): i(0) is the empty list [] and

i({n} US) = ins(n,i(9))
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where ins is an easily implemented function to insert an element into an ordered list in the
correct place, omitting duplicates. Thus for each finite set S we get i(S) an ordered list
of the elements of S. k* is not finite, but it has a decidable total order, the lexicographic
order, and this can be restricted to Fk.

Let us give a couple of sheaf-theoretic examples to show that these notions of finiteness
are genuinely distinct.

— Let $ be the Sierpinski locale, which can be formulated as the classifying topos for
the theory of subsets P of k1 = {0}. A sheaf over §, an object of S$, comprises two
sets, namely the stalks at ) and at {0}, and a function from the first to the second.
In S$ we define an equivalence relation = on ks = {0,1} byx =y iff e =yVv 0 € P.
Then the quotient k2/ =, a sheaf, has stalks with two elements at () and one at {0}. It
is finite but not decidable, for if it were decidable then inequality of the two elements
at () would have to be preserved at {0}.

— Consider the twisted double cover of the circle, O. If O is represented as the complex
numbers of modulus 1, then the double cover can be represented as z —+ 22 from O
to itself. This is a sheaf over O, and it is finite decidable (and has cardinality 2), but
it cannot be globally ordered right round the circle.

These counterexamples notwithstanding, it is still possible to use the convenience of
strong finiteness when dealing with arbitrary finite sets, for every finite set is a surjective
image of a finite ordinal. The reason is that for any set X the natural homomorphism
f: X* - FX (X* the free monoid over X, FX the free semilattice) is surjective, its
image being a subsemilattice of FX that contains all the generators. Hence if X is finite
then it is (1) for some [ : X*. The list I contains all the elements of X (possibly with
repetitions — we can’t do anything about that), and so is a surjection from &, (n the
length of 1) to X. Note that the existential proof is satisfied with lists locally, but they
cannot necessarily be put together as a global element of X*. This is most evident in the
second example, where X is the double cover of O. X has no global elements, so the only
global list is the empty list []. But we can find an open cover of O by two large arcs, on
each of which we can consistently order the two partial sections of X.

2.5. Ind-completion and presheaf categories

Plotkin’s SFP characterization uses colimits of w-chains of finite posets, and we shall
in effect need to generalize this to filtered colimits. This suggests the use of an ind-
completion, a completion by filtered colimits, and in topical terms this amounts to using
presheaf toposes: for, as remarked in (Johnstone and Joyal 1982), the ind-completion of
C is equivalent to the category of points of the presheaf topos Set®. We now explain
this in more detail.

A good description of the ind-completion Ind-C' of a category C' can be found in
(Johnstone 1982). Its objects are filtered diagrams in C, but it also embeds fully and
faithfully in the presheaf category Set®”” | extending the Yoneda embedding V. In a fuller
account in (Grothendieck and Verdier 1972) one sees that the presheaves in the image
of Ind-C' are exactly the flat presheaves F', i.e. those for which the category of elements



Strongly Algebraic = SFP (Topically) 11

Jo F is filtered. (This is the notation of (Mac Lane and Moerdijk 1992). Grothendieck
and Verdier write C/p.) These include the representable presheaves Y(U) (U an object
of C), defined by Y(U)(V) = C(V,U). The objects of [, F are pairs (U,z) where U
is an object of C' and z € F(U), and a morphism from (U, z) to (V,y) is a morphism
f:U = Vin C such that z = F(f)(y).

C can almost be recovered from Ind-C through the notion of finite presentability: an
object X of a category D is finitely presentable iff D(X,—) : D — Set preserves filtered
colimits. In Ind-C, an object is finitely presentable iff it is a retract of a representable,
and it can be deduced that if in C' all idempotents split then C is equivalent to the
category of all finitely presentable objects of Ind-C.

Proposition 2.10. If C is a small category, then the geometric theory FlatPreSho of
flat presheaves over C' is presented by —

FlatPreShe[F]

[ p: F — ob(C)

L p:ar(C) Xopoy F' = F (we write f -2 for p(f, ), defined iff tar(f) = p(z))
Vo B, f s ar(C). (tar(f) = p(z) — p(f - o) = sre(f))

Ve:F. Idx==x
Va: F, f,g:ar(C). (tar(f) = src(g) Atar(g) = p(z) = (f;9) -z = f-(9-2))
dz : F. true

Ve,y: F.3z: F. 3f,g:ar(C). (x=f-2zAy=g-2)
Vy:F,f,g:ar(C). (f-y=9g-y—3z:F.Jh:ar(C). (y=h-zA f;h=g;h))

Proof. See (Johnstone 1977). The set F' as presented here is the internal way of describ-
ing a presheaf. To get the contravariant functor one defines F(U) = {x € F|p(x) = U}
for each object U of C. O

The last three axioms are the flatness. All the rest just presents the theory of presheaves.
The homomorphisms for the theory are the presheaf morphisms (natural transforma-
tions).

Note that in ar(C) Xn(c) F' we have used pullback as a geometric sort constructor.
This can be justified categorically on the grounds that all finite limits are geometric.
Alternatively, one can use logic directly, defining i as a ternary relation on ar(C) x F'x F'
and using geometric axioms to specify that it is the graph of a partial function on
ar(C) x F, defined at (f, z) iff tar(f) = p(x).

Definition 2.11. We write “C for the classifying topos of FlatPreSh¢. It is the topical
analogue of Ind-C' in that the points and homomorphisms of “C' correspond to the objects
and morphisms of Ind-C, so we call it the topical ind completion of C.

Diaconescu’s theorem, for which see (Johnstone 1977), asserts (in the traditional way of
speaking) that FlatPreSh¢ is classified by Set®: for us that means that S™C is equivalent
to Set®, hence our notation. (A referee remarked that the Grothendieck school have used
a similar notation, C for Set®” )

In the next Theorem we summarize some of the main known properties of “C.
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Theorem 2.12. Let C be a small category.

1 For each object U of C, the representable presheaf Y(U), defined by Y(U)(V) =
C(V,U), is flat.

2 Every model of FlatPreSh¢ is a filtered colimit of representables.

3 For any object U of C' and model F of FlatPreShe there is a bijection between
homomorphisms from Fy to F and elements of F(U).

4 The sheaves of "C (the maps — or geometric morphisms — from “C to [Set]) are
equivalent to covariant functors from C to Set.

5 Each object U of C gives rise to a sheaf of "C, F' — F(U) — that is to say, for each
point F' of “C, the stalk at F' is the set F(U).

6 For any topos E, the category of maps from “C to E is equivalent to the category of
functors from C to the category of global points of E (i.e. maps from 1 to E).

Proof. We sketch the constructions.

1 This was referred to at the start of the subsection.

Given a model F', we can construct the filtered category [, F' (see above). To each
object (U,x) we attach the representable model Y(U) and thereby get a filtered
diagram of representables; F' is its colimit.

3 This is Yoneda’s Lemma.

4 This is Diaconescu’s Theorem. Note that by restricting a sheaf to the representable
models we obviously get a functor from C to Set; the deep part is to show the
equivalence.

5 Note that the construction F' — F(U) is geometric. As a functor from C to Set, the
sheaf takes V to Y(V)(U) = C(U,V).

6 See (Johnstone 1977). Once a map or natural transformation is defined on the repre-
sentables, its action of the rest of the flat presheaves is determined by (2).

O

An interesting question asks which toposes are topical ind-completions — in more con-
ventional terms, which toposes are presheaf toposes. In showing that a topos is equivalent
to some “C, in practice we try to identify the finitely presentable models. Since finite
presentability in itself is not a geometric property, it is used as a guide rather than
a formal part of the geometric reasoning. Our main result, Theorem 4.7, answers the
particular case of the classifier for strongly algebraic information systems, and the tech-
niques used are also applied to some other examples. To prepare for it, and to illustrate
the “topology-free space” methods of (Vickers 1999), let us first review some well-known
examples from (Johnstone and Wraith 1978; Mac Lane and Moerdijk 1992).

Theorem 2.13. Let T be a finitary algebraic theory. Then its classifying topos [T is
equivalent to " fp; where fp is the category of finitely presented T-algebras. (“Finitely”
here is in a strong sense — the set of generators and the set of relations must both be
finite ordinals.)

Proof. We do not give a full proof here, but outline its steps in order to prepare the
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way for our other examples and at the same time bring out the geometric features of the
argument.

1. Choosing fpr: An algebra A is finitely presentable in the categorical sense (that
hom(A, —) preserves filtered colimits) iff it is finitely presentable in the algebraic sense
(it can be presented with finitely many generators and relations). Though this result is
not geometric, it suggests the use of fp, and the rest of the proof validates this choice.
This category is required to be small, and that means in a geometric sense: its sets of
objects and arrows are geometrically definable. This is so provided we use the ordinal
sense of finiteness, and follows from the fact that finite ordinals essentially form a set, N.
Strictly speaking, fp is to be the category not of “finitely presented” T-algebras, but of
“finite presentations of” T-algebras. However, the morphisms in fp;. are defined so as to
make the two categories equivalent: we have a full and faithful functor from fp, to the
category of T-algebras.

2. A map B:[T] — " fpp: For each algebra A we need a flat presheaf 3(A) = F4 over
fpp. By Yoneda’s lemma, F4(B) will have to be the set hom(B, A) of homomorphisms
from B to A, and this must be geometric. Although exponentiables AP are not geometric
in general, in this particular case we can deal with A® where G is the set of generators
for B. G is finite decidable, and A“ is geometric by Proposition 2.7; it turns out that
hom(B, A) is geometric as required. It is now clear that defining F4 in this way gives
a presheaf, but flatness is not automatic. To prove it one uses the fact that fp; has all
finite colimits, and a useful result in, e.g., (Mac Lane and Moerdijk 1992) that, for such
categories, flatness of a presheaf is equivalent to its transforming finite colimits to limits.
Then flatness of F4 follows directly from the fact that the colimits in fp, are preserved
in the category of all algebras.

At this point we have the following:

— A geometrically definable full subcategory fp; of models (algebras) of T'.
— If A is a model of T', then the presheaf F4 of fpy, defined by F4(B) = hom(B, A), is
geometrically definable and flat.

For the moment, we can continue the proof using just these properties.

3. A map a: " {fpy — [T]: By Theorem 2.12 (6) it suffices to define the corresponding
functor from fp, to the points of [T], and that is immediate because the objects of fp;
already are (or, rather, present) models of T'.

4. A natural isomorphism ¢ : 1d- g, — B o a: Again, by Theorem 2.12 (6) it suffices
to define the natural isomorphism on objects A of fpp. If 8o a(A) is the flat presheaf
F then it is defined by letting F(B) be the set of algebra homomorphisms from B to
A, and that set is isomorphic to fp4 (B, A). Hence F is isomorphic to the representable
presheaf corresponding to A and that is just what we need.

5. A natural isomorphism 6 : o 3 — Id[7): Suppose A is a T-algebra and Fy = 3(A).
An object of fpr Fy4 is an algebra homomorphism p : B — A for some object B of fpp,
and it follows from the definition of a(F4) as a colimit that we have a homomorphism
04 : ao fB(A) — A. By geometricity this gives a natural transformation 6. It follows
from flatness of the presheaf F4 that each component of 6 is 1-1. For suppose we have
two elements z; and x2 of a(F4) with 04(z1) = 64(x2). Using the properties of filtered
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colimits, for each i = 1,2 there is a finitely presented algebra B; with an element z! and
a homomorphism p; : B; — A (so (B;,p;) is an object of fpr F4) such that x; is the
image of ; under the colimit injection corresponding to (B;,p;). Using more properties
of filtered colimits, we can take it that By = By = B (say) and p; = p» = p (say). We
can then impose on B a new relation to make zj = x} to get another finitely presented
algebra B’ through which p factors, and z; and x, are the images of the images of x}
and z4 in B’ and hence already equal in a(F4).

To proceed further, we must return to our specific knowledge that T is algebraic. Then
to show each component of 6 is an isomorphism, we show that it is onto. An element a
of A (we are taking T to be a single-sorted algebraic theory, but actually the methods
work just as well for many-sorted theories) is in the image of a homomorphism from a
free algebra, finitely presented with one generator and no relations. ]

Corollary 2.14. The object classifier [Set] is equivalent to ~ Fin, where Fin is the cate-
gory of finite ordinals and functions between them.

However, it is not only algebraic theories that are classified by topical ind-completions.
Some simple examples in (Johnstone and Wraith 1978) are provided by categories C
adapted from Fin by keeping the same objects, the finite ordinals, but varying the mor-
phisms. With monic functions “C' classifies decidable sets, and with surjective functions
“C classifies finite sets (note how the morphisms in C' match the homomorphisms for
decidability or for finiteness). These latter two examples are clearly not algebraic, for in
neither of them does C' have all finite colimits.

Another example presented in (Mac Lane and Moerdijk 1992) is that of totally ordered
sets, bounded with distinct top and bottom elements. In effect what is proved there is
that their classifier [BTOS] is the topical ind-completion of the category of finite ordinals
at least 2, with morphisms the monotone functions preserving top and bottom. They also
show that this category is dual to the simplicial category A (this is a very rudimentary,
discrete case of Stone duality), so that S[BTOS] is equivalent to Sets®", the category
of simplicial sets.

All these examples, as well as the strongly algebraic information systems that are
our primary interest, have the particular feature, not shared with algebraic theories in
general, that C' comprises the (ordinally) finite models (in fact, the finitely presentable
models are all finite). Our general techniques of Section 3 are restricted to such cases,
but can be applied (in Proposition 3.7) to all the examples just mentioned.

A final example is that of algebraic dcpos. When C is a poset then its ind-completion is
equivalent to its ideal completion Id1(C), and S"C, equivalent to Sets”, is the category
of sheaves over Idl(C) with its Scott topology.

3. Theories for which finitely presentable models are finite

In this section we develop new techniques showing how, for certain geometric theories
T, we can find a small category C such that “C classifies T in traditional terms, that
S[T] is equivalent to Set®, but we are able to sidestep these categories of sheaves by
using a geometric proof that the models of T' are equivalent to flat presheaves over C.
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Our methods do not assume finite colimits of finitely presentables, but are restricted to
cases where finitely presentable models are actually finite (in a strong sense).

Referring back to the proof outlined in Theorem 2.13, the big gap lies in the lack of
finite colimits in C. These are used in proving flatness of the presheaves 3(A) and also
in proving that the natural transformation 6 is an isomorphism. What we see there is
that any finite piece of structural information about an algebra A — a finite selection of
elements and a finite number of relations involving them — can be expressed in a universal
way as a finitely presented algebra which then maps homomorphically to A. However,
this depends crucially on the finite colimits in fp, for collecting generators corresponds
to coproducts and imposing relations corresponds to coequalizers. We shall work with
theories where though there is no universal way of using a finitely presentable model
to express each finite piece of structural information, nonetheless for each finite piece of
structural information in a given model there is some finitely presentable model (in fact
a finite model) embodying that information and mapping homomorphically to the given
model. We call this, suitably formulated (in Theorem 3.6), a finite structure condition
(FSC) on the theory. Our main result in this Section is that if a theory T is sufficiently
finitary and has the finite structure condition, then it is classified by “ofp where ofp is
a category of models carried by finite ordinals (Definition 3.2).

It is important to bear in mind that our presentations of geometric theories allow sort
constructors such as x, + and F. The sorts declared explicitly in the theory are the
base sorts o, but the argument of a predicate may be of a derived sort 7 (possibly a
product, to allow for n-ary predicates) and the same goes for the argument and result
of a function, and for the free variable in an axiom. For a predicate R(xz) or an axiom
Va. (¢p(x) = (x)), with z of sort 7, we call 7 the arity of the predicate or axiom.

Definition 3.1. A geometric theory presentation T' is F-finitary iff —

— It has only finitely many base sorts, predicate symbols and axioms.

— It has no function symbols.

— The derived sorts used explicitly as arities are constructed from the base sorts using
only 1, x and F.

— In each axiom Vz : 7. (¢(x) — ¢ (x)), ¢ uses only finitary logic and finitely bounded
universal quantification.

Some of these conditions have been made unnecessarily strong for the sake of expedi-
ency. In restricting our constructors, our main concern is to ensure that if the base sorts
and predicates are given strongly finite interpretations, then so also are the derived sorts
and premisses of the axioms.

The prohibition of function symbols makes little difference to the scope of the methods.
Function symbols can always be eliminated by replacing them by predicate symbols for
their graphs, together with functionhood axioms for totality and single-valuedness, and
doing this makes no difference to the other conditions. However, it will make a difference
to the Finite Structure Condition in Theorem 3.6, where it is important with functions to
separate out structure (the graph predicate) from properties (the functionhood axioms),
and it is convenient to make the separation now rather than later.
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Definition 3.2. Let T be an F-finitary geometric theory. We say that a model of T
is ordinally finite iff the carriers of its base sorts are all finite ordinals and its inter-
pretations of the predicate symbols are all finite (and hence strongly finite). Note that
finiteness for the predicate symbols also implies that they are decidable as predicates,
i.e. complementable: for =P(x) can be defined as Vy € P.x # y.

We write of 7 for the category of ordinally finite models of T'.

Proposition 3.3. Let T be an F-finitary geometric theory.

1 If k and X are models of T, with & ordinally finite, then the set of homomorphisms
from k to X is geometrically definable.

2 The category ofr is geometrically small (i.e. it is small and its structure is geomet-
rically definable).

Proof. 1. A homomorphism p : kK — X has a vector of carrier functions, p, : kK, — X,
for each base sort o, and the set of such vectors is geometric (this uses finiteness of the set
of sorts, and Proposition 2.7 to show that each X< can be constructed geometrically).
If R is a predicate, with arity 7, then its preservation can be expressed geometrically as
Vn € Ry. Rx(p-(n)). (Any geometric construction is functorial, so the notation p, for
the application of such a functor to the p,s makes sense.) Since there are only finitely
many predicates, the conjunction of these properties is geometric.

2. The structure of an ordinally finite model is given by a tuple of natural numbers,
for the carriers, and a tuple of finite subsets of the appropriate derived carriers. In each
axiom Vz : 7. (¢(x) — ¥(z)), ¢ denotes a complementable and hence finite subset of
the derived carrier for 7, and so the axiom can be expressed as a geometric formula
Vz € ¢. y(x). That accounts for the objects. The morphisms come from part (1). ]

Definition 3.4. Let T be an F-finitary geometric theory presentation. T is aziom-free
iff it has no axioms, so it has just sorts and predicates. In general, the structure theory
T' of T is got from T by dropping its axioms. In accordance with Definition 2.2, the
models of T" are structures for T': they interpret the symbols of T but don’t necessarily
make the axioms true.

Note that every model of T is also a structure. Also, between any two models, the
model homomorphisms are the same as the structure homomorphisms.

Beware! The structure theory is presentation-dependent. Suppose, for instance, that
T, has two sorts and nothing else. It is already axiom-free. On the other hand, it is
equivalent to a theory Tb with one sort, two unary predicates P and @, and axioms to
make them Boolean complements of each other. This is not axiom-free, and its structure
theory is not equivalent to T;.

Proposition 3.5. Let T be an F-finitary aziom-free geometric theory. Then

1 of is finitely cocomplete (“finitely” in a strong sense: the diagram must be ordinally
finite) and its inclusion in the category of all models of T' preserves finite colimits;
2 [T] is equivalent to “of.

Proof. 1. Given an ordinally finite diagram of ordinally finite models, at each base
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sort o we can take a finite ordinal for the colimit x, (say) of the corresponding carriers.
(These colimits are still strongly finite.) Now consider a predicate P(z) of arity 7, say.
The sort constructor for 7 can be applied to the colimit cocones to give another cocone
(though not necessarily a colimit cocone) to .. We interpret P for k as the union of the
images in Fk, of the interpretations for P in the original models. It is not hard to see
that k is ordinally finite, and in the category of all models it is still the colimit of the
original diagram.

2. The proof of Theorem 2.13 can be followed as far as showing that the components
of 8 are 1-1. They are also clearly onto, for if X is a model of T', ¢ is a base sort and
x € X,, then we can form an ordinally finite model k carried by a singleton at sort o
and the empty set elsewhere and with all predicates interpreted emptily, and then z is
in the image of a homomorphism from x to X. Once we know that 6 is a bijection at
the base sorts, it follows at the derived sorts too. Finally, we must show that 6 reflects
the predicates. Suppose P has arity 7 and z € X, with P(x). There is some ordinally
finite model k with y € k, and z = 0. (y). We can define a new model s’ with the same
carriers but P, extended with {y}, and it follows that P(y) holds in a o §(X). U

Theorem 3.6. Let T be an F-finitary geometri