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Abstract

The category SCFrU of stably continuous frames and preframe ho-
momorphisms (preserving finite meets and directed joins) is dual to the
Karoubi envelope of a category Ent whose objects are sets and whose
morphisms X → Y are upper closed relations between the finite powersets
FX and FY . Composition of these morphisms is the “cut composition”
of Jung et al. that interfaces disjunction in the codomains with conjunc-
tions in the domains, and thereby relates to their multi-lingual sequent
calculus. Thus stably locally compact locales are represented by “entail-
ment systems” (X,`) in which `, a generalization of entailment relations,
is idempotent for cut composition.

Some constructions on stably locally compact locales are represented
in terms of entailment systems: products, duality and powerlocales.

Relational converse provides Ent with an involution, and this gives a
simple treatment of the duality of stably locally compact locales. If A and
B are stably continuous frames, then the internal preframe hom A t B is
isomorphic to Ã⊗B where Ã is the Hofmann-Lawson dual.

For a stably locally compact locale X, the lower powerlocale of X is
shown to be the dual of the upper powerlocale of the dual of X.

This is a preprint version of the article published as –
Theoretical Computer Science 316 (2004), pp. 259–296.
doi:10.1016/j.tcs.2004.01.033

1 Introduction

The goal of this paper is to develop a logical framework, analogous to the infor-
mation systems used in presenting domains, but adapted for presenting arbitrary
stably locally compact locales [Joh82]. These are exactly the retracts of spectral
(or coherent) locales, whose frames are the ideal completions of distributive lat-
tices. The work develops the logical ideas of the multi-lingual sequent calculus
of [Keg99], [JKM99].
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1.1 Information systems

Information systems were introduced [Sco82] as a means for handling Scott
(bounded complete algebraic) domains. Rather than working with the entire
set of points, the information system uses a basis A of “token” points of which
all the others are joins. The structure of the information system — sufficient to
capture the structure of the domain up to isomorphism — then also comprises a
unary “consistency” predicate Con on FA, and a binary “entailment” relation
` from FA to A (where FA is the finite powerset on A). Con(U) asserts that
U is bounded above in the domain (and so has a join), while U ` a asserts
that U is consistent and its join is bigger than a in the domain. Along with the
information systems also go “approximable mappings”, relations from FA to
FB (for B another information systems) that describe Scott continuous maps
between the corresponding domains.

The machinery there makes essential use of bounded completeness by using
finite sets of tokens to denote their join. However, a similar notion has been
used for algebraic domains in general, taking the tokens to be all compact (fi-
nite) points, and has even been extended (e.g. [Smy77], [Vic93]) to continuous
domains.

In fact we shall understand the phrase “information system” in a rather
broad sense that includes localic approaches that use generators and relations
for frames rather than the entire frames. An important example is [Abr91],
which describes spectral locales using generators and relations for the distribu-
tive lattices (of compact opens), and goes on to describe SFP domains in similar
terms. There a token can be taken to be a generating (subbasic) compact open.
(This can be compared with the subsequent [Vic99], which takes the compact
points of an SFP domain as the tokens.)

Reasons for using information systems in the broad sense can be seen in
various mathematical contexts. They are used in the solution of recursive do-
main equations, taking least fixpoints in a cpo of countable information systems.
(This also appears in topos guise in [Vic99], with a topos whose points are the
information systems.) In effective domain theory, the fact that domains are in
general uncountable forces one to use bases instead. Similar to this is the situa-
tion in predicative type theory, where powersets are not admissible as legitimate
sets and neither are most domains. Again, bases must be used.

Finally, we mention the geometricity constraints in the “topology-free space”
approach of [Vic99]. This exploits that fact that locales do have sufficient points
if one admits generalized points — in the constructive set theories internal to
arbitrary toposes. But one is then constrained to use reasoning that transfers
well from one topos to another: explicitly, reasoning that is “geometric” in the
sense of being preserved by inverse functors of geometric morphisms. That does
not include ideal completion, power sets, or the construction of frames, and
again one finds oneself having to use information systems.

Tacitly, we take “information system” to mean a geometric description of a
locale. However, it is evident from the above that there are important similar
notions in other mathematical contexts. In the present work it will bear a close
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relationship with logic and the sequent calculus.

1.2 Stably locally compact locales

Recall that a locale X is stably locally compact (often called stably compact)
iff its frame ΩX is stably continuous — that is to say, it is continuous and if
a ¿ bi (1 ≤ i ≤ n) then a ¿ ∧

ibi. (¿ is the way below relation.) Obviously
it suffices to check the nullary (n = 0, saying that X is compact) and binary
(n = 2) cases here. The stably locally compact locales are precisely the retracts
of the spectral locales, i.e. those for which the frame is the ideal completion of
a distributive lattice. For further details, see [Joh82].

Amongst algebraic domains, the stably locally compact locales are the “ 2
3 -

SFP domains”. These satisfy the condition that if U is a finite set of compact
points then there is a finite set V of compact upper bounds of U that is complete
as such: every upper bound of U is above some element of V . These are by
no means all algebraic domains, but include the important classes of the SFP
domains and the Scott domains. Analogous classes of continuous domains are
also stably locally compact. On the other hand, stably locally compact locales
also include all compact regular locales, and so encompass an important part of
traditional topology.

One important view of stably locally compact locales is as ordered compact
regular locales. This generalizes the Priestley duality by which a spectral locale
is equivalent to an ordered Stone locale. The spatial version of this derives from
Nachbin’s theory of ordered compact Hausdorff spaces, and in a localic setting
has been studied in [BB88], [Tow96], [Tow97] and [Esc01] (which also describes
some of the origins of the spatial theory). In particular, [Tow96] showed how
to deal with stably locally compact locales by the use of “Hausdorff systems”,
splitting idempotent preframe endomorphisms of compact regular frames. The
present work uses a similar idea with free frames.

Once a set X of generators is given for a distributive lattice L, we have L
as a homomorphic image of the free distributive lattice DL〈X〉. It follows that
the ideal completion Idl(L), the frame for the corresponding spectral locale (the
spectrum of L), is a homomorphic image of the free frame Fr〈X〉. Since any
stably locally compact locale Y is a retract of a spectral locale, it follows that
its frame ΩY is a homomorphic image of Fr〈X〉 and hence can be described by
a nucleus on Fr〈X〉. We should like to take X as the token set.

But any frame is a homomorphic image of a free frame! Simply looking at
nuclei on free frames does not get us down to stable local compactness. We shall
modify the nuclei in two ways.

First, we shall impose Scott continuity. (Scott continuous nuclei have been
described in [Esc01].) This is key to describing the nuclei in a finitary way in
terms of the tokens, but unfortunately it is too restrictive. A Scott continuous
nucleus is one for which the sublocale embedding i is perfect, in other words the
right adjoint of the inverse image homomorphism i∗ is Scott continuous. But
a perfect sublocale of a spectral locale is again spectral, essentially because i∗

preserves compactness. (For any perfect map f , f∗ preserves way below.)
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Second, to compensate we shall generalize slightly the notion of nucleus by
allowing them not to be inflationary. We shall define a quasinucleus on a frame
A to be a function j : A → A that preserves finite meets and directed joins
(i.e. it is a preframe homomorphism), and is idempotent. We find then that
the set Aj of fixpoints of j is also a frame, just as for a nucleus. The main
loss in this generalization is that the function A → Aj , though it is a preframe
homomorphism, need not preserve finite joins, so Aj is not in general a frame
homomorphic image of A.

If we work in the category of stably continuous frames and preframe homo-
morphisms then we find it is closed under this splitting of idempotents, and
moreover that every stably continuous frame can be obtained in this way by
splitting an idempotent on a free frame. Our information system techniques
rely on a concrete description (cf. approximable mappings) of preframe homo-
morphisms between free frames.

1.3 Logic and entailment

Spectral locales (and perfect maps) are dual to distributive lattices, specifically
their lattices of compact opens, and this provides algebraic techniques for han-
dling spectral locales via the lattices. In particular we can present them by
generators and relations.

Suppose X is a given set generators. We can reduce a system of relations
(in the sense of equations between distributive lattice words in X) to a simple
form as follows. First, an equation e1 = e2 can be replaced by a pair of inequa-
tions e1 ≤ e2 and its reverse. Next, we can reduce e1 and e2 to, respectively,
disjunctive and conjunctive form, and then the inequation can be replaced by
a finite set of inequations of the form

∧
U ≤ ∨

V where U and V are finite
subsets of X. Writing U ` V for

∧
U ≤ ∨

V , it follows that any presentation
by generators and relations can be transformed to an equivalent one described
by a relation ` ⊆ FX×FX, where FX is the finite powerset of X. Every such
` presents a distributive lattice

DL〈X | ∧U ≤ ∨
V (U ` V )〉

To put this another way, congruences on the free distributive lattice DL〈X〉
can be described using relations `. This has been sharpened [CC]: congruences
correspond bijectively to relations ` that satisfy the following three rules.

s ` s
(reflexivity)

U ` V

U,U ′ ` V, V ′ (weakening)

U ` s, V U, s ` V

U ` V
(cut)

(Comma here denotes union, and the letter s denotes a singleton subset.)
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Since every stably locally compact locale is a retract of a spectral locale, one
can describe each one as a distributive lattice with extra structure. Examples
are proximity lattices [Smy92] and strong proximity lattices [JS96], distributive
lattices with an extra “strong” ordering < satisfying various conditions. In fact
these are already information systems in our broad (geometric) sense, and strong
proximity lattices have been exploited in [Vig03] to give a geometric account of
sheaves over stably locally compact locales. The distributive lattice itself can
be presented by an entailment system. In particular, a coherent sequent calculus
([Keg99], [JKM99]; see also [JKM01]) has a structure (L;∧,∨,>,⊥; °) in which

1. ° is a binary relation on FL, with weakening as in an entailment system.

2. Reflexivity is dropped.

3. Cut is replaced by a rule that ° is idempotent under a cut composition
† that we shall discuss in more detail later. (The cited papers denote
it by ◦, but we use a different symbol to avoid confusion with relational
composition.) Symbolically,

° † ° = °

This idempotence is equivalent to cut in the presence of reflexivity, but
not otherwise. (See Section 6.1.)

4. ∧, ∨, > and ⊥ are two binary operations and two constants on L.

5. There are rules to ensure that in an entailment S ° T , S is equivalent to
the conjunction (∧) of its elements and T to the disjunction (∨).

6. ° “has interpolants” in the sense that —

• if {φ}∪S ° T then there is some φ′ with {φ} ° {φ′} and {φ′}∪S ° T ;
and

• if S ° {φ}∪T then there is some φ′ with {φ′} ° {φ} and S ° {φ′}∪T .

One senses that in a strong proximity lattice the information given in <
overlaps to some extent with that in the lattice. Analogously, in a coherent
sequent calculus the lattice operations appear twice: ∧ appears both explicitly
and implicitly (as set union to the left of °), and ∨ is similar. We shall show
how a single “strong” entailment ` with weakening and cut idempotence can
contain all the information needed to present a stably locally compact locale.
This develops results in [Keg99] by which the behaviour of ∧ and ∨ is generated
inductively, but at the same time we dispense with the interpolants of condition
(6) above.

To get some idea of the problem that cut composition is addressing, think
of U ` W as meaning

∧
U ¿ ∨

W and consider what is going to correspond to
transitivity of ¿. We certainly do not have transitivity of ` itself; if U ` V
and V ` W then this means

∧
U ¿ ∨

V and
∧

V ¿ ∨
W . In one place “V ”
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stands for
∧

V , while in the other it is
∨

V . We can only deduce U ` W if V is
a singleton. Let us think more generally, and suppose U ` Vi for i ∈ I, meaning∧

U ¿ ∧
i∈I

∨
Vi. By distributivity, we can transform this meet of joins into

a join of meets: it is (modulo some constructive care)
∨{∧ Im γ | γ a choice

function of {Vi | i ∈ I}}. (You can probably appreciate roughly how this works
if you imagine actually working out such a distributivity.) This is then way
below

∨
W if for every γ we have Im γ ` W . To summarize, suppose —

• for every i ∈ I (I finite) we have U ` Vi,

• for every j ∈ J (J finite) we have Vj ` W , and

• for every choice function γ ∈ ∏
i Vi there is some j ∈ J such that Im γ ⊇

Vj .

Then U ` W . [JKM99] express this principle by defining a “cut composition”
operator “◦” (which we shall denote “†”) on the relations such that if the above
situation we replace Vj ` W by Vj `′ W , then we deduce U(` † `′)W . Then
an entailment relation ` is expected to satisfy ` = ` † `. Clearly it is closely
bound up with distributivity and distributive lattice duality.

Note, however, that the cut rule is not purely a special case of this general
principle. To deduce cut we need also to assume something like reflexivity, as
follows. Suppose we have U ` s, V and U, s ` V . By reflexivity we also have
U ` {u} for each u ∈ U . We can now apply the general principle, with the Vis
being {s} ∪ V and all the singletons {u}. A choice γ must choose all those u’s,
so its image is either U ∪ {s} or U ∪ {v} for some v ∈ V . The sequent U, s ` V
is given, and U, v ` V follows by reflexivity (and weakening). Hence we can
deduce that U ` V .

Thus, as we shall see, in replacing the cut rule by the generalized principle
we also decouple ourselves from the reflexivity rule. This is essential in moving
from spectral locales to stably locally compact (from an algebraic frame to a
continuous one), because we shall want to use the way below relation ¿ and
that is not reflexive. (However, [Keg99] and [JKM99] manage to retain the cut
rule by their assumption of interpolants (condition (6) above).)

Our arguments will be constructive throughout. Indeed, we take care to
ensure that the definitions relating to entailment systems should be geometric
(see [Vic99]). “Finite” will always mean Kuratowski finite, and we write FX for
the set of finite subsets of X. (See [Joh02], where our FX is denoted K(X).)

1.4 Summary

Our exposition is in four stages. In the first stage (Section 2), we describe
properties of the symmetric monoidal category SCFrU of stably continuous
frames and preframe homomorphisms. In the second stage (Section 3), we
discuss how these properties interact with splitting idempotents. After some
preparation with auxiliary results (Section 4) on choices and free distributive
lattices, the third stage (Section 5) shows how the properties appear in the full
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subcategory of free frames. In the fourth stage (Section 6), we put these together
to obtain an information system account of arbitrary stably locally compact
locales. In Section 7 we show as an application how to exploit the symmetry of
the calculus to describe self-duality and monoidal closure in SCFrU (and hence
of stably locally compact locales). Section 8 then describes the powerlocales in
terms of information systems.

2 Products of stably locally compact locales

We shall denote by SLCLoc the category of stably locally compact locales and
continuous maps (dual to stably continuous frames and frame homomorphisms);
however, for various reasons we shall find it convenient to work within a larger
category SLCLocU dual to the category SCFrU of stably continuous frames
and preframe homomorphisms (preserving finite meets and directed joins). This
larger category is in many ways simpler to work with than SLCLoc, it has some
good categorical features — for instance it is monoidal closed and self-dual —,
and it includes morphisms corresponding to some of our technical features such
as the quasinuclei. Having developed those properties it is then easier for us to
identify (in Theorem 41) SLCLoc as a subcategory of SLCLocU . For compar-
ison, if one looks at [Vic93], it is actually easier there to study first the “lower
approximable semimappings” between information systems (corresponding to
maps to the lower powerlocale), and then to specialize to the continuous maps.

Preframe homomorphisms ΩY → ΩX correspond to maps X → PUY , where
PU is the upper powerlocale monad. (This is immediate from the definition of
PU : the frame ΩPUX is the free frame over ΩX qua preframe.) We shall call
a map X → PUY an upper relation from X to Y . PU is the localic version
of the Smyth powerdomain, and so the upper relations correspond to what are
often identified in domain theory with the “demonic” non-deterministic maps
between domains. Also SLCLoc is closed under PU — this is easily seen for
spectral locales, and then one argues by retracts. It follows that SLCLocU is
the Kleisli category for PU restricted to SLCLoc.

For comparison with the terminology of [Keg99], our SCFrU is his ASL. (He
calls a stably continuous frame an arithmetic lattice, or, the same thing but with
preframe homomorphisms understood as morphisms, an arithmetic semilattice.)
Our SLCLocU is his StCpK.

SCFrU has a monoidal product. The category PreFr of preframes has a
tensor product ⊗, which, when restricted to frames, coincides with the frame
coproduct [JV91]. We write (a, b) 7→ a¯b for the universal preframe bimorphism
ΩX × ΩY → Ω(X × Y ); it is different from the suplattice bimorphism (a, b) 7→
a× b, with a¯ b = a× 1∨ 1× b (so a point (x, y) is in a¯ b iff either x is in a or
y is in b). Conversely, we can define a× b = a¯ 0 ∧ 0¯ b. The class of spectral
locales is closed under products, and it follows that so too is the class of stably
locally compact locales. Hence SCFrU is closed under ⊗.

The unit of the monoidal product is the subobject classifier Ω (which is also
the free preframe on one generator, false). The isomorphism Ω ⊗ A → A is
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given by
p¯ a 7→ ∨↑{{a} ∪ {1 | p}}.

It is an instructive exercise to show that this is a bimorphism, and that it gives
an inverse to the homomorphism a 7→ false¯ a.

For future reference, we shall need the following lemma.

Lemma 1 Let A and B be two stably continuous frames. Suppose a ¿ a′ in
A, and b ¿ b′ in B. Then if a′ × b′ ≤ c¯ d we have either a ¿ c or b ¿ d.

Proof. Define θ : A×B → Ω by

θ(x, y) iff a ¿ x or b ¿ y.

This is a preframe bimorphism, and so defines a preframe homomorphism f :
A ⊗ B → Ω, f(x ¯ y) iff θ(x, y). Since a′ × b′ = a′ ¯ 0 ∧ 0 ¯ b′, we see that
f(a′ × b′) holds, and hence so does f(c¯ d).

3 Splitting idempotents in SCFrU

In this Section we investigate the splitting of idempotents in SCFrU (“quasi-
nuclei”) and show that every stably continuous frame can be got by splitting
a quasinucleus on a free frame. More precisely, SCFrU is equivalent to the
Karoubi envelope of its full subcategory on free frames.

Definition 2 Let A be a stably continuous frame. A quasinucleus on A is an
idempotent preframe endomorphism on A.

There are two differences between a quasinucleus and an ordinary nucleus:
the quasinucleus is required to preserve directed joins, but it is not required to
be inflationary. However, we shall show that essentially the same construction
as for nuclei enables us to construct new frames.

Given a quasinucleus j on A, we write Aj for the preframe of fixpoints of j.
This splits j, with preframe homomorphisms jin : Aj → A and jout : A → Aj .
If j is inflationary (hence a nucleus), then jout is a frame homomorphism, but
this is not so in general.

Theorem 3 Let A be a stably continuous frame and j a quasinucleus on it.
Then the poset Aj of fixpoints of j is a stably continuous frame.

Proof. First, as equalizer of j and IdA, Aj is a subpreframe of A.
Next, we show that Aj has joins, and meet distributes over them. If S ⊆ Aj ,

its join is ∨
S = jout(

∨{jin(a) | a ∈ S}).
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For distributivity,
∨
{b ∧ a | a ∈ S} = jout(

∨{jin(b ∧ a) | a ∈ S})
= jout(jin(b) ∧∨{jin(a) | a ∈ S})
= b ∧∨

S.

Hence Aj is a frame.
Next we show that a ¿ b in Aj iff a ≤ jout(b′) for some b′ ¿ jin(b). For

the ⇐ direction, suppose b ≤ ∨↑
S where S is a directed subset of Aj . Then

jin(b) ≤ ∨↑{jin(c) | c ∈ S}, so b′ ≤ some jin(c) and a ≤ c. For the ⇒ direction,
we have jin(b) =

∨↑{b′ | b′ ¿ jin(b)}, and so b =
∨↑{jout(b′) | b′ ¿ jin(b)}.

Note also in the above that for each b′ we have jout(b′) ¿ b, and it follows
that b is a directed join of elements way below it. Hence Aj is continuous.

For stability, suppose a, bi ∈ Aj (1 ≤ i ≤ n), a ≤ jout(b′i) and b′i ¿ jin(bi).
Then a ≤ jout(

∧n
i=1b

′
i) and

∧n
i=1b

′
i ¿ jin(

∧n
i=1bi), so a ¿ ∧n

i=1bi.

Lemma 4 Let j be a quasinucleus on A. If a ¿ jin(b) in A, then jout(a) ¿ b
in Aj.

Proof. This follows from the characterization of ¿ in Aj that was given in
the proof of Theorem 3.

The preframe homomorphism jout : A → Aj is not in general a frame ho-
momorphism: for a, b ∈ A we do not necessarily have j(a ∨ b) = j(j(a) ∨ j(b)).
Thus our construction does not necessarily construct sublocales.

Example 5 Let A = {0, a∧ b, a, b, a∨ b, 1} be the free distributive lattice on two
generators a and b. For simplicity, we assume classical logic here so that A is
already its own ideal completion, the free frame on {a, b}. Define a quasinucleus
j by

1, a ∨ b 7→ 1
a, b, a ∧ b 7→ a

0 7→ 0.

j is neither inflationary nor deflationary. Its fixpoints are Aj = {0, a, 1}. The
function jout : A → Aj takes both a and b to a, but takes a ∨ b to 1 and so does
not preserve finite joins.

Proposition 6 Let A be a stably continuous frame. Then there is a quasinu-
cleus j on the free frame Fr〈A〉 such that A is isomorphic to Fr〈A〉j.

Proof. Let the frame homomorphism α : Fr〈A〉 → A be the structure map
for A as frame. Define β : A → Fr〈A〉 by

β(a) =
∨↑{φ ∈ DL〈A〉 | α(φ) ¿ a}.
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Here DL〈A〉 denotes the free distributive lattice on A; Fr〈A〉 is its ideal com-
pletion. β is a preframe homomorphism with α◦β = IdA, and our quasinucleus
j is β ◦ α.

Thus every stably continuous frame can be got by splitting a quasinucleus
on a free frame. We can express this more precisely using a Karoubi envelope.
Let FreeFrU be the full subcategory of SCFrU on the free frames.

Theorem 7 SCFrU is equivalent to the Karoubi envelope Kar(FreeFrU ).

Proof. The objects of the Karoubi envelope are pairs (A, j), where A is an
object in FreeFrU and j is an idempotent endomorphism on A. A morphism
(A, j) → (B, k) is a morphism f : A → B in FreeFrU such that f = j; f ; k.

Since every idempotent in SCFrU splits, the full and faithful embedding of
FreeFrU in SCFrU factors via a full and faithful embedding of Kar(FreeFrU )
in SCFrU , and we have seen that it is essentially surjective on objects.

Proposition 8 Let A and B be stably continuous frames, with quasinuclei j
and k respectively. Then

(A⊗B)j⊗k
∼= Aj ⊗Bk.

Proof. jout ⊗ kout and jin ⊗ kin split j ⊗ k.

4 Some auxiliary results

We gather in this Section some auxiliary results relating to distributivity and
free distributive lattices. We take care to give a constructive treatment that
is geometric, i.e. preserved by inverse image functors of geometric morphisms
between toposes. Our treatment is also intended to be predicative.

Note that “finite” will always mean Kuratowski finite, so that our finite
powerset FX (often denoted K(X)) is the free semilattice on X. We note here
some constructive results that we shall use.

Proposition 9 (Simple F-induction) [Vic99] Let φ(S) be a predicate on FX
such that φ(∅) (base case), and if φ(S) then φ({x} ∪ S) for all x : X (induction
step). Then φ(S) holds for all S.

Proposition 10 (F-recursion) [Vic99] Let f : X × Y → Y satisfy

1. ∀x, x′, y.f(x, f(x′, y)) = f(x′, f(x, y))

2. ∀x, y.f(x, f(x, y)) = f(x, y)

Then there is a unique g : FX × Y → Y such that

∀y.g(∅, y) = y

∀x, y.g({x}, y) = f(x, y)
∀S, T, y.g(S ∪ T, y) = g(S, g(T, y))

Proposition 11 [Joh84] Let φ be a predicate on X, let S ∈ FX, and suppose
∀x ∈ S. (φ(x) ∨ ψ(x)). Then either ∀x ∈ S. φ(x) or ∃x ∈ S. ψ(x)
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4.1 Choices

For general application of distributive laws and the definition of cut composition
we need choice functions, but for constructivist reasons we replace these by total
choice relations. To see why, let X be a set and V a finite set of finite subsets
of X. A choice function for V is a function γ : V →⋃V such that γ(V ) ∈ V
for every V . Since V is finite, the graph of γ must be a finite subset of V×⋃V,
but unfortunately the set of such γ’s is not a geometrically definable subset of
F(V×⋃V). This is because the single-valuedness property of a function,

∀V, v, v′. (V γv ∧ V γv′ → v = v′),

is not geometric. To make it so we should need decidable equality on X, when
the property can be expressed as

∀(V, v) ∈ γ. ∀(V ′, v′) ∈ γ. (V 6= V ′ ∨ v = v′).

However, it turns out that single-valuedness is not needed for our applications.
We just need at least one γ(V ) ∈ V for every V , so that γ needs to be a total
relation but not necessarily single valued.

Definition 12 Let X be a set and V ∈ FFX. A choice for V is some γ ∈
F(V×⋃V) satisfying

• ∀V ∈ V. ∃v ∈ V. (V, v) ∈ γ

• ∀(V, v) ∈ γ. v ∈ V

The universal quantifications here are finitely bounded, as required for geo-
metricity.

Definition 13 We write Ch(V) for the set of choices of V, and Im γ for the
image of γ, i.e. its direct image under the second projection to

⋃V (note that
Im γ is finite).

Proposition 14 Let X be a set and V ∈ FFX. Then Ch(V) is finite.

Proof. This has been proved in [Vic], so we just sketch the proof here.
We use F-recursion (Proposition 10) to implement a function Ch : FFX →
FF(FX×X) whose specification is that γ ∈ F(FX×X) is in Ch(V) iff it is a
choice for V as defined above.

We define

Ch(∅) = {∅}
Ch(V ∪ {U}) = {γ ∪ ({U} × S) | γ ∈ Ch(V) and S ∈ F+U}

where F+U denotes the set of nonempty finite subsets of U . (Note that empti-
ness is a decidable property of finite sets.) The proof obligations of F-recursion
are easy. An F-induction proof then proves correctness, i.e. that the function
does implement its specification.

The following Lemma is quite fundamental.
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Lemma 15 (Diagonalization Lemma) Let X be any set and φ a predicate
on it. Let V ∈ FFX be such that ∀γ ∈ Ch(V). ∃v ∈ Im γ. φ(v). Then there is
some V in V such that ∀v ∈ V. φ(v).

Proof. Classically one would use a diagonalization argument as follows.
If there is no such V , then in every V we can choose an element v such that
¬φ(v), and this gives a choice γ for V whose image does not meet φ — contra-
diction. However, we must avoid the proof by contradiction, and we use simple
F-induction on V.

If V = ∅ then Ch(V) = {∅} and the hypothesis implies that φ meets ∅ —
contradiction.

Now suppose V = {V } ∪ V ′ with the result holding for V ′. If v ∈ V then
every choice γ′ for V ′ gives us a choice {(V, v)} ∪ γ′ for V, and so either the
image of γ′ meets φ or φ(v) holds. By Proposition 11 it follows that either
∀γ′ ∈ Ch(V ′). ∃v′ ∈ Im γ′. φ(v′) or ∃γ′ ∈ Ch(V ′). φ(v). In the first case by
induction we have some V ′ in V ′ such that ∀v′ ∈ V ′. φ(v′), while in the second
case we have φ(v). Hence we have

∀v ∈ V. (φ(v) ∨ ∃V ′ ∈ V ′. ∀v′ ∈ V ′. φ(v′))

It follows that either ∀v ∈ V. φ(v) or ∃v ∈ V. ∃V ′ ∈ V ′. ∀v′ ∈ V ′. φ(v′).
Either way, we get V ′ in {V } ∪ V ′ such that ∀v′ ∈ V ′. φ(v′) as required.

Corollary 16 Let V ∈ FFX and let V ′ = {Im γ | γ ∈ Ch(V)}. Then ∀δ ∈
Ch(V ′). ∃V ∈ V. V ⊆ Im δ.

Proof. Given δ, define a predicate φ on X by φ(x) iff x ∈ Im δ. If γ ∈ Ch(V),
then δ chooses an element of Im γ that is also in Im δ. We can thus apply the
Diagonalization Lemma.

For us, the most important use of choices lies in expressing generalized dis-
tributivity in distributive lattices.

Theorem 17 Let L be a distributive lattice and let V ∈ FFL. Then
∨

V ∈V

∧
V =

∧

γ∈Ch(V)

∨
Im γ.

Proof. See [Vic]. The proof is by induction on V.
Of course, there is a dual result in which meets and joins are interchanged.

4.2 The free distributive lattice DL 〈X〉
We now investigate the concrete structure of the free distributive lattice DL 〈X〉
on generators X.

Clearly

DL 〈X〉 ∼= DL 〈∧-semilattice〈X〉 (qua ∧ -semilattice)〉 .
We put together some known results.
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Proposition 18 1. Let A be a meet semilattice. Then

DL 〈A (qua ∧ -semilattice)〉 ∼= ∨-semilattice 〈A (qua poset)〉 .

2. Let P be a poset. Then

∨-semilattice 〈P (qua poset)〉 ∼= FP/ vL

where U vL V iff ∀u ∈ U. ∃v ∈ V. u ≤ v.

3. Let P be a poset. Then

∧-semilattice 〈P (qua poset)〉 ∼= FP/ vU

where U vU V iff ∀v ∈ V. ∃u ∈ U. u ≤ v.

4. Let X be a set. Then
DL 〈X〉 ∼= FFX/ ≤

where U ≤ V iff ∀U ∈ U . ∃V ∈ V. U ⊇ V .

Proof. 1. This follows the same lines as (replacing distributive lattices
by frames and ∨-semilattices by suplattices) the proof of the coverage theo-
rem in [AV93]. Taking L = ∨-semilattice〈A (qua poset)〉, one can define a
∨-bimorphism on L that extends ∧ on A, and then show that it is meet on L.
This shows that L is a distributive lattice. It is then not hard to show that L
has the right universal property.

2. One first shows that ∪ in FP is a join with respect to the preorder vL.
Then the universal property is not hard.

3. This is dual to (2).
4. By (3) (applied to X as a discrete poset), the free meet semilattice on X

is FX/ ⊇. Now apply (1) and (2).
In this we see every element of DL 〈X〉 expressed in disjunctive form, as a

join of meets of generators. But a dual result also holds in which every element
is expressed in conjunctive form, as a meet of joins of generators. We introduce
some notation to describe this.

Definition 19 Let X be a set.

1. We define a function U 7→ φU from FFX to DL 〈X〉 by

φU =
∨

U∈U

∧
U

2. We write x 7→ x̃ for the lattice homomorphism from DL 〈X〉 to DL 〈X〉op

that is the identity on X.

13



The conjunctive form is

φU =
∨

U∈U

∧
U =

∧

γ∈Ch(U)

∨
Im γ = φ̃V

where V = {Im γ | γ ∈ Ch(U)}.
We see that

φU ≤ φV iff ∀U ∈ U . ∃V ∈ V. U ⊇ V .

However, it turns out useful to investigate the relations φU ≤ φ̃V and φ̃U ≤ φV .
This is because they are symmetric — φU ≤ φ̃V iff φV ≤ φ̃U and similarly for
the other one.

Proposition 20 Let X be a set, and let U ,V ∈ FFX. Then the following are
equivalent.

1. φU ≤ φ̃V .

2. φV ≤ φ̃U .

3. ∀U ∈ U . ∀V ∈ V. U meets V .

Proof. (1) ⇔ (2) is obvious because ˜ is an involution.
(1) ⇔ (3): Since φU =

∨
U∈U

∧
U and φ̃V =

∧
V ∈V

∨
V , we see that φU ≤ φ̃V

iff for every U ∈ U and V ∈ V we have
∧

U ≤ ∨
V =

∨
v∈V {v}. This holds iff

U ⊇ {v} for some v ∈ V , i.e. U meets V .

Proposition 21 Let X be a set, and let U ,V ∈ FFX. Then the following are
equivalent.

1. φ̃U ≤ φV .

2. φ̃V ≤ φU .

3. ∀γ ∈ Ch(U). ∃V ∈ V. V ⊆ Im γ.

4. ∀δ ∈ Ch(V). ∃U ∈ U . U ⊆ Im δ.

5. ∀γ ∈ Ch(U). ∀δ ∈ Ch(V). Im γ meets Im δ.

Proof. (1) ⇔ (2) is obvious.
(3)⇔(5) follows from the Diagonalization Lemma, and (4)⇔(5) by symme-

try.
(1)⇔(3) now follows from ψ̃U =

∨
γ∈Ch(U)

∧
Im γ.

Definition 22 Let X be a set, and let U ,V ∈ FFX. Then we say U is diagonal
to V, U ./ V, iff U and V satisfy any of the equivalent conditions given in
Proposition 21.
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If we ignore the differences between choice functions and choices, we find
that in [Keg99] the diagonality relation is defined in the form of condition (3)
above as “the side condition on Cut∗”, and is proved equivalent to condition
(5). We have adopted the term “diagonal” from [MJ02], where a pair (U ,V)
satisfying the classical version of condition (5) is called a diagonal pair.

Proposition 23 1. Diagonality is symmetric.

2. U ./ ∅ ⇔ ∅ ∈ U ⇔ ∀V. U ./ V.

3. If W ∈ FX then {W} ./ {{w} | w ∈ W}.
4. If W ∈ FFX then W ./ {Im γ | γ ∈ Ch(W)}.
5. If U ./ V then (U ∪ U ′) ./ (V ∪ V ′) for all U ′, V ′.
6. If Ui ./ Vi (i = 1, 2) then (U1 ∪ U2) ./ {V1 ∪ V2 | V1 ∈ V1, V2 ∈ V2}.
Proof. (1) is obvious.
(2): Suppose U ./ ∅. ∅ has a unique choice, with empty image, so ∅ ∈ U . If

∅ ∈ U then U has no choices and so U ./ V holds vacuously for every V; and
when this holds, then in particular we have U ./ ∅.

(3): The only choice for {{w} | w ∈ W} has image W .
(4): Obvious (consider choices for W).
(5): For any choice γ′ for U ∪U ′ there is a choice γ for U with Im γ ⊆ Im γ′.

Similarly for V ∪ V ′. From this we can deduce that any choices for U ∪ U ′ and
V ∪ V ′ have images that meet.

(6): Let γ be a choice for U1∪U2. We can then find choices γi for Ui such that
Im γi ⊆ Im γ, and elements Vi of Vi such that Vi ⊆ Im γi. Then V1 ∪ V2 ⊆ Im γ.

5 The Entailment Category

We now present an “information system theoretic” representation Ent of FreeFrop
U .

For an information system for the free frame Fr〈X〉, we take the tokens to
be simply the generators X. What we now show is how to express the rest of
the structure in terms of the tokens.

The central question is how to describe the morphisms without accepting
the frame Fr〈X〉 as a concretely given set. It is impredicative, in that its
construction requires the use of powersets. It is also non-geometric, in that it
is not preserved by inverse image functors between toposes (again, essentially,
because its construction uses powersets and the powerset construction is non-
geometric). If the sets X are the information systems, then this central question
is (modulo the fact that our morphisms are upper relations, not necessarily
continuous maps) analogous to that of describing the approximable mappings
between information systems.

Once we know what the approximable mappings are, we also have to describe
the category structure — identities and composition. This turns out to be
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remarkably intricate, but in a way that could be anticipated from entailment
relations. It is analogous to the problem of deducing U ` W (i.e.

∧
U ⇒ ∨

W )
from sequents of the form U ` V and V ′ ` W , and is the cut composition
referred to earlier.

Proposition 24 Let X and Y be sets. Then there is a bijection between —

1. preframe homomorphisms f : Fr〈Y 〉 → Fr〈X〉; and

2. relations R from FX to FY that are upper closed (i.e. if URV then
(U ∪ U ′)R(V ∪ V ′); we also say that R has weakening).

Given f , R is defined by

URV iff
∧

U ≤ f(
∨

V ).

Given R,

f(b) =
∨↑{φU | ∃V. (URV and φ̃V ≤ b)}

where
URV iff ∀U ∈ U . ∀V ∈ V. URV .

(In Proposition 28 we shall simplify this expression for f .)

Proof. Because FY is the free semilattice over Y , we have

Fr〈Y 〉 ∼= Fr〈FY (qua ∪ = ∨-semilattice)〉.

The preframe coverage theorem [JV91] tells us that this is isomorphic to

PreFr〈FY (qua poset under ⊆ )〉.

Hence a preframe homomorphism Fr〈Y 〉 → Fr〈X〉 is equivalent to a monotone
function FY → Fr〈X〉.

On the other hand we can also use the suplattice coverage theorem [AV93]
to deduce

Fr〈X〉 ∼= Fr〈FX (qua ∪ = ∧-semilattice)〉
∼= SupLat〈FX (qua poset under ⊇ )〉.

In [Joh82] this is stated concretely so that we see Fr〈X〉 as the set of upper
closed subsets of FX.

We have thus given here two distinct representations of free frames, related
by distributive lattice duality and by the fact that Fr〈X〉 is the ideal completion
Idl(DL〈X〉). On the one hand, using conjunctive form of elements of DL〈X〉, we
see that every element of Fr〈X〉 is a directed join of finite meets of finite joins of
generators. This is the form that was used for defining preframe homomorphisms
out of Fr〈Y 〉. On the other hand, using disjunctive form, every element of Fr〈X〉

16



is a join of finite meets of generators. This underlies our concrete representation
by the upper closed subsets of FX.

Putting these together, we see that monotone functions FY → Fr〈X〉 corre-
spond to relations R from FY to FX such that each R(V ) is upper closed, and
if V ′ ⊇ V then R(V ′) ⊇ R(V ). These are just saying that R has weakening. We
shall actually take the relational converse, as in the statement of the Proposi-
tion (to get a relation from FX to FY ), thus giving a localic direction for the
morphisms. This direction also matches better that of the sequent calculus, for
by following through the technicalities we find that URV iff

∧
U ≤ f(

∨
V ).

Given R, we have

f(
∨

V ) =
∨
{∧U | URV } =

∨↑{φU | UR{V }}.

Because f preserves finite meets, it follows by induction on V that

f(φ̃V) =
∨↑{φU | URV}

and so
f(b) =

∨↑{φU | ∃V. (URV and φ̃V ≤ b)}.

To see that this join is directed, suppose UiRVi and φ̃Vi ≤ b (i = 1, 2). Let
U = U1 ∪ U2 and V = {V1 ∪ V2 | V1 ∈ V1, V2 ∈ V2}. Then URV and

φU = φU1 ∨ φU2

φ̃V =
∧
{∨V1 ∨

∨
V2 | V1 ∈ V1, V2 ∈ V2}

=
∧

V1∈V1

∨
V1 ∨

∧

V2∈V2

∨
V2 = φ̃V1 ∨ φ̃V2 ≤ b.

Proposition 25 Let X, Y and Z be sets, and let R and S be upper closed
relations from FX to FY and from FY to FZ respectively, corresponding to
preframe homomorphisms f : Fr〈Y 〉 → Fr〈X〉 and g : Fr〈Z〉 → Fr〈Y 〉. Then
the composite f ◦ g corresponds to R†S defined by

U(R†S)W iff {U}(R;on;S){W}.

The identity morphism at X is represented by the relation GX (“meets”),
U GX V iff U meets V .

Proof. We have

g(
∨

W ) =
∨↑{φV2 | V2S{W}}

f ◦ g(
∨

W ) =
∨↑{φU | ∃V1,V2. URV1, φ̃V1 ≤ φV2 ,V2S{W}}.
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Now
∧

U ≤ φU iff U ⊇ U ′ for some U ′ ∈ U . So, using Proposition 21,
∧

U ≤ f ◦ g(
∨

W ) iff ∃V1,V2. {U}RV1 on V2S{W}.

The identity morphism comes from our knowledge that
∧

U ≤ ∨
V in DL〈X〉

iff U meets V .

Definition 26 The entailment category Ent is defined as follows.
An object is a set, X.
An entailment morphism from X to Y is an upper closed relation R from

FX to FY .
The identity morphism at X is “meets”, GX .
If R : X → Y and S : Y → Z then their composite, the cut composition, is

R†S. (This is a geometric version of the cut composition of [JKM99].)

We have thus shown:

Theorem 27 FreeFrU is dual equivalent to Ent.

We can now simplify the expression for f in Proposition 24. The elements of
Fr〈X〉 correspond to the upper closed subsets of FX, and hence to entailment
morphisms X → ∅.

Proposition 28 Let R : X → Y be an entailment morphism corresponding to
a preframe homomorphism f : Fr〈Y 〉 → Fr〈X〉. If b ∈ Fr〈Y 〉, then

f(b) = R † b.

Proof. We already have an expression for f(b) in Proposition 24. Using it
and compactness of

∧
U , we see that

U ∈ f(b) ⇔ ∧
U ≤ f(b)

⇔ ∃U ,V. (
∧

U ≤ φU and URV and φ̃V ≤ b).

Given such U and V, this happens if U ⊇ U ′ for some U ′ ∈ U , and there is some
V ′ with V on V ′ ⊆ b. Hence

U ∈ f(b) ⇔ U(R † b)∅.

If R : X → Y then its relational converse R◦ is a morphism from Y to X.
It follows from symmetry of ./ that (R†S)◦ = S◦†R◦, and so ◦ is an involution
on Ent.

Lemma 29 Suppose in Ent we have R : X → Y and S : Y → Z. Then the
following are equivalent.

1. U(R†S)W .
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2. There is some V1 ∈ FFY such that for all V1 in V1 we have URV1 and
for all γ in Ch(V1) we have Im γSW .

3. There is some V2 ∈ FFY such that for all V2 in V2 we have V2SW and
for all γ in Ch(V2) we have UR Im γ.

Proof. (1 ⇒ 2): Suppose V1 ./ V2 are given as in the definition. If γ is a
choice for V1 then by definition of ./ we have that its image contains some V2

in V2, and V2SW .
(2 ⇒ 1): Define V2 = {Im γ | γ ∈ Ch(V1)}.
(1 ⇔ 3) now follows by symmetry.
We have argued that Ent is a category by showing its equivalence with

SCFrU . However, this uses the impredicative, non-geometric constructions of
the frames, so we shall outline a direct proof that Ent is a category. From the
point of view of geometric mathematics this is not so vital. The categorical
structure (composition and so forth) of Ent is all geometric and so preserved
under inverse image functors. If the properties (associativity and so forth) are
known to hold in every topos, then it does not matter if they were proved by non-
geometric means using frames. On the other hand for predicative mathematics
the frames do not even exist as sets.

By definition we know that

U(R † S)W iff {U}(R;on; S){W}
where R and S are defined as in Proposition 24 and “;” is relational composition.
We now generalize this.

Proposition 30 Let R : X → Y and S : Y → Z be entailment morphisms.
Then

R † S = R;on; S

Proof. ⊇ is easy. For ⊆, we first prove by induction on W that if ∀W ∈
W. U(R;on; S){W} then U(R;on; S)W. The base case W = ∅ follows from

UR∅ on {∅}S∅.
For the induction step, suppose W = W ′ ∪ {W}. Using the induction hy-

pothesis, we can find V ′1, V ′2, V ′′1 and V ′′2 such that

URV ′1 on V ′2SW ′

URV ′′1 on V ′′2 S{W}
If we now define V1 = V ′1 ∪V ′′1 and V2 = {V ′ ∪V ′′ | V ′ ∈ V ′2, V ′′ ∈ V ′′2 }, then by
Proposition 23

URV1 on V2SW
Returning to the main result, suppose UR † SW. If U ∈ U then for every

W ∈ W we have {U}(R;on; S){W}, and so by the lemma {U}(R;on;S)W. Now
by the dual of the lemma (applying ◦) we can deduce that U(R;on;S)W.
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Proposition 31 Ent is a category; moreover, it is preframe enriched and has
involution.

Proof. The involution, ◦, has already been noted and in fact the duality it
provides will be used in the proof here.

From Propositions 20 and 21 we deduce that φU ≤ φV iff U(G;on)V, and the
unit laws follow from this.

For associativity,

(Q †R) † S = (Q †R);on; S = Q;on; R;on; S = Q;on; R † S = Q † (R † S).

For the preframe enrichment, each homset is a completely distributive lat-
tice under the set-theoretic operations. What we show is that cut composition
distributes over finite intersections and directed unions. In both cases, we need
only prove distributivity on the left — the other side follows by duality.

Suppose R : X → Y , Si : Y → Z and U(R†Si)W (i = 1, 2) with {U}RVi on
V ′iSi{W}. Taking V = V1 ∪ V2 and V ′ = {V ′

1 ∪ V ′
2 | V ′

i ∈ V ′i} and using
Proposition 23, we see

{U}RV on V ′(S1 ∩ S2){W}.

For the nullary case, showing U(R†(FY ×FZ))W for all U and W , use ∅ on {∅}.
Note that the argument does not extend to infinitary intersections.

Now suppose (Si)i∈I is a directed family of morphisms from Y to Z. Suppose
U(R†⋃iSi)W with {U}RV1onV2

⋃
iSi{W}. By directedness we can find i with

V2Si{W}, and then U(R†Si)W .

5.1 The cut calculus for products

If X1, ..., Xn are sets then Fr〈X1〉 ⊗ ... ⊗ Fr〈Xn〉 is a frame coproduct and
hence isomorphic to Fr〈X1 + ... + Xn〉 where + denotes disjoint union. Hence
a preframe homomorphism Fr〈Y1〉 ⊗ ... ⊗ Fr〈Ym〉 → Fr〈X1〉 ⊗ ... ⊗ Fr〈Xn〉 is
equivalent to an entailment morphism from X1 + ... + Xn to Y1 + ... + Ym, an
upper closed relation from F(X1 + ... + Xn) to F(Y1 + ... + Ym). But

F(X1 + ... + Xn) ∼= FX1 × ...×FXn

and so such an entailment morphism is equivalent to an upper closed m+n-ary
relation on FX1 × ... × FXn × FY1 × ... × FYm. Described in this way, there
is no distinction between the domain sets (“input ports”) Xi and the codomain
sets (“output ports”) Yj . Indeed, one can envisage a calculus of upper closed
relations that is neutral as between input and output and later (Section 7)
we shall see this in relation to the duality of stably locally compact locales.
Meanwhile in this Section we shall investigate how cut works across multiple
ports. We shall see cut composition generalized so that in many useful situations
it can be carried out “port by port” instead of having to be either on all the
input ports simultaneously or on all the output ports.
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Proposition 32 Let preframe homomorphisms fi : Fr〈Yi〉 → Fr〈Xi〉 corre-
spond to entailment morphisms Ri : Xi → Yi (i = 1, 2). Then

f1 ⊗ f2 : Fr〈Y1〉 ⊗ Fr〈Y2〉 → Fr〈X1〉 ⊗ Fr〈X2〉
corresponds to the entailment morphism R1 + R2 : X1 + X2 → Y1 + Y2 given by

U1 + U2(R1 + R2)V1 + V2 iff U1R1V1 or U2R2V2.

Proof. Since
∧

(U1 + U2) =
∧

U1 ×
∧

U2 and
∨

(V1 + V2) =
∨

V1 ¯
∨

V2, we
require

(R1 + R2)(U1 + U2, V1 + V2) ⇔
∧

U1 ×
∧

U2 ≤ f1(
∨

V1)¯ f2(
∨

V2).

Using the fact that each
∧

Ui is compact (i.e.
∧

Ui ¿
∧

Ui), we can apply
Lemma 1 to see that this holds iff

∧
U1 ≤ f1(

∨
V1) or

∧
U2 ≤ f2(

∨
V2), from

which we deduce the result.

Lemma 33 Let P : X1 → X2 and R : X2 + Y → Z be entailment morphisms.
Then (U1 + V )((P+ G) †R)W holds iff

∃U2 ./ U ′2 in FFX2 such that {U1}PU2 and ∀U ′
2 ∈ U ′2. (U ′

2 + V )RW .

Proof. ⇒: Suppose (U1 + V )((P+ G) † R)W . Then we have T and T ′ in
F(FX2×FY ) with the conditions for cut composition. For every U2 +V ′ in T
(U2 in FX2, V ′ in FY ) we have either U1PU2 or V G V ′, so we can decompose
T = T1 ∪ T2 such that for every U2 + V ′ in T1 we have U1PU2 and for every
U2 + V ′ in T2 we have V G V ′. If V = {V ′ | U2 + V ′ ∈ T2}, then it follows that
there is a choice δ of V whose image is included in V .

Let U2 = {U2 | U2 + V ′ in T1} and let U ′2 = {Im γ | γ ∈ Ch(U2)}. Suppose
γ ∈ Ch(U2). Then γ and δ together provide a choice of T , and it follows that
(Im γ + Im δ)RW and so (Im γ + V )RW as required.

⇐: Suppose we have U2 and U ′2 as stipulated. Let

T = {U2 + ∅ | U2 ∈ U2} ∪ {∅+ {v} | v ∈ V }.
Then for every U2 + V ′ in T we have either U1PU2 or V G V ′. Any choice of
T is got from a choice γ of U2 and the choice of every v ∈ V , so its image is
Im γ +V . Since Im γ includes some U ′

2 ∈ U ′2, we deduce that (Im γ +V )RW .
The Lemma tells how to simplify cut composition in certain circumstances,

applying it at one port at a time. In the Lemma, we can apply it at just X2.
Pictorially,

X1−− P
X2−−

−−
Y

G −−
Y

R
Z−−

(cutting X2 and Y together) is the same as

X1−− P
X2−− R

y
Y

Z−−

21



cutting just on X2.
Thus we ignore the Y port when we calculate the cut composition. This is

only natural, since the entailment morphism on that port is just the identity.
More generally, this observation allows us to calculate cut compositions in steps,
as follows. Suppose we have P : X1 → X2, Q : Y1 → Y2 and R : X2 + Y2 → Z,
and we desire to cut at X2 and Y2 together:

X1−− P
X2−−

−−
Y1

Q −−
Y2

R
Z−−

Then P +Q = (P+ G) † (G +Q) — this is obvious by considering composition of
preframe homomorphisms, or alternatively can be proved by elementary means
after applying the Lemma. We deduce that (P + Q) †R can be got by applying
cut composition of Q with R at Y2 (ignoring X2), and then cutting P with the
result at X2 (ignoring Y1). We can denote this by

P †X2 (Q †Y2 R).

Of course, we get the same result if we cut first at X2 and then at Y2.
We have considered only the situation where P and Q are separate. We

leave for further study the more general situation, e.g. with P : X → Y1 + Y2

and Q : Y1 + Y2 → Z.

5.2 Some spatial aspects of free frames

A point of the locale corresponding to Fr 〈X〉 is just a subset of X, in other words
an ideal of FX, and it follows that Fr 〈X〉 is the frame of the lower powerlocale
PLX ∼= SX (where S is the Sierpiński locale [Vic97]). To put it another way,
Fr 〈X〉 is the Scott topology on the powerset PX.

Idl(DL 〈X〉) ∼= Fr 〈X〉 ∼= Alex(FX) ∼= Scott(PX) ∼= ΩSX ∼= ΩPLX

(Alex is the Alexandrov topology, Scott the Scott topology.)

Definition 34 Define ./ as a relation on DL 〈X〉 by φ ./ ψ iff φ ≥ ψ̃ (cf.
Proposition 21).

As a predicate, a function from DL 〈X〉 × DL 〈X〉 to Ω, note that ./ is a
bimorphism with respect to ∧:

φ ./
∧

i

ψi ⇔ φ ≥
∨

i

ψ̃i ⇔ ∀i. φ ≥ ψ̃i ⇔ ∀i. φ ./ ψi

We can now extend ./ to a relation on Idl(DL 〈X〉) = Fr 〈X〉 by a ./ b iff
φ ./ ψ for some φ, ψ in DL 〈X〉 with φ ≤ a and ψ ≤ b. This then gives a a
preframe bimorphism ΩSX × ΩSX → Ω and hence a preframe homomorphism
./: Ω(SX×SX) ∼= ΩSX⊗ΩSX → Ω, ./ (a¯b) = true iff a ./ b. By the Hofmann-
Mislove-Johnstone theorem (see [Vic97]) this then corresponds to a compact
fitted sublocale K of SX × SX , namely the meet of all the open sublocales a¯ b
for which a on b.
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Proposition 35 The points of this sublocale are the pairs of subsets (A,B)
such that A ∪B = X.

Proof. Let F be the corresponding Scott open filter of Ω(SX ×SX). (A,B)
is in K iff it is in every u ∈ F , and it suffices to test for those u’s of the form∨

U ¯∨
V , for they give a preframe basis. Now

∨
U ./

∨
V iff

∨
U ≥ ∧

V , i.e.
iff U meets V . Hence (A, B) is in K iff for every U, V ∈ FX, if U meets V then
either U meets A or V meets B, and this holds iff A ∪ B = X. For if x ∈ X
then {x} meets itself, so x is in either A or B; while conversely if U meets V in
x then x is in either A or B and so either U meets A in x or V meets B in x.

Corollary 36 (Classically) {(A,B) | A ∪ B = X} is a compact subspace of
PX × PX.

Proof. Use the Hofmann-Mislove theorem.
We can also analyse the cut-composition in these terms. For an entailment

morphism R : X → Y is an Alexandrov open in FX × FY ∼= F(X + Y ), and
hence a Scott open in PX ×PY ∼= P(X + Y ).

Proposition 37 Suppose R : X → Y and S : Y → Z in Ent. Then (A,C) |=
R†S ⇔ ∀B1 ∪B2 = Y. ((A,B1) |= R ∨ (B2, C) |= S).

(Following [Vic89], we write x |= a when a point x satisfies an open a.)

Proof. ⇒: We can find A0 ∈ FA and C0 ∈ FC with A0(R†S)C0, and then
{A0}RV1 ./ V2S{C0}. If B1 ∪ B2 = Y then (B1, B2) |= φV1 ¯ φV2 , so either
V1 ⊆ B1 for some V1 ∈ V1, in which case (A,B1) |= R, or V2 ⊆ B2 for some
V2 ∈ V2, in which case (B2, C) |= S.

⇐: Let b1 be the inverse image of R along 〈A, Id〉 : PY → PX × PY and
let b2 be the inverse image of S along 〈Id, C〉 : PY → PY ×PZ. The condition
says that b1 ¯ b2 ∈ F , and so b1 and b2 have diagonal finite subsets V1 and V2.
If V1 ∈ V1 then V1 ∈ b1 ⇒ (A, V1) |= R. Hence A has a finite subset A0 such
that A0RV1 for every V1 ∈ V1. Similarly, C has a finite subset C0 such that
V2SC0 for every V2 ∈ V2. It follows that A0(R†S)C0 and so (A,C) |= R†S.

Now — at least classically — the unit and associativity laws are less sur-
prising.

6 Entailment systems

We now put together our results to gain a theory of information systems for
stably locally compact locales. We have seen that Ent is dual to FreeFrU , and
so Kar(Ent) is dual to Kar(FreeFrU ), which in turn is equivalent to SCFrU .
It follows that Kar(Ent) is equivalent to SLCLocU .

It is worth remarking that there is an analogous (and simpler) result for con-
tinuous dcpos. Let CtsDcpoL be the Kleisli category for the lower powerlocale
PL restricted to the continuous dcpos (in localic form). Then [Vic93] shows in
effect that CtsDcpoL is equivalent to Kar(Rel), where Rel is the category of
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sets and relations. That is because an idempotent in Rel is just a transitive,
interpolative relation, in other words what that paper calls an “infosys”. Again,
we see locales being got by splitting idempotents in a category of structures
with the nature of information systems.

Definition 38 An entailment system is an object of Kar(Ent), i.e. a set X
equipped with an idempotent endomorphism `: X → X in Ent.

We write Spec(X,`) for the corresponding stably locally compact locale, and
Ω(X,`) for its stably continuous frame of opens.

We should compare these with the coherent sequent calculi of [JKM99],
which are the same as the continuous sequent calculi of [Keg99]. Rather than
a simple set X, they use a structure equipped with operations ∧, ∨, > and ⊥
corresponding to the lattice operations (but with no laws assumed). However,
[Keg99] shows how relations on FX can be extended to relations on the finite
powerset of the term algebra generated by X and those operations. A more
significant difference is their assumption of interpolants as mentioned earlier.
With this, the idempotence ` = ` † ` (their Cut∗ rule) is equivalent to a
simpler rule Cut′:

S ` T ∪ {φ} {φ} ∪ U ` V

S ∪ U ` T ∪ V
.

The reliance on a single φ here needs the ability to form meets and joins of
tokens. But even when this is done freely, our lack of interpolants means that
Cut′ is not in general valid for our entailment systems.

Proposition 39 Let (X,`) be an entailment system and let j : Fr〈X〉 → Fr〈X〉
be the corresponding preframe endomorphism..

1. Opens of Spec(X,`) are equivalent to upper closed subsets a of FX that,
considered as entailment morphisms X → ∅, satisfy a = ` †a.

2. Treating elements of Fr〈X〉 and Ω(X,`) as entailment morphisms X → ∅,
jin(b) = b,

jout(a) = ` †a.

If V ∈ FX then the open jout(
∨

V ) corresponds to V̌ defined by UV̌ ∅ iff
U ` V .

3. The opens V̌ form a preframe basis. If a is an open then

a =
∨↑{∧V ∈V1

V̌ | V1 on V2 ⊆ a}.

Proof. 1. An open of Spec(X,`) is a continuous map from Spec(X,`) to
the Sierpiński locale S. Since S ∼= PU1 and 1 is the locale for the initial frame
Ω (free on no generators), an open of Spec(X,`) is equivalent to a morphism
(X,`) → (∅, ∅) of entailment systems.
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2. By considering all as upper closed subsets of FX, we are identifying each
b ∈ Ω(X,`) with its image jin(b) in Fr〈X〉. By Proposition 28, jout(a) = j(a) =
` †a. U is in the open jout(

∨
V ) iff

∧
U ≤ j(

∨
V ), i.e. iff U ` V .

3. Since the elements
∨

V form a preframe basis of Fr〈X〉, it follows that
the elements jout(

∨
V ) form a preframe basis of Fr〈X〉j . The join described is

directed, for if V1 on V2 ⊆ a and V ′1 on V ′2 ⊆ a then by taking V ′′1 = {V ∪ V ′ |
V ∈ V1, V

′ ∈ V ′1} and V ′′2 = V2 ∪ V ′2 we get an upper bound for
∧

V ∈V1
V̌ and∧

V ∈V′1 V̌ . Now
U ∈ ∧

V ∈V1
V̌ iff {U}`V1

and
V2 ⊆ a iff V2a∅,

so it follows that U is in the join described iff U(` †a)∅, i.e. iff Ua∅.
Proposition 40 Let a morphism R : (X,`) → (Y,`) of entailment systems
correspond to a preframe homomorphism f : Ω(Y,`) → Ω(X,`). Then

f(b) = R † b,

URV iff U ∈ f(V̌ ).

Proof.

f(b) = jout(R † jin(b)) = ` †R † b = R † b.

U ∈ f(V̌ ) ⇔ U(R † V̌ )∅ ⇔ U(R† `)V ⇔ URV .

Constructions on stably locally compact locales can now be carried out on
the entailment systems.

The product of entailment systems (X,`) and (Y,`) is (by Proposition 8)
(X,`)× (Y,`) = (X + Y,` + `), with

U1 + V1(` + `)U2 + V2 iff U1 ` U2 or V1 ` V2.

The projection map πX : (X,`)× (Y,`) → (X,`) is defined by

(U + W )πXV iff U ` V or W ` ∅
and similarly for Y . (Of course, it is not a categorical product in Kar(Ent)
since the morphisms correspond to the upper relations between locales, not the
continuous maps.) If A and B are the free frames on X and Y and j and k
are the corresponding quasinuclei, then what is required is (U + W )πXV iff∧

U ×∧
W ≤ ∨

V ¯∨∅. By Lemma 1 this happens iff
∧

U ≤ ∨
V or

∧
W ≤ ∨∅,

thus giving the result.
We now look at the points of Spec(X,`). More generally, amongst the upper

relations we determine the continuous maps.

Theorem 41 Let R : (X,`) → (Y,`) be a Karoubi morphism between two
entailment systems. Then the following are equivalent.
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1. The corresponding upper relation is a map.

2. R†∅ ⊆ `X †∅ and for all V1, V2 ∈ FY we have

R†(V̌1 ∪ V̌2) ⊆ `†(R†V̌1 ∪R†V̌2).

3. For every V ∈ FFY we have

R†
⋃

V ∈V
V̌ ⊆ `†

⋃

V ∈V
(R†V̌ ).

Proof. (2) comprises the nullary and binary versions of (3), so they are
equivalent. They say that R preserves finite joins of preframe basic opens V̌ ,
but from that we deduce that it preserves finite joins of arbitrary opens.

Corollary 42 A point of Spec(X,`) is an upper closed subset P of FX such
that P † ` = P (treating P as an entailment morphism from ∅ to Y ), P †∅ = ∅
and for all U1, U2 ∈ FX we have P †(Ǔ1 ∪ Ǔ2) ⊆ P †Ǔ1 ∪ P †Ǔ2.

Proof. Apply the previous Theorem, exchanging X and Y and taking Y =
∅.

Corollary 43 We can present Ω(X,`) as

Fr〈FX (qua poset under ⊆ ) | U =
∨↑{∧V | V on V ′`{U}}

(∅) ≤ false∧V ≤ (U1) ∨ (U2)

(V on V ′1 ∪ V ′2,V ′i`{Ui})〉.

Proof. What we are doing here is making explicit the fact that points (as
described before) are the models of a propositional geometric theory.

The condition P † ` = P says that U ∈ P iff there are V on V ′`{U} such
that {∅}PV, which says that the point satisfies

∧V.
The condition P †∅ = ∅ says that it is impossible to have {∅}PV on V ′∅{∅}.

But for this to happen we must have V ′ = ∅, so ∅ ∈ V, so it is asserting the
impossibility of ∅P∅.

The final condition P †(Ǔ1 ∪ Ǔ2) ⊆ P †Ǔ1 ∪ P †Ǔ2 must be reworked slightly
to get it into the form of the relation. We have ∅(P †(Ǔ1 ∪ Ǔ2))∅ iff we can find
V on V ′1∪V ′2 with V ′i`{Ui} and V ⊆ P (i.e. P is in

∧V). In these circumstances,
the relation asserts that ∅PUi for some i, either 1 or 2, and in the presence of
the first condition this is equivalent to ∅(P † `)Ui, i.e. ∅(P †Ǔi)∅.

6.1 Reflexive entailment relations

We say that an entailment endomorphism R is reflexive iff it includes G, i.e. it
satisfies reflexivity {x}R{x}.
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Proposition 44 A reflexive entailment endomorphism R is an entailment re-
lation (i.e. idempotent for †) iff it satisfies the cut rule

UR({v} ∪W ) (U ∪ {v})RW

URW
.

Proof. ⇒: Given the premisses, we have

{U}R({{u} | u ∈ U} ∪ {{v} ∪W})
on ({U ∪ {w} | w ∈ W} ∪ {U ∪ {v}})R{W}

so U(R †R)W .
⇐: R = R† G ⊆ R †R by reflexivity.
By induction on V , one can show that if (U ∪V )RW and ∀v ∈ V. UR({v}∪

W ) then URW . Next by induction on V one can show that if ∀V ∈ V . (U ∪
V )RW and ∀δ ∈ Ch(V). UR(Im δ ∪W ) then URW . This gives the result, for
if {U}RV1 on V2R{W} then we can take V = V2.

Reflexivity of an entailment relation is equivalent to the corresponding quasi-
nucleus being inflationary, hence a nucleus. Therefore we have a bijection be-
tween reflexive entailment relations on X and perfect (Scott continuous) nuclei
on Fr〈X〉. Now a nucleus j on a stably continuous frame is perfect iff jout pre-
serves ¿, so on a coherent frame (such as Fr〈X〉), j is perfect iff jout preserves
compactness. It follows that there is a bijection between reflexive entailment
relations and quotients of DL〈X〉. This has been proved by other means in
[CC].

7 Duality

We now turn to an application that illustrates the power of the entailment
calculus.

At the level of presentations, it is plain that there is a duality: if (X,`) is an
entailment system, then so is (X,a) where we write a for the relational converse
` ◦. Moreover, there is an equivalence between morphisms (X,`) × (Y,`) →
(Z,`) and morphisms (X,`) → (Y,a)× (Z,`). Each is a ternary relation R on
FX×FY ×FZ, in the first case subject to conditions (` + `) †R = R = R† `.
However, the remarks following Lemma 33 show that the left hand equation can
be split up as ` †XR = R = ` †Y R. But the Y part of this is equivalent to
R†Y a = R, so by similar reasoning we see that the conditions on R needed to
give a morphism (X,`)× (Y,`) → (Z,`) are the same as those needed to give
a morphism (X,`) → (Y,a)× (Z,`).

The aim of this Section is to show that these simple consequences of the cut
calculus are in fact independent of presentation and correspond to the known
duality of stably locally compact locales (or spaces) and the monoidal closure
of SCFrU .

In [BB88], [Joh82] there is seen a duality for stably continuous frames and
hence for stably locally compact locales. The classical analogue for topological
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spaces is that if X is stably locally compact then the dual space has the same
points but with the cocompact topology: the open sets are the complements
of the compact saturated subspaces in the original topology. Its specialization
order is opposite to the original. For locale theory, if A is a stably continuous
frame, then its Hofmann-Lawson dual Ã is the set of Scott open filters on A
(equivalently, the set of preframe homomorphisms A → Ω). We shall show
that this locale duality corresponds to the entailment system duality mentioned
above.

The monoidal category PreFr is monoidal closed, using the fact that if P
and Q are preframes then so is P t Q = PreFr(P, Q). We shall show that
SCFrU is closed under t, in fact with A t B ∼= Ã⊗B.

Suppose we have three entailment systems (X,`), (Y,`) and (Z,`) and a
morphism

R : (X,`) → (Y,`)× (Z,`).

R is a ternary relation on FX × FY × FZ. Suppose the corresponding stably
continuous frames are A, B and C. Then R gives a preframe homomorphism
B ⊗ C → A and hence C → B t A ∼= B̃ ⊗ A, which gives an entailment
morphism

S : (X,`)× (Y,a) → (Z,`).

It turns out that, as ternary relation on FX × FY × FZ, S is the same as R,
thus matching the equivalence described earlier.

Proposition 45 Let (X,`) be an entailment system. Then there is a preframe
isomorphism

Ω(X,a) ∼= PreFr(Ω(X,`),Ω).

Proof. An element of Ω(X,a) is an upper closed subset b of FX that,
considered as an entailment morphism X → ∅, satisfies b = a †b. But this
is equivalent to the condition b◦ = b◦† ` on the dual b◦ : ∅ → X. These
are equivalent to entailment system morphisms (∅, ∅) → (X,`), and hence to
preframe homomorphisms Ω(X,`) → Ω.

To be explicit, each element b of Ω(X,a) acts on Ω(X,`) by a 7→ b◦ † a.
It follows that if A is a stably continuous frame then so is Ã = A t Ω, and

˜̃
A ∼= A. In fact, the natural preframe homomorphism A → ˜̃

A is an isomorphism.

Proposition 46 Let R : (X,`) → (Y,`) be a morphism of entailment systems,
and let f : B → A be the corresponding preframe homomorphism. Then R◦ :
(Y,a) → (X,a) corresponds to f̃ : Ã → B̃.

Proof. An open of (X,a) is an entailment morphism c = a †c : X → ∅, and
R◦ takes it to R◦ † c. This acts as element of B̃ by

b 7→ (R◦ † c)◦ † b = c◦ †R † b

= c◦ † f(b) = f̃(c◦ † )(b).
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If A is a stably continuous frame, we write ev : Ã⊗A → Ω for the evaluation
morphism, defined by

ev(F ¯ a) = [a ∈ F ]

where we use the square brackets to denote the truth value.

Proposition 47 Let (X,`) be an entailment system with A = Ω(X,`). Then
ev : Ã ⊗ A → Ω corresponds to the morphism of entailment systems ε : ∅ →
(X,a)× (X,`) defined by

∅ε(U + V ) iff U ` V .

Proof. The preframe basics for Ã are (the duals of) the entailment mor-
phisms Û : (∅, ∅) → (X,`) defined by ∅ÛV iff U ` V . Then

true ≤ ev(Û ¯ V̌ ) ⇔ ∅(Û † V̌ )∅
⇔ U(` † `)V ⇔ U ` V .

If A = Ω(X,`), then let us write coev : Ω → A ⊗ Ã for the preframe
homomorphism corresponding to the morphism of entailment systems

δ : (X,`)× (X,a) → (∅, ∅)
defined by (U + V ) δ∅ iff U ` V .

(On the face of it, coev depends on the presentation (X,`) of A. However,
Proposition 48 will characterize it uniquely with respect to ev, whose definition
is not presentation dependent.)

Note that if A is the frame of a stably locally compact locale X then the
elements of Ã, the Scott open filters of ΩX, correspond by the Hofmann-Mislove-
Johnstone theorem (see [Vic97]) to the compact fitted sublocales of X. A filter
F corresponds to the meet

∧{a | a ∈ F} of the open sublocales for its elements.
Let us write KF for this compact fitted sublocale. Then a ∈ F ⇔ KF ≤ a,
and F ⊆ {a′ | a ¿ a′} ⇔ a ≤ KF , so G ¿ F iff an open sublocale can
be interpolated between KF and KG. Similarly, a ¿ b iff a compact fitted
sublocale can be interpolated between a and b. See [BB88] for more details.

Proposition 48 Let A be a stably continuous frame. Then the composite

(coev ⊗A); (A⊗ ev) : A ∼= Ω⊗A → A⊗ Ã⊗A → A⊗ Ω ∼= A

is the identity.

Proof. This is immediate by the cut calculus (see Lemma 33). The required
composition is (

X − `−X

> =X
X

)
†

(
X
X = >
X − `−X

)

and this is equal to ` † ` † ` † ` = `.
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Proposition 49 Let A be a stably continuous frame. Then the functor (−⊗A) :
PreFr → PreFr is left adjoint to (−⊗ Ã).

Proof. The unit and counit of the adjunction are given by

∼=; (P ⊗ coev) : P ∼= P ⊗ Ω → P ⊗A⊗ Ã

and
(Q⊗ ev);∼= : Q⊗ Ã⊗A → Q⊗ Ω ∼= Q.

The diagonal identities are provided by Proposition 48.

Theorem 50 SCFrU is monoidal closed.

Proof. Proposition 49 shows that if A is a stably continuous frame then for
any preframe C the preframe hom A t C is isomorphic to C ⊗ Ã, and so if C
is also a stably continuous frame then so is A t C.

The evaluation morphism is

(C ⊗ ev);∼= : C ⊗ Ã⊗A → C ⊗ Ω ∼= C.

Given α : B ⊗A → C, the corresponding morphism B → C ⊗ Ã is

∼=; (B ⊗ coev); (Ã⊗ α) : B ∼= B ⊗ Ω → B ⊗ Ã⊗A → C ⊗ Ã.

On locales, we denote the duality by ◦: so upper relations X × Y → Z are
equivalent to upper relations X → Z × Y ◦.

We now look at how the entailment calculus represents the duality transpose
of Proposition 49. Suppose stably continuous frames A, B and C are presented
by entailment systems (X,`), (Y,`) and (Z,`), and a preframe homomorphism
θ from B to A t C ∼= C ⊗ Ã corresponds to a morphism of entailment systems

P : (Z,`)× (X,a) → (Y,`).

This is a ternary relation P on FZ ×FX ×FY such that P †Y `Y = P and

(`Z + aX) †Z+X P = P .

But by the cut calculus this second condition can be simplified to

`Z †ZP = P

and
aX †XP = P .

Now it is clear that so far as the entailment morphisms go, this final condition
can equally well be expressed as P †X (aX)◦ = P — the cut composition is
quite symmetric in its definition, and we just have to be clear about which end
of ` is being composed. Hence such a ternary relation P is also equivalent
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to a morphism from (X,`) to (Z,`) × (Y,a). This equivalence matches the
transpose of Proposition 49, for pictorially the calculation in Theorem 50, to
give (θ ⊗A); (C ⊗ ev), is

(
Z − `−Z

> =X
X

)
†

(
Z
X = P −Y

X − `−X

)
.

Cutting separately on the X and Z ports we see that this is the same ternary
relation P again.

8 Powerlocales

In this Section we show how the upper and lower powerlocales may be con-
structed on entailment systems. (In the reflexive case, [CC] already give an
account for the Vietoris powerlocale, which subsumes the upper and lower.)

Recall that if X is a locale then its upper and lower powerlocales PUX and
PLX are defined by

ΩPUX = Fr〈ΩX (qua preframe)〉
= Fr〈¤a (a ∈ ΩX) | ¤ preserves finite meets, directed joins〉,

ΩPLX = Fr〈ΩX (qua suplattice)〉
= Fr〈♦a (a ∈ ΩX) | ♦ preserves all joins〉.

8.1 The upper powerlocale

We first show that PU extends to a functor on SLCLocU , in other words it is
functorial on upper relations. Suppose f : ΩY → ΩX is a preframe homomor-
phism. Then f ; ¤ : ΩY → ΩPUX is a preframe homomorphism and so extends
to a frame homomorphism f : ΩPUY → ΩPUX, defined by f(¤a) = ¤f(a).

ΩY
¤−→ ΩPUY

f ↓ ↓ f
ΩX −→

¤
ΩPUX

This is functorial.
Let us write F for the corresponding endofunctor of SCFrU , F (f) = f .
Now suppose we have an entailment system (X,`) corresponding to an idem-

potent preframe endomorphism j on Fr〈X〉. Since the corresponding stably
continuous frame A splits j, we see that F (A) splits the endomorphism F (j) on
F (Fr〈X〉). Now

Fr〈X〉 ∼= Fr〈FX (qua ∪ = ∨-semilattice)〉
∼= PreFr〈FX (qua poset under ⊆ )〉

so
F (Fr〈X〉) ∼= Fr〈FX (qua poset under ⊆ )〉.
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with V on the right corresponding to ¤(
∨

V ).
This frame is plainly a quotient of Fr〈FX〉 by a frame homomorphism q∗,

and so we get F (A), the frame for the upper powerlocale on Spec(X,`), by
splitting

Fr〈FX〉 q∗−→ Fr〈FX (qua poset under ⊆ )〉
↓ F (j)

Fr〈FX〉 ←−
q∗

Fr〈FX (qua poset under ⊆ )〉

q∗ is the frame homomorphism defined by U 7→ U .
q∗ is its right adjoint, which we shall show to be a preframe homomorphism.

We have

Fr〈FX (qua poset under ⊆ )〉 ∼= Fr〈FFX/ vL (qua ∪ = ∨-semilattice)〉
∼= PreFr〈FFX/ vL (qua poset)〉

where U vL V iff for every U ∈ U there is some V ∈ V with U ⊆ V . We can
define a preframe homomorphism

q∗ : PreFr〈FFX/ vL (qua poset)〉 → Fr〈FX〉
q∗(U) =

∨↑{∨V | V vL U}.

We have q∗; q∗ = Id, for

U 7→
∨↑{∨V | V vL U} 7→

∨↑{V | V vL U} = U .

For q∗; q∗ ≥ Id, we must check it on the preframe basic elements
∨U :

∨U 7→ U 7→
∨↑{∨V | V vL U} ≥

∨U .

Hence the preframe homomorphism q∗ is the right adjoint of q∗.
We now turn to calculating the entailment system (FX,`U ) that corre-

sponds to q∗; F (j); q∗. By Proposition 24 we have

U `U V iff
∧U ≤ q∗ ◦ F (j) ◦ q∗(

∨V),

This right hand condition is equivalent to q∗(
∧U) ≤ F (j) ◦ q∗(

∨V), which in
turn is equivalent to ∧U ≤

∨
V ∈V

F (j) ◦ q∗(V ). (*)

The points of the locale for Fr〈FX (qua poset under ⊆)〉 are the upper
closed subsets of FX. Consider in particular the point ↑ U , the upper closure
of U . It is in

∧U , and hence also in any open a ≥ ∧U . Conversely, we show
that if ↑ U is in a then

∧U ≤ a. It suffices to show this for a subbasic open
V ∈ FX. The point ↑ U is in this open iff V ⊇ U for some U ∈ U , and in this
case we see

∧U ≤ U ≤ V . It follows that (*) holds iff
∧U ≤ F (j) ◦ q∗(V ) for

some V ∈ V.
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In terms of the generators using ¤, we have F (j) ◦ q∗(V ) = F (j)(¤
∨

V ) =
¤(j(

∨
V )). But ¤ is right adjoint to Ω ↑, where ↑ is the unit of the monad PU ,

and so our condition reduces to Ω↑ (
∧U) ≤ j(

∨
V ), i.e.

∧

U∈U

∨
U ≤ j(

∨
V ).

Applying the distributivity law on the left, this reduces to finding some U ′ on U
with U ′`{V }.

We have now proved —

Theorem 51 Let (X,`) be an entailment system. Then PU (Spec(X,`)) is
presented by an entailment system (FX,`U ), where

U `U V iff ∃U ′, ∃V ∈ V. U on U ′`{V }.

8.2 The lower powerlocale

We now turn to the lower powerlocale. The upper powerlocale is intimately
bound up with preframe homomorphisms and hence with the whole machinery
of entailment systems, so it is remarkable that the lower is calculated by a
similar approach to that used for the upper. In fact, it is dual: for a stably
locally compact locale X, we have PLX ∼= (PUX◦)◦. (This is already known
classically for stably locally compact spaces, and has been presented for instance
by Julian Webster. We have not however found a published reference.) In our
constructive localic setting it is obvious once the entailment system machinery
is in place.

We first show that PL extends to a functor on SLCLocU , in other words it
is functorial on upper relations. Suppose f : ΩY → ΩX is a preframe homo-
morphism. By [VT03] (using a similar technique to that used for the preframe
coverage theorem in [JV91]) we have

ΩPLY = Fr〈ΩY (qua suplattice)〉
∼= PreFr〈ΩY (qua dcpo)〉.

Then f ;♦ : ΩY → ΩPLX is a dcpo morphism and so extends to a preframe
homomorphism f : ΩPLY → ΩPLX, defined by f(♦a) = ♦f(a).

ΩY
♦−→ ΩPLY

f ↓ ↓ f
ΩX −→

♦
ΩPLX

This is functorial.
Let us write G for the corresponding endofunctor of SCFrU , G(f) = f .
If, with the notation of Subsection 8.1, we have (X,`), j and A splitting j,

then G(A) splits G(j). Now

Fr〈X〉 ∼= Fr〈FX (qua ∪ = ∧-semilattice)〉
∼= SupLat〈FX (qua poset under ⊇ )〉
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so
G(Fr〈X〉) ∼= Fr〈FX (qua poset under ⊇ )〉.

with V on the right corresponding to ♦(
∧

V ).
Hence we get G(A), the frame for the lower powerlocale, by splitting

Fr〈FX〉 q∗−→ Fr〈FX (qua poset under ⊇ )〉
↓ G(j)

Fr〈FX〉 ←−
q∗

Fr〈FX (qua poset under ⊇ )〉

q∗ is the frame homomorphism defined by U 7→ U . Again we can calculate
its right adjoint q∗ as a preframe homomorphism. We have

Fr〈FX (qua poset under ⊇ )〉 ∼= Fr〈FFX/ vL (qua ∪ = ∨-semilattice)〉
∼= PreFr〈FFX/ vL (qua poset)〉

where this time U vL V iff for every U ∈ U there is some V ∈ V with U ⊇ V
(instead of U ⊆ V ). We can define a preframe homomorphism

q∗ : PreFr〈FFX/ vL (qua poset)〉 → Fr〈FX〉
q∗(U) =

∨↑{∨V | V vL U}.

and much as before q∗ is right adjoint to q∗.
We now turn to calculating the entailment system (FX,`L) that corresponds

to q∗;G(j); q∗. We find

U `L V iff
∧U ≤ G(j)(

∨V).

In terms of the generators with ♦,

G(j)(
∨V) = G(j)(

∨

V ∈V
♦(

∧
V ))

= G(j)(♦(
∨

V ∈V

∧
V ))

= ♦(j(
∨

V ∈V

∧
V ))

The points of the locale for Fr〈FX (qua poset under ⊇)〉 are the lower closed
subsets of FX. Consider in particular the point ↓ U , the lower closure of U .
It is in the open

∧U , and hence also in any open b ≥ ∧U . Now every open
a ∈ Fr〈X〉 is a join of elements

∧
W , and so every ♦a is (considered as an

element of Fr〈FX (qua poset under ⊇)〉) a join of elements W . In particular,
if

∧U ≤ ♦a =
∨

iWi then ↓ U is in some Wi, i.e. Wi ⊆ some U ∈ U and so
U ≤ Wi. Hence, if

∧U ≤ ♦a then U ≤ ♦a for some U ∈ U . Applying Ω ↓,
where ↓ is the unit of the lower powerlocale monad, we get

∧
U ≤ a. Conversely,

if
∧

U ≤ a then by applying ♦ we get U ≤ ♦a and so
∧U ≤ ♦a.
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We can now deduce that

U `L V iff ∃U ∈ U .
∧

U ≤ j(
∨

V ∈V

∧
V ).

Applying the distributivity law on the right, this reduces to finding some V ′ on V
with {U}`V ′.

We have now proved —

Theorem 52 Let (X,`) be an entailment system. Then PL(Spec(X,`)) is
presented by an entailment system (FX,`L), where

U `L V iff ∃U ∈ U , ∃V ′. {U}`V ′ on V.

Combining this with the corresponding result for the upper powerlocale, and
using the fact that duality is got by reversing entailment relations, we have —

Theorem 53 Let X be a stably locally compact locale. Then

PLX ∼= (PUX◦)◦.

9 Conclusions

We have shown how stably locally compact locales can be captured by predica-
tive geometric structure akin to information systems in a generalized way. The
proofs are constructive, using choice free principles based on validity in toposes:
in particular, we do not rely on the classical spatiality results for stably locally
compact locales.

The work generalizes the reflexive sequent calculus used in [CC] to deal
with distributive lattices. It develops the multilingual sequent calculus MLS
of [Keg99] and [JKM99], using its cut composition and again bringing out the
logical flavour, but working in a very bare syntax that does without explicit
connectives for conjunction and disjunction.

Comparing our approach with MLS, there seem to be two main differences
of mathematical substance. The first is the role of inductive generation. Our
tokens are generators for the MLS tokens, which are formed as expressions us-
ing meet and join. This in itself is not a big difference, since the MLS papers
also discuss the use of generating sets of tokens, with entailment generated by
proof rules. However, a difference arises in the approach to constructions such
as product, powerdomains and so on. MLS shows how to make generators
for the new constructed system out of general tokens (with meets and joins)
for the old systems. Thus when constructions are composed there has to be
a step of generating general tokens. By contrast in our approach new gener-
ators and entailment relations are defined directly out of old generators and
entailment relations. This requires more work, but gives completer information
and in particular we believe it can provide decidability proofs for the inductive
construction in MLS. The other main difference is the assumption in MLS of
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interpolants, allowing them to use Gentzen’s cut rule. It remains to be seen
whether our axiomatic economy compensates for the greater difficulty in work-
ing entirely without Gentzen’s cut rule, but we have already seen how use of
the cut calculus wraps up quite complicated applications of the distributive law.
Duality of stably locally compact locales comes out in a particularly simple way
from the symmetry of the syntax.

One question we have not yet been able to answer is that of how to construct
the patch locale in terms of entailment systems. (Moshier has announced a
simple construction for it in MLS.) If X is a stably locally compact locale, then
its patch locale Patch(X) has been described in [BB88]. More conveniently,
[Esc01] shows that the opens of Patch(X) are in bijection with the perfect
nuclei on ΩX. Following what happens with the reflexive (distributive lattice)
case, where one is constructing the free Boolean algebra, one might conjecture
that the patch for an entailment system (X,`) can be described as follows —
in fact this is the basis of Moshier’s construction. Let Y = X ∪ {x | x ∈ X}.
Then FY ∼= FX × FX and we shall write the finite subsets of Y in the form
U + V , meaning U ∪ {v | v ∈ V }. Thinking of v as a Boolean negation ¬v, one
might attempt to define:

U1 + V1 ` U2 + V2 iff U1 ∪ V2 ` U2 ∪ V1.

However, this does not in general define an entailment relation, as can be seen
from Example 5. One can calculate that the corresponding entailment system
for X = {a, b}, U ` V iff

∧
U ≤ j(

∨
V ), can be completely listed as

∅ ` {a, b} {a} ` {a, b} {b} ` {a, b} {a, b} ` {a, b}
{a} ` {a} {a, b} ` {a}
{a} ` {b} {a, b} ` {b}

Now consider the attempted entailment on X + X. This is not an entailment
relation, for we have

∅ ` {a, a} {a} ` {b} {a} ` {b}
and hence ∅(` † `){b}. However, we do not have ∅ ` {b}.
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