TOWARDS A GeoZ TOOLKIT

MARK DAWSON and STEVEN VICKERS
Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, United Kingdom
E-mail: {md,sjv}@doc.ic.ac.uk

ABSTRACT

The use of Geometric Logic as the foundation of a specification language called
GeoZ is proposed elsewhere [4]. In this note we explore GeoZ from the perspective
of practitioners, who are familiar with the existing Z notation, by explaining
the issues that arise and the essential role of schema entailment in the GeoZ
reformulation of Z’s mathematical toolkit.

1 Introduction

In a companion paper [4], geometric logic is proposed as a logic suited to spec-
ification. Various aspects of this are described, including a notion of “schema
entailment” that asserts unique (up to isomorphism) existence and hence can
be used for definitions.

The aim of this paper is to show how such schema entailments can be used
in describing a mathematical toolkit similar to that in Z [3]. The purpose of
the toolkit is to provide an interface between mathematical “experts”, who can
prove unique existence and thereby establish the validity of schema entailments,
and practising “engineers” who use the entailments in building up their specifi-
cations. Fach schema entailment is therefore intended, like a good theorem, to
package up some difficult mathematics in a useful and usable form.

It is hoped also that expert-verified schema entailments can provide the
basis for extending software support tools, geometric logic environments, re-
gardless of whether the verification has been carried out formally within the
logic environment or not.

In GeoZ “schema’” is a presentation of a (geometric) theory. As such it
contains three kinds of definition:

1. A declaration of sorts (X,Y,7).



2. The names and sorts of predicates, functions, propositions, and constants
(P, f, ¢) appearing in the schema. Together with variables and the logical
connectives, these are used to form formulas in the usual way.

3. A collection of axioms (¢ =>x ). These are entailments between the
geometric formulas ¢ and .

A schema is presented with a typographic layout® that should be familiar to
readers acquainted with the Z notation —

— Name[X, Y, 7]
P:PX
f:X—=Y
c: X

¢ — X 77Z)

The “Name” is optional and is omissible in many contexts. It gives a global
name by which to refer to the schema.

Although this is described in detail in [4] we should remind ourselves that
geometric logic is based on a positive, observational account of meaning which
restricts its formulas to: (finite) conjunctions, (infinite) disjunctions, existential
quantification and equality. Despite being prohibited from formulas, universal
quantification, implication, negation and infinite conjunctions are can be found
in the axioms of a theory in the following sense —

O =px ¥ implication (= ); universal quantification (z : X)
¢ = false negation (- ¢ =45 ¢ = false)
Gy = Uy axiom schemas — infinite conjunctions

The language of a schema consists of an assignment of arities to the symbols
in the presentation. At this level, and not elsewhere, function space (—) and
powerset (P) operations are admissible and allow us to introduce functions and
predicates —

f: X—>Y
P:PX

The sorts X and Y must be geometric — in fact any geometric formula gives
rise to a subsort through a formula-as-types principle and we take advantage of
this in the toolkit.

IThe syntax of many of the constructions presented in this paper is fluid — we are still
experimenting and it is likely to evolve, and perhaps improve, as syntactic issues become
clearer.



Schema Entaiment

Of course there are many ways of presenting essentially the same theory and it
is useful to be able to state when two schemas present the same theory. The
schema entailment allows us to do this in GeoZ —

— [Lsom‘s] _ | — [RSOTtS]
Llanguage Rlanguage
Laxioms Raacioms

The schema “L” on the lefthand side of the entailment () is used as the
basis of a superschema “L+ R” which contains the additional material presented
in the schema “R”. Clearly the combination of L with R will not make sense
in general — indeed it need not be consistent. However, when R definitionally
extends I a model of L will also be a model of I + R and there will be an
essentially unique way of interpreting the additional material provided by R
in L — for further details of schema entailment see [4]. This means that a
schema entailment is a powerful definitional tool because it asserts that R can
be uniquely defined in terms of L — often in rather subtle ways.

The GeoZ Toolkit

It is intended that (software) engineers who write specifications in GeoZ will be
able to consult a library (or toolkit) of mathematical contructions, methods and
notations each of which has been expressed as an appropriate schema extension
and whose validity has been established by an “expert”. The purpose of this
paper is to examine the issues that an engineer, and to a lesser extent an expert,
has to face when using (and extending) the toolkit.

2 Generic Constructions

The Z notation has a notion of parameterised construction (the generic schema)
which allows families of concepts to be captured in a single definition [3], p. 38.
Schema entailments provide this function in GeoZ.

The definition of Cartesian products provides a suitable starting point. In
the GeoZ toolkit products are expressed by definitional extension of the theory
containing two sorts X and Y.



_[Z]=X x Y]]
74— X
74— Y

P 4 E— =
’_ true :>x:X; y:Y
dz:Zemz=xANmyz =1y
m1(z) = m(2") A ma(z) = m2(2")
=7 Z = 2!

Notice that the extension introduces some new syntax: the projection func-
tions 71 and 75 and, more importantly, a derived sort Z that we have chosen
to call “X x Y7”. These ingredients are governed by the two axioms in the
“predicate” part. The syntactic name “X x Y7 for Z allows us to refer to the
construction so that when we write “X x Y7 or “4 x B” we implicitly include
an appropriate instance of the construction in the context in which the reference
is made. We can always do this safely (the two sorts must be present for us to
write down the name) because the effect of the new material is definitional.

The first axiom states that given a pair  of X and y of Y of observations
we can observe some z of Z from which it is possible to extract both x and .
Which is the expected observational content of an element of the product. The
second axiom expresses equality of objects in Z in terms of their constituents.

Before the schema entailment can be used by engineers an expert must show
that there is an essentially unique way in which the extension schema can be
interpreted in a model of the premiss schema. In this case suppose that there
was some other extension having the same presentation but renamed —

_[Z7[=X x'Y]]
/4 — X
w4 =Y

X,y I_
’_[ ’ ] true Xy Y

dz:Zermiz=0A7hz=1y

mi(2) = m(2) A ma(z) = m5(2)

iz,z’:Z’ z =2z

then both the derived sorts, Z and Z’, must be isomorphic. Define a relation
between the two sorts _=_: P(Z x Z') as —

==z 0 FJr: X e(m(z)=2 A7) =2x)
ANJy: Y e(m(z)=yArL()=y)



The expert must show —

Vz:Ze3d2 1/ ez=7

. [T A ! — — [ —
Vz:Z oNz,z0: 7" 02=2Nz=2z— 2 = 2

Once we have introduced the derived sort of products we are able to use it
to make additional definitions of notation —

X, v, 7 —

[ 7 X I— hi={(f,9)]: 7 —XxY
g:Z—Y true =>,.z m1(h(2)) = f(2)
true =>,.7 ma(h(2)) = g(2)

Here h is introduced as a definitional extension of the premiss schema con-
taining two functions f and ¢ of the specified types. Notice that we have given
h the name “(f, g)” which refers to f and g. When this syntax is used in a
schema some additional type checking must be performed to ensure that the
types X, Y and Z are assigned correctly. To show that the extension is unique
suppose there is some other h’ satisfying the axioms, then from the axioms we
have —

true =>..z 11 (h(2)) = f(2) = m(h'(2)) A ma(h(2)) = g(2) = ma(h'(2))
Which, by the second axiom of products, gives us what we require —
true =>,.7 h(z) = h'(2)

Another example is pair formation —

XY —
C[L:X] — c[=(a,b)]: X xY
b:Y true =,.z m1(¢) = a
true =>,.7 ma(c) = b

This supposes that a and b exist as objects of the sorts X and Y respectively
and introduces a notation “(a,b)” for ¢. Again this schema entailment encap-
sulates the preconditions needed in the premiss schema before the construction
can be used. In this case a simple form of type checking is involved, but as we
will see, when axioms are present other “proof obligations” must be discharged.



3 Decidability and Complementation

As we said in the introduction neither inequality (#) nor negation (— ) are built-
in to geometric logic at the level of formulas. However, there are places both in
the toolkit and in actual specifications where these properties are needed. The
solution is straightforward: when we need to use inequality we must to have a
decidable sort by which we mean —

— Decidable[ X ]
_#F X=X

T # r =>,.x false
true =, ,.x t=yVaFy

Once we have this we can define, for example, non-membership on finite sets
of a sort X —

N . ¢ —
Decidable[ X] I_ _¢_ X —FX

€ S<=,x.57x VyeSear #y

The schema inclusion “Decidable[ X]” is a precondition for the applicability
of the entailment — the operator “¢” cannot be used if the sort X doesn’t satisfy
“Decidable[ X]”.

In a similar way when we need to know the complement of a predicate P on
a sort X we can write —

— Complements| X]
PP PX

P(x) A P'(2) =>,.x false
true =r,.x P(z) vV P'(z)

An example is the definition of the difference of two relations R and S on
X which requires the complement S’ of S —

X -
S8 P:PX — R\S:PX

Complements[ X, S, 5] (R\ S)(z)<=,.xR(z) A S'(2)




4 Characterising the Natural Numbers

We give an approach to the definition of the natural numbers (N) in this section,
somewhat along the lines of the definition of ' X in [4]. This illustrates a general
technique of definition which can be applied to other toolkit types.

Let us call an induction algebra a set equipped with a constant and a unary
operator. The N is the initial induction algebra, with constant 0 and unary op-
eration s, the successor opertion. We can specify it using infinitary disjunctions
as in the following schema entailment. The premiss is the empty theory, which
means that N comes from the world of pure abstract mathematics.

I_ 0 =s(x) =,z false

s(z) = s(y) =>wpz e =y

true =,z Voo 321, ..., 2, ®
T=a, Nag=0A

/\?:1 T, = S($i—1)

]

The extension introduces the necessary language and then defines how terms
are constructed with an infinite disjunction of the possibilities. It also gives
equations which define equality among the terms of the type. In this case we
need to state that 0 is not the successor of any number and that two numbers
are equal when they are the successors of equal numbers.

The freeness property, after which we do not need to know the infinitary
axioms given above, is as follows:

_if;]x— — | fl=ite(ta)]:N— X
t: X = X true = f(0) =
true =>,.y f(s(n)) = t(f(n))

The function “iter” maps n +— " (o).

Actually, it’s well-known that N cannot be characterized up to isomorphism
by axioms of first-order logic, but the trick here is the infinitary disjunction.
Of course, it looks rather like cheating — in defining N we have presupposed its
existence in the set of disjuncts. Really, the schema entailments used here to



characterize N are postulating its existence rather than provably asserting it,
but once we have it then the existence of other free algebras can be proved.

However, these mathematical soul-searchings of the experts can be ignored
by the practising engineers. What the schema entailment assures them is that
when they write down a recursive definition such as

then it really does define a function.

Mathematical Induction

Mathematical induction principles can also be expressed using schema entail-
ments. Here is simple induction:

P:PN -
true = P(0) true =,.y P(n)
P(n) =, P(s(n))

Similarly one can describe course of values induction, using the induction
step Vm € [0...n) @ P(m) =, P(n), once [0..._) : N — FN has been
defined so that [0...n) = {m : N e 0 < m < n}. Here is a somewhat more
unusual induction principle that appears to be a geometric form of well-founded
induction:

P:PN

¢ :P(N x N) -
dlm,n) =, anm<n true =,.y P(n)
true =,y P(n) V. 3m : N e ¢(m,n)
P(m) A ¢(m,n) = p nn P(n)

Proof < is well-founded, so we can use well-founded induction. We prove
P(n) under the induction hypothesis Vm : N o (m < n = P(m)). By the
second axiom, either we have P(n) already, or there is some m with ¢(m,n)
and hence m < n. Hence by induction P(m) and so P(n) by the third axiom. O



The same argument applies for other well-founded orders, such as “lexico-
graphic order” on N x N — (mq, mz) < (ng, nz) iff my < ny or my = n and
my < ny. It seems that constructively it is a weaker principle than that of
well-founded induction, but nonetheless it suffices in practical examples. (Clas-
sically, they are equivalent. For suppose < is a relation on a set X, satistying
the above induction principle. Let S C X, and define P(x) to mean either
x ¢ S or there is a descending chain z, > ... > 19, all in 5, with z = 2, and
1o minimal (with respect to <) in S. Define ¢(z,y) to mean that # < y and «
and y are both in S. Given «,if = Jy: X o ¢(y, ) then either z ¢ S or « is
minimal in S, and either way we have P(z). If P(y) and é(y, z) then y € S so
we have a descending chain y = y, > ... > 1y all in S, with yy minimal in 5,
and x € S, so there is a similar chain « > y, > ... from x, so P(z). It follows
from the induction principle that Vo : X e P(z). If S is non-empty then choose
x € S. P(x), so we have # = 2, > ... > 19 with 29 minimal in 5. It follows
that every non-empty subset S has a minimal element, and this condition is
equivalent to well-foundedness of <.)

5 Finite Sets

The flexibility with which one can handle sets in classical mathematics (and
in Z) is severely constrained in geometric logic — it is restricted to finite sets.
Only finite sets can be elements of types — this is enforced by the fact that
whereas F X is a type, P X is only an arity — or universally quantified over,
and observationally, only finite sets can be successfully apprehended. The GeoZ
toolkit has much to say about finite sets because it is only with them that we
have the flexibility that Z attributes to all sets, and in this paper we shall only
be able to scratch the surface.

Let us first remark that even for finite sets, the geometric logic causes some
odd phenomena, generally connected with decidability issues. Most notoriously,
a subset of a finite set need not be finite. Specifically, consider a finite set S : F X
and a predicate P : P X. You might expect there to be a finite set corresponding
to {z € S e P(2)}, but to apprehend that subset by knowing all its elements
we have to know not only which elements of S satisty P, and hence are in the
subset, but also which do not satisfy P and so are to be excluded. This can
usually only be done if P has a complement. Similarly, the intersection of two
finite sets need not be a finite set. This is because, unlike the operation of union
which can combine two sets without concern for what they contain (repetitions
don’t matter), the operation of intersection must compare the elements of the
two sets to decide which are in common and belong in the intersection and

ZConstructively, there are more than one notion of finite sets. The ones we refer to here
are the Kuratowski finite sets.



which are not and should be excluded. The result of this process is a finite set
when the underlying sort has a decidable equality.

The finite powerset F X was defined in [4]; let us from that derive some
schema entailments that illustrate well the distinction between expert mode
and engineer mode. First, we give a Principle of Simple F-induction.

—[X]
P:PFX [
true = P(9) true = g ¢ P(S)
P(S) = :X; SFX P({$} U S)

Proof Let U={TcFXeVScFX e (P(S)— P(TUS))}. Thisis a
submonoid of ' X', and the second axiom tells us that it contains the generators
{2} and hence is the whole of F X. But from P(@) we now deduce that P(5)
for all S. 4

Next, we give a means for defining functions on F X by recursion:

X, Y]
Yo: Y
f:AXxY =Y I—

h:FX —Y

true = h(@) = yo
true =;.x, 4
z:X; Y true —rX;SFX

S, (2, y) = [(2,y) h({z}US)
true :>x,x’:X;y:Y :f($,h(5))

JGa, [ y)) = (@' f (e, y))

Proof Let X, Y, yo and f be a model for the premiss schema. Our models
are allowed to be in any G-frames, and these are elementary toposes. This
allows us to use the full strength of intuitionistic logic, including higher-order
types and the subobject classifier. We shall use ¥V, which is a monoid under
composition. First, we show that the premiss entails the extension

g:FX XY =Y

true =>,.y 9(,y) =y

true .Y, S, TFX
g(SUT,y)=g(S

true =-u.x; v 9({},

9(T,y))
y) = f(z,y)




It ¢ can be found satisfying the given axioms, then its curried form cur g :
FX — Y is a monoid homomorphism and so is determined uniquely by its
action on the generators {z}; and the axioms define this by cur g({z})(y) =
f(z,y). Hence we just need to prove existence.

f curries to give a function cur f : X — YY. Let M be the submonoid
generated by the image X’ of cur f. The first axiom tells us that the generators
cur f(x) commute, and we deduce from that that M is commutative. For let
C be the centralizer in YV of X', i.e. the set of functions f that commute with
all the elements of X’. (' is a submonoid of ¥ ¥ that contains X', and hence
contains M — all elements of M commute with all elements of X’. Now let C’
be the centralizer in YV of M, a submonoid of ¥V that contains X’ and hence
M. Hence M is commutative. Now let M’ the set of idempotents in M, those
elements ¢ such that ¢ o ¢ = ¢. Given that M is commutative, it follows that
M’ is a submonoid, and it contains X’. Hence M’ = M, so M is a semilattice.
It follows that there is a unique monoid homomorphism [’ : FX — M such
that f'({x}) = cur f(z). g is defined by ¢(S,y) = f'(5)(y).

Now we define h(S) = ¢(5, ), and uniqueness follows by F-induction. O

The justification for this schema entailment was somewhat tricky and is
done in expert mode. But once proved, it gives what is in effect a programming
construct in engineer’s mode: functions h : F X — Y can be defined recursively
in the form

h(()) = Y
h({x} U S) = f(a,h(S))

provided that two proof obligations are met,

f(‘va(‘T/v y)) :f($/7f($7 y))
f(‘%f(‘% y)) :f($7 y)

The recursive style is similar to that of [2], where functions like h are defined
using a non-deterministic “choose” function that chooses an element of a set:
something like

h(S) = w, if $=0
= f(x,h(remove(x,S))), otherwise

where @ = choose(S)

However, our proof obligations remove the non-determinism.

Such principles of recursion and induction are powerful tools for handling
finite sets. As an illustration, consider the (classically obvious) fact that if S
is finite then so is F'S. Observationally, if S = {,...,2,}, then the elements
of F'S can be written out as 2" expressions. The result can be expressed as a
schema entailment:



X = [F.Fx_rFrx

-

T cF(S)e==srrxT CS

(Of course, T'C S means Ve € Tex €5.)

Now this specifies what is wanted, including the finiteness property. How-
ever, the schema entailment still requires proof and this can be supplied through
a recursive definition of the function F.

Let us finish with another novel induction principle, the Principle of Strong
F-induction. What makes it stronger is that the induction hypothesis, Vz €
SedT :FX e (S={{2}uT=P(T)),impliesS =@V Iz ecSeIT:
FX o (S ={z}uT = P(T)), which is a bundled up form of the base case
and the simple induction hypothesis. Since the induction hypothesis is stronger,
induction proofs are easier to find.

—[X]
P:PFX

VeeSedT :FXoe
S={z}UTAP(T)
=gy P(S)

=

true = g x P(S)

Proof Exercise in expert mode! O

Finiteness

A sort is finite if it is contained in its own finite powerset.

— Finite[ X]
T:FX

true =,y z €T

Subtypes

We mentioned in the introduction that a geometric formula ¢ defines a subtype.
Here the derived type ¢( X ) is the sort consisting of the elements of X that satisfy

&,



— Y [=o(X)]]
X — 1Y - X

Wy) =uy) =y y =y
dla)=pxTy: Y ex=1y)

The function ¢ is the injection that ¢ induces from the subtype to the su-
pertype.

6 Subarities and Functions

Functions are generally considered to be a particular kind of relation, namely the
total, single-valued ones, so a function arity X — Y is in some sense a subarity
of the relation arity P(X x Y) (usually written X — Y in Z). Logically, a
subarity corresponds to extra axioms (rather in the same way as a subtype
corresponds to a formula to be satisfied): so a relation R : X — Y is a function
if it satisfies the axioms

true =-,.x dy : Y o 2Ry (R is total)
tRy N 2Ry = .x. gy y=19 (R is single-valued)

(Some syntactic issues are glossed over by this account. Syntactically, Z
allows general relations to be applied to terms, R(z) being “undefined” unless
there is a unique y such that zRy. We believe that the benefits of this syntactic
flexibility are outweighed by the semantic problems, and prefer to admit R(x)
as well-formed only when R is declared to be of function type. Thus for us,
use of the function type subarity has syntactic implications not carried by using
a relation type with totality and single-valuedness axioms. But let us stress
that this is purely a matter of syntax — all uses of function application can be
expressed equivalently using the logic of relations.)

Z has various notations for different kinds of relations, based on different
combinations of four axioms: totality and single-valuedness, as above, and also —

true =,.y da : X e 2Ry (R is surjective)
tRy N 'Ry =, prx, v ¢ = (R is injective)

Since all four axioms are geometric, the combinations give subarities in our
sense. For instance, f : X - Y declares f to be a partial function from X to
Y. i.e. a single-valued relation.

Subarities for other Z function symbols are constructed in the same fashion
according to the table below:



Subarity Special name Single — valued Total Injective Surjective

T relation X X X X
-+ partial function v X X X
— function v v X X
= v X v X
— injection v v v X
—+ v X X v
—» surjection v v X v
— bijection v v v v

Finite functions

If we want to apprehend functions for ourselves (as opposed to being given
them in a signature) then they need to be finite relations and to be elements
of a subtype of F(X x Y). Certain conditions must hold before the subarity
axioms correspond to subtype formulae.

For instance, it X is decidable, then single-valuedness of a finite relation R
can be expressed by the formula

V(z,y) e RoV(a"y) e Roea# ' Vy=y

By formulae-as-types, this can be considered a type X - Y, of partial finite
functions, a subtype of F(X x Y).
Similarly, if X is finite then totality of R : F(X x Y) is expressed by

VeeXedy:Ye(z,y)€R

In general, different conditions are needed for different axioms to give sub-

types of F(X x Y):
o for single-valuedness — need X decidable
e for injectivity — need Y decidable
e for totality — need X finite

o for surjectivity — need Y finite

These can be combined, so for instance if both X and Y are decidable then
we have Z’s type X»~; Y of finite partial injections.

Once we have these types of finite relations, we can ask in addition when
they are finite (decidability is easy: if X and Y are both decidable then so are
F(X x Y) and its subtypes).



The easiest answer is that if X and Y are both finite and both decidable,
then the properties mentioned above are all complementable. For instance, for
single-valuedness the complement is

He,y)e Re3(a',y) e Roex=a"Ny#y

Hence under these strong conditions, all the subarities of P(X x Y) men-
tioned correspond to finite decidable subsets of F(X x V).

Under more general conditions, answers are less clear-cut, though there are
specific results that are useful sometimes. For instance, it can be proved that if
X and Y are merely finite then the type of finite total relations from X to Y
is also finite.

7 Conclusions

The GeoZ toolkit is still being developed, and like Z it is intended to be exten-
sible. We hope that this paper has demonstrated the essential role of schema
entailments in its formulation. The final result should be a useful library of
mathematical contructions and techniques presented in a coherent way for en-
gineers to refer to when they write GeoZ specifications.

We can ensure that a specification is well formed by checking that the con-
texts in which schema entailments are used are correct with respect to the pre-
misses of the entailments involved. In many cases, e.g. operations on natural
numbers, pairing, and so on, this will amount to little more than type checking.
In other cases when the premiss of the entailment makes use of a theory through
schema inclusion we can check that a similar inclusion is present in the context.
However, in general we will need to prove that the preconditions as set out in
the premiss of the entailment are satisfied — e.¢g. when the entailment is used
to express a method such as induction this checking amounts to proving that
the induction holds. There is some hope that this can be mechanised and in
particular cases automated to provide tools to support GeoZ.

We have only had space to touch upon many of the important issues here. In
particular we have not been able to discuss the application of schema morphisms
to the specification of operations, implementations and refinement. We hope to
make a more detailed exposition that addresses these points shortly.

Acknowledgements The work was assisted financially by the British Sci-
ence and Engineering Research Council under the “Foundational Structures in
Computing Science” research project at Imperial College.



References

[1] C.L. Hankin, I.C. Mackie, and R. Nagarajan, editors. Theory and Formal Meth-
ods 1994: Proceedings of the Second Imperial College, Department of Computing,
Workshop on Theory and Formal Methods, Mgller Center, Cambridge, UK, 11—
14 September 1995. IC-Press.

[2] C.B. Jones. Systematic software development using VDM (2e). international
series in computer science. Prentice-Hall, 1990.

[3] J.M. Spivey. The Z Notation: A Reference Manual. Series in Computer Science.
Prentice Hall International, 2nd edition, 1992.

[4] S.J. Vickers. Geometric logic as a specification language. In Hankin et al. [1].



