
TOWARDS A GeoZ TOOLKITMARK DAWSON and STEVEN VICKERSDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, United KingdomE-mail: fmd,sjvg@doc.ic.ac.ukABSTRACTThe use of Geometric Logic as the foundation of a speci�cation language calledGeoZ is proposed elsewhere [4]. In this note we explore GeoZ from the perspectiveof practitioners, who are familiar with the existing Z notation, by explainingthe issues that arise and the essential role of schema entailment in the GeoZreformulation of Z's mathematical toolkit.1 IntroductionIn a companion paper [4], geometric logic is proposed as a logic suited to spec-i�cation. Various aspects of this are described, including a notion of \schemaentailment" that asserts unique (up to isomorphism) existence and hence canbe used for de�nitions.The aim of this paper is to show how such schema entailments can be usedin describing a mathematical toolkit similar to that in Z [3]. The purpose ofthe toolkit is to provide an interface between mathematical \experts", who canprove unique existence and thereby establish the validity of schema entailments,and practising \engineers" who use the entailments in building up their speci�-cations. Each schema entailment is therefore intended, like a good theorem, topackage up some di�cult mathematics in a useful and usable form.It is hoped also that expert-veri�ed schema entailments can provide thebasis for extending software support tools, geometric logic environments, re-gardless of whether the veri�cation has been carried out formally within thelogic environment or not.In GeoZ \schema" is a presentation of a (geometric) theory. As such itcontains three kinds of de�nition:1. A declaration of sorts (X ,Y ,Z).

2. The names and sorts of predicates, functions, propositions, and constants(P , f , c) appearing in the schema. Together with variables and the logicalconnectives, these are used to form formulas in the usual way.3. A collection of axioms (� =)X). These are entailments between thegeometric formulas � and .A schema is presented with a typographic layout1 that should be familiar toreaders acquainted with the Z notation {Name[X ;Y ;Z]P : PXf : X ! Yc : X� =)x :X The \Name" is optional and is omissible in many contexts. It gives a globalname by which to refer to the schema.Although this is described in detail in [4] we should remind ourselves thatgeometric logic is based on a positive, observational account of meaning whichrestricts its formulas to: (�nite) conjunctions, (in�nite) disjunctions, existentialquanti�cation and equality. Despite being prohibited from formulas, universalquanti�cation, implication, negation and in�nite conjunctions are can be foundin the axioms of a theory in the following sense {� =)x :X implication (=)); universal quanti�cation (x : X)� =) false negation (: � =def � =) false)�n =) n axiom schemas { in�nite conjunctionsThe language of a schema consists of an assignment of arities to the symbolsin the presentation. At this level, and not elsewhere, function space (!) andpowerset (P) operations are admissible and allow us to introduce functions andpredicates {f : X ! YP : PXThe sorts X and Y must be geometric { in fact any geometric formula givesrise to a subsort through a formula-as-types principle and we take advantage ofthis in the toolkit.1The syntax of many of the constructions presented in this paper is
uid { we are stillexperimenting and it is likely to evolve, and perhaps improve, as syntactic issues becomeclearer.

Schema EntailmentOf course there are many ways of presenting essentially the same theory and itis useful to be able to state when two schemas present the same theory. Theschema entailment allows us to do this in GeoZ {[Lsorts]LlanguageLaxioms [Rsorts]RlanguageRaxiomsThe schema \L" on the lefthand side of the entailment (`) is used as thebasis of a superschema \L+R" which contains the additional material presentedin the schema \R". Clearly the combination of L with R will not make sensein general { indeed it need not be consistent. However, when R de�nitionallyextends L a model of L will also be a model of L + R and there will be anessentially unique way of interpreting the additional material provided by Rin L { for further details of schema entailment see [4]. This means that aschema entailment is a powerful de�nitional tool because it asserts that R canbe uniquely de�ned in terms of L { often in rather subtle ways.The GeoZ ToolkitIt is intended that (software) engineers who write speci�cations in GeoZ will beable to consult a library (or toolkit) of mathematical contructions, methods andnotations each of which has been expressed as an appropriate schema extensionand whose validity has been established by an \expert". The purpose of thispaper is to examine the issues that an engineer, and to a lesser extent an expert,has to face when using (and extending) the toolkit.2 Generic ConstructionsThe Z notation has a notion of parameterised construction (the generic schema)which allows families of concepts to be captured in a single de�nition [3], p. 38.Schema entailments provide this function in GeoZ.The de�nition of Cartesian products provides a suitable starting point. Inthe GeoZ toolkit products are expressed by de�nitional extension of the theorycontaining two sorts X and Y .

[X ;Y] [Z [� X � Y]]�1 : Z ! X�2 : Z ! Ytrue =)x :X ; y:Y9 z : Z � �1z = x ^ �2z = y�1(z) = �1(z 0) ^ �2(z) = �2(z 0)=)z ;z 0:Z z = z 0Notice that the extension introduces some new syntax: the projection func-tions �1 and �2 and, more importantly, a derived sort Z that we have chosento call \X � Y ". These ingredients are governed by the two axioms in the\predicate" part. The syntactic name \X � Y " for Z allows us to refer to theconstruction so that when we write \X �Y " or \A�B" we implicitly includean appropriate instance of the construction in the context in which the referenceis made. We can always do this safely (the two sorts must be present for us towrite down the name) because the e�ect of the new material is de�nitional .The �rst axiom states that given a pair x of X and y of Y of observationswe can observe some z of Z from which it is possible to extract both x and y.Which is the expected observational content of an element of the product. Thesecond axiom expresses equality of objects in Z in terms of their constituents.Before the schema entailment can be used by engineers an expert must showthat there is an essentially unique way in which the extension schema can beinterpreted in a model of the premiss schema. In this case suppose that therewas some other extension having the same presentation but renamed {[X ;Y] [Z 0 [� X �0 Y]]�01 : Z 0 ! X�02 : Z 0 ! Ytrue =)x :X ; y:Y9 z : Z 0 � �01z = x ^ �02z = y�01(z) = �01(z 0) ^ �02(z) = �02(z 0)=)z ;z 0:Z 0 z = z 0then both the derived sorts, Z and Z 0, must be isomorphic. De�ne a relationbetween the two sorts � : P(Z � Z 0) as {z � z 0()z :Z ; z 0:Z 0 9 x : X � (�1(z) = x ^ �01(z 0) = x)^ 9 y : Y � (�2(z) = y ^ �02(z 0) = y)

The expert must show {8 z : Z � 9 z 0 : Z 0 � z � z 08 z : Z � 8 z 01; z 02 : Z 0 � z � z 01 ^ z � z 02 ! z 01 � z 02Once we have introduced the derived sort of products we are able to use itto make additional de�nitions of notation {[X ;Y ;Z]f : Z ! Xg : Z ! Y h [� hf ; gi] : Z ! X � Ytrue =)z :Z �1(h(z)) = f (z)true =)z :Z �2(h(z)) = g(z)Here h is introduced as a de�nitional extension of the premiss schema con-taining two functions f and g of the speci�ed types. Notice that we have givenh the name \hf ; gi" which refers to f and g. When this syntax is used in aschema some additional type checking must be performed to ensure that thetypes X , Y and Z are assigned correctly. To show that the extension is uniquesuppose there is some other h 0 satisfying the axioms, then from the axioms wehave {true =)z :Z �1(h(z)) = f (z) = �1(h 0(z)) ^ �2(h(z)) = g(z) = �2(h 0(z))Which, by the second axiom of products, gives us what we require {true =)z :Z h(z) = h 0(z)Another example is pair formation {[X ;Y]a : Xb : Y c [� (a; b)] : X � Ytrue =)z :Z �1(c) = atrue =)z :Z �2(c) = bThis supposes that a and b exist as objects of the sorts X and Y respectivelyand introduces a notation \(a; b)" for c. Again this schema entailment encap-sulates the preconditions needed in the premiss schema before the constructioncan be used. In this case a simple form of type checking is involved, but as wewill see, when axioms are present other \proof obligations" must be discharged.

3 Decidability and ComplementationAs we said in the introduction neither inequality (6=) nor negation (:) are built-in to geometric logic at the level of formulas. However, there are places both inthe toolkit and in actual speci�cations where these properties are needed. Thesolution is straightforward: when we need to use inequality we must to have adecidable sort by which we mean {Decidable[X]6= : X)* Xx 6= x =)x :X falsetrue =)x ;y:X x = y _ x 6= yOnce we have this we can de�ne, for example, non-membership on �nite setsof a sort X {[X]Decidable[X] 62 : X)* F Xx 62 S()x :X ; S :FX 8y 2 S � x 6= yThe schema inclusion \Decidable[X]" is a precondition for the applicabilityof the entailment { the operator \ 62" cannot be used if the sort X doesn't satisfy\Decidable[X]".In a similar way when we need to know the complement of a predicate P ona sort X we can write {Complements[X]P ;P 0 : PXP(x) ^ P 0(x) =)x :X falsetrue =)x :X P(x) _ P 0(x)An example is the de�nition of the di�erence of two relations R and S onX which requires the complement S 0 of S {[X]S ;S 0;P : PXComplements[X ;S ;S 0] R n S : PX(R n S)(x)()x :XR(x) ^ S 0(x)

4 Characterising the Natural NumbersWe give an approach to the de�nition of the natural numbers (N) in this section,somewhat along the lines of the de�nition of F X in [4]. This illustrates a generaltechnique of de�nition which can be applied to other toolkit types.Let us call an induction algebra a set equipped with a constant and a unaryoperator. The N is the initial induction algebra, with constant 0 and unary op-eration s, the successor opertion. We can specify it using in�nitary disjunctionsas in the following schema entailment. The premiss is the empty theory, whichmeans that N comes from the world of pure abstract mathematics.[Z [� N]]0 : Zs : Z ! Z0 = s(x) =)x :Z falses(x) = s(y) =)x ;y:Z x = ytrue =)x :Z W1n=0 9 x1; : : : ; xn �x = xn ^ x0 = 0 ^Vni=1xi = s(xi�1)The extension introduces the necessary language and then de�nes how termsare constructed with an in�nite disjunction of the possibilities. It also givesequations which de�ne equality among the terms of the type. In this case weneed to state that 0 is not the successor of any number and that two numbersare equal when they are the successors of equal numbers.The freeness property, after which we do not need to know the in�nitaryaxioms given above, is as follows:[X]x0 : Xt : X ! X f [� iter(t ; x0)] : N ! Xtrue =) f (0) = x0true =)n:N f (s(n)) = t(f (n))The function \iter" maps n 7! tn(x0).Actually, it's well-known that N cannot be characterized up to isomorphismby axioms of �rst-order logic, but the trick here is the in�nitary disjunction.Of course, it looks rather like cheating { in de�ning N we have presupposed itsexistence in the set of disjuncts. Really, the schema entailments used here to

characterize N are postulating its existence rather than provably asserting it,but once we have it then the existence of other free algebras can be proved.However, these mathematical soul-searchings of the experts can be ignoredby the practising engineers. What the schema entailment assures them is thatwhen they write down a recursive de�nition such asf (0) = x0f (n + 1) = t(f (n))then it really does de�ne a function.Mathematical InductionMathematical induction principles can also be expressed using schema entail-ments. Here is simple induction:P : PNtrue =) P(0)P(n) =)n:N P(s(n)) true =)n:N P(n)Similarly one can describe course of values induction, using the inductionstep 8m 2 [0 : : :n) � P(m) =)n:N P(n), once [0 : : :) : N ! F N has beende�ned so that [0 : : :n) = fm : N � 0 � m < ng. Here is a somewhat moreunusual induction principle that appears to be a geometric form of well-foundedinduction:P : PN� : P(N � N)�(m;n) =)m;n:Nm < ntrue =)n:N P(n) _ 9m : N � �(m;n)P(m) ^ �(m;n) =)m;n:N P(n) true =)n:N P(n)Proof < is well-founded, so we can use well-founded induction. We proveP(n) under the induction hypothesis 8m : N � (m < n) P(m)). By thesecond axiom, either we have P(n) already, or there is some m with �(m;n)and hence m < n. Hence by induction P(m) and so P(n) by the third axiom.�

The same argument applies for other well-founded orders, such as \lexico-graphic order" on N � N { (m1;m2) < (n1;n2) i� m1 < n1 or m1 = n1 andm2 < n2. It seems that constructively it is a weaker principle than that ofwell-founded induction, but nonetheless it su�ces in practical examples. (Clas-sically, they are equivalent. For suppose < is a relation on a set X , satisfyingthe above induction principle. Let S � X , and de�ne P(x) to mean eitherx 62 S or there is a descending chain xn > : : : > x0, all in S , with x = xn andx0 minimal (with respect to <) in S . De�ne �(x ; y) to mean that x < y and xand y are both in S . Given x , if : 9 y : X � �(y; x) then either x 62 S or x isminimal in S , and either way we have P(x). If P(y) and �(y; x) then y 2 S sowe have a descending chain y = yn > : : : > y0 all in S , with y0 minimal in S ,and x 2 S , so there is a similar chain x > yn > : : : from x, so P(x). It followsfrom the induction principle that 8 x : X � P(x). If S is non-empty then choosex 2 S . P(x), so we have x = xn > : : : > x0 with x0 minimal in S . It followsthat every non-empty subset S has a minimal element, and this condition isequivalent to well-foundedness of <.)5 Finite SetsThe
exibility with which one can handle sets in classical mathematics (andin Z) is severely constrained in geometric logic { it is restricted to �nite sets.2Only �nite sets can be elements of types { this is enforced by the fact thatwhereas F X is a type, PX is only an arity { or universally quanti�ed over,and observationally, only �nite sets can be successfully apprehended. The GeoZtoolkit has much to say about �nite sets because it is only with them that wehave the
exibility that Z attributes to all sets, and in this paper we shall onlybe able to scratch the surface.Let us �rst remark that even for �nite sets, the geometric logic causes someodd phenomena, generally connected with decidability issues. Most notoriously,a subset of a �nite set need not be �nite. Speci�cally, consider a �nite set S : F Xand a predicate P : PX . You might expect there to be a �nite set correspondingto fx 2 S � P(x)g, but to apprehend that subset by knowing all its elementswe have to know not only which elements of S satisfy P , and hence are in thesubset, but also which do not satisfy P and so are to be excluded. This canusually only be done if P has a complement. Similarly, the intersection of two�nite sets need not be a �nite set. This is because, unlike the operation of unionwhich can combine two sets without concern for what they contain (repetitionsdon't matter), the operation of intersection must compare the elements of thetwo sets to decide which are in common and belong in the intersection and2Constructively, there are more than one notion of �nite sets. The ones we refer to hereare the Kuratowski �nite sets.

which are not and should be excluded. The result of this process is a �nite setwhen the underlying sort has a decidable equality.The �nite powerset F X was de�ned in [4]; let us from that derive someschema entailments that illustrate well the distinction between expert modeand engineer mode. First, we give a Principle of Simple F-induction.[X]P : PF Xtrue =) P(?)P(S) =)x :X ; S :FX P(fxg [S) true =)S :FX P(S)Proof Let U = fT 2 F X � 8S 2 F X � (P(S) ! P(T [S))g. This is asubmonoid of F X , and the second axiom tells us that it contains the generatorsfxg and hence is the whole of F X . But from P(?) we now deduce that P(S)for all S . �Next, we give a means for de�ning functions on F X by recursion:[X ;Y]y0 : Yf : X � Y ! Ytrue =)x :X ; y:Yf (x ; f (x ; y)) = f (x ; y)true =)x ;x 0:X ; y:Yf (x ; f (x 0; y)) = f (x 0; f (x ; y)) h : F X ! Ytrue =) h(?) = y0true =)x :X ; S :FXh(fxg [S)= f (x ; h(S))Proof Let X , Y , y0 and f be a model for the premiss schema. Our modelsare allowed to be in any G-frames, and these are elementary toposes. Thisallows us to use the full strength of intuitionistic logic, including higher-ordertypes and the subobject classi�er. We shall use Y Y , which is a monoid undercomposition. First, we show that the premiss entails the extensiong : F X � Y ! Ytrue =)y:Y g(?; y) = ytrue =)y:Y ; S ;T :FXg(S [T ; y) = g(S ; g(T ; y))true =)x :X ; y:Y g(fxg; y) = f (x ; y)

If g can be found satisfying the given axioms, then its curried form cur g :F X ! Y Y is a monoid homomorphism and so is determined uniquely by itsaction on the generators fxg; and the axioms de�ne this by cur g(fxg)(y) =f (x ; y). Hence we just need to prove existence.f curries to give a function cur f : X ! Y Y . Let M be the submonoidgenerated by the image X 0 of cur f . The �rst axiom tells us that the generatorscur f (x) commute, and we deduce from that that M is commutative. For letC be the centralizer in Y Y of X 0, i.e. the set of functions f that commute withall the elements of X 0. C is a submonoid of Y Y that contains X 0, and hencecontains M { all elements of M commute with all elements of X 0. Now let C 0be the centralizer in Y Y of M , a submonoid of Y Y that contains X 0 and henceM . Hence M is commutative. Now let M 0 the set of idempotents in M , thoseelements � such that � � � = �. Given that M is commutative, it follows thatM 0 is a submonoid, and it contains X 0. Hence M 0 = M , so M is a semilattice.It follows that there is a unique monoid homomorphism f 0 : F X ! M suchthat f 0(fxg) = cur f (x). g is de�ned by g(S ; y) = f 0(S)(y).Now we de�ne h(S) = g(S ; y0), and uniqueness follows by F-induction. �The justi�cation for this schema entailment was somewhat tricky and isdone in expert mode. But once proved, it gives what is in e�ect a programmingconstruct in engineer's mode: functions h : F X ! Y can be de�ned recursivelyin the formh(0) = y0h(fxg [S) = f (x ; h(S))provided that two proof obligations are met,f (x ; f (x 0; y)) = f (x 0; f (x ; y))f (x ; f (x ; y)) = f (x ; y)The recursive style is similar to that of [2], where functions like h are de�nedusing a non-deterministic \choose" function that chooses an element of a set:something likeh(S) = y0; if S = 0= f (x ; h(remove(x ;S))); otherwisewhere x = choose(S)However, our proof obligations remove the non-determinism.Such principles of recursion and induction are powerful tools for handling�nite sets. As an illustration, consider the (classically obvious) fact that if Sis �nite then so is F S . Observationally, if S = fx1; : : : ; xng, then the elementsof F S can be written out as 2n expressions. The result can be expressed as aschema entailment:

[X] F : F X ! F F XT 2 F(S)()S ;T :FXT � S(Of course, T � S means 8 x 2 T � x 2 S .)Now this speci�es what is wanted, including the �niteness property. How-ever, the schema entailment still requires proof and this can be supplied througha recursive de�nition of the function F.Let us �nish with another novel induction principle, the Principle of StrongF-induction. What makes it stronger is that the induction hypothesis, 8 x 2S � 9T : F X � (S = fxg [T = P(T)), implies S = ? _ 9 x 2 S � 9T :F X � (S = fxg [T = P(T)), which is a bundled up form of the base caseand the simple induction hypothesis. Since the induction hypothesis is stronger,induction proofs are easier to �nd.[X]P : PF X8 x 2 S � 9T : F X �S = fxg [T ^ P(T)=)S :FX P(S) true =)S :FX P(S)Proof Exercise in expert mode! �FinitenessA sort is �nite if it is contained in its own �nite powerset.Finite[X]T : F Xtrue =)x :X x 2 TSubtypesWe mentioned in the introduction that a geometric formula � de�nes a subtype.Here the derived type �(X) is the sort consisting of the elements of X that satisfy�.

[X]� : PX [Y [� �(X)]]� : Y ! X�(y) = �(y 0) =)y;y 0:Y y = y 0�(x)()x :X 9 y : Y � x = �(y)The function � is the injection that � induces from the subtype to the su-pertype.6 Subarities and FunctionsFunctions are generally considered to be a particular kind of relation, namely thetotal, single-valued ones, so a function arity X ! Y is in some sense a subarityof the relation arity P(X � Y) (usually written X)* Y in Z). Logically, asubarity corresponds to extra axioms (rather in the same way as a subtypecorresponds to a formula to be satis�ed): so a relation R : X)* Y is a functionif it satis�es the axiomstrue =)x :X 9 y : Y � xRy (R is total)xRy ^ xRy 0 =)x :X ; y;y 0:Y y = y 0 (R is single-valued)(Some syntactic issues are glossed over by this account. Syntactically, Zallows general relations to be applied to terms, R(x) being \unde�ned" unlessthere is a unique y such that xRy. We believe that the bene�ts of this syntactic
exibility are outweighed by the semantic problems, and prefer to admit R(x)as well-formed only when R is declared to be of function type. Thus for us,use of the function type subarity has syntactic implications not carried by usinga relation type with totality and single-valuedness axioms. But let us stressthat this is purely a matter of syntax { all uses of function application can beexpressed equivalently using the logic of relations.)Z has various notations for di�erent kinds of relations, based on di�erentcombinations of four axioms: totality and single-valuedness, as above, and also {true =)y:Y 9 x : X � xRy (R is surjective)xRy ^ x 0Ry =)x ;x 0:X ; y:Y x = x 0 (R is injective)Since all four axioms are geometric, the combinations give subarities in oursense. For instance, f : X 7! Y declares f to be a partial function from X toY , i.e. a single-valued relation.Subarities for other Z function symbols are constructed in the same fashionaccording to the table below:

Subarity Special name Single � valued Total Injective Surjective$ relation � � � �7! partial function X � � �! function X X � �7� X � X �� injection X X X �7!! X � � X!! surjection X X � X�! bijection X X X XFinite functionsIf we want to apprehend functions for ourselves (as opposed to being giventhem in a signature) then they need to be �nite relations and to be elementsof a subtype of F(X � Y). Certain conditions must hold before the subarityaxioms correspond to subtype formulae.For instance, if X is decidable, then single-valuedness of a �nite relation Rcan be expressed by the formula8(x ; y) 2 R � 8(x 0; y 0) 2 R � x 6= x 0 _ y = y 0By formulae-as-types, this can be considered a type X 7! Y , of partial �nitefunctions, a subtype of F(X � Y).Similarly, if X is �nite then totality of R : F(X �Y) is expressed by8 x 2 X � 9 y : Y � (x ; y) 2 RIn general, di�erent conditions are needed for di�erent axioms to give sub-types of F(X � Y):� for single-valuedness { need X decidable� for injectivity { need Y decidable� for totality { need X �nite� for surjectivity { need Y �niteThese can be combined, so for instance if both X and Y are decidable thenwe have Z's type X 7�fY of �nite partial injections.Once we have these types of �nite relations, we can ask in addition whenthey are �nite (decidability is easy: if X and Y are both decidable then so areF(X �Y) and its subtypes).

The easiest answer is that if X and Y are both �nite and both decidable,then the properties mentioned above are all complementable. For instance, forsingle-valuedness the complement is9(x ; y) 2 R � 9(x 0; y 0) 2 R � x = x 0 ^ y 6= y 0Hence under these strong conditions, all the subarities of P(X � Y) men-tioned correspond to �nite decidable subsets of F(X �Y).Under more general conditions, answers are less clear-cut, though there arespeci�c results that are useful sometimes. For instance, it can be proved that ifX and Y are merely �nite then the type of �nite total relations from X to Yis also �nite.7 ConclusionsThe GeoZ toolkit is still being developed, and like Z it is intended to be exten-sible. We hope that this paper has demonstrated the essential role of schemaentailments in its formulation. The �nal result should be a useful library ofmathematical contructions and techniques presented in a coherent way for en-gineers to refer to when they write GeoZ speci�cations.We can ensure that a speci�cation is well formed by checking that the con-texts in which schema entailments are used are correct with respect to the pre-misses of the entailments involved. In many cases, e.g. operations on naturalnumbers, pairing, and so on, this will amount to little more than type checking.In other cases when the premiss of the entailment makes use of a theory throughschema inclusion we can check that a similar inclusion is present in the context.However, in general we will need to prove that the preconditions as set out inthe premiss of the entailment are satis�ed { e.g. when the entailment is usedto express a method such as induction this checking amounts to proving thatthe induction holds. There is some hope that this can be mechanised and inparticular cases automated to provide tools to support GeoZ.We have only had space to touch upon many of the important issues here. Inparticular we have not been able to discuss the application of schemamorphismsto the speci�cation of operations, implementations and re�nement. We hope tomake a more detailed exposition that addresses these points shortly.Acknowledgements The work was assisted �nancially by the British Sci-ence and Engineering Research Council under the \Foundational Structures inComputing Science" research project at Imperial College.

References[1] C.L. Hankin, I.C. Mackie, and R. Nagarajan, editors. Theory and Formal Meth-ods 1994: Proceedings of the Second Imperial College, Department of Computing,Workshop on Theory and Formal Methods, M�ller Center, Cambridge, UK, 11{14 September 1995. IC-Press.[2] C.B. Jones. Systematic software development using VDM (2e). internationalseries in computer science. Prentice-Hall, 1990.[3] J.M. Spivey. The Z Notation: A Reference Manual. Series in Computer Science.Prentice Hall International, 2nd edition, 1992.[4] S.J. Vickers. Geometric logic as a speci�cation language. In Hankin et al. [1].

