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It is shown how many techniques of categorical domain theory can be expressed in the
general context of topical categories (where “topical” means internal in the category Top
of Grothendieck toposes with geometric morphisms). The underlying topos machinery is
hidden by using a geometric form of constructive mathematics, which enables toposes as
“generalized topological spaces” to be treated in a transparently spatial way, and also
shows the constructivity of the arguments. The theory of strongly algebraic (SFP)
domains is given as a case study in which the topical category is Cartesian closed.

1. Introduction
1.1. “Topology-free spaces”

“Always topologize!” (Stone 1938)
“A topos is a generalized topological space.” (Grothendieck 1972)

Taken together, these two dicta imply a general mathematical programme of topol-
ogization in which classes are replaced by toposes: instead of the class of widgets we
consider the topos classifying widgets (i.e. the topos whose points are widgets). The
topos not only determines the class of widgets, but simultaneously, and inseparably,
embodies the generalized topological structure on the generalized space of widgets.

This resort to toposes may seem at first sight an unacceptably burdensome technical
overhead, but in fact the practical mathematical consequences can be surprisingly un-
obtrusive. Toposes classify theories in the so-called “geometric” logic, and it is quite in
order to treat a topos as a “space” whose points are the models of the theory and to
treat a geometric morphism (a generalized continuous map between generalized topolog-
ical spaces) as a transformation of points of one such space into points of another. As
long as the transformation is defined uniformly and in accordance with a geometrically
constructive discipline it will yield a geometric morphism, and so we see continuity under
a new light as uniformity combined with geometricity. Our Stone-Grothendieck general-
ized topologization is thus achieved by working with a geometric “Stone-Grothendieck
mathematics”. Since this often has the effect of avoiding explicit discussion of topological
structure (lattices of opens or categories of sheaves), we shall refer to this view of toposes
as one of “topology-free spaces” which is not to say that these generalized spaces do not
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have any topology, but rather that it is intrinsic and hidden. Introductory accounts of
the ideas are in Vickers (1996, 1998a); more technical justification is in Vickers (1997a).

To explain how this works, we first have to be very clear about the dual nature of
toposes: as Mac Lane and Moerdijk (1992) say right at the outset, a topos can be con-
sidered both as a “generalized topological space” and as a “generalized universe of sets”.
But the formal definitions say that the topos is the generalized universe of sets, and in
these terms it is extremely difficult to sustain the generalized space view. Hence although
this view is a fundamental one of which experienced topos theorists are fully aware, it
tends to get obscured in the exposition.

We shall explicitly separate the two viewpoints by reserving the word topos for the gen-
eralized spaces. (This runs counter to the general usage, but has etymological support in
that it treats toposes as the objects of which topology is the study.) The generalized uni-
verses of sets  specifically, those categories (otherwise known as Grothendieck toposes)
that satisfy the conditions of Giraud’s theorem (see Johnstone (1977)) will be called
geometric universes or GUs (in Vickers (1993a, 1995a, 1995b) they are called Giraud
frames or G-frames). The distinction is analogous to that between locales and frames (in
Johnstone (1982); or, in Joyal and Tierney (1984), the distinction between spaces and
locales), and indeed we hope that the techniques of spatial reasoning for locales that are
investigated in Vickers (1995) can be developed for toposes too. Similarly, a GU homo-
morphism will be a functor that preserves finite limits and arbitrary colimits hence, the
inverse image part of a geometric morphism. For a topos D, the corresponding geometric
universe will be written SD.

The present paper is in large measure a case study for this topologization programme
in which it is applied to domain theory, and one deliberate aim is to give a topos-theoretic
account that looks as much as possible just like constructive domain theory. A preliminary
account in the form of lecture slides has already appeared (Vickers 1992a).

Let us now lay down the ground rules for this geometric mathematics (technical justi-
fication is in Vickers (1997a)).

(1) “Geometric” mathematics comprises those constructions and properties that can be
interpreted in any geometric universe and are preserved by GU homomorphisms.

(2) If certain structures are described as being the models of a geometric theory T, that is
to say, they are specified by structure and properties within geometric mathematics,
then there is a corresponding “classifying” topos [T] of which those structures are the
points.

Recall the usual notion of a geometric theory presentation a many-sorted, infinitary,
first-order theory presentation, in which the axioms take the form ¢ Fx . Here x is
a finite list of sorted variables and ¢ and @ are geometric formulae (the only connec-
tives allowed are arbitrary disjunction, finitary conjunction, sorted equality and existen-
tial quantification) whose free variables are all taken from x. (Details can be found in
Makkai and Reyes (1977); also in Johnstone (1977) and Mac Lane and Moerdijk (1992),
though for simplicity they treat the coherent theories, restricted to the finitary logic.)
We shall be more liberal and admit presentations that use geometric constructions as
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type constructors, to create new types out of the given sorts (the base types). Function
and predicate symbols will be allowed to use the derived types in their arities.

(3) If such a theory in (2) is “essentially propositional”, that is to say, it has no sorts
(other than what can be constructed geometrically out of thin air), then the corre-
sponding topos is actually a locale. We have no need to distinguish between locales
and localic toposes, since our notation explicitly distinguishes between frames QD
and geometric universes SD.

(4) Suppose D and E are two toposes. Then construction of points of E out of points of
D, if it is geometric, describes a geometric morphism (or map) from D to E.

(5) Geometric morphisms between locales are the same as continuous maps.

Consequently, we describe a locale or a topos by giving a geometric description of its
points; and we describe a continuous map or a geometric morphism by giving a geometric
description of how it transforms points to points. No discussion of topology is then
needed because the geometricity already covers that, and so locales and toposes appear
as “topology-free spaces”. Of course, this phrase is introduced in direct contrast with
the common description of locales as “point-free topologies”. The point-free topology is
the frame of opens, treated as an algebraic structure in its own right. The “topology-free
space” methods are to work rather with presentations by generators and relations, and
then in a switch of emphasis to treat them not as algebraic presentations of the frames
but as geometric descriptions of the points.

We shall examine what is allowed in this geometric mathematics, but first let us men-
tion some things that are not allowed.

— The logic is non-classical. Intuitionistic logic is valid in geometric universes, but in
general excluded middle and choice are not valid. More subtly, intuitionistic nega-
tion is not preserved by GU homomorphisms, and nor are implication and universal
quantification so we can’t use them in general, though we shall on occasion use the
intuitionistic formulae in proving geometric results. The geometric logic is therefore
more restricted than intuitionistic logic. However, if we can prove or postulate that
two propositions P and @ are logical complements (P A @ F false, true F PV Q),
then that fact is preserved by GU homomorphisms and so gives an instance of a
geometric negation.

— We can’t use exponentials XY, powersets PX, or the subobject classifier Q none of
these is preserved by GU homomorphisms.

I shall not attempt to formalize the geometric constructions, but they include finite
limits, set-indexed colimits, image factorization, monicness, epiness, inclusion between
subobjects, finite intersections and arbitrary set-indexed unions of subobjects, existential
quantification, free algebra constructions, N (natural numbers), Q (rationals), Kuratowski
finiteness, finite powersets (free semilattices) FX, universal quantification bounded over
finite objects.

A couple of specific issues worth mentioning are decidability and finiteness. Equality is
part of the geometric logic, but inequality is not (because there is no negation). Nonethe-
less, certain “decidable” sets come equipped with inequality, a relation complementary

to equality two good examples are N and Q. Finiteness is as remarked above Ku-
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ratowski finiteness (Johnstone 1977): X is Kuratowski finite iff the free semilattice FX
on X has an element T such that {z} C T for every z in X. This notion can sometimes
behave surprisingly. For instance, subsets of finite sets, or intersections of finite subsets,
need not themselves be finite. Section 2.1 provides a technical discussion.

Notes

1 If T is a geometric theory, then the corresponding geometric universe S[T'] is exactly
the category that is usually referred to as the classifying topos of 7. The notation
can be read either as Sheaves over the topos [T], or as Sets with an adjoined generic
model of T'.

2 When we refer to the points of [T'], the models of T, these models might be in an
arbitrary geometric universe SD. D is known as the stage of definition of the point,
and the theory of classifying toposes shows that points of [T] at stage D are the same
as maps from D to [T]. Models in the initial GU S = S1 of sets, i.e. maps from 1 to
[T], are known as global points.

3 If f and g are two maps from [T] to [T"], then a natural transformation from f to g
is a geometric construction, given a model M of T', of a homomorphism from f(M)
to g(M).

4 Toposes, maps and natural transformations are the 0-, 1- and 2-cells of a 2-category
Top. We shall look at it more closely later, but let us note immediately that the
hom-categories Top([T], [T"]) (which is equivalent to the category of models of 7" in
S[T]) are not arbitrary categories they have all filtered colimits (Johnstone 1977).

1.2. Topologizing domain theory

It has long been recognized that domains are topological spaces under their Scott topol-
ogy. Normally, they are also sober (at least for continuous dcpos, though not, by John-
stone (1981), for arbitrary ones) and hence can be equivalently treated as locales. This
provides a technical basis for treating domains as, fundamentally, topological structures
(specifically, for us, locales) rather than ordered structures (e.g. dcpos). Since any locale
has both an order (specialization) on points and all directed joins of points, we can find
a least fixpoint for any endomap of any locale with bottom point (a local locale), thus
giving us the essential domain theoretic machinery used to interpret recursion. More-
over, there is a conceptual basis for the primacy of topology in that the order is often
understood as an “information” order, and the topology provides a direct account of
that information each open represents a finitely observable amount of it, as argued, for
instance, in Vickers (1989) or Abramsky (1991).

Therefore, as an application of Stone’s dictum, we shall take it as axiomatic that a
domain is fundamentally a locale rather than a partially ordered set of any kind. This
can sometimes seem a retrograde step. For instance, unlike the category of dcpos, the
category of locales is not Cartesian closed though this advantage for general dcpos is lost
in the algebraic case and only recovered in strongly algebraic domains after substantial
work. Nonetheless, the results of the paper will show that the topologization programme
holds together and in fact gives a greater unity to the techniques of domain theory.

By the remarks of Section 1.1, domains as locales are also toposes. It turns out that
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domain theoretic constructions such as products, coproducts and exponentials are special
cases of the more general topos constructions, and we shall prove this. In particular, the
existence of least fixpoints for continuous endomaps of domains with bottom turns out
to be a special case of the existence of initial fixpoints for arbitrary endomaps of local
toposes (toposes with initial points) in effect, local toposes are algebraically complete
in the appropriately transferred sense of Freyd (1991).

However, the methods go considerably beyond this. Nice enough domains can be pre-
sented by information systems of various flavours (e.g. Larsen and Winskel 1984; Vickers
1993; or indeed the slightly different methods of Abramsky 1991) that are the mod-
els of geometric theories, and moreover the continuous maps between the domains are
equivalent to “approximable mappings” between information systems, which are also the
models of geometric theories. Fixing a flavour of information system, we therefore get
two toposes [IS] and [AM]. (AM is the theory of two information systems and an approx-
imable mapping between them.) We also have maps src and tar : [AM] — [IS] giving the
source and target, a map id : [IS] — [AM] giving the identity approximable mappings,
and more that in short make an internal category in Top a topical category. (The fact
that Top is a 2-category greatly complicates the idea of internal category in it, and a
definitive account of such things (Hyland and Moerdijk unpublished) hasn’t appeared
yet. However, the topical categories we study will all in a certain sense represent full sub-
categories of Top, in that the approximable mappings correspond to arbitrary maps (as
geometric morphisms) between the corresponding domains (as toposes), and this gives
us a somewhat more solid base on which to rest the internal category structure.) We find
that the topical category has, internally, much of the structure of the corresponding cat-
egory of domains, and in particular for strongly algebraic domains the topical category
is internally Cartesian closed. This is a stronger result than appears at first sight, for
with some other well-known CCCs such as Set, the Cartesian closedness is not internal
in the corresponding topical category: essentially this is because exponentiation of sets
is not geometric.

The topos setting now begins to pay off more decisively. In particular, we can use
the result mentioned above on algebraic completeness of local toposes to find not only
fixpoints within domains, but also fixpoints among domains, i.e. solutions of domain
equations. This is most easily seen for domains with bottom, when [IS] is local (the
singleton information system { L} is initial) and any map F : [IS] — [IS], i.e. any uniform,
geometric construction of information systems from information systems, has an initial
algebra: this will solve the domain equation D = F(D). The key point is that toposes
automatically have all the filtered colimits that abstract categorical domain theory has
to postulate, and the uniform, geometric definitions of geometric morphisms suffice to
give us the required continuity, preservation of these filtered colimits.

Note that F' is necessarily functorial, but that is with respect to the homomorphisms
between information systems 2-cells in Top and not the approximable mappings.
In the strongly algebraic case, which is internally Cartesian closed, we have a map
F(X) = [X = X] that is not functorial with respect to continuous maps. However,
the homomorphisms turn out to correspond to adjunctions between the domains so that
we painlessly discover the well-known technical trick from domain theory that regains
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functoriality. (Actually, domain theory normally uses embedding-projection pairs, not
general adjunctions. The difference corresponds to the constructivist issue of whether
the information system order is decidable or not.)

1.3. Owverview of the paper

Following this introduction, we move in Section 2 to the technical background. Much
of this is already known, though perhaps some of the detailed proofs have not been set
out before. However, I do not know of convenient references and certainly not in the
“generalized space” language that I am using.

In section 3 we look at some examples of topical categories, and in particular at two
ways of constructing them. An “intrinsic” topical category captures the idea, given any
topos D, of a category whose objects are points of D and whose morphisms are homo-
morphisms. These are simple, but inadequate for our domain theory. We need the slightly
more complicated notion of “display” topical category. This starts from an exponentiable
map p: E — D, and captures the idea of a category whose objects are points of D, but
whose morphisms are maps between pullbacks of p. It is relatively rare for these topical
categories to be Cartesian closed, and we illustrate this with some counterexamples.

Section 4 treats the particular case of strongly algebraic domains, in which the topical
category is Cartesian closed, in some detail. Its domain-theoretic substance is largely
taken from Abramsky (1991). Its purpose is not so much to present the results in a new
way, different from Abramsky’s — the apparent differences are often ones of expositional
taste rather than anything else — but to show how unobtrusive the new, topos-theoretic
foundations are.

Section 5 addresses domain equations and their solution.

Section 6 discusses what is achieved by the topical methods, and speculates on revised
foundations using Joyal’s Arithmetic Universes.

2. Technical background

This section gathers together diverse technical results under four headings:
2.1 Finite power sets
2.2 The 2-category Top of toposes
2.3 Lifting in Top
2.4 Algebraic dcpos

2.1. Finite power sets

The geometric account of finiteness (by which we mean Kuratowski finiteness (Kock et
al. 1975; Johnstone 1977)) has some unexpected behaviour, a notorious example being
that subsets of finite sets need not themselves be finite (Kock et al. 1975). Nonetheless,
it fits well with observational intuitions that a set is finite iff you can give a finite list
of all its elements. (But note that if equality is not decidable then you can’t necessarily
eliminate duplicates from the list.) Two finite sets are equal iff every element of each is
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also an element of the other. To understand the paradox of subsets, suppose S is finite
and T = {s € S| ¢(s)}. To list all the elements of T', we also need negative information
=¢(s) in order to know which elements of S can be omitted from the list.

We recap here some basic properties and constructions relating to finite sets, and in
particular the fact that bounded universal quantification over a finite set is geometric
(Johnstone and Linton 1978). Much of this seems to be well-known folklore, but I don’t
know of any convenient reference for the ideas and shall summarize them here.

The first step is to construct the finite power set FX over X, and this is done as the free
(join) semilattice. As it happens, by a theorem of Mikkelson this can be constructed in any
elementary topos as the U-subsemilattice of P X generated by the singletons (see Theorem
9.16 in Johnstone 1977). However, in the context of geometric universes it is perhaps more
convenient to see the construction as a special case of the existence of free algebras for
any single-sorted algebraic theory that is finitary enough (Theorem 6.43 in Johnstone
1977). Moreover, by Lemma 6.44 there, the free algebra construction is preserved by GU
homomorphisms: in other words, free algebra constructions are “geometric”.

FX is the set of Kuratowski finite subsets of X. From now on we shall omit “Kura-
towski”: when we say finite, we mean Kuratowski finite.

We have already noted that subsets of finite sets need not be finite; here are some
other unexpected behaviours.

— Finite unions of finite sets are undoubtedly finite (just concatenate the lists of ele-
ments), but finite intersections are not. For a start, the empty intersection of finite
subsets of X is the whole of X, which certainly need not be finite. More subtly, if S
and T are finite then SN7T need not be because to discover what are all the elements
of SN T you must be able to determine the negative information of when = ¢ S (or
T).

— The cardinality of a finite set is not defined in general. To know that you have counted
exactly how many elements there are in {w, z,y, 2z}, you need to know all the equalities
and inequalities amongst the elements, and the negative information is not always
available geometrically.

(Often the problem is one of decidability, i.e. lack of negative information. For instance,
if ¢ is decidable and S is finite then {u € S | ¢(u)} is finite; and if X has decidable
equality, a binary predicate # that’s a complement of =, then F X has binary intersections
and there is a cardinality function from FX to N.)

Definition 2.1.1. (Finitely bounded universal quantification) Let ¢(z,y) be a
predicate on X x Y. Then the predicate Vz € S.¢(z,y) on FX x Y is defined as

\/ Az1,...,xn (S ={z1,... ,Zp} A /\ o(xi,y))
neN i=1
An alternative and perhaps more precise definition would make direct use of the free
semilattice property of FX: if f : X — PY corresponds to ¢(z,y) (i.e. ¢(z,y) holds iff
y € f(z)), then this extends to a unique semilattice homomorphism from FX to PY
under N, and this corresponds to Vz € S.¢(z,y). However, the definition given makes
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explicit that this is a geometric construction on ¢. To show that it really is bounded
universal quantification, one shows the characterizing proof-theoretic adjunction:

Proposition 2.1.2. Let ¢(z,y) and ¢(y) be predicates on X x Y and on Y. Then

Y(y) Fsy Vo € S.p(z,y) if p(y) ANz € Stgy. o(z,y)
Next, we give some basic inductive and recursive tools for dealing with finite sets.

Theorem 2.1.3. (Simple F-induction) Let ¢(S) be a predicate on FX such that
(D) (base case), and if ¢(S) then ¢({z} U S) for all z : X (induction step). Then ¢(S)
holds for all S.

Proof. Let M be the subset of X comprising those elements S for which VT :
FX.(o(T) = ¢(SUT)). M is a subsemilattice, and by the induction step it contains the
singletons, so it is the whole of FX. From S € M, and the base case ¢(0)), we deduce
o(S).

Note that although the statement of this Theorem is geometric, the proof is not it
uses intuitionistic formulae. We conjecture that there is a geometric proof. m

(In Theorem 2.1.11 we shall prove a stronger induction principle.)

Lemma 2.1.4. (F-recursion) Let f: X x Y — Y satisfy
1 Vo, o' y.f(z, f(z',y) = f(z', f(z,y))

2 Va,y.f(z, f(z,y)) = f(z,y)

Then there is a unique g : FX x Y — Y such that

Vy.9(0,y) =y
Vo,y.9({z},y) = f(z,y)
VS, T, y.g(SUT,y) = g(S,9(T,y))

Proof. Let f': X — Y'Y be the curried form of f. Let My be the image of f' in YV,
which is a monoid under composition, and let M be the submonoid generated by M.
Conditions 1 and 2 say that the elements of M, are commuting idempotents. Because
they commute, M is commutative, for consider the centralizer of My in Y'Y  the set of
elements that commute with everything in Mj. This is a submonoid containing My, and
hence containing all of M, and so everything in M commutes with everything in M.
Therefore the centralizer of M contains My and hence all of M, so M is commutative.
Now we can show that the set of idempotent elements of M is a submonoid containing
all of My, and hence is the whole of M, so M is a semilattice. It follows that f’ factors
uniquely via a semilattice homomorphism ¢’ : FX — M, which uncurries to the required
g. m

Theorem 2.1.5. Let f: X xY — Y satisfy conditions 1 and 2 of Lemma 2.1.4, and let
yo : Y. Then there is a unique h : FX — Y satisfying

h(@) = Yo
Vo, Sh({z} U S) = f(z, h(S))

Proof. Let g be the function obtained in Lemma 2.1.4, and define h(S) = g(S,yo).
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Then h(0) = g(0,y0) = yo, and h({z} U S) = g({z} U S,y0) = g({z},9(S,00)) =
f(x, h(S)). Uniqueness follows by F-induction. m
Using F-induction, we can easily prove a number of results.

Theorem 2.1.6.
1 Vo e S(é(x)Vi(r)) Fs.rx
3S,, S¢(S =S, USy AV € S¢¢(CE) AVz € Sw’g[)(m))

2 Decidable subsets of finite sets are finite (Kock et al. 1975): if S is finite and ¢(z) is
decidable, then {z € S | ¢(x)} is finite. (Use 1 with ¢ the complement of ¢.)

3 (Johnstone 1984) Vx € S.(¢(x) V ¢(z)) Fs.rx YV € S.¢(x) V Iz € S.p(x)
Note that the analogous deduction with S infinite is intuitionistically unsound, so this
result is saying something about finite boundedness. It is directly analogous to the
relation “0O(¢ V ¢) F O¢ V $1p” seen in the Vietoris powerlocale.

4 1If ¢ is decidable, with complement ¢, then Vz € S.¢(x) and 3z € S.)(x) are comple-
ments.

5 If X has decidable equality, then on FX we have that € is decidable (zg ¢ S is
equivalent to Yz € S.x # xq), that the intersection of two finite sets is still finite (use
2 with SNT = {z € S| x € T}, see Acunia-Ortega and Linton (1979)) and that each
finite set has a cardinality.

6 VeeSdy:Yo(z,y) bsrx U : F(X xY).(fst(U) =SAU C ¢)

7 FEmptiness is a decidable property in FX: the formula S = ) has complement 3z :
Xzxzes.
(We write F1 X for the set of non-empty finite subsets of X.)

Proof. The induction arguments are easy. For 7, we see by induction that Fg.xx S =
Pv3Iz: Xz eS. Toseethat S=0A3Jx: X.x € S Fg.rx false, consider I = {1, T}
made into a partial order — indeed, a lattice — by L < T. The function from X to I,
mapping every element to T, extends to a semilattice homomorphism f : FX — (I,V).
If S =0 then f(S) = L, while if z € S then f(S) = f({z}US) =TV f(S) =T, so we
cannot have both. m

We shall now use F-induction and recursion to prove a sequence of finiteness results:
that if S and T are finite, then so are S x T', FS and the set FT(S,T') of finite total
relations from S to T'. The framework of the proof is the same in each case, and can be
illustrated with S x T'. For arbitrary types X and Y, x can be treated as a function from
FX x FY to F(X xY). Defining the function is not too difficult (using F-recursion, the
free semilattice property and so on), but more important to us is its specification, that

SxT={(z,y):x € SAy € T} — in other words,
(x,y) € SXT Ahpx yysrxm:Fy t €ESAY €T

To show that the recursive definition works correctly, i.e. that it satisfies its specifica-
tion, one can use F-induction in a routine sort of way, but in practice this amounts to
an assumption that the recursive calls work correctly and we shall make this assumption
without comment. (Compare this with the method of recursion variants as set out in
Morgan (1990) or Broda et al. (1994).)
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Proposition 2.1.7. (Kock et al. 1975) If S and T are finite then so is S x T
Proof. Let X, Y be any types. We define x : FX x FY — F(X x Y) such that

(z,y) € SXT Hrpx yysrxm:Fy t € SAYy €T

If b: Y, then there is a unique function from FX to F(X x V), written S — S x {b},
such that § x {b} =0 and ({a}US) x {b} = {(a,b)} US x {b}. We see that

(r,y) ebx{b} o false sz eDAy=>

(r.9) € ({a} US) x {b} & (,) € {(@ D)}V (2,9) € 5 x {b)
S(x=ary=0b)V(x € SAy=">) (induction)
sze{afUSAy=>

Now fixing S : FX, we can define the unique function 7'+ S x T such that S x ) = (§

and S x ({b}UT) =S x {b}U S x T, and the proof that it satisfies its specification is
similar. m

Corollary 2.1.8.

1 Forxnmry SX(T1UD) =SxTiUS xTh
2 b soFrx,TFy (S1US2) xT =8 xTUSy xT

Proof. These could be proved inductively from the construction in Proposition 2.1.7,
but much simpler is to use the specification. For instance, for 1,

(z,y) e Sx (TMUTy)) oxzeSAye (ThUT,)
SreSANYeT Vy eT)
SeSAyeT)V(zeSAyeT)

S (r,y) €SxTHUS x Ty
2 is completely similar, despite the asymmetry of the underlying construction. m

Proposition 2.1.9. (Kock et al. 1975) If S is finite, then so is FS. (By Theorem
2.1.6 (7) and (2), it follows that F1.S is too.)

Proof. If X is any type, we desire a function F : FX — FFX such that T €
F(S) Arsr.rx T C S. Let F be the unique function such that

F(0) = {0}
F({a}U S) = F(S)U{{a} UT|T € F(S)}

({{a}UT|T € F(S)} is the direct image of F(S) under the function from FX to itself
that maps T to {a} UT.) Of course, we must check the conditions for F-recursion. In
other words, if ¢/ : FFX, then we want

UU{{a}uT|IT eU}) U{{B}UUIU e UU{{a}UT|T € U}}

= ... same thing with a and b interchanged
which is clear because the expression reduces to

UUH{alUT|IT eUU {{b}UU|U e U} U{{a}U{b}UT|T € U}
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Also, we want that when a = b the expression reduces to Y U {{a} UT|T € U}, which
again is clear.

Now we must show that the definition satisfies the specification. T € F(§) & T = &
T C (), and it remains to show the case for {a} U S.

TeF{a}US) & T e F(S)VIU € F(S).T = {a} UU
ST CSVIU: FFX.(UCSAT = {a} UU)

(Note the assumption, justified as an F-induction hypothesis, that T' € F(S) & T C
S.) Certainly this implies that T C {a} U S. For the converse, if ' C {a} U S then we
can find T and T in FX such that T =Ty UT, Ty C {a} and T, C S. If T1 = ) then
T =T, C S, while if Ty is inhabited then it is {a} and so T = {a} U T, with T, C S. m

The following proposition is included not for its general importance, but because it is
used later on (in Section 4.4) at a point where one might more naturally expect to use
the set of functions from S to T'. However, for finiteness of the set of functions we should
require decidability of S so that single valuedness of a relation R could be expressed as
Y(z,y),(z',y") € R(x #x' Vy =y'). If S is finite, then we define a finite total relation
from S to Y to be a finite relation R Ca, S x Y satisfying Vo € S.3y € Y.(z,y) € R.
Lemma 2.1.10. If S and T are finite, then so is the set FT(S,T') of finite total relations
from S to T.

Proof. If X and Y are types then we desire FT : FX x FY — FF(X x Y) such that
We define FT to be the unique function such that

FT(0,T) = {0}
FT({a} US,T) = {RU{a} x T"|R € FT(S,T) AT € F1(T)}

Again, it is not hard to show that this definition satisfies the conditions for F-recursion.
When S =0 we have Re FT(0,T) & R=0< RCOxTAVz eIy e T.(z,y) €ER
as required. For the other case,

ReFT{a}us,T)
& 3R T'.(R' e FT(S,T)AT € F,(T)AR =R U{a} x T")
S3IRNT' (R CSxTAVreSAyeT.(v,y) € R

AT € Hi(TYNR =R U{a} xT")

This certainly implies that R C ({a}US) x T and Vz € {a}US.3y € T.(z,y) € R. For
the converse, from R C ({a} US) x T = {a} x TU S x T we deduce that there are finite
R; and R, such that R = R{UR», Ry C {a} xT and Ry C SxT. We can find b € T such
that (a,b) € R; let R} = R1U{(a,b)} C{a}xT.If T"is the direct image of R} under the
projection to T then T' € F;(T) (inhabited because it contains b), and R} = {a} x T".
Next, Ry in itself might not be enough for R' (in the case where a € S). However, we
have Vz € S.3y € T.(x,y) € R and so by Theorem 2.1.6 (6) there is some R} Cg, R such
that fst(R5) = S. Let R’ = RoUR). We have that R C SxT,Vz € S.3y € T.(z,y) € R,

and R = R'U {a} x T", so we have found R' and T" as required. m
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We finish this section by strengthening the principle of F-induction considerably,
strengthening the induction hypothesis. (The only place where we need the stronger
principle is in our account of Abramsky’s normalization result for function spaces, our
Lemma 4.4.5.)

Theorem 2.1.11. (The principle of strong F-induction) Let P C FX be a predi-
cate satisfying the induction step

Ve e S3U : FX.(S={z}UUAP(U)) Fs.rx P(S) (*)
Then P satisfies
Fs.zx P(S)

Proof. Because emptiness of a finite set is decidable, the induction hypothesis (the
premiss of (*)) implies S = @V Iz : XU : FX.(S = {z} UU A P(U)), which is a
collected form of induction hypothesis for simple F-induction. It follows that this is a
formally stronger induction principle: any proof that uses the simple induction principle
can easily be turned into a proof using strong induction.

The proof of validity of the strong principle is by induction on the size n of a represen-
tation S = {x1,...,z,} (possibly with repetitions amongst the z;s in the absence of
decidable equality there is no well-defined cardinality of S), and one role of the Theorem
is to package up such induction and give a reasoning principle that does not have to refer
to the representation. I am grateful to Paul Taylor for a discussion that led to a rigorous
proof along these lines to replace a more complicated one that I originally had.

Let us write BX for the free commutative monoid over X. One should think of its
elements as the finite bags, or multisets, over X. We write + (bag sum) and 0 (empty
bag) for the monoid operation and its unit, and {—} for the injection of generators (so
{z|} is the singleton bag containing x). We also write # : BX — N for the monoid
homomorphism with # {Jz|} = 1 (so #B is the total size of B), and o : BX — FX for
the monoid homomorphism with o {|z[} = {z} (so 0B is the set of elements of B).

It is straightforward to prove the following induction principle on BX: if P C BX is
such that P(0), and whenever P(B) then P({z[} + B), then P(B) holds for all B. We
can now show
1 If #B =0 then B = 0 (easy by bag induction)

2 o is onto: for the image of BX is a submonoid of FX that contains all the generators

3 If x € 0B then there is some C such that B = {{z[} + C. The base case, B = 0, is
obvious z € ¢0 is impossible. If z € o({lyl} + B') = {y} UoB’, then either z = y
orx € oB'. If x = y, then {y[} + B' = {z[} + B'. If x € oB’, then by induction
B = {lal} + C" for some C', 50 {yl} + B' = {al} + ({ly]} + C").

Now let P be as stated in the overall theorem. It suffices to show Vn : N.Q(n), where
Q(n) =4er VB : BX.(#B =n — P(0B))

When n = 0, we have P((})) because the induction hypothesis holds vacuously. Other-
wise, suppose #B =n+ 1. If z € 0B then B = {z[} + B’ for some B’, and #B' = n. By
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induction on n we have P(6B'), and 0B = {z}UoB'. It follows from (*) that P(0B) as
required. m

2.2. The 2-category Top of toposes

We shall describe here some aspects of categorical structure of the category Top of
toposes (Grothendieck toposes with geometric morphisms between them) and of its slices
Top/B. Though the constructions are well known, we shall need to describe them in
terms of the theories classified in effect, in terms of the points of the toposes.

It is worth bearing in mind that Top is in fact a 2-category: each hom-class Top(D, E)
is a category, and a large one at that (though locally small). As a consequence, it is
generally too much to expect diagrams in Top to commute “on the nose”, i.e up to
equality commuting is usually only up to isomorphism. In broad terms, this is because
in a category equality between objects is less important that isomorphism. Moreover,
universal properties should properly be described in a 2-categorical form. For instance a
product D x E is a representing object for a functor from Top to Cat, taking a topos F'
to the category Top(F, D) x Top(F, E): “representing object” means that for every F'
the functor from Top(F, D x E) to Top(F, D) x Top(F, E), mapping f to (f;fst, f;snd)
is an equivalence of categories.

We shall need to work not only in Top itself, but also in the slice categories Top/B.
The 2-categorical laxness that we shall allow is that the morphisms, triangles in which two

sides have common target B, are to commute up to a given isomorphism. An important
issue will be whether the constructions we describe are preserved by the pullback functors
between slice categories: in fact, they all are.

2.2.1. Terminal object The terminal topos 1 classifies the empty theory (no vocabulary,
no axioms). S1 = Set.

2.2.2. Pullbacks Let D and E be two toposes over a base B: in other words we are given
geometric morphisms f : D — B and g : E — B. To avoid having to name too many
things, we shall use restriction map notation so that (for instance) if z is a point of D
then z|p = f(z).

The pullback D x g E classifies triples (z,y,6) where z and y are points of D and E,
and 6 : z|p = y|B.

This construction covers pullbacks and binary products in slices Top/C.

2.2.3. Comma squares Again let D and E be toposes over B. The comma object D >p E
classifies triples (z,y,6) where z and y are points of D and FE, and 6 : z|p — y|p is a
homomorphism. Again this covers comma squares in slices. A particular case of this is
the inserter, when a single topos D lies over B in two different ways f,g: D — B. The
comma object (D, f) >p (D, g) is the inserter for f to g.

2.2.4. Initial object The initial topos  classifies the contradictory theory (no vocabulary,
axiom true | false). To see why, suppose we have a point of @), in other words we have
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contradiction false. Then any interpretation of vocabulary will give a model for any
theory, and any two interpretations will be isomorphic. The same topos ) is initial in
every slice, and is preserved by pullback.

2.2.5. Bagtoposes If D is a topos, then there is also a topos By, D, its lower bagtopos,
whose points are pairs (S, (zx)res) where S is a set and (z)res is an S-indexed family of
points of D. In terms of geometric theory presentations, the slightly intricate construction
involves adding a new sort (for S) and functions from the old sorts to S in such a way
that the fibres over elements of S are models of the old theory. This can be universally
characterized as a partial product (Johnstone 1992); it is a notable example of a case
where care is needed in giving a proper 2-categorical account of the universal property
(Johnstone 1993). We shall not go into the details here but use these construction mainly
to make geometric sense of phrases such as “set-indexed family of points”.

2.2.6. Coproducts Let D and E be toposes. Then their coproduct D + E classifies tuples

(I= (mA)AED J7 (yu)uEJ70)

where (zx)xer is an I-indexed family of points of D, (y,)uecs is a J-indexed family of
points of E, and 6 : [ + J = 1. (Classically, of course, this is either a point of D or a
point of E.)

We write it this way to make it clear using bagtoposes that we have a geometric theory,
but in practice we can use a more perspicuous notation. The subsingletons I and J with
I+ J =1 are equivalent to a Boolean value (complemented proposition) p = IA\\ € I,
and the I- and J-indexed families are equivalent to a point x of D defined if p, and a point
y of E if -p. Let us therefore write this point of D+ E as a conditional if p then z else y.
The injection inj, : D — D + E maps = to if true then z else —, and inj, maps y to
if false then — else y.

An important feature of the if ... then ... else ... notation is that it embodies a
filtered diagram. Consider if p then u else v, where u and v are points of a single topos.
This gives a diagram whose shape is the discrete category {* € 1| p}+{x€ 1| -p} =1,
and whose nodes are u for each % in {* € 1 | p} and v for each % in {* € 1 | =p}. The
diagram is filtered and hence has a colimit (another point of the same topos). We shall
write “if p then u else v” to denote this filtered colimit.

To see that D + E is a coproduct, consider maps f : D — F and g : E — F. A point
u = if p then z else y of D + E is isomorphic to the filtered colimit

if p then (if true then z else—) else (if false then — else y)

= if p then inj, = else inj, y

Because geometric morphisms preserve filtered colimits of points, the copairing [f, ¢]
has to map w to the colimit of the image diagram in F', namely if p then f(z) else g(y).

(The alert reader may well be worried by this recourse to preservation of filtered
colimits when the diagrams are not external ones, but in fact sense can be made of the
argument.)



Topical Categories of Domains 15

If D and E are toposes over B, then D + E is still the coproduct in Top/B. Moreover,
if f:C — B, then f*(D+ E) is equivalent to f*D + f*E. A point of f*D+ f*FE is of the
form if p then (z,2',¢) else (y,2",1) where z and y are points of D and E, 2’ and 2"
are points of C, ¢ : f(2') Z z|p and ¢ : f(2") = y|p. If we let z = if p then 2’ else 2",
then ((if p then z else y), z,0) is a point of f*(D + E), 6 being the isomorphism

f(z) = f(if p then 2’ else 2") = if p then f(2') else f(z")
= if p then z|p else y|p = (if p then z else y)|p

This gives an equivalence between f*D + f*E and f*(D + E).

2.2.7. Exponentials Top is not Cartesian closed. However, many of the toposes we shall
be dealing with are exponentiable, so exponentials often exist. Let us note a general
2-categorical fact, that pullback functors between slices preserve existing exponentials.
For suppose q : E — B is a geometric morphism and that D; and D, are toposes over
B such that the exponential Dy =g D,y in Top/B exists. If F' is a topos over E, then
the following kinds of maps are all equivalent:

F — ¢*(D1=p5Dy) overE

F — D, =D, over B

FxgDy — D, over B
Fxgq*Dy — D over B (because F' xp q¢*D1 = F xg D)

Fxgpq*Dy — q*D, over K/

It follows that ¢*(D; = D») is an exponential ¢* Dy =g ¢*D>.

2.3. Lifting in Top

It is convenient to summarize here general results about lifting of toposes, commonly
known as scone or Freyd cover (Johnstone and Moerdijk 1989; Johnstone 1992). Some
of the coherence questions that arise are quite intricate, and we shall defer detailed
discussion of them (in more general 2-categories than Top) to a later study. Here we
shall be content with sketching the concrete constructions.

Definition 2.3.1. (Johnstone and Moerdijk 1989) A topos D is local iff the unique
(up to isomorphism) map ! : D — 1 has a left adjoint L : 1 — X (L pronounced
“bottom”). Being a left adjoint means exactly that the global point L is initial amongst
all points: if f: Y — X, then there is a unique 2-cell from !; L to f.

(Clearly this definition can be extrapolated to general 2-categories. In particular, in poset-
enriched categories, L is indeed a bottom point of D and so we use this term rather than
Johnstone and Moerdijk’s “centre” which seems topographically wrong.)

A map between two local toposes is strict iff it preserves L (up to isomorphism).

We now have a sub-2-category LTop of Top, full on 2-cells, whose objects and morphisms
are the local toposes and strict maps.

We shall feel free to extend these definitions to slice categories Top/B by change of
base, getting the notions of toposes or maps being local or strict over B.
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The essence of lifting is that it provides a left adjoint to the inclusion LTop — Top
— this is exactly what lifting of domains does in a rather simpler context. It is less
straightforward in our 2-categorical context, but Johnstone (1992) shows that the scone
or Freyd cover construction has the right properties. In Johnstone and Moerdijk (1989)
L£X is written X

3

Definition 2.3.2. Let X be a topos over base B. (We shall use restriction notation
for the map from X to B.) The scone or lifting of X over B, LgX, classifies triples
(b,I,(xx,0x)rcr) where b is a point of B, I is a subsingleton, and (xx,0))xer is an I-
indexed family of pairs, z) a point of X and 6y : 5| = b. This is again a topos over B,
by the map that forgets everything except b.

Over B, it has an initial point given by b — (b,0,(—,—)), and a map up : X — LgX
given by z — (z|g, 1, (z,id)). Note that the point (b, I, (zx,0x)rer) of LpX is a filtered
colimit of L(b) and points up(zy).

Proposition 2.3.3. L provides lifting in Top/B.

Proof. This and further properties of lifting (e.g. that it has coKZ properties) follow
from the fact that LgX is a cocomma object in Top:

X — B
md U 1o
X — KBX
up

(The morphism up is the unit of the monad Lg.) =

We now turn to discuss the axiomatization by Crole and Pitts (1992) of lift. They
require a fizpoint-object Q: Q is an “initial lift algebra” (with structure morphism o :
LO — Q), equipped with a global point w : 1 — Q that is an equalizer for Idg and
up;o :  — Q. However, “algebra” here is used in a sense that is weaker than that of
Eilenberg-Moore algebra for lift qua monad, so let us avoid confusion by using the word
structure for the weaker sense.

Definition 2.3.4. Let F' : C — C be an endofunctor of a category C. Then an F'-
structure is an object X of C' equipped with a morphism a : FX — X.

Theorem 2.3.5. Each slice Top/B has a fixpoint-object B x Idl(N).

(Note that in the 2-category Top even the statement of this theorem raises coherence
questions that we are neglecting for the time being.)

Proof. Let us first prove the case when B = 1. Define the locale Q2 to classify inhabited
initial segments of N (so 2 is the ideal completion of (N, <)). Q is local (its initial point
is {0}), and we also have a map suc : Q — €, suc(S) = {0} U {n+ 1| n € S} which, by
the universal property of L, extends to o : L — Q.

Let us note straightaway that if we define the global point w : 1 — Q to be the whole
of N, then this is the equalizer for Id and up; o = suc. For if S = suc(S) then 0 € S and
n+ 1€ S for every n € S, so by induction S = N. Notice that w is a final point of Q —
Q is colocal as well as local.

Now suppose F' : LD — D is a structure for £. We require an essentially unique
map it(F) : @ — D that is an L-structure homomorphism, in other words o;it(F) =
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Lit(F)); F. Now an ideal S of N is a filtered colimit of the principal ideals | n such
that n € S, so the action of it(F') is determined by its action on principal ideals and the
inclusions between them. We have —

it(F)(L0) =it(F)oo(L) X FoL(it(F))(L)=F(
{6(F)(L (n -+ 1)) = it(F) o suc(l n) = i6(F) 0 7 o up(l
= Fo L(it(F))oup({ n) = Foupoit(F)({ n)

1rp)

By induction, this proves uniqueness of it(F') on principal ideals. Let us write x,, for
it (F)(4 n).
it(F)(L0C 4 1) = it(F) o (L — up(d 0))
= Fo L(it(F))(L — up({ 0))
— F(: L - up(ao))
it(F)(} (n+1) C ) (n+2)) = it(F) oo oup(bn C | (n+1)
~ Foupoit(F)(InC | (n+1)

This proves uniqueness of it (F) on inclusions between principal ideals, and hence (taking
filtered colimits) on arbitrary points of . It also proves existence by allowing us to define
it(F)(S) as the filtered colimit of the corresponding diagram (over n € S) of points of D.

The argument for Top/B is similar, but parametrized by points of B. The fixpoint
object in Top/B is B x Q, and this is an Lpg-structure by Idg xo : B x LQ) — B x Q
(using the fact that Lp(B x Q) =2 B x L{). &

We use the fixpoint object to prove a remarkable property of local toposes, namely
that they are exactly the topical analogues of Freyd’s (1991) algebraically complete cat-
egories, i.e. those for which every endofunctor has an initial structure. By considering
the identity endofunctor one can prove that every algebraically complete category has an
initial object, but the converse is far from true. However, we show that if a topos D has
an initial point (that is to say, it is local), then every endomap F' has an initial structure

it is constructed using filtered colimits of points. To make this precise, we consider the
topos [F-Str] that classifies F-structures. (An F-structure is a point x of D equipped
with a homomorpism a : Fz — x.) This is the inserter for F' to Idp.

We first set out some easy facts about toposes [F-Str] that are familiar from the
category context (Freyd 1991).

Proposition 2.3.6. Let F' be an endomap of a topos D.

1 Leta:Fz— xand f: Fy— y be two F-structures. Then homomorphisms from «
to B are homomorphisms f : £ — y such that a; f = F f; .

2 F extends to an endomap of [F-Str], mapping a : Fz — z to Fa : F?z — Fu.
Moreover, there is a natural transformation from this F' to Idp. g,

3 If [F-Str] is local, with initial point a : Fa — a, then « is an isomorphism.

Proof. 1. This is quite obvious. (The issue is that the general notion of homomorphism
between models of a geometric theory has already been defined.)
2. Also obvious. « itself provides the homomorphism from Fz to z.
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3. We briefly recall the usual argument. By initiality there is a unique F-structure ho-
momorphism o' : @ — Fa. The composite a'; a is the unique F-structure endomorphism
on a, and so is equal to the identity. Then because o' is an F-algebra homomorphism we
have ;o' = Fa'; Fa = F(o';a) = F(Id,) = Idp,. =

Proposition 2.3.7. Let D and E be toposes, and F': D - E and G : E — D maps.
Then [GF-Str] is local iff [F'G-Str] is.

Proof. Suppose [GF-Str] is local, with initial point & : GFa — a. By an obvious
generalization of Proposition 2.3.6 (2), F' and G extend to maps F : [GF-Str] —» [FG-
Str] and G : [FG-Str] — [GF-Str]; we show that Fa is an initial point of [F'G-Str].
Suppose that § : FGy — y is an FG-structure, and let f : a — Gy be the unique
G F-structure homomorphism. Then Ff; 3 : Fa — y is an FG-structure homomorphism.
For uniqueness, let g : Fa — y be another. Then a~';Gg : a — Gy is the unique GF-
structure homomorphism and so equals f. Then Ff; 3 = Fa ';FGg; 8 = Fa™'; Fa; g =

g. m

Theorem 2.3.8. (In Top, local <= algebraically complete) Let D be a topos.
Then D is local iff for every map F' : D — D, [F-Str] is local.

Proof. (Again, in the proof here we are neglecting coherence issues.)

<: Take F = Idp, and let a : a — a be the initial point in [Id-Str]. There is a unique
Id-structure homomorphism from (a, ) to itself, i.e. a unique homomorphism f : a — a
such that a; f = f; a. But both Id, and « satisfy this, so @ = Id,. Now by considering
the unique Id-structure homomorphism from (a,Id,) to (b,1d;), we see that there is a
unique homomorphism from a to any point b of D. Hence D is local with initial point a.

=: Let us write S for the topos [F-Str]. By Proposition 2.3.3, we have a unique strict
map F' : LD — D such that up; F' = F, and hence it(F') : 2 — D the unique L-
structure homomorphism. Let a = it(F')(w). Then

a=1it(F") oo oup(w) = F' o L(it(F")) ocup(w) = F' oupoit(F')(w) = F(a)

and the isomorphism makes a an F-structure A = (a : Fa — a). This will be our initial
point L of S.

Now let E classify diagrams of the form F'b Lyl y where b and y are points of D,
and 8 and f are homomorphisms. E is a topos over S (by the map that picks out the
structure §: F'b — b), and moreover it is local over S: the initial point over the algebra
b has y = L. We can define a map G : E — E over S mapping the above diagram to

Fb 5 & Ry

From G we get amap G' : LsE — E, strict over S. The forgetful map from E to S x D
(forgets f) is an Lg-structure homomorphism, and so we have a diagram of £g-structures

sSxq (A gop

SxQ — FE — SxD
it(G") Forget
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By initiality of S x Q, it follows that for an F-structure B = (3 : F'b — b), it(G') (B, w)
has the form Fb 25 b <% a. By the equalizing property of w, we have an isomorphism

Fb 5 b & a

| I T a

Fb — b +— Fb<+— Fa
B8 B8 Fg

so that g is an F-structure homomorphism.

To prove uniqueness, let S; classify F-structures 8 : Fb — b equipped with F-structure
homomorphisms h : @ — b, and let E; classify points of S; equipped with homomorphisms
f iy — b Ep is local over S; (take y = L). We have a map G; : E; — E; over Sy,
defined just like G, and hence G| : Lg,E; — E;. Define a map H : S; x Q — E; by
letting H((B, h),n) be (B, h) equipped with

it(FY(n Cw);h:it(F')(n) = it(F)(w) =a —b

We show that H is an Lg,-structure homomorphism, so we check that two maps agree
on Lg,(S1 x Q) =2 51 x LQ — they are (S1 X 0); H and Lg, H; G}. Since every point of
L is a filtered colimit of points L and points n of €, it suffices to check on these. For
((B,h), L), we find that both images in E; have homomorphisms L — b which must be
equal by initiality of L in D. For ((B,h),n), we find that the two images are given by
the following two homomorphisms to b:

it(F")(sucn) SR g g

Foit(ﬂgngw)

F o it(F")(n) Fa '™ Fb 25

To show these are isomorphic, consider the diagram:

it(F')(sucn) F'o Lit(F") oup(n) Foit(F")(n)

Pl &
it(F') suc(nCw)d VFroLit(F)oup(nCw) droit(Fr) (nCw)
it(F')(sucw) <— F'oLit(F')oup(w) <— Foit(F')(w)

=1 1=
a & Fa
nd Lrn
b ? Fb

Here, the bottom part commutes because h is an F-structure homomorphism, the
middle part by definition of a, the top right because up is a natural transformation from
Id to £, and the top left because it(F') is an L-structure homomorphism.

This shows that H is an Lg,-structure homomorphism (hence the unique one) from
S1 x Q to E;p. But there is another H', defined by H((B,h),n) = it(G')(B,n) with h
tacked on, and so H = H'. Applying them both to ((B,h),w), we see that h = ¢g and
hence there is a unique F-structure homomorphism from A to B. =

Corollary 2.3.9. Let D be an arbitrary topos, F : LD — D a map. Then [(up; F')-Str]
is local.
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Proof. £D is local, so by Theorem 2.3.8 [(F;up)-Str] is local. Now apply Proposition
23.7. m

2.4. Algebraic dcpos

The localic theory of algebraic dcpos is well-known, but we shall recall some of it here
for three reasons.

1 The strongly algebraic domains that are the main concern of this paper are algebraic

dcpos, and many of the points discussed here will be needed later in the special case.
2 They provide a simple example to illustrate the “Display categories” in Section 3.2.
3  We wish to illustrate the idea that a locale is a special kind of topos.

Let us first recall the localic theory of algebraic dcpos.

Definition 2.4.1. Let X be a poset. We define its ideal completion 1dl X to be the locale

whose points are the ideals of X (the directed lower-closed subsets).

A locale is an algebraic dcpo iff it is homeomorphic to Idl X for some poset X.
Certainly the theory of ideals of X is geometric; it is most conveniently presented using

a unary predicate I C X satisfying —

It)NsCthg I(s)
true - 3s.1(s)
I(S)NI(t) Fst u.(I(u) ASCuAntCu)

Since the theory has no new sorts, it is essentially propositional and Idl X is a locale
(more precisely, it is localic relative to the theory where X lives).

The familiar results on algebraic dcpos are constructive, and hold in a general geometric
universe.

Proposition 2.4.2. Let X be a poset. Then the following frames are isomorphic:

1 QIdlX
2 Fr{(fs(s€X)| tt<ts(sC1)
true <\/ _x Ts
tsAtt < V{tu:ue X,sCu,tCu})
3 The Alexandroff topology Alex X on X (that is to say, the frame of upper-closed
subsets of X).
4 The Scott topology on the set of ideals of X.

Proposition 2.4.3. A locale is an algebraic dcpo iff its frame is the Scott topology of a
set-theoretic dcpo D satisfying one of the following equivalent conditions:

1 D is order-isomorphic to the set of ideals of the poset K D of its compact elements.
2 Every element of D is a directed join of compact elements below it.

Then its global points are in order-isomorphism with D.

However, neither the frame nor the set-theoretic ideal completion is geometric, so these
constructions are less important to us.
If we consider the generic poset (X,C) in S[poset], we obtain its ideal completion

Idl X as a locale [poset][ideal] over [poset], and every algebraic dcpo (over any topos) is a
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pullback of it. (We are extending the notation of Section 1.1 by writing [poset][ideal] for
the topos that classifies pairs (X, ), X a poset and I an ideal of it.) We may therefore
consider [poset][ideal] — [poset] as the algebraic dcpo classifier. “Classifier” here has the
same sense as in “subobject classifier”, not as in “classifying topos”. In an elementary
topos, the subobjects are the pullbacks of the subobject classifier true : 1 — Q, and
in the category of toposes the algebraic dcpos are the pullbacks of the algebraic dcpo
classifier.

To summarize: The ideal completion of a poset can be constructed “generically”, as
a geometric morphism [poset][ideal] — [poset]. All other instances of the construction,
over any topos, can be obtained from this one as pullbacks.

An important corollary from these results is that algebraic dcpos are exponentiable
in the category of toposes (Lemma 4.1 of Johnstone and Joyal (1982)). Of course, it is
better known that they are exponentiable in the category of locales, i.e. locally compact.
The corresponding property for toposes is slightly stronger — such locales are known as
“metastably locally compact” —, but the results of Johnstone and Joyal are enough to
show that it holds for algebraic dcpos.

If X and Y are posets, then by analysing the frame homomorphisms from Fr(t s
(s € X) |...) to Alex X one easily sees that continuous maps from Idl X to IdlY can
be described equivalently as certain relations f from X to Y — explicitly, they are those
relations satisfying —

Slgsftgtl l_s’stt’ Slftl
true; 3t e Y.s ft
Sftl/\SftQ l_stth E'tGY.(Sft/\tgtl/\tth)

Such relations are known as approzimable mappings from X to Y. The identity ap-
proximable mapping is J, and composition is by relational composition.
Note that the last two axioms are the nullary and binary case of a more general form
that can be proved from the special cases by induction on n:
n n
Nsftib3t(sftn NtDt)
i=1 i=1

We can state this more succinctly using finite sets: if T is a finite subset of Y, then
Vi'eeTsft'-3t(s ftAVE eTt3t)

Note also that approximable mappings are geometric in the sense that there is a
geometric theory whose models are pairs (X, Y") of posets, together with an approximable
mapping (appearing as a binary predicate) between them. Let us write AM for this theory.
There are then two posets X and X; in S[AM], i.e. two geometric morphisms from [AM]
to [poset], so [AM] is a topos over [poset]?. Thinking spatially, the fibre over a given pair
of posets is to be the space of continuous maps from Idl(Xy) to Idl(X}), so perhaps [AM]
should be the exponential (Idl(X,) =[oseq2 1d1(X;)) over [poset]?. Indeed it is.

Theorem 2.4.4. The exponential (Idl(Xs) =[esetjz 1d1(X¢)) exists and classifies the
theory AM.
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Proof. This is an application of Lemma 4.1 in Johnstone and Joyal (1982). Let us
sketch the proof in this simple case. If D is a topos over [poset]?, then let X and Y
be the two corresponding posets in SD. It can be calculated that Id1(X) classifies the
theory of pairs (x, F) where x is a point of D and F is a flat presheaf on X (z): hence
by Diaconescu’s theorem, SIdI(X) is equivalent to the geometric universe of internal
X-diagrams in SD. A geometric morphism from Idl(X) to Idl(Y) is an ideal of the
constant internal X-diagram corresponding to Y, but this can be calculated to be just
an approximable mapping from X toY. =

This result gives us a universal characterization of the topos [AM] that does not depend
on the presentation we gave for the theory AM.

3. Examples of topical categories
3.1. Intrinsic categories

An important aspect of the 2-categorical structure of Top is that it allows us to imagine
each topos D = [T'] as a category — not as its geometric universe SD, but as an idealization
of pt D (i.e. Top(1, D)) that transcends the possible insufficiency of models of T in Set.

The way this works as a practical technique is that if you have an aspect of categories
that can be expressed using the 2-categorical structure of Cat, then that expression can
be translated to Top. For instance, a category C' has an initial object iff the unique
functor ! : C — 1 has a left adjoint. Transferring this property to Top gives a natural
notion of “topos with initial point” (and these are the local toposes of Section 2.3). C
has finite coproducts iff every diagonal functor A, : C — C™ has a left adjoint, and
in Top we get the notion of “topos with all finite coproducts”. A result of Johnstone’s
(1992) can then be naturally read as saying that a certain bagdomain construction freely
adjoins finite coproducts to a topos.

This somewhat mystical category of generalized points is manifested as a topical cate-
gory, because if T is a geometric theory then the theory of two models with a homomor-
phism between them is also geometric. Clearly we seek a comma square [T] > [T,

SRC

Hom[T] %S [7]
a4+ U
T = (1]

Alternatively, Hom[T] can be expressed as the exponential [T]® where § is the Sierpinski
locale (whose points are the subsets of 1).

We can now make Hom(D) ::D into a topical category. Using the comma object
property of Hom(D), ID : D — Hom(D) corresponds to the identity 2-cell on Idp. For
composition COMP, let Homsy (D) be the pullback

Hom,(D) — Hom(D)

I = Imr

Hom(D) s D
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Then we have

Hom, (D) — Hom(D)

L = mar d&lsre
SRG
Hom(D) | D
TAR

and hence COMP : Hom, (D) — Hom(D). By definition, ID and COMP interact correctly
with SRC and TAR, while the unit laws and associativity follow from the corresponding
properties of 2-cells. We call this topical category the intrinsic category on D.

The topical categories that we shall use to “topologize” categorical domain theory are
actually not intrinsic categories — they are examples of the display categories that we shall
introduce in the next section. However, wherever you have a topos you have an intrinsic
category, and it turns out that some of those associated with the display categories for
domains have particular domain-theoretic significance: one, for instance, corresponds to
a category of domains with embedding-projection pairs for morphisms.

3.1.1. “The topos of sets is not Cartesian closed” We prove this to suggest that topical
CCC’s are less common than you might expect. Of course, the statement must be un-
derstood rather carefully. “The topos of sets” means the topos classifying sets, i.e. [set]
(usually known as the object classifier). This has an intrinsic categorical structure topi-
cally: its morphism topos is Hom[set] = [fn], classifying two sets and a function between
them. It is this topical category that is not Cartesian closed, i.e. it cannot be extended
with the (essentially algebraic, and hence topically meaningful) structure of a Cartesian
closed category.

The basic idea is that if [set] were a topical CCC, then exponentiation would have to
be covariant in both arguments, and this is impossible.

Suppose we are given a topical CCC C, with toposes Cy and C classifying ob-
jects and morphisms, and various maps including an exponential EXP : C3 — Cp. If
we take global points, then we get classes pt Cy and pt C; of objects and morphisms,
with various functions making an ordinary (though large) CCC ptC. This includes
ptEXP : (ptCy)? — ptCy, which is determined uniquely up to isomorphism by the
category structure of pt C. Of course, with respect to the morphisms in pt Cy, pt EXP is
contravariant in the first argument and covariant in the second. On the other hand, pt Cy
is not just a class — it is a category in its own right, and with respect to the morphisms
there, pt EXP is covariant in both arguments.

Now consider the case of the intrinsic topical category on [set], and suppose that it is
Cartesian closed. The global points give the category Set, and EXP(X,Y) is ordinary
exponentiation YX. But pt Cy, i.e. pt[set], is also Set, so we have a covariant functor
EXP : Set” — Set such that EXP(X,Y) = Y X. Now consider (!,1d) : (§,0) — (1,0) in
Set?. EXP(!,1d) is a function from % =1 to ¢' = @ , which is impossible.

It is also instructive, under the assumption that [set] is intrinsically a topical CCC, to
consider the GU homomorphism & EXP : S[set] — S[set]?. This is defined by a single
object of S[set]?, and one can show that it would have to be YX where X and Y are
the two generic sets in S[set]?. But one can also calculate that YX is isomorphic to
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Y — essentially because the only functions that can be defined from one generic set to
another are the constant functions. The assumption that [set] is intrinsically a topical
CCC implies that this exponentiation is generic, and hence that in any geometric universe
we have YX 2 Y for all objects X and Y  an obvious nonsense.

I do not know of any topos other than 1 that is intrinsically Cartesian closed in this
sense.

3.2. “Display” categories

We follow with another family of examples of topical categories, which we shall call
“display categories”. Hyland and Pitts (1989) use pullback-stable classes of morphisms
to model dependent types, and we shall use this idea in Top in the case where the class
is generated by a single “classifying” morphism p of which every other morphism in the
class is a pullback. The paradigmatic example is the way a subobject classifier ¢ : 1 — )
classifies monics in an elementary topos monics are pullbacks of it. Similarly, we treat
p as classifying the pullbacks of it.

The prime example in toposes is the étale classifier, the forgetful map from [set][elt]
(classifying sets with distinguished elements, i.e. pointed sets) to [set]: a geometric mor-
phism f : Dy — D, is étale (otherwise known as a local homeomorphism) iff it is a
pullback

Dy — [set][elt]
R Ip
D, — [set]

By definition of the object classifier [set], h corresponds to an object X of SD,, and
then SD; is equivalent to the slice geometric universe SDy/X.

Now for the subobject classifier, the morphism along the bottom is uniquely determined
by the monic. For the étale maps, h is defined uniquely by f only up to isomorphism,
and in fact there are examples of display categories where even that uniqueness up to
isomorphism doesn’t hold. Hence what p classifies is really pullbacks of it equipped with
specified pullback squares and so the notion of “classifying” is somewhat weaker that
with the subobject classifier; but the comparison is still useful.

Let us call such pullbacks p-displays. If f : D; — Ds (equipped with a pullback square)
is a p-display, let us call Dy a p-topos over Ds. Given a topos D, consider p-Top/D, the
full subcategory of Top/D whose objects are p-toposes. Our interest lies in devising
p to capture various notions of topos mostly locales, actually over (arbitrary) D
as p-Top/D. We have already seen how to capture discrete spaces (étale maps) using
p : [set][elt] — [set], and then p-Top/D ~ SD. A second main example is that of algebraic
dcpos: if we take p to be the forgetful map (forgets the ideal) from [poset][ideal] to [poset],
then it’s the ideal completion of the generic poset, and we have already argued that it
classifies algebraic dcpos. (Note that there is a discordance here with the way Hyland
and Pitts (1989) use the word “algebraic”. For them, an algebraic topos D is one that
classifies an essentially algebraic theory: its geometric universe SD is a presheaf category
Set®” for some finite limit category C, and a localic algebraic topos is one for which C
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is a poset — hence a meet semilattice. Our algebraic dcpos are locales D (localic toposes)
for which SD is Set®” for an arbitrary poset C, and it would indeed be natural for
us to define a topos to be algebraic if SD is Set®” for an arbitrary category.) Other
kinds of locales that can be captured (sometimes in several constructively inequivalent
ways) include continuous dcpos, Scott domains, strongly algebraic (SFP) domains, Stone
locales, spectral locales, etc., etc. we shall discuss some of these more fully in a later
section. The main body of the paper will be concerned with strongly algebraic domains
because of their computer science interest,.

Let us fix notation for a general scheme so far: we have a theory IS of information
systems (e.g. the theory of posets), a theory IS + pt of points of information systems (e.g.
ideals of posets), and a map p : [IS][pt] — [IS]. Pullbacks of this will be called domains
(though predomains would often be a more conventional term, because we don’t usually
assume bottom points). We shall assume that p is exponentiable, and therefore have
[AM] = (P}p =2 Pi'p), where P, and P; are the two projections from [IS]? to [IS] (cf.
Theorem 2.4.4).

[AM] is a topos over [IS]?, so we certainly have two geometric morphisms SRC and
TAR from [AM] to [IS] (corresponding to Ps and P;). Let us show that these form the
source and target maps of a topical category. Remember that the characterization of
[AM] as an exponential over [IS]? enables us to define maps from any D into [AM] as
pairs (Ps, P;) of maps from D to [IS] together with a map from PXp to P;p over D.

The identity map ID : [IS] — [AM] is given by the pair (Id,Id) of maps from [IS] to
itself, together with the identity map from Id* p to Id" p.

Let [AM5] be the theory of two composable approximable mappings, in other words
the pullback

[AM,] — [AM]
I =2 lmr
[AM] it [15]

We have three maps from [AM,] to [IS] — or, more carefully, four maps with an iso-
morphism between the middle two. Accordingly, we get four domains over [AM,]. The
two maps to [AM] give maps over [AMs] between the first two domains and between the
last two, and the isomorphism gives an equivalence between the middle two. Composing
gives a map between the first and last, corresponding to a map from [AM,] to [AM]. This
is COMP, for composition.

By definition, ID and COMP interact correctly with SRC and TAR. The unit laws
and associativity follow essentially from the corresponding properties of maps, though
we have somewhat glossed over the 2-categorical aspects here. We shall call the resulting
topical category the display category obtained from p.

Example 3.2.1. When p is the étale classifier, then its display category is equivalent
to the intrinsic category on [set]. This is because maps between discrete locales are
equivalent to functions (homomorphisms) between the corresponding sets.

Our main aim in this paper is to show how a specific class of domains, namely the
strongly algebraic (or SFP) domains, can be put into a topical setting to exemplify an
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account of categorical domain theory that in many respects works much more smoothly
than the usual one. The strongly algebraic domains are chosen for exactly the usual
reason, namely that the (topical) category of them is Cartesian closed and supports
domain theoretic constructions including the Plotkin power domain.

3.2.1. Capturing extra structure on the display category Categories of domains are gen-
erally Cartesian (finite products), and a few are Cartesian closed. If bottoms are not
required, then the categories are generally also coCartesian. All these kinds of extra
structure can be expressed using essentially algebraic (finite limit) theories, and so are
meaningful for internal categories in any category with finite limits. Unfortunately, the
category of toposes is actually a 2-category, and pullback squares commute only up to
isomorphism. Because of these complications we shall not here attempt to work with
a proper 2-categorical definition of “internal category” (Hyland and Moerdijk unpub-
lished).

Instead, when we come to investigate a particular p in Section 4 we shall show how
its properties lead to p-Top/B inheriting structure from Top/B, so that constructions
on p-toposes will agree with those pertaining to more general toposes. For instance, p-
Top/B can inherit terminal objects from Top/B as follows. Suppose there is a global
point TERM of [IS] (i.e. TERM : 1 — [IS]) that looks as though it ought to be the
terminal object in an internal category sense. For any topos B we get a corresponding p-
topos over B, namely (I; TERM)*[IS][pt], and what we do is to show that this is terminal
in Top/B. Similarly, p-Top/B can inherit binary products from Top/B. We give a
map PROD : [IS]? — [IS], and show that for any two p-toposes D; and D, over B,
corresponding to f : B — [IS]?, the pullback (f; PROD)*[IS][pt] is equivalent to the
product Dy X Dy in Top/B.

3.2.2. Ezamples We can now extend the negative result of Section 3.1.1 to cover more
particular sets  specifically, finite sets and decidable sets. These give two geometric
theories extending that of sets:

FinSet is presented with a constant T : X and an axiom F,.x z € T

DecSet is presented with a binary relation # C X x X and axioms to make it the
complement of equality:

trueb, yx c=yVao#y
x # 1 b, x false

These are localic over [set], because they are presented without any new sorts. They
are not subtoposes of [set], even though non-constructively one might think of finiteness
or decidability as particular properties of a set X (i.e. just extra axioms). Actually, they
represent, extra structure on X, and this shows up in the homomorphisms. Because T or
# must be preserved, homomorphisms of finite or decidable sets must be, respectively,
onto or 1-1.

It is normal to presume that the category Set of sets is Cartesian closed, but we have
shown that the intrinsic topical category for [set] is not. We might therefore ask whether

perhaps [DecSet] is maybe in [set] we omitted too much of the constructive structure.
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The answer is No, but let us first take care to phrase the question properly. We are
not interested in the intrinsic topical category on [DecSet], because that corresponds to
the category of sets with 1-1 functions and that is certainly not Cartesian closed. (It
does not even have a terminal object, nor binary products.) To get a topical category
whose morphisms correspond to all functions between decidable sets, we take the display
category arising from the étale classifier when pulled back to [DecSet].

Let us now show that this display category is not Cartesian closed. Suppose that it is,
with exponentiation map EXP : [DecSet]*> — [DecSet]. Taking global points just as in

2

mon 10 Seton, where

Section 3.1.1 we find that pt EXP is a covariant functor from Set
Set,on is the category of sets with monos, and that, on objects, it takes (X,Y) to YX.
The argument is now the same as before, because the functions ! and Id used there are
both 1-1.

Now let us turn to the finite sets. Classically, the category Setg, of finite sets is
Cartesian closed. Again, we pull back the étale classifier to [FinSet] and consider the
display category that arises. Assuming that it is Cartesian closed topically, we find that
pt EXP is a covariant functor from Set?0 to Setg,, where Sety, is the category of finite
sets with onto functions, and that, on objects, it takes (X,Y) to YX. Now let Y be
any non-empty finite set. ! : ¥ — 1 is onto, and so is IdY, so there is a function
pt EXP(L,Id) : YY = Y! =Y. Let hy € Y be the image of Idy under this function. We
show that hy is invariant under all permutations of Y, for let ¢ : Y — Y be one. We
have a diagram (*)

1 — YY PUEXP(LID) y1 =y
I Ipt EXP(0,0) dpt EXP(1d,0) do
1 — YY — vt — Y

pt EXP(!,1d)

The two unlabelled morphisms from 1 to Y'Y both select the identity function.

We wish to show that this diagram commutes, for this will show that o(hy) = hy
are desired. The middle square is obvious, because both arms come to pt EXP(!, ). For
the others we need to investigate the vertical maps. We prove a Lemma that may well
generalize to cover other topical display categories.

Lemma 3.2.2. Assuming that the topical display category on [FinSet] is Cartesian
closed, let there be a diagram as follows. The objects are finite sets, h, h', k and k' are
all surjective, and the two outer squares commute.

X 5ox N i Sy

hd nod K ko

Xy — X} — Y, — Y]
f2 pt EXP(h',k)(®) 92

Then the middle square commutes, and the bottom composite edge of the overall rect-
angle is equal to pt EXP(h, k') (f1; ¢; g1).

Proof. We prove the second part first. Consider the exponential on functions, con-
travariant in the first argument and covariant in the second. This exists simply by virtue
of the internal CCC structure. If C is the topos classifying two finite sets and a function



Steven Vickers 28

between them, then this exponential is a map MEXP : C? — C;. This is functorial with
respect to homomorphisms between points, and a homomorphism between points of C?
is just a pair of commutative squares like the outer two in the given diagram, and so we
obtain a commutative square (a homomorphism between points of C) like this:

f1
X! 9
Yl 1 1 Y1/X1
ptEXP(h' k) + Lot EXP(h, k")
XI
Y, 2 = vy

Applying the two arms of this to an element ¢ of Y1X{ gives our result.

Commutativity of the middle square follows by taking X7 = Xy = X{, fi = h = Idx,,
and fo =h',and Y{ =Y, = Y5, k' = g» = Idy, and g1 = k. Then at the bottom we have
h;pt EXP(R', k)(¢);1d = pt EXP(Id,Id)(¢; k) = ¢; k. m

Let us apply the lemma in the case when all the objects are Y and ' = k = 0. We
see that pt EXP(o,0)(Id) = o ';Id;0 = Id, in other words the left-hand square in (*)
commutes. Now if we take X| = XJ =1 then we see that pt EXP(Id, 0)(¢) = ¢; 0 for all
¢ :1— Y, and this translates into commutativity of the right-hand square.

Finally, the contradiction follows by taking Y = 2 and ¢ to be the swap permutation,
which has no fixpoints.

For a more positive example, we can now describe a display category that is Cartesian
closed that of finite decidable sets. (The argument is already present to some extent
in Acufia-Ortega and Linton (1979).) Its display map p : [FinDecSet][elt] — [FinDecSet]
is the pullback along [FinDecSet] — [set] of the étale classifier. (Note that the intrinsic
category on [FinDecSet] is not Cartesian closed at all. Indeed, it is a topical groupoid,
for a homomorphism between finite decidable sets must be 1-1 and onto, and hence an
isomorphism.) The main point of difficulty lies in defining the exponentials. If X and YV’
are finite decidable, then [X = Y] can be defined geometrically as

{fe F(X xY)]
Vee X3y eY.(z,y) € fAY(z1,11), (2,y2) € fo(x1 Fx2 VY1 =y2)}

Using Theorem 2.1.6 and Proposition 2.1.9, this is finite decidable.

4. Strongly algebraic domains

The notion of strongly algebraic (or SFP) domain is due to Plotkin (1976), who gave
a variety of mathematical formulations. There are various flavours, and for our present
purposes we shall assume neither a bottom point, nor second countability (i.e. the set
K D of compact points need not be countable).

Recall the classical definition: an algebraic dcpo D is a strongly algebraic domain iff

1 Every finite subset S of KD has a finite, complete set MUB(S) of minimal upper
bounds in K D. Here “complete” means that every upper bound of S is greater than
one of those in MUB(S).
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2 Given S Cgn KD, define MUB((S) = S, and
MUB;41(S) = AMUB(U) : U C MUB;(S)}
MUB,,(S) = | MUB;(S)

We require that MUB,, (S) (the MUB-closure of S) should be be finite for every S.

We shall describe a geometric theory whose models are “strongly algebraic information
systems”  those posets satisfying the conditions for KD given above. However, there
are certain issues raised by the constructive constraints.

First, is the order decidable? We shall discuss this question here later (Section 4.6)
in more detail, but let us say straight away that we shall not assume decidability. In
fact, taking the order decidable or not gives two distinct constructive theories of strongly
algebraic information systems. The undecidable version that we present here — which
is the harder one when it comes to describing domain constructors — is essentially that
given in Abramsky (1991).

Second, the requirement of minimality for the bounds in MUB(S) is problematic if
the order is undecidable. Classically, if S is a finite subset of a poset then we can discard
the non-minimal elements to obtain a subset Min(S) comprising the minimal elements
of S, but constructively this is impossible without decidability of C. If it were possible,
then homomorphisms between posets i.e. monotone functions would have to preserve
Min. This is not so, as can be seen by considering the posets 2 = {0, 1}, with the discrete
ordering, and I = {1, T}, with L C T. There is a monotone function f : 2 — I that
maps 0 and 1 to L and T respectively. Min{0,1} = {0, 1}, but Min{L, T} = {L}, which
is not the image of {0,1} under f. When C is decidable, then homomorphisms must also
preserve IZ and hence are order embeddings. These do preserve Min, and indeed Min(.S)
can be expressed geometrically as {t € S | Vs € S.(s £tV s = t)}. We shall drop the
insistence on minimality and simply require, for each finite set S, the existence of a finite
set T that is a complete set of upper bounds of S (and we write CUB(S,T') to express
this).

Finite MUB-closures are similar: instead of describing MUB,, (S) explicitly and requir-
ing it to be finite, we shall postulate the existence of some finite set T D S such that
every finite subset of T" has a complete set of upper bounds contained in T'.

We express this as a geometric theory as follows:

Definition 4.0.3. The theory IS of (strongly algebraic) information systems is presented
as follows:

1 a single sort, X (whose elements are commonly called tokens)
2 a binary predicate C C X x X
3 axioms to make C a partial order:

(a) Frx tC ¢
(b)sCtAtCubsrux sCu
(c)sCtAtCshsrx s=t

4 a binary predicate CUB C FX x FX
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5 axioms to say that if CUB(S,T') holds then T' is a complete set of upper bounds for
S:

(a) CUB(SI T) l_S,T:]:X Vse SVteT.sCt
(b) CUB(S T) AVs e S.s Cu l_S,T:]:X,u:X dteT.t Cu

6 an axiom to say that every finite set of tokens has a finite complete set of upper
bounds:

l_S:]-'X a7 . FX. CUB(S,T)

7 an axiom to ensure that if 7" is a finite complete set of upper bounds for S, then
CUB(S, T) holds:

Vs € SVt € T.sCtACUB(S, T')AVt' e T'TFte T+t
l_S,T,T’:]:X CUB(S7T)

8 an axiom to say that every finite set of tokens has a finite CUB-closure
Fs.rx AT : FX.(S C T A CUBC(T))

where CUBCl(T') =qer YU Can T.3V Chn T.CUB(U, V)
Notes —

1 Axiom (6) is a consequence of (8) and hence superfluous. However, we make it ex-
plicit in order to point out that (1)-(7) axiomatize the spectral algebraic or 2/3 SFP
information systems.

2 We have that
CUB(S,T) ©Vse SVte T.sCtAVu.((Vs € Ss Cu) - It € Tt C u)

The = direction is just a rewriting of axioms (5). For <, choose T such that
CUB(S, T"). If t' € T', then Vs € S.s C t' and so 3t € T.t C t'; we can now
use (7).

3 It follows from Note 2 that the axioms for CUB make it uniquely determined by LC.
Hence the map [IS] — [poset] is a monomorphism of toposes, though it is not an
inclusion. (If it were, i.e. if [IS] were a subtopos of [poset], then its structure would
have to be inherited from [poset] and in particular the homomorphisms of information
systems would just be the monotone functions between posets. But we shall see later
that preservation of CUB makes them more restricted.)

4 Classically, this new definition is equivalent to the old one: a poset (X, C) is equivalent
to the set of compact points of a strongly algebraic domain iff it can be equipped
with a predicate CUB making it a model for IS. For the = direction we can define
CUB(S,T) iff T is a complete set of upper bounds of S, and for <=, suppose S Cqp X
and CUB(S,T). By taking the minimal elements of T, we get a finite complete set
of minimal upper bounds of S. Let U O S be finite and CUB-closed. The chain
(MUB;(S)) can be constructed in U, and so MUB,,(S) C U is finite.

5 In practice, we don’t need to describe CUB fully. For suppose X, C and CUBj satisfy
axioms (1) - (6) in the Definition for X, C and CUB. Then we can make a unique
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spectral algebraic information system using X and C by defining CUB(S,T) as the
formula

Vs e SVt € T.sCtATIT : FX(CUBo(S, T')AVt € T' It e Tt C t')

6 A discrete poset (i.e. a set X) can be equipped with the structure of a strongly
algebraic information system iff it is finite and decidable. If X is equipped with CUB,
then for some finite S we have CUB((, S), from which we see that X = S is finite;

and s # t iff CUB({s,t},0). Conversely, if X is finite decidable then CUB(S,T) iff
S=0and T =X, or S ={s} =T for some s, or there are s Ztin Sand T =0 .

7 Vickers (1998) shows that IS is equivalent to the theory of flat presheaves over a
category C' whose objects are finite cardinals equipped with finite partial orders and
whose morphisms are adjunctions (the reason for that choice of morphisms will be-
come more apparent in the light of Proposition 4.0.6). By Diaconescu’s theorem, this
shows that that S[IS] is equivalent to the functor category Set®. It is also shown
that this result is the geometric analogue of Plotkin’s alternative characterization
of strongly algebraic domains as “SFP” (Sequence of Finite Posets). Corresponding
results hold for variations on IS that we discuss later, including decidable informa-
tion systems (Section 4.6), and information systems with bottom, with or without
termination predicate (Section 5).

Definition 4.0.4. A strongly algebraic domain is the ideal completion of a strongly
algebraic information system. More precisely, there is an obvious map from [IS] to [poset],
and the pullback along this of the algebraic dcpo classifier is the strongly algebraic
classifier. We shall usually write it as p : [IS][pt] — [IS]. A strongly algebraic domain

(over a given topos) is a pullback of the classifier.

We have already mentioned that our domains without bottom might more usually be
called predomains. However, a more subtle connotation of “predomain” is “something
whose lift is a domain” so that one can move between domains and predomains by adding
or removing bottom. This is not possible for us. For instance, all flat domains (lifted sets)
are strongly algebraic, but by note (6) above the unlifted sets are not, except when finite
decidable.

From the general theory of algebraic dcpos, we know that maps between strongly
algebraic domains are given by approximable mappings. Hence we get a theory AM of
strongly algebraic approximable mappings, i.e. those for which the source and target
posets are both strongly algebraic information systems.

Besides the continuous maps between domains, it is interesting also to consider the
homomorphisms between information systems, defined in the standard way for models
of a geometric theory.

Definition 4.0.5. Let X and Y be two strongly algebraic (or, indeed, spectral algebraic)
information systems. A homomorphism from X to Y is a monotone function f : X - Y
that preserves CUB:

CUB(S,T) = CUB(f(S), f(T))
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Proposition 4.0.6. Let X and Y be strongly algebraic (or spectral algebraic) informa-
tion systems. Then there is a bijection between —

— homomorphisms from X to Y
— adjunctions between Idl(X) and Idl(Y)

Proof. If f : X — Y is any monotone function, then we have an approximable
mapping ¢ : X — Y defined by s ¢ t iff f(s) J ¢, and f can be recovered from ¢ because
f(s) is the greatest ¢ such that s¢t. We can also define a relation ¢ from Y to X (not
necessarily an approximable mapping) by tis iff ¢ J f(s). Then J;¢; 30 = ¢, and ¢ is
right adjoint to ¢ in the sense that ¢;¢ O Jx and ;¢ C Jy. These conditions suffice
to make ¢ uniquely determined by ¢, for ti)s iff Vt'.(s¢t’ — ¢ 3 ¢'). But for an arbitrary
approximable mapping ¢, if it has such a right adjoint ¢ then f exists: for for any s € X
we can find t with s¢tys, and t is the greatest such that s¢t and hence unique. We take
f(s) to be this ¢.

We have thus shown a correspondence between, on the one hand, monotone functions
f:X =Y, and, on the other, adjoint pairs (¢,1)) where ¢ is an approximable mapping
from X to Y and ¢ is a relation from Y to X with J;; 3 = 4. It remains to show that
¥ is an approximable mapping iff f preserves CUB.

Suppose S, T Cg, X and CUB(S,T'). Then Vz € S.us holds iff u is an upper bound
for f(S). ¢ is an approximable mapping iff in all such contexts we have uit with ¢ an
upper bound for S, i.e. wyt’ with ¢’ € T, i.e. v O some element of f(T'), and this is
exactly what is needed to show CUB(f(S), f(T)). =

Leading on from this, one can show that, using the definitions of Johnstone (1993),
the strongly algebraic classifier is both a fibration (homomorphism f gives map ) and
an opfibration (f gives ¢).

We shall now look at constructions on strongly algebraic domains — products, coprod-
ucts, function spaces and so on. (It is worth noticing that the general techniques seen in
Hyland and Pitts (1989) indicate how to go beyond these domain constructions to the
construction of terms for maps between domains — as also appear in Abramsky (1991).)
For each of these constructions we show how to construct a new information system out of
old ones, and there are usually two issues. First, does the new one have the right points?
(Is the corresponding pullback of p the topos that we asked for in Section 3.2.1 and
described in Section 2.27) Second, is the constructed information system still strongly
algebraic?

In fact, this work is largely indebted to that of Abramsky (1991). He gave a localic
account of SFP domains (with bottom) by describing a formal language for the compact
opens that appear in various constructions — specifically, products, coalesced sums, lifting,
functions spaces, the Plotkin power domain, and solutions of recursive domain equations.
(Our treatment differs, in a way that has been suggested by Abramsky himself, in that we
use the information systems — the posets of compact points — instead of the distributive
lattices of compact opens. This generally simplifies the presentation — though perhaps
not for the function spaces — but the difference is not a deep one.)

Part of Abramsky’s method relies on certain predicates on the terms that represent
compact opens: binary predicates < and =, and unary predicates C and T (C(a) means
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that a is a coprime compact open, corresponding in our setting to a token; T(a) means
that a # true). Because of the presence of the recursive solutions to domain equa-
tions, the definitions of these predicates are also recursive and so it is essential that the
predicates occur positively in the definitions. For instance, one cannot ensure merely by
definitional fiat that if —=(a = true) then T(a), because the recursive nature means that
one only gradually discovers which a’s are equal to true. T must be defined by positive
means, after which it is possible to prove that T(a) < a # true.

Because of this, the requirements of positivity and constructivity called for by the
use of geometric logic were also called for on quite immediate computational grounds
in Abramsky’s work, and so essentially the work of constructivizing has already been
done by him. But one can also look at this in reverse: the use of geometric logic implied
by the topologization programme automatically imposes strong constructive constraints
that turn out to be necessary in syntactic computation. Compare this with the lack of
constraints imposed by classical logic in Vickers (1989): the apparently simpler treatment
there sometimes uses arguments that are constructively useless in Abramsky’s formal
system, a good example being the account of strongly algebraic function spaces. However,
there is a much deeper point. The word “constructive” is often used to mean just “valid
in any elementary topos”, but impredicative reasoning in such constructivism can also
evade the algorithmic content that Abramsky needs. It seems that it is the stronger
geometric constraints that force us to consider the algorithms.

A more mundane difference, though a significant one, is Abramsky’s restriction to
local domains (i.e. with bottom). This makes it necessary to have a different treatment
of sums (because our coproducts are not local), and to construct amalgamated sums one
requires a predicate to describe the negative information of when a token is not bottom

this appears as Abramsky’s “termination” predicate T mentioned above. This issue is
discussed further in Section 5.

4.0.3. Pre-information systems In Definition 4.0.3 we defined our information systems
to be partial orders. It is actually often more convenient to work with preorders. For
instance, for the Plotkin powerdomain P D, the tokens can then be considered to be
finite sets of tokens of D, under the Egli-Milner ordering, a preorder. However, certain
technical simplifications come from the partial ordering assumption. We shall now show
that in fact we can get the best of both worlds by taking the poset reflection of a preorder.
The technical point is that the axiomatization of CUB is so closely constrained by the
order that it too respects the poset reflection.

Definition 4.0.7. The theory of (strongly algebraic) pre-information systems is defined
exactly as in Definition 4.0.3, but with the order allowed to be a preorder: Axiom 3c
(antisymmetry) is omitted.

Proposition 4.0.8. Let (X, C, CUBy) be a pre-information system, and let (X, C) be
the poset reflection of (X, C) with quotient function f: Xy — X. Define

CUB(S,T) =def HS(],TO : .7:X0(S = f(S(]) ANT = f(To) AN CUBU(S(),T())

Then (X, C, CUB) is an information system.
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Proof. Straightforward. Note that if S = f(So) AT = f(Ty), then the intuitionistic
formula

Vse SVteT.sCtAVu.((Vs € S.sCu) = It €Tt Cu)

is equivalent to the corresponding one in Xy for Sy and Ty, which is equivalent to
CUB(](S(),TO). ]

4.1. Products

Given two information systems, X; and X, their product is defined as follows: the poset
is Xy x Xy with the product order, (s1,s2) C (¢1,t2) iff 51 C ¢; and so C to.

We haven’t defined CUB yet, but already it is clear that if we can, then this is indeed
the product: for an ideal I of X; x X5 is equivalent to a pair of ideals, one from each
Xi: I = {x1 | zo.(z1,22) € I} and I, is similar. Of course, one should check that the
argument is geometric.

Next, we show that the new information system is strongly algebraic. CUB is defined
as in note 5 after Definition 4.0.3 from CUBy(S, T, defined as

E'Tl : :FXl,Tz : :FXQ(CUB(pl(S)ITl) A CUB(]J2(S)IT2) ANT = T1 X T2)

where p; is the ith projection. The basic reasoning is that (s1, s2) is an upper bound for
S iff each s; is an upper bound for p;(S). If M; is CUB-closed containing p;(S), then
My x My is CUB-closed containing S.

The terminal domain is the nullary analogue of this: the poset is 1 = {x}, and
CUB(S,T) holds iff T' = {x}.

4.2. Coproducts

Given two information systems X; and Xs, their sum is defined as follows. The poset is
the coproduct (disjoint union) X = X; + X, with the sum order: s C ¢ iff s and ¢ are in
the same component X;, and s C ¢ in X;.

To show that this sum gives a coproduct of toposes, we must show that ideals of
X are in 1-1 correspondence with points of the coproduct (see Section 2.2). If I is an
ideal of X, then we have a complementary pair of propositions P = 3z : X;.I(z) and
-P = 3z : Xy.I(z). Writing I; = I N X;, we get that I; or I is an ideal of X; or X»
according as P or =P, so if Pthen I else I, is a point of Idl(X;) + Idl(X3). Conversely,
given if Pthen I; else I5, then I = I; + I5 is an ideal of X.

Noting that F(X;+X5) =2 FX; xF X, (the free algebra functor F : Set — Semilattice
preserves all colimits, and for semilattices Cartesian product is a biproduct), we can de-
fine

CUB((51752) (T17T2)) =def CUB(SlTl) A CUB(SZ7T2)

and if M; is CUB-closed containing S; : FX; then (M;, M) is CUB-closed containing
(S1,S2).
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The initial domain is the nullary analogue: the poset is (), and its unique finite subset
() is CUB-closed.

Some remarks on the coalesced sum used by Abramsky (1991) can be found in Section
5.

4.3. Lifting

If X is an information system, then its lift X is the poset {_L} + X ordered by s C ¢ iff
s=lorsCtin X.

If S: FX,, then we can write S uniquely as S; + Sy where Sy : F{L} and S, : FX.
Then we define CUBy(S,T) as

IT": FX (CUB(So, T') AT = {L | Sy =0} + {t € T"| Sy # 0})

If M is CUB-closed containing S, then {1} + M is CUB-closed containing S.

The proof that the points are right is somewhat similar to that for coproducts. If I is
an ideal of X |, then by taking P = {x € 1 | 3z : X.I(z)} we get a P-indexed family of
ideals of X, where P is a subset of 1.

4.4. Ezponentials (function spaces)

Despite the expositional differences, the mathematical substance of this section is very
much based on that of Abramsky (1991), starting from his Definition 3.4.1. We shall see
how the geometric constraints automatically impose the constructivity that Abramsky
required.

Let X, and X; be two information systems. We wish to define another information
system [X¢ = X;] whose points are the approximable mappings from X, to X;, and the
compact points will be the approximable mappings f that are determined by a finite
amount of information U Cg, f C Xs x X;. (In terms of the compact open topol-
ogy, any U Cg, X x Xy corresponds to a basic open, the conjunction of the subbasics
{f | f(1z) Cty} for (z,y) € U.) Abramsky identified conditions on U (our “fully summa-
rizing”) for there to be a least approximable mapping containing it.

Definition 4.4.1. We shall write p, and p, for the product projections from X, x X;.

1 Suppose VW Cg, Xy x X;. We shall say that W is a summary of V iff p (W) is
a complete set of upper bounds for p,(V) and p,(W) is a set of upper bounds (not
necessarily complete) for p, (V).

2 U Chin X5 X Xy is fully summarizing iff every V Cgp, U has a summary in U. (Note
that this is a geometric property of U.)

3 The preorder C on F (X x X;) is defined by

UC U =qef V(us,us) € UI(uly,uy) € U'(ug 3 uly Auy T uy)

4 The (pre-)information system [X, = X;] has for its tokens the fully summarizing
finite subsets of X x X}, ordered by L.

Let us note immediately the following lemma:
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Lemma 4.4.2. Let U, U’ Cg, X5 X X; with U fully summarizing.

1 An approximable mapping fy can be defined by = fy y iff {(z,y)} C U. It is the
least approximable mapping containing U.

2 U'CUiftU C fy.

3 If U’ also is fully summarizing, then U’ C U iff fyr C fu.

Proof. The only part that presents any difficulty is the “ideal” condition of approx-
imable mappings in (1). Suppose z fy y; (1 < i < n), with z 3 2}, y; 3 y; and
(xf,yl) € U. Let V = {(z},y}) | 1 <i < n}, and let W be a summary for it in U. Then
since z is an upper bound for p,(V) we have x O " for some (z”,y") in W, and then
z fu y" and y” is an upper bound for the y;’s. =

CUB (or rather, as in note 5 after Definition 4.0.3, CUBy) is defined by what is in
effect a description in geometric logic of Abramsky’s (1991) normalization algorithm for
function spaces (which normalizes expressions representing compact opens of the function
space). Of course, we already have an intuitionistic formulation of CUB, but we require a
geometric one. Because of the positivity of the logic, that will have the flavour of attaining
CUB “from below”, and is where the geometric constraints force us to give algorithmic
content.

Let us consider a preorder < on FF (X, x X;), defined intuitionistically by & < V iff

YWeVIaU eUULCV
AVYU e UV C X x X;.(f an approximable mapping AU C f
—-3IVeVULVCY)

Lemma 4.4.3. If U, V Cap [Xs = Xi] and {JU} < V, then V is a complete set of
upper bounds for i.

Proof. f Ve V, then JUCEV andsoUC V forall U in Y. f W : [X, = X;] is an
upper bound for U, then JU C fw and so JU TV C fw for some Vin V,so V C W.
]

Our strategy now is as follows. We define a geometric formula ®(U,,U,) contained
in <, which is to represent a single iteration of Abramsky’s algorithm (which is non-
deterministic). Since < is a preorder, the reflexive transitive closure ®* (which is still
geometric) is also contained in <. CUBg(Up,U) is then defined as ®*({{JUp},U) and
Lemma 4.4.3 gives us everything we need except for existence. (In effect, the algorithm
has a loop invariant {{JUy} < U.) We then show that for every Uy Cq, X5 x X there is
some U Cg, [Xy = Xy] such that ®*({Up},U) and this corresponds to the termination
proof of the algorithm (if executed judiciously enough).

Before @, we first define a geometric predicate ¥(Uy,U; V, W, Wy, Mg, M) as —

— M, is a CUB-closed finite subset of X; and W; Cap M; (i = s,t)

— V Cgn Up Can M, x M,

— W, and W; are complete sets of upper bounds for p,(V) and p,(V)

— U = {Uy U R | R a finite, total relation from W to W;} (finite, by Lemma 2.1.10)

If we are just given V Cgy Uy Can Mg X My, then we can certainly find Wy, W; and
U such that ¥ (Uy,U;V, W, Wy, M, M;). Each finite total relation R summarizes V in
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Up UR, and U in effect represents the different possible ways of extending Uy to include
a summary of V.

Lemma 4.4.4. Suppose U (Uy, U; V, Wy, Wy, Mg, M;) and Uy C f with f an approximable
mapping. Then Uy C U C f for some U in U.

Proof. V Cg, f, so for each x in Wy we have z f y' for every (z',y’) in V and hence
we can find y such that = f y and y is an upper bound for p,(V) and without loss of
generality y € W;. Hence there is a finite total relation R from W to W; such that
R C f, which is what we wanted. m

In defining ®, we shall fix M, and M; this is needed in order to provide finite bounds.
(U, Us) (Ur, Us Can F(Ms x My)) shall then mean that there are Uy, U', V., U, Wy
and W; such that

U = (U utd’
‘II(UO,ua V7 WS7Wt: MS7Mt)
U =U

In other words, we have selected from U; an element Uy and a subset V, found
corresponding Wy, W; and U for ¥, and replaced Uy in U; by the elements of U to
get Us. Tt is plain that ® is contained in <, so ®* is too. Note also that if ®(U,,Us)
then ®(Uy UV, Us UV), and so the same goes for *. We can deduce that if ®*(U;, V;)
(1 <i<n), then (U, U;,U; Vi)-

Finally, we must prove termination. This is quite subtle, for the algorithm is non-
deterministic and can easily go into an infinite loop by selecting unintelligent choices.
Hence the proof must in effect also show how to find a terminating branch and how to
know when to terminate.

Lemma 4.4.5. Let M, and M; be finite CUB-closed subsets of X, and X}, and suppose
Uo Chn M, x M;. Then there exists W Cap [Xs = X¢] such that ®*({Up}, W).

Proof. Let the intuitionistic predicate P(A, B) be defined for A Cg, M, x M; and
B Can F(Ms x M) as

YU gﬁn Ms X Mt.
(UUA=Msx My ABC F(U)AVV Cqap U(V € BV V has a summary in U))
= IW Can [Xs = X¢]. 9" ({U},W))

We shall prove that VA, B.P(A, B), using strong F-induction (Theorem 2.1.11) on A
and simple F-induction (Theorem 2.1.3) on B. Effectively, the induction on B is an
induction on the number of subsets of U not yet checked to have a summary, while that
on A is induction on the number of elements of My x M; not in U. These “numbers
of elements” do not of course exist as genuine cardinalities (for which we would need
decidable equality on the elements), but they are there as lengths of lists representing
the finite sets and this is seen explicitly in Abramsky’s account. We have chosen to work
more abstractly, without using explicit list representations, but nonetheless you can see
them in the proof of 2.1.11. For a given Uy, the result will follow from P(M, x My, F(Uyp)).
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The outer induction is on A4, so let us fix A with the induction hypothesis that
Va € A.JA" Can My X My (A = {a} U A" AVB.P(A',B))

We shall prove VB.P(A, B) by simple induction on B. First, P(A4,0) is obvious: if U
satisfies the conditions to the left of the implication, then it is already fully summarizing,
so we can take YW = {U}. Next, we assume P(A,B) and prove P(A,{V} U B). Let U
satisfy the premisses of the implication. Starting from the given V' Cg, U, we can find
U, W and Wy so that W (U, U; V, Wy, Wy, Mg, My). If R is a finite total relation from Wy
to Wy, then R C My x My = U U A, so we can find Ry Cg, U and Ry Cg, A such
that R = Ry URA. If R4 = 0, then R C U and so V has a summary in U. Hence
U also satisfies the premisses in P(A, B), so by induction we can find W as required. If
R4 # 0 (remember that emptiness is decidable for finite sets) then take some a € R4.
By the induction hypothesis, we can find A’ Cg, My x M, such that A = {a} U A’ and
VB.P(A',B). Now U U R satisfies the premisses for P(A’, F(U U R)) and so we can find
suitable WW. We have now shown that

YU' € UIW Can [Xs = Xi].@*({U'}, W)

Now by taking the union of finitely many such Ws we can find W' such that ®* (U, W');
and since ®({U},U) the result follows. m

The algorithmic content of this is as follows. A state is a finite set ¢ of triples (Uy, A, B)
such that Uy U A = Mg x My, B C FU; and YV Ca, Uy .(V € BV V has a summary in
U,): hence the induction variables A and B appear explicitly in the computation. The
reason for this is that in order to know when to terminate, we must recognize when our
U,s are fully summarizing and B contains the subsets V' for which we must still check
for the existence of summaries or create summaries using ¥. Using ¥ changes U; and
so the checking must start all over again, but occurences of this are limited by A which
contains the elements not already known to be in U;. We also have the loop invariant
{Uo} < {U; | (U1, A,B) € o}. A step in the algorithm is then —

— select (U, A, B) from o with B # () (if there are none, we can stop)

— select V' € B, leaving B={V}UB’

— find U, W, and W; so that O(Uy,U; V, We, Wy, My, M)

— for each finite total relation R from W to W;, decomposed as Ry U Ry, find a
corresponding new state element (Uy, A,B') if R4 =0, or (U1 UR, A", F(U; UR)) if
a € Ry, where A’ is A with a removed or at least, one occurrence of a is removed
from the representation of A.

— The new state is the old state o with (Uy, A, B) replaced by all the new state elements
just found.

We have now proved that if Xy and X; are strongly algebraic information systems,
then so is [Xs = X;] so we have defined a geometric morphism EXP : [IS]?> — [IS].

Proposition 4.4.6. The points of [X; = X;] are equivalent to approximable mappings
from X, to X;.

Proof. If I is an ideal of [X; = X;] then we can define an approximable mapping f as
the union of the fys for U in I. Conversely, if f is an approximable mapping, then let I be
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the set {U € [ Xy = X| | U C f}. The only point of difficulty so far is the ideal property
of I. Suppose U; € [Xs = X3|, U; C f (1 <i<n). We can find U Cg, [Xs = X4 such
that ®*({U, U;},U), and then because {J;U;} < U we have by Lemma 4.4.3 that the
U;s have an upper bound contained in f.

Now suppose we start with I, construct f as above, and then construct I' from f. If
UelthenU C fy C f,s0U € I'. On the other hand, if U € I' then for each u € U we
can find U’ in I such that u € fy:, and by taking an upper bound U" in I we have each
u€ fyrandsoUCU", Uc€l.

Finally, suppose f is an approximable mapping, let I be defined as above, and then f'
from I. If z f' y then x fy y for some U C f and so = f y. If z f y then we can find U
such that ®*({{(z,y)}},U), and {(z,y)} C U C f for some U € U, so (z,y) € fu and
zfly =

We have now proved —

Theorem 4.4.7. If X, and X; are strongly algebraic information sytems then so is
[Xs = Xi], and its points are equivalent to approximable mappings from X, to X;.

It follows that, as we wanted, [AM] is a strongly algebraic domain over [IS]2.

4.5. Power domains

Robinson (1986) showed that the well-known Hoare, Smyth and Plotkin (or lower, upper
and convex) power domains can be constructed localically, and in fact they are instances
of more general powerlocale constructions P, (lower), Py (upper) and V (Vietoris). V
originated in Johnstone (1982a), while the simpler P, and Py, are folklore. A constructive
account of all three can be found in Vickers (1997).

Definition 4.5.1. Let X be an information system. The lower, upper and convex power
domains, Py, X, Py X and Po X, are defined respectively as follows:

— They all have the same tokens, namely FX.
— They have preorders defined as

SCr T =qet Vs €SAteT st
S CyT =ger V€ TAs € S.s Ct
SCoT =qer SCL TAS Cy T (the Egli-Milner ordering)

Note that because these are preorders, Proposition 4.0.8 is needed, though we shan’t
dwell on the details.

Note also that we do not follow the common convention of excluding the empty set
(though there is no constructive problem in doing so if that is what is required). Con-
sequently, each domain includes an “empty” point — in Py, it is bottom, in Py it is top
and in V it is isolated.

The ideal completions of these are homeomorphic to the corresponding powerlocales,
and a general proof (covering non-local domains as well as continuous domains) is in
Vickers (1993). In what remains, the hard work amounts to a proof that if a domain is
spectral algebraic, then so are its power domains.
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CUB/, and CUBy come out from the fact that C;, and Cy both make X into a join
(pre-)semilattice: the join of S and T in P, X is SUT, while in Py X it is got by taking
a union of sets Uy such that CUB({s,t},Us) (s € S, t € T). The nullary join (bottom
element) in Py X is @, and in Py X it is any S for which CUB(0, S).

Let us now concentrate on the convex powerdomain. Just as for the function space, the
essential working is already in Abramsky (1991), so this time we shall do no more than
sketch the information system account. If ¢/ : FF X, then we need to ask when 7" : FX is
an upper bound for Y. For every U € U we have U Cp T and U Cy T'. From the former
we get that V Ty, T where V = | JU, while from the latter we get that for each ¢ in T there
is some choice function ¢ on U such that ¢ is an upper bound for {¢(U) | U € U}. Hence
W Cu T where W = |J, Wy for some Wy, with CUB({¢(U) | U € U}, Wy). Actually, to
give a properly constructive account, we need to consider not choice functions but choice
relations on U, finite total relations R from U to |JU such that if U R s then s € U.
One can show by techniques similar to those of Lemma 2.1.10 that the set of finite choice
relations on U is finite.

We have thus replaced U by a pair (V, W) such that the upper bounds (under C¢)
of U are those T such that V C;, T and W Cy T. If we had V = W, then we’d have
V C¢ T and so V would be a least upper bound of i/; and if we only had W C¢ V' then
still V.U W would be a least upper bound for /. In general we don’t have a least upper
bound, but our aim is to work towards a set of pairs (V, W) such that the upper bounds
of U are those T for which V C;, T and W Cy T for some (V, W) in the set. For each
such pair, if we don’t yet have W C¢ V' (but of course this negative statement must be
treated rather circumspectly just as for the function space) then we can replace it by a
set of better pairs.

The two cases, forming the basis for the (simple F-) induction, are as follows.

— Consider (V U {s}, W). For each w € W we can find U, such that CUB({s,w}, Uy);
let U = U, Uw. Then we can replace (V U {s}, W) by {(V U {u},W) | u € U}. For
ifVU{s}Cp T and W Cyy T then s C some t € T, and ¢t O some w € W, so ¢t J
some u € Uy, and V U {u} Cr T. Conversely, if V U {u} Cr T for some u € U, then
sCusoVU{s}Cy T. Now if u € U, then v J w, and by iterating the process we
can ensure W Cy V in each pair.

— We can replace (V,W U {s}) by {(V.W), (VU {s}, WU {s})}. Forift WU {s} Cy T
then either W Cy T or s C some ¢ € T, in which case V U{s} C;, T. Both these new
pairs help to make W C;, V. We might no longer have W Cy V', but we can restore
this by the first case.

To complete the proof of strong algebraicity, if &/ : FFX let M be CUB-closed con-
taining | JU. Then FM is CUB-closed containing U.

4.6. Decidable information systems

The information systems discussed so far have been undecidable in that the order C
did not have a complement. It is interesting that [decIS], the topos classifying decidable
information systems, also gives a topical CCC. It is genuinely different from [IS] it does
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not happen that by some quirk the general C has a complement. This is easily seen by
considering the information system homomorphisms: if C did in general have a comple-
ment, then it would have to be preserved by homomorphisms, so the homomorphisms
would have to correspond to embedding-projection pairs rather than to the more general
adjunctions that are clearly possible in the light of Proposition 4.0.6.

In [declS], the proof of Cartesian closedness can be understood as a justified use of
classical logic: the decidability of C enables us geometrically to bring = and — into
order-theoretic statements, while V is possible because the SFP axioms give finite sets
with which V can be bounded. Hence one can mimic classical proofs of the Cartesian
closedness of the category of posets.

Abramsky (1991) describes his constructions inductively without [Z, and is in effect
giving what is needed to show Cartesian closedness for [IS]. However (his theorem 4.2.7),
he also proves that C is decidable. This paradox arises because he is considering only the
types that arise in his inductive system. Part of his proof shows how Z can be defined
inductively, and in fact this provides the ingredients for another proof that [declS] also
gives a topical CCC.

Note that if a strongly algebraic information system X has decidable order, then CUB
is also decidable: for its negation - CUB(S,T') is the geometric formula

IseS,teTsZtVIu(Vse SsCuAVteTt L u)

5. Solving domain equations

Recall that Theorem 2.3.8 showed the existence of fixpoints (more precisely, initial struc-
tures) for endomaps of local toposes (i.e. toposes with initial points). Restricting to the
case of locales we get a more elementary case, that locales with bottom points have
fixpoints for endomaps.

Fixpoints within domains are thus covered by the localic case of Theorem 2.3.8. We
shall not dwell on this except to note that our domains are not necessarily local and so
Corollary 2.3.9 is the appropriate form: if f : D, — D then up; f has a least fixpoint Y f
(find the least fixpoint of f;up in D, in the standard way, and then apply f to it). Y can
be internalized by the usual sort of CCC manipulations (and following the techniques of
Hyland and Pitts (1989)) as something of polymorphic type (D, = D) = D as follows.
That type corresponds to a map from [IS] to itself (map X to [[X | = X] = X]). Pulling
back the generic domain along this gives a topos E that classifies an information system
X equipped with a point of [[X| = X] = X]. Y is then a map from [IS] to E over [IS].

For fixpoints amongst domains, solving domain equations, we need Theorem 2.3.8 in
its topos generality. This raises coherence questions but is conceptually unproblematic
and relies on the feature of geometric theories that their classes of models are closed
under filtered colimits by quite concrete constructions.

A standard approach — such as Abramsky’s (1991) — would solve a domain equation
D = F(D) by restricting to local domains, so let us briefly investigate those.

Proposition 5.0.1. An algebraic depo Idl X is local iff X has a least element.

Proof. =: If | is the least element, then {1} is an ideal contained in every other.
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<: Let I be the bottom ideal. It is inhabited, so it has an element z. Now I C ]y for
every y in X, so ¢ C y and z is a least element of X. m

Amongst the strongly algebraic information systems, the ones whose ideal completion
is local form a subtopos [locIS] (an open subtopos, in fact): they are characterized by the
additional axiom F s : X.CUB(@, {s}), for CUB(0, {s}) holds iff s is a bottom element
of X. Since we are working with posets, the bottom element is unique, and we write L
for it as usual. (For general algebraic information systems, the local ones do not form a
subtopos because the bottom has to be specified as extra structure.)

Proposition 5.0.2. [locIS] is local.

Proof. The initial local information system is the singleton {_L}. For any other local
information system X, the unique homomorphism maps 1 to | — uniqueness arises
because a homomorphism must preserve the bottom-defining property CUB(0, {s}). m

Therefore, let F' : [locIS] — [locIS] be any endomap. By Theorem 2.3.8 [F-Str] is local;
its initial point is the canonical solution to D = F(D).

However, there is a small issue of constructivity here. Such local information systems
are closed under all the constructions given except — obviously — coproducts. It is usual
to substitute a different sum construction, either the coalesced sum (which identifies the
bottoms) or the separated sum (which adjoins a new one). Abramsky uses the coalesced
sum, because it is more general the other can be defined using it. However, in defining
CUB for the coalesced sum it turns out that one needs to know when tokens are not bot-
tom, for one needs to say that CUB(S, §) if S contains non-bottom elements from both
summands. This information is not available in a general strongly algebraic information
system with bottom, for if it were then non-bottomness would have to be preserved by
homomorphisms. (For a counterexample, consider {1, T} mapping to {x}.) Abramsky
solves the problem by introducing a predicate T (for Termination) which would cor-
respond in our system to an extra predicate T(s) on X with axioms to make it the
complement of CUB(, {s}). He then shows how in our terms all the constructions
yield information systems with such a predicate. The classifier for these local information
systems with termination predicate is again local, so the same techniques can be applied.

In solving D = F (D), it is a well-known fact that F' ought really to have some prop-
erties of continuity. In our topical setting it hardly makes any sense for F' to be other
than a geometric morphism, and then the continuity is automatic F' will preserve fil-
tered colimits, and this is the categorical analogue of Scott continuity. What’s more, F’
does not in this setting have to be functorial with respect to continuous maps between
domains, and there is no problem in using examples such as X — [X = X], which
is a perfectly good geometric morphism. (It is the composite A; EXP.) It is, of course,
functorial with respect to homomorphisms between information systems, and, following
Proposition 4.0.6, this is an interesting route to the usual trick of using endofunctors
on the category of domains and embedding-projection pairs. (We have a slight variant
here  the homomorphisms are adjoint pairs rather than embedding-projection pairs.
The trick still works, as was pointed out by Taylor (1986). As mentioned in Section 4.6,
the difference corresponds to whether the order C is decidable or not.) Let us emphasize
this. The domain construction F' does not need to be part of a functor on the topical
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category. The very act of defining the transformation (geometrically) on objects gives us
all the functoriality and continuity that we need.

Let us also describe an approach that works in the context of our non-local domains.
We show how to solve a simple form of domain equation, namely D = (F(D)), where
F' is a construction on our domains without bottom. This is not quite as general as
Abramsky’s domain construction; it cannot, for instance, be used to construct the lifted
natural numbers, because the natural numbers do not constitute a strongly algebraic
domain (see note 6 after Definition 4.0.3). However, the form does cover many important
domain equations, and can often be pleasantly simple. For instance, the domain of lists
over a finite decidable set A can be described by the domain equation D = (1+ A x D) ;.
where 4+ and x are the categorical coproduct and product: there is no need to use
coalesced sum or smash product.

Theorem 5.0.3. Let F' : [IS] — [IS] be a geometric morphism. Then F;LIFT has an
initial structure.

Proof. LIFT : [IS] — [IS] factors via [locIS], which is local, so we can use Proposition
2.3.7 and Theorem 2.3.8. m

The techniques just presented are in essence not so far from those already familiar
from the information system approach to domains (Larsen and Winskel 1984) and fol-
lowed in Abramsky (1991). However, one obvious difference is that we take a filtered
colimit in a category of information systems rather than a directed join in a cpo (such as
Abramsky’s DPL1, a cpo of prelocales). Though this looks more complicated, it has a
number of advantages. First, the underlying Theorem 2.3.8 is very general indeed in the
way it exploits the topological nature of toposes, and it could equally well be applied in
contexts such as that of quasimetric spaces in Vickers (1997a). Second, it uses directly
the category structure (homomorphisms between models) that is naturally present. To
get a cpo Abramsky must restrict to the monomorphisms, and though it works in the
present case it still involves a little extra effort to show that the domain constructions are
functorial with respect to them. Third, to get a real cpo requires great syntactic discipline
for the order to be actual subset inclusion between the domain prelocales. This would
be difficult to sustain in an elementary topos, in general lacking an intrinsic element-of
relation.

6. Conclusions

By respecting the constructive constraints of geometric logic, we have followed Stone’s
dictum and topologized a significant portion of domain theory. The possibility of topol-
ogizing within domains (i.e. of treating the domains themselves as topological spaces or
— as here — locales) is already known, though by no means the standard view. However,
we have also topologized among the domains, replacing ordinary categories of domains
by topical categories, and this requires Grothendieck’s generalized sense of topology.
The “within” and the “among” have always been recognized as having a lot in common,
as seen for instance in the similarities between two characteristic constructions of domain
theory on the one hand that of least fixpoints of endomaps, and on the other that of
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solutions of domain equations. The wholesale topologization now presents these as two
applications of our single very general Theorem 2.3.8 (the algebraic completeness of
local toposes), in which generalized topological structure is seen as including filtered
colimits. At the same time there is a pleasing and unexpected rational reconstruction of
the way embedding-projection pairs are used in domain theory they, or, more generally,
adjunctions, arise in a completely natural way as homomorphisms of information systems.

The study therefore gives support to the topological view of domain theory by showing
that it can be followed through in a cohesive way that brings out underlying connections
and insights. Domain theory is not just about cpos! Nonetheless, much work still remains
to be done if established results of domain theory are to be put in a topical setting. As
a simple but deep example, Pitts (1996) gives an elegant domain-theoretic account of
induction and coinduction, yet right from the start his treatment of relations as subsets
of domains is difficult to reconcile with domains as locales.

A more obvious fear on the part of the working domain theorist is that the topological
view (let alone the localic one) is more complicated: that it must already be much harder
to understand a domain as a local locale than as a cpo and that the grander step of re-
placing ordinary categories of domains by topical categories can only be for enthusiasts.
The paper has therefore also served as a case study in the geometric style of mathemat-
ics, the “topology-free spaces” of Section 1.1, showing that the topos-theoretic machinery
does not need to obtrude. We have shown how some non-trivial mathematics can be done
quite naturally in this framework, and that it automatically enforces constructivist con-
straints of the kind that Abramsky required for his formal system. Moreover, we see the
constructive mathematics going beyond the syntactic systems to the semantic domains
and the metatheory (which in Abramsky (1991) still contained classical features).

6.1. Arithmetic universes: some speculations

Though the “topology-free spaces” are designed to make topos-theoretic work look friendly,
the expositional style embodies a very radical mathematical tendency for within it the
general notion of collection can no longer be adequately expressed in sets — sets are seen
as particularly “discrete” kinds of collections. The full generality is expressed in locales
and toposes as spaces, collections of points. This is not unprecedented, for it develops
the distinction between sets and classes. We know that the collections of sets, groups,
categories, and so on are “too large” to be sets and instead must be considered classes,
and they are toposes too in the sense that there are toposes classifying them. Indeed,
the idea of topos as described by a logical theory is a natural development of the idea of
class as described by a formula of set theory. However, the distinction between sets and
non-sets is now not just one of “size”. Ordinarily one thinks of locales as being “small”
in that both a collection of points and the frame of opens can be constructed internally
as objects in the base elementary topos of sets, but in the geometric mathematics locales
can no longer be internalized in this way, for both the set of points (unless the locale is
discrete) and the frame of opens are non-geometric constructions. Hence not only do the
large structures fall beyond the reach of sets, but so also do the non-discrete topological
structures.
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What we see, then, is a mathematics in which sets are rather limited — by the geometric
constraints — in what we can do with them, and their place often has to be taken by locales
and toposes. For instance, if X and Y are sets then their exponential must be replaced by
the localic exponential YX its points are still the functions from X to Y, but it is not
discrete, having the point-open topology. The subobject classifier (), whose elements are
the subsets of 1, must be replaced by the Sierpinski locale $, whose points are the same
but which has a non-discrete specialization order; and power sets PX = QX must be
replaced by the lower powerlocale Py X = $X (Vickers 1997). But why should we put up
with this? What is wrong with the non-geometric constructions? In view of the beauty
of the theory of elementary toposes, it seems perverse to reject Cartesian closedness of
Set (notwithstanding the result of Section 3.1.1, purporting to show that the topos of
sets is not Cartesian closed), powersets and subobject classifiers, and insist on replacing
them with locale-theoretic substitutes.

Perhaps a clue can be found in the nature of equality. Joyal and Tierney (1984) char-
acterize sets (in the sense of discrete locales) as those locales X for which the finite
diagonals X — X" are all open maps, so in particular equality is an open in X?2. If we
take at all seriously the idea that open means “finitely observable”, we should then expect
equality to be a finitely observable relation. Informally, we find that this property is in
fact preserved by geometric constructions, but something goes wrong with exponentials —
equality between functions cannot be directly evaluated, as any functional programming
interpreter will quickly point out. This kind of problem with equality may serve as an
early warning that the collection of functions is not as “set-like” as we might have hoped.

There remains a fundamental problem with this idea of treating toposes (Grothendieck
toposes) as the prime notion of collection and treating sets as a special case. The
“topology-free space” definition of topos in Section 1.1 depended on geometric theories,
the logic is infinitary, and the standard account says that the whole idea of geometric
theory is parametrized by an underlying account of the objects used to index the infini-
ties. This is given by an elementary topos as base: fix your base topos and you get a
theory of Grothendieck toposes (bounded geometric morphisms) over it. To make this
work, the elementary topos structure of the base certainly seems necessary.

However, it seems that in the work of this paper the infinities are restricted to those
that can be accessed effectively through free algebra constructions. This emboldens us to
hope that the full geometric logic is unnecessary, that it suffices to have coherent logic
with assorted free algebras, and that the categories corresponding to (what we called) ge-
ometric universes could be replaced by Joyal’s arithmetic universes (unpublished notes).
Indeed, our choice of the phrase “geometric universe” was guided by this hope. It is still
not immediate that the mathematics here would go through in arithmetic universes; on
a number of occasions we use intuitionistic reasoning that would certainly not be inter-
pretable. Nonetheless, the algorithmic flavour of the constructions gives us grounds to
feel that it ought to work. The theory of arithmetic universe should be a finite essentially
algebraic theory and therefore self-standing.

Of course, once into arithmetic universes, we should be be completely restricted in our
set-theoretic constructions, for arithmetic universes are not in general Cartesian closed
and do not have subobject classifiers or powersets. It would not be possible to present
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frames or construct ideal completions “set-theoretically” as objects and we should be
forced to use locales and toposes — their concrete manifestation would be as “classifying”
arithmetic universes presented (using essential algebraicity) by generators and relations
derived from the effectively accessible geometric theories.

I should like to conclude with some speculation about constructive mathematics. Two
distinct schools have come to bear on this work, the type theoretic typified by Martin-Lof,
and the topos theoretic, and these two are not always in harmony. The type theory school
is tightly dependent on syntax and Abramsky acknowledges its influence, which can be
seen, for instance, in his domain prelocales. However, its interpretation of disjunction
and existential quantification involves explicit choice that can make some of its reasoning
invalid in elementary toposes. On the other hand, reasoning valid in elementary toposes
can include impredicativity in a way that is objectionable to the type theorists they
need algorithms and induction. It appears that the stronger constraints of geometric
constructivity (preservation under inverse image functors) do something to eliminate this,
and indeed the reasoning in this paper is very algorithmic in character. It is tempting
to hope that if the ideas on arithmetic universes bear fruit they could reconcile the two
schools, giving predicative (or inductive) reasoning valid in toposes at the same time as
choice-free reasoning for type theory.
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