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Abstract

Restriction to geometric logic can enable one to define topological
structures and continuous maps without explicit reference to topologies.
This idea is illustrated with some examples and used to explain toposes
as generalized topological spaces.

This is a reset and updated version (2009) of the 1996 ar-
ticle published as [Vic96b].

1 Introduction

Last year I wrote a short article [Vic96a], with the aim of explaining toposes
(and in particular their nature as generalized topological spaces) to those who
knew nothing about them. Unfortunately, it seems that I was unsuccessful in
that aim, for when I presented the material in a seminar I was told that I should
write another article pour les vraiment nuls. This is intended to be it.

The “generalized topological space” view is only one aspect of toposes, but
it is an aspect that is very easily obscured. My aim here is to plant sufficiently
strong intuitions that the reader can then turn to the standard texts and their
technical development without losing sight of the generalized spaces.

I shall not give comprehensive references, but simply refer the reader to
some standard introductory texts: for locales, [Joh82] and [Vic89]; for toposes,
[MLM92], [McL91], [Bel88] and [Joh77] (though the last is hardly recommended
for the beginner).1 The topos books provide a good variety of approaches, but
still tend to follow a broadly similar route governed by the view of toposes
as generalized categories of sets. A number of my references to [MLM92] will
therefore also apply to the other three.

2 Real numbers

For our leading example, let a real number be defined as a Dedekind section of
the rationals, i.e. a pair (L,R) of subsets of the rational numbers Q, such that
–

1Post-publication update: [Joh77] has now been superseded by [Joh02a] and [Joh02b]. See
also [Vic07], which in effect provides a readers’ guide to [MLM92] from the geometric point
of view.
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• L is inhabited: ∃q∈Q. q∈L

• L is “rounded lower”: ∀q∈Q. (q∈L↔ ∃q′∈Q. (q < q′∧q′∈L))

• R is inhabited and rounded upper

• L and R are disjoint

• L and R are “arbitrarily close”: ∀q, r∈Q. (q < r→q∈L∨r∈R)

(For a real number x, I shall usually write (Lx, Rx) for the corresponding
section.)

In a topological development, one would follow this with a definition of the
usual topology on the set R of real numbers. If q is rational, let us write (q,∞)
for the set of reals x for which q∈Lx (i.e. q < x), and (−∞, q) for the set of
reals x for which q∈Rx. These are defined to be “subbasic open” subsets of R,
and in general the open subsets are those that can be expressed as unions of
finite intersections of subbasics. (The intersection (−∞, q+ ε)∩(q− ε,∞) gives
the rational open ball Bε(q), the set of reals strictly between q − ε and q + ε,
and the open sets are usually characterized as the unions of these.)

However, there is a good sense in which this topology is already inherent in
the definition of the real numbers themselves. For the two sets L and R can
be described equally well by two Q-indexed families of propositions “q∈L” and
“q∈R”, and so we can equivalently present the theory of Dedekind sections as
a propositional theory, with propositional symbol schemas (q,∞) and (−∞, q).
The axioms now become the schemas

• true→
∨

q(q,∞) (note the use of an infinitary disjunction here)

• (q′,∞)→(q,∞) (q < q′)

• (q,∞)→
∨

q<q′(q′,∞)

• true→
∨

q(−∞, q)

• (−∞, q′)→(−∞, q) (q > q′)

• (−∞, q)→
∨

q>q′(−∞, q′)

• (q,∞)∧(−∞, q)→false

• true→(q,∞)∨(−∞, r) (q < r)

It should be clear that these two theories are equivalent. Though there are
technical differences concerning the precise form of a model (one theory uses
subsets of Q, the other uses Q-indexed families of truth values), there should be
no doubt that these differences are inessential.

We see now that the subbasic opens correspond exactly to the primitive
propositional symbols, and ∩,

⋃
and ⊆ correspond to the logical ∧ (finitary

conjunction),
∨

(arbitrary disjunction) and →. If we restrict our connectives
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to ∧ and
∨

then the propositions we get correspond exactly to the opens.
Of course, this appears to depend critically on the presentation of the theory.
We could equally well present an equivalent theory using the analogues of the
closed subsets [q,∞) and (−∞, q] (i.e. ¬(q∈R) and ¬(q∈L)) and get a different
topology. But plainly the problem there is that negation ¬ has crept into the
presentation. If we restrict our connectives also in getting equivalences between
presentations, then there is no problem – the topology is presentation invariant.

Let us continue by looking at continuous maps, taking as our example the
negation map neg : R→R, defined by

Lneg(x) = {−q : q∈Rx}, Rneg(x) = {−q : q∈Lx}

It is easy to show that these give a new Dedekind section. However, this
should normally be augmented by proof of continuity, to show that the inverse
images of opens (or, sufficiently, subbasic opens) are open:

neg−1(q,∞) = (−∞,−q)

because

x∈ neg−1(q,∞)⇔ neg(x)∈(q,∞)⇔ q∈Lneg(x) ⇔ −q∈Rx ⇔ x∈(−∞,−q)

and
neg−1(−∞, q) = (−q,∞)

But let us study more closely how the equivalence of the two theories works
here. A Dedekind section x, i.e. a model of the predicate theory, yields in-
terpretations of all the symbols (q,∞) and (−∞, q) as truth values. Negation
constructs a new Dedekind section neg(x), and, correspondingly, new interpre-
tations (q,∞)′ and (−∞, q)′ (say) of the propositional symbols: e.g. (q,∞)′

is true iff q∈Lneg(x), i.e. neg(x) is in the open set corresponding to (q,∞). It
follows that (q,∞)′, considered as a subset of R (comprising those models x for
which (q,∞)′ is true) is exactly neg−1(q,∞), and similarly for (−∞, q)′.

Now in constructing the new Dedekind section neg(x) from the original one,
x, we find that, correspondingly, (q,∞)′ and (−∞, q)′ were constructed from the
propositional symbols (q,∞) and (−∞, q). Hence continuity is obvious if the
propositional constructions are constrained to using ∧ and

∨
. It turns out that

this will follow, provided that the construction as described on the Dedekind
sections also observes certain “geometric” constraints. We shall examine these
in the next section.

3 Geometric logic and locales

The example of Section 2 is suggesting that if we restrict our logic suitably, then
topological issues are completely implicit: the topology is implicit in the theory
presentation that defines the points (as models), and continuity is implicit in
the construction of the maps. The appropriate logic is geometric logic.
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To describe the points geometrically is already to topologize them.

A propositional geometric theory is one presented using axioms of the form
φ→ψ where the propositions φ and ψ are “geometric” – their connectives are
restricted to ∧ (finitary conjunction) and

∨
(arbitrary disjunction). The ap-

proach then is to describe the points of a topological space as the models of a
propositional geometric theory, and the open sets as the geometric propositions
(modulo equivalence). This works even if we replace the propositional theory
by an equivalent non-propositional one.

Let us take the word locale to have the intuitive meaning of “space of models
of a propositional geometric theory”, in other words our revised idea of topo-
logical space. This is a little vague – what, for instance, is a “space”? But the
idea is that if we can present a propositional theory T , then something or other
should be the corresponding locale [T ], “the space of T -models”.

But of course, the word “locale” already has a use, and the link with the
intuitions above is via the notion of the frame Ω[T ], the set of all expressible
geometric propositions in T , modulo equivalence. The frame is effectively a
geometric Lindenbaum algebra, and algebraically it is presented by generators
and relations taken from T [Vic89]. Moreover, the frame provides a canoni-
cal way of presenting the locale, so locales and their properties can be studied
through frames and their properties: and of course this has been done exten-
sively [Joh82].

The next point to make is that these ideas extend to continuous maps. If X
and Y are two locales, then to define a map from X to Y , continuous for the
implicit topologies, it suffices to give a uniform description of the form, “Let x
be a point of X. Then f(x) is defined [geometrically] to be . . . .”

Continuity = uniformity + geometricity

If we cheerfully accept the restrictions of geometric logic, then topology
appears much simpler, much closer to sets and functions:

• To define the topological space, just give a geometric description of its
points (no separate topology needed).

• To define a continuous map, just give a uniform, geometric description of
how the result f(x) is constructed from x (no continuity proof needed).

An example of these two ideas in application is [Vic05].
If we refuse to relinquish the power of classical logic, then we enable our-

selves to define equivalences between theories without respecting the topologies
– so the topology is no longer presentation invariant. We also enable ourselves
to define discontinuous functions (examples later) so that a separate continuity
proof is needed: this is really an explicit warranty that we haven’t misused the
extra power. To put it another way, classical point-set topology is a compli-
cated (and only partially successful) machinery whose purpose is to correct for
the errors introduced by classical reasoning principles! To use an image from
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planetary orbits, geometric logic is ellipses, classical logic is circles and point-set
topology is epicycles.

In Section 7 we shall consider more critically whether we really can just
adopt a geometric logic and find topology doing itself automatically.

3.1 Specialization order

Though it’s not evident in R, locales automatically bear an ordering. If x and
y are two points of a given locale, then it may be that every open (proposition)
that is true for x is also true for y. To put it another way, every open containing
x also contains y. We then say that y specializes x, and write x v y. On R,
this ordering is discrete (x v y iff x = y), but for most locales – including
the domains used in denotational semantics – it is non-discrete and important.
It is also true that for any locale we have directed joins (sups) of points. In
denotational semantics, the importance of this is vital.

Any continuous map between locales is monotone with respect to the spe-
cialization order, essentially because of the positivity of geometric logic – the
map cannot use any negative information about its argument. More subtly, be-
cause of the finiteness of conjunctions in geometric logic, the map must preserve
directed joins.

This ordering appears quite concretely as an order enrichment on the cate-
gory of locales. If f and g are two continuous maps from X to Y , then f v g
iff we have a proof of the form, “Let x be a point of X. Then f(x) v g(x)
(geometrically).”

4 More examples

We follow with three more examples. The first illustrates how classical reasoning
can lead to discontinuous functions, the second gives a deeper flavour of how
the geometric reasoning works in practice, and the third marks a distinction
between geometric logic and intuitionistic logic.

4.1 The Heaviside step function

We consider the Heaviside function H : R→R, defined by letting

H(x) =
{

0 if x < 0
1 if x ≥ 0

In terms of Dedekind sections, we have x < 0 iff 0∈Rx, so

q ∈ RH(x) (i.e. q > H(x)) iff q > 1∨(q > 0∧0∈Rx)
q ∈ LH(x) (i.e. q < H(x)) iff q < 0∨(q < 1∧0 /∈ Rx)

To prove that (LH(x), RH(x)) is a Dedekind section is largely straightforward,
except that in the final axiom we must use excluded middle on the formula
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0∈Rx. (We also use it on formulae concerning the order of rationals, but that is
no problem for that order is decidable.) Suppose q < r. If q < 0 then q∈LH(x),
and if r > 1 then r∈RH(x), so the only question is over the case 0 ≤ q < r ≤ 1.
But then if 0∈Rx we have r∈RH(x), while if 0 /∈ Rx we have q∈LH(x).

4.2 Addition of reals

This example shows more clearly the influence of the geometric constraints on
the reasoning: the influence is often quite algorithmic in nature. We can define
addition on R as follows.

Let x = (Lx, Rx) and y = (Ly, Ry) be two Dedekind sections. Then their
sum x+ y is defined by

Lx+y = {q + r : q∈Lx, r∈Ly}
Rx+y = {q + r : q∈Rx, r∈Ry}

It is required to show that x + y is again a Dedekind section. Most of the
axioms are easily disposed of, but the final one needs harder work.

Lemma 1 Let (L,R) be a Dedekind section, and let ε be a positive rational.
Then there are rationals q∈L and r∈R such that r − q < ε.

Proof. L and R are both inhabited, so we can find q0∈L and r0∈R. Cer-
tainly q0 < r0. There is some natural number n such that 2nε > r0 − q0; the
proof is by induction on n. If n = 0, then we are already done.

For the induction step, suppose 2n+1ε > r0 − q0 and let the interval [q0, r0]
be divided into four equal parts by q0 < s < t < u < r0. Out of these, we find
numbers q1∈L and r1∈R such that r1 − q1 = (r0 − q0)/2 and we can then use
the induction hypothesis. We have

s∈L∨t∈R and t∈L∨u∈R

If t∈R, we define q1 = q0, r1 = t. If t∈L, then q1 = t, r1 = r0. The
remaining case has s∈L and u∈R, and then we can take q1 = s, r1 = u. In all
three cases we have q1 and r1 as required.

Note the algorithmic flavour of this: we start off with rationals q0 and r0 in
L and R, and then an iteration replaces these by two closer rationals in L and R.
We iterate this until they are close enough, when we can halt with the answer.
To be sure, it is highly non-deterministic – the algorithm will usually offer a
choice of new numbers. But the logic ensures that the choice is non-empty.

Returning to the problem of sums, suppose s < t. By the Lemma, we can
find qx∈Lx and rx∈Rx such that rx − qx < t − s. Then s − qx < t − rx, so
we have either s − qx∈Ly, in which case s∈Lx+y, or t − rx∈Ry, in which case
t∈Rx+y.
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4.3 Upper real numbers

Brouwer maintained that all functions on the real line were continuous: that
“constructions” of discontinuous functions must inevitably use some inadmissi-
ble principles, for instance of “omniscience”. Our previous section can clearly
be understood as suggesting that the admissible principles and constructions,
that always lead to continuous functions, are the geometric ones. That general
argument applies to far more than just the real line. However, Brouwer’s ideas
led to Heyting’s intuitionistic logic, and what I want to present in this section
is an example, not quite of the real line, where even intuitionistic reasoning can
lead to discontinuous functions.

Let us define an upper real to be an inhabited rounded upper subset of Q – we
shall normally write Rx for the subset itself, x for the upper real considered more
abstractly. Classically, Rx is either the whole of Q or the second component
of a Dedekind section, so the space of upper reals could be denoted [−∞,∞).
However, the natural topology has a basis comprising the sets (q,∞), and its
specialization order is numerical ≥ (so big numbers are low in the specialization
order). To suggest that, let us write it as

←−−−−−−
[−∞,∞). (Note the fact that −∞

has appeared. For any locale we have all directed joins of points, so −∞ has to
be there as the directed join of the points in (−∞,∞) under the specialization
order ≥.) The example we shall give actually concerns the sublocale

←−−−
[0,∞),

whose points are inhabited rounded subsets of the set of positive rationals.
Let x and y be two points of

←−−−
[0,∞). Then their truncated difference, x−̇y,

is defined by

q∈Rx−̇y iff ∃q′∈Q. 0 < q′ < q∧∀r∈Ry. q
′ + r∈Rx

It is not hard to show that this is rounded upper and contains only positive
rationals. As for inhabitedness, let q′∈Rx. Then any r in Ry is positive, so
q′ + r is also in Rx. It follows that q′ + 1 is in Rx−̇y.

This is truncated difference, i.e. x−̇y = max(0, x − y), and in fact it is
possible to justify this by proving –

Proposition 2 For any x, y, z in
←−−−
[0,∞) we have z ≥ x−̇y iff z + y ≥ x.]

Now the interesting part of this is that all the reasoning – in both the con-
struction and the Proposition – is intuitionistically valid, but truncated minus
is not continuous. This is obvious, because it is antitone in its second argument
– if y ≤ y′ then

(x−̇y) + y′ ≥ (x−̇y) + y ≥ x,

so x−̇y ≥ x−̇y′ – and continuous maps must be monotone (with respect to
the specialization order). We can see that the construction is not geometric,
because of the universal quantification ∀r∈Ry.

7



5 Predicate theories and toposes

The locales correspond to propositional geometric theories, but there are also
more general predicate theories, not all equivalent to propositional ones. The
“space of models” for one of these will not in general be a locale. Nonetheless,
our programme of accepting the geometric discipline still makes perfect sense,
and this is where we shall use the word topos: a topos is the “class of models”
(its points) for a general geometric theory, and a continuous map is a geomet-
rically constructed transformation of points. (The topos is usually referred to
as the classifying topos for its theory, and such a continuous map is usually
known as a geometric morphism.) Very literally, a topos is a generalized locale
(a locale is simply a topos whose corresponding geometric theory happens to
be propositional), and so, as Grothendieck said, “A topos is a generalized topo-
logical space.” In accepting the geometric discipline we are therefore again, in
some generalized sense, doing topology without being aware of it.

5.1 “Geometric mathematics”

I should first say something about the nature of these geometric constructions.
Logically, we get a restriction on the theories presented: a geometric theory

is a many-sorted first order theory, with a vocabulary of sorts, predicates and
functions, and axioms of the form φ `S ψ where φ and ψ are geometric formulae
(their permitted connectives are ∧,

∨
, = and ∃) whose free variables are all taken

from the finite set S.
Set theoretically, we get a restriction on the constructions allowed. The gen-

eral rule is that the geometric constructions are those that can be characterized
uniquely up to isomorphism by geometric theories. This includes finite prod-
ucts, arbitrary coproducts (disjoint unions), equalizers and coequalizers, and
also free algebra constructions (for finitary algebraic theories). This gives us
list types (free monoids), finite powersets (free semilattices) as well as N (nat-
ural numbers) and Z (integers), from which Q (rationals) can be constructed.
However, certain constructions are not geometric, notably power sets, function
sets and R. (Geometrically, we can define a theory whose models are the reals,
but we cannot define the set of reals: so geometrically, R is a locale but not a
set.)

The practical mathematical effect is to allow finitary constructions, as well as
inductive and recursive ones, but not impredicative ones. This gives geometric
mathematics a highly algorithmic flavour, building constructions – and often
proofs too – “from below”.

In presenting theories we might as well presume a geometric type theory,
from which we can derive new types from the base types (the sorts). We have
already seen this in the theory of Dedekind sections. There were no base types
there, but out of nothing we can construct Q, which we used there, and hence
Q×Q and so forth. Furthermore, by using the finite power set construction we
get a weak 2nd order logic in which finite subsets can appear as terms, and we
can universally quantify over finite sets despite the fact that ∀ is not in general
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geometric.
We now have a first view of toposes, based on the analogy with locales:

• A topos is defined by giving a geometric theory of its points.

• To define a geometric morphism f from E to F , just give a uniform,
geometric description of how the result f(x) is constructed from x.

Already this is sufficient to do a certain amount of topos theory, and this can
be seen quite explicitly in [Vic99] which reworks certain categories and functors
of domain theory as toposes and geometric morphisms.

5.2 Homomorphisms

The specialization order on locales generalizes to a category structure on a
topos, through the notion of homomorphism between two models: it comprises,
for each base type, a function between the two corresponding carriers, that re-
spects the functions and relations. (e.g. Suppose the theory has one base type,
a unary function f , and a binary relation R. If φ is the carrier function for a ho-
momorphism, then we require f(φ(x)) = φ(f(x)) and R(x, y)⇒ R(φ(x), φ(y)).)
Because of the positivity of the logic, such a homomorphism can be defined
at all the derived types too, and the notion of homomorphism is presentation-
independent. In the propositional case (no sorts), such a homomorphism is
precisely an instance of the specialization order.

The good behaviour of homomorphisms means that every topos has an in-
trinsic category structure: object = point, morphism = homomorphism. More-
over, any filtered diagram of points (such as a chain x0→x1→x2→· · · ) has a
colimit. A map (geometric morphism) between toposes is functorial with respect
to homomorphisms and preserves the filtered colimits.

The homomorphisms make the category of toposes into a 2-category. For if
f and g are two continuous maps (geometric morphisms) between toposes X
and Y , then we can define 2-cells (or natural transformations) α : f ⇒ g in the
form, “Let x be a point of X. Then αx is a homomorphism from f(x) to g(x)
defined [geometrically] as . . . .”

6 Generalized categories of sets

The connection between propositional geometric theories and topologies was not
too strained, and was made all the firmer by the frames. But for the predicate
theories there is no pre-existing “generalized topology” we can connect up with,
and the best we can do is to find something corresponding to the frames. For
a locale D = [T ], its frame ΩD comprises all the propositions expressible in T .
Now propositional truth values are the points of a locale $ (the Sierpinski locale,
presented by a single propositional symbol and no axioms), and it follows that
the elements of ΩD are the maps from D to $.
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For a topos D, classifying a predicate theory, the propositions are – unsur-
prisingly – not enough. We must replace $ by [set], the topos classifying sets,
and define SD to be the class of geometric morphisms from D to [set].

Example 3 1. Suppose D is a locale. SD is the category of sheaves over D,
and definitions (which can now be understood as structural elucidations)
can be found in the standard texts such as [MLM92]. Other intuitions are
in [Vic96a]. By extension, we shall refer to objects of SD as sheaves on
D even when D is not a locale. If F is a sheaf on D, and x is a point of
D, then F (x) is the stalk of F at x.

2. Suppose D is the locale classifying the empty theory – no vocabulary, no
axioms. This theory has a unique model given by the vacuous interpre-
tation of the empty vocabulary, so the locale has a unique point and is
written 1. S1 is the category of sets.

3. Suppose D is [set], and write FC for the category of finite cardinals. These
are points of [set], so we get a functor from FC × S[set] to Sets, and
hence one from S[set] to the functor category SetsFC . It turns out (e.g.
[MLM92]) that this is in fact an equivalence: a sheaf on [set] is determined
by its stalks at finite cardinals, the essential reason being that an arbitrary
set is a filtered colimit of finite cardinals. This behaviour (that SD is
equivalent to SetsC where C is some restricted category of points) is typical
of toposes that classify algebraic theories.

The objects of SD, the sheaves, are essentially parametrized sets, and for this
reason SD behaves in many respects just like a (non-classical) category of sets.
It has all the geometric set-theoretic constructions (finite products, arbitrary
coproducts, etc.), and indeed it has some non-geometric ones too (principally,
function sets and power sets): it is a generalized category of sets. It certainly
has enough good properties that we can say what it means to find a model in
SD for a geometric theory.

We have now found a wide range of generalized categories of sets (indeed
this is the key to the logical applications of topos theory), and in each of these
we can discuss models of a theory T . It is important to realise that when we
refer to points of the topos [T ], we allow ourselves to consider models of T in
arbitrary generalized categories of sets, not just some favourite “underlying set
theory”.

Purely in terms of our definition of SD, it is actually not too hard to see –

Theorem 4 Let D and E be toposes. Then the following are equivalent:

1. Geometric morphisms from D to E.

2. Points of E in SD.

3. Functors from SE to SD that preserve geometric constructions.
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Proof. (Hint:) Use the fact that SD contains a “generic” point of D. For
instance, given a sort in a theory T , what is the corresponding carrier for the
generic model? It is an object of S[T ], a sheaf on [T ]: its stalk at point x (model
of T ) is the corresponding carrier of x.

A consequence of this is that, just as with locales and frames, toposes and
their properties can be studied through the categories of sheaves and their prop-
erties, which are moreover interesting in their own right. It has therefore become
customary to say that the topos is its category of sheaves (and use the phrase
“elementary topos” for some even more generalized categories of sets), but this
does not harmonize with the idea of generalized spaces. For instance, the cat-
egory structure of SD – sheaves and sheaf morphisms – is completely different
from the category structure of D – points and homomorphisms.

7 How much does Geometric Mathematics en-
compass?

The propaganda you’ve seen above – Do all your mathematics geometrically
and you need not think about topology or frames or categories of sheaves – is in
many ways delightfully simple. It holds out the promise of a grand encompassing
geometric mathematics in which topology and continuity are intrinsic features,
not added structure. Let us consider the claim a little more soberly.

It works quite well when defining the spaces and the maps, but it is heuris-
tically naive for anything deeper. As an example, let us consider compactness.
There is a good geometric account of this, but it is non-obvious and requires
some structural knowledge of geometric mathematics itself. How far similar
methods can be applied to other topological concepts such as connectedness
and completeness is not entirely clear.

Compactness is known from ordinary topology and can readily be transferred
to frames; the question is whether it can be discussed purely in terms of locales,
given by theory presentations. The trick is to use the upper powerlocale PUD
([Vic95], [Vic97]). The points of PUD are certain compact sublocales of D,
with reverse ordering (big sublocales are low in the specialization order), and
it turns out that D itself is compact iff PUD is local (has a bottom point).
Now the presentation for PUD is normally derived from the frame ΩD, but it
turns out that it can always be derived, and by geometric constructions, direct
from a presentation of D. Hence compactness comes out of a deep structural
feature of geometric mathematics, namely the existence of the upper powerlocale
construction.

Even in the localic context we have a non-trivial piece of work here. I at
least am still far from understanding the analogous structure for toposes.
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