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Abstract

Dcpos can be presented by a preorder of generators and inequational relations expressed
as covers. Algebraic operations on the generators (possibly with their results being ideals of
generators) can be extended to the dcpo presented, provided the covers are “stable” for the
operations. The resulting dcpo algebra has a natural universal characterization and satisfies all
the inequational laws satisfied by the generating algebra.

Applications include known “coverage theorems” from locale theory.

1 Introduction

The importance of algebraic theories in semantics was first emphasized by Hennessy and Plotkin
in [HP79] and more recently — in the context of “computational effects” — by Plotkin and
Power, [PP04]. Mathematically, it necessitates the ability to construct free algebras over se-
mantic spaces. For continuous domains, a general theory was developed by Abramsky and the
first author in [AJ94, Section 6] making use of the concept of an “abstract basis.” There it
was also stated that free algebras exist for the more general category DCPO, however, the
construction was not concrete but reference was made to the Freyd Adjoint Functor Theorem.
The result presented in this paper amends this situation and allows us to give a fairly concrete
description of free dcpo algebras.

The key ingredient of our approach is a construction which produces a dcpo algebra from a
preordered algebra subject to a certain set of “covers,” each of which forces a directed supremum
to cover an element. Our first main theorem states that in the construction process one can
ignore the operations of the given preordered algebra P and complete P simply with respect to
the set C of covers; the operations can automatically be lifted to the resulting dcpo where they
will be Scott-continuous. As our second main theorem we have the result that the dcpo algebra
so constructed satisfies all inequations that hold in the original algebra P .

The proof techniques we employ are greatly inspired by those found in the paper [JV91] by
Johnstone and the third author, where they were used to show that preframes can be presented
by generators and relations.

The technique of presenting algebras by generators and relations is well known from Universal
Algebra and works with magical ease, but a recurring difficulty is that it does not readily yield
concrete information about the algebra presented.
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One way to obtain partial information is through the coverage theorems of locale theory. We
can illustrate this with the Double Coverage Theorem of [VT04, Theorem 7]. This is a very
convenient illustration since we shall follow its techniques fairly closely, though it was by no
means the first such coverage theorem. (We give a more extensive survey in Section 6, with the
Double Coverage Theorem as Theorem 6.3.)

Suppose a frame is presented with a set of generators L that, as it happens, is a distributive
lattice whose finite meets and joins are to be preserved in the frame. Suppose also R is a set of
relations that are ∨-stable and ∧-stable in a certain sense. Then

Fr〈L (qua DL) | R〉 ∼= dcpo〈L (qua poset) | R〉

Here “qua” means that the indicated structure is to be preserved. For example, “qua DL”
(“DL” standing for distributive lattice) indicates that the injection

η : L → Fr〈L (qua DL) | R〉

preserves finite meets and joins. Similarly, “qua poset” indicates that the other injection of
generators is monotone. In addition, the isomorphism commutes with those two injections.

Presenting frames by generators and relations is a central technique in locale theory. Log-
ically, it amounts to locales classifying propositional geometric theories, in the same way as
toposes can classify predicate geometric theories. The frame presentation gives us very sharp
information about how to define frame homomorphisms out of the frame presented. (Localically,
it tells us about locale maps into the corresponding locale, in other words the generalized points
of the locale.) However, it does not immediately tell us the concrete structure of the frame.
The Double Coverage Theorem tells us that if the presentation is sufficiently nice, then we know
at least enough about the concrete structure to be able to define dcpo homomorphisms out of
the frame. This is thus more extensive knowledge than we got immediately from the frame
presentation.

The “niceness” of the presentation may look like a restriction, but in fact every presentation
can be worked into the nice form by finitary means, by freely generating a distributive lattice
from the generators.

Technically, the proof of the Double Coverage Theorem works in the following steps. First,
show that the right-hand side really does present a dcpo; next, use its universal property to
define meet and join operators; then, show that these are meet and join for the dcpo order,
and are distributive. This shows that the right-hand side is in fact a frame. Next, to show
the universal property specified by the frame presentation, it must be shown that certain dcpo
homomorphisms are in fact frame homomorphisms.

A range of such coverage theorems are known, and can be proved by similar means. The aim
of the present paper is to give a general account of the infinitary, dcpo aspects of this, showing
how operations on generators and inequational laws holding for them can be extended to dcpos
presented by generators and relations.

2 DCPO presentations

We first show that dcpo presentations by generators and relations do indeed present: in other
words, there is a dcpo with the universal property specified in the presentation. This was
essentially proved in [VT04, Section 2.1], using the techniques (originally used for preframes)
of [JV91]. Our development here generalizes theirs in two ways. First, we assume that the
generators form a preorder rather than a poset. This is inessential, since the preorder can
be posetified. Second, [VT04] used equational relations of the form, “directed join = directed
join.” We shall instead use inequational relations, of the form, “element ⊑ directed join.” This
is equivalent to the equational relations in the semilattice contexts of [VT04], but not more
generally.
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Definition 2.1 A dcpo presentation consists of

• a set P of generators;

• a preorder ⊏∼ on P ;

• a subset C of P ×P(P ), whose elements are called covers and written a ⊳ U , subject to the
requirement that U is directed with respect to ⊏∼. (Without the directedness requirement,
we shall refer to C as a cover set.)

The goal is to show that every dcpo presentation gives rise to a dcpo with the appropriate
universal property.

Definition 2.2 An order preserving map f : (P ;⊏∼, C) → D from a dcpo presentation to a
dcpo D preserves covers if for all a ⊳ U in C it is true that f(a) ⊑

⊔
↑
x∈U f(x).

Definition 2.3 A dcpo P is freely generated by the dcpo presentation (P ;⊏∼, C) if there is a
map η : P → P that preserves covers, and every map f from P to a dcpo D that preserves covers
factors through η via a unique Scott-continuous map f : P → D:

P ....................
f

- D

¡
¡

¡
¡

f

µ

P

η
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Definition 2.4 Let (P ;⊏∼, C) be a preorder with cover set. A C-ideal I is a subset of P which
is downward closed and closed under all covers, to wit, U ⊆ I implies a ∈ I for all a ⊳ U in C.

If S is any subset of P then 〈S〉 denotes the smallest C-ideal containing S. The set of all
C-ideals is denoted by C-Idl(P ).

This is the same definition as in [Joh82, Section II-2.11], however, our presenting preorder
is not assumed to be a meet semilattice. Trivially, C-Idl(P ) is a complete lattice as S 7→ 〈S〉
is a closure operator on the powerset of P . Specifically,

⊔
k∈K Ik = 〈

⋃
k∈K Ik〉 for any set

{Ik | k ∈ K} of C-ideals.
Now, C-Idl(P ) is not the free dcpo generated by a dcpo presentation but it plays a crucial

role in our construction. Indeed, we shall be particularly interested in C-Idl(P ) as a sup-lattice
(or complete join semilattice). As objects, sup-lattices and complete lattices are the same, but
sup-lattice homomorphisms are only required to preserve all joins.

Proposition 2.5 Let (P,⊏∼) be a preorder and C a cover set on it. Then C-Idl(P ) is

SupLat〈P (qua preorder) | a ⊑
⊔

U whenever a ⊳ U〉.

Proof. (From [AV93]) If Q is a sup-lattice and f : P → Q a monotone function that preserves
covers, then define f : C-Idl(P ) → Q by

f(I) =
⊔

p∈I

f(p).

This is clearly monotone and satisfies f ◦ η = f , so only the preservation of suprema needs to
be shown. By monotonicity we have

f(
⊔

k∈K

Ik) =
⊔

p∈
F

Ik

f(p) ⊒
⊔

k∈K

⊔

p∈Ik

f(p) =: x
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For the other inequality note that f−1(↓x) is downward closed by the monotonicity of f , closed
under covers because these are assumed to be preserved by f , and a superset of all Ik. Hence⊔

k∈K Ik = 〈
⋃

k∈K Ik〉 ⊆ f−1(↓x) and f(
⊔

k∈K Ik) ⊑ x.

We shall also need the following lemma.

Lemma 2.6 Let D be a dcpo. Then the sup-lattice Σ(D) of Scott closed subsets of D is the
free sup-lattice over D qua dcpo.

Proof. A proof was sketched in [VT04] but we can also apply the preceding proposition by
considering the dcpo presentation (D,⊑, C) where C contains all covers a ⊳ U where a ⊑

⊔
↑U

in D. Then the set of C-ideals coincides with the set of Scott-closed subsets, and any monotone
function f : D → E which preserves covers is in fact Scott-continuous.

Note that for a constructive treatment we must define “Scott closed” to mean down-closed
and closed under directed joins, not the complement of a Scott open.

Note also that η : D → C-Idl(D) = Σ(D) takes each a ∈ D to the corresponding principal
ideal ↓a, and therefore is an order embedding. In the following we denote it by ↓, rather than η.

To return to the task of determining the dcpo generated by a given dcpo presentation, we
let P be the smallest sub-dcpo of C-Idl(P ) containing all 〈p〉 for p ∈ P , and define η : P → P as
p 7→ 〈p〉. This is order-preserving because C-ideals are lower sets. For the preservation of covers

let a ⊳ U . Then U ⊆
⋃↑

x∈U 〈x〉 ⊆ 〈
⋃↑

x∈U 〈x〉〉 =
⊔

↑
x∈U 〈x〉 and this contains a (and hence 〈a〉)

because C-ideals are closed under covers.

Theorem 2.7 P together with the map η : P → P is

dcpo〈P (qua preorder) | a ⊑
⊔

U whenever a ⊳ U〉.

Proof. Let D be a dcpo and f : P → D a monotone function that preserves covers. The
composite function ↓ ◦f : P → Σ(D) also preserves covers and hence factors via a sup-lattice
homomorphism f ′ : C-Idl(P ) → Σ(D). In other words, we have the following commuting diagram

P
η - P ⊂ - C-Idl(P )

@
@

@
@

f
R

D ⊂
↓- Σ(D)

f ′

?

and the idea is to pull back f ′ along ↓. For this note that the image of ↓ is a sub-dcpo of Σ(D)
and since f ′ preserves suprema, Xf := f ′−1(↓(D)) is a sub-dcpo of C-Idl(P ). Because the
diagram commutes, η(P ) is a subset of Xf and then the same is true for P . If follows that f ′

can be restricted to P giving us a Scott-continuous map f ′′ from P to ↓(D) ⊆ Σ(D). Since ↓(D)
is order-isomorphic to D, f := ↓−1 ◦ f ′′ is a Scott-continuous map from P to D with f = f ◦ η.

This is unique because if we had two such maps then their equalizer would be a sub-dcpo of
P that includes P and hence equal to P .

It is worthwhile to point out that this result generalizes the usual ideal completion of a pre-
order, which is obtained by letting the set of covers be empty. Similarly to the ideal completion
it is true in the general case that although the empty set is always a C-ideal, it is never a
member of P .

We conclude this section with the following result which will turn out to be the crucial
ingredient in our study of dcpo algebra presentations.

Proposition 2.8 Let (Pi,⊏∼, Ci), i = 1, . . . , n, be a finite family of dcpo presentations. Then∏
i P i is the smallest sub-dcpo of

∏
i C-Idl(Pi) containing

∏
i η(Pi).
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Proof. Certainly
∏

i P i is a sub-dcpo of
∏

i C-Idl(Pi) that includes
∏

i η(Pi). Now suppose D
is any such sub-dcpo. Suppose for some i (0 ≤ i ≤ n) we have

η(P1) × · · · × η(Pi) × P i+1 × · · · × Pn ⊆ D.

This is certainly true for i = n. Let S = {a ∈ P i | η(P1)×· · ·×η(Pi−1)×{a}×P i+1×· · ·×Pn ⊆
D}. S is a sub-dcpo of P i that includes η(Pi), and hence is the whole of P i. We deduce that
η(P1)× · · ·× η(Pi−1)×P i × · · ·×Pn ⊆ D, and it follows by induction on n− i that

∏
i P i ⊆ D.

Since the transition from P to P (with respect to a set C of covers) is the main operation
in this paper, we give three alternative descriptions.

The d-topology Consider the d-topology on a dcpo having sub-dcpos as its closed sets.1

Then obviously P is just the d-closure of the image η(P ). The two noteworthy properties of the
d-topology are that it is Hausdorff on any dcpo (↓x is always open and closed), and that a map
between dcpos is Scott-continuous if and only if it is d-continuous and order-preserving.

The µ-topology Recall Keye Martin’s µ-topology of a dcpo, generated by the subbasic open
sets ↓x ∩ O with O a Scott-open subset, [Mar00, Chapter 3]. Alternatively, µ is the join of the
lower Alexandrov and the Scott topologies.

Proposition 2.9 The smallest sub-dcpo P of a subset P of a dcpo D is contained in the µ-
closure of P . Furthermore, for every element x ∈ P and Scott-open set O containing x there
exists x′ ∈ P with x′ ∈ O and x′ ⊑ x.

Proof. For the supremum of a directed set A to belong to a subbasic µ-open set ↓x ∩ O, all
elements of A must be below x. Because O is Scott-open, some element of A must meet it and
this element will then be in ↓x∩O. This shows that D \ (↓x∩O) is a sub-dcpo of D, and hence
that P belongs to the µ-closure of P .

The two need not be the same, even when the ambient dcpo D is continuous:

Example 2.10 Let D be the powerset of N. For the elements of P choose the set of Ai, i ∈ N

where Ai = N \ {i}. These are pairwise incomparable, so the dcpo closure of P is P itself. On
the other hand, every µ-neighbourhood of N, the largest element of PN, contains a subset ↑F
with F a finite set. Clearly, ↑F contains almost all Ai, so N is in the µ-closure of P .

Iterated ideal completion For every preorder P we have the ideal completion Idl(P )
consisting of directed lower sets of P . It is the free dcpo over P . Given a dcpo presentation
(P ;⊏∼, C) we have the order-preserving map η : P → C-Idl(P ) which therefore factors through
the ideal completion Idl(P ): η =

⊔
↑◦↓. Let’s call the image P1. It is not necessarily a sub-dcpo

of C-Idl(P ) but the process can be repeated: the inclusion of P1 into C-Idl(P ) extends to a
continuous map from Idl(P1) to C-Idl(P ). The image of this we call P2. And so on. At a limit
ordinal λ we set Pλ :=

⋃
α<λ Pα. Eventually this sequence stabilizes at P .

Each of these descriptions is useful in its own way but we must leave open the general
problem of finding an intrinsic characterisation of those subsets of P that are elements of P .

3 Operations

For (P ;⊏∼, C) a dcpo presentation, we now show how a monotone operation on P can be lifted
to a Scott-continuous operation on the presented dcpo P . As one may suspect, this will require
a compatibility condition between the operation and the set of covers.

1This appears to have been considered first by Oswald Wyler in [Wyl81].
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So let ω : Pn → P be an n-ary monotone operation on the preorder P . We say that C is stable
for ω (or simply ω-stable) if for every 1 ≤ i ≤ n, ai ⊳ U in C, and a1, . . . , ai−1, aa+1, . . . , an ∈ P ,
the cover ω(a1, . . . , an) ⊳ {ω(a1, . . . , ai−1, x, aa+1, . . . , an) | x ∈ U} is also in C. All our results
require stability and so from now on this is always assumed even if it is not explicitly stated.

The operation can be lifted to subsets in the obvious, pointwise fashion: For Ai ⊆ P (1 ≤
i ≤ n) set

ω(A1, . . . , An) := {ω(a1, . . . , an) | ai ∈ Ai}.

Lifting it to C-ideals requires the application of the associated closure operator: if Ii ∈ C-Idl(P )
(1 ≤ i ≤ n) set

ω(I1, . . . , In) := 〈{ω(a1, . . . , an) | ai ∈ Ii}〉.

Proposition 3.1 For any a1, . . . , ai−1, ai+1, . . . , an ∈ P and T ⊆ P the following holds

ω(a1, . . . , ai−1, 〈T 〉, ai+1, . . . , an) ⊆ 〈ω(a1, . . . , ai−1, T, ai+1, . . . , an)〉.

Proof. Let us write S for the right-hand side above, and let

T ′ = {x ∈ P | ω(a1, . . . , ai−1, x, ai+1, . . . , an) ∈ S}.

By definition of S, we have T ⊆ T ′. We show that T ′ is a C-ideal. Suppose a ⊳ U is a cover
in C and U ⊆ T ′. By stability, ω(a1, . . . , ai−1, a, ai+1, . . . , an) ⊳ ω(a1, . . . , ai−1, U, ai+1, . . . , an),
and since the right-hand side belongs to the C-ideal S, so does the left-hand side. It follows
that a ∈ T ′ and therefore 〈T 〉 ⊆ T ′.

Proposition 3.2 As a function from C-Idl(P )n to C-Idl(P ), ω preserves all joins in each ar-
gument.

Proof. Clearly, ω is monotone. Fixing some i, we must show

ω(I1, . . . ,
⊔

λ

Jλ, . . . , In) ⊑
⊔

λ

ω(I1, . . . , Jλ, . . . , In).

Let us write K for the right-hand side. Then we must show

ω(I1, . . . ,
⊔

λ

Jλ, . . . , In) ⊆ K:

in other words, if, for each j 6= i, we have aj ∈ Ij , then

ω(a1, . . . ,
⊔

λ

Jλ, . . . , an) ⊆ K.

Putting T =
⋃

λ Jλ in Proposition 3.1, we have

ω(a1, . . . ,
⊔

λ

Jλ, . . . , an) ⊆ 〈ω(a1, . . . ,
⋃

λ

Jλ, . . . , an)〉

= 〈
⋃

λ

ω(a1, . . . , Jλ, . . . , an)〉

Since K is a C-ideal and trivially for each λ,

ω(a1, . . . , Jλ, . . . , an) ⊆ ω(I1, . . . , Jλ, . . . , In) ⊆ K.

we have
〈
⋃

λ

ω(a1, . . . , Jλ, . . . , an)〉 ⊆ K

which completes the argument.

As a corollary, ω preserves all directed joins in each argument, and hence is jointly Scott
continuous, and hence Scott continuous.

6



Lemma 3.3 If Ai ⊆ P (1 ≤ i ≤ n) then

ω(〈A1〉, . . . , 〈An〉) = 〈ω(A1, . . . , An)〉.

Proof. That the right-hand side is included in the left-hand side is just monotonicity. For the
other inclusion we apply Proposition 3.1 n times to get the chain of inequalities

ω(〈A1〉, 〈A2〉, . . . , 〈An〉) ⊆ 〈ω(A1, 〈A2〉, . . . , 〈An〉)〉 ⊆ . . . ⊆ 〈ω(A1, . . . , An)〉

Applying the C-ideal closure operator to the leftmost and rightmost term gives the result.

Corollary 3.4 The map η : P → C-Idl(P ) preserves ω, in other words, if a1, . . . , an ∈ P then

ω(η(a1), . . . , η(an)) = η(ω(a1, . . . , an)).

Proposition 3.5 ω maps P
n

to P .

Proof. We must show that P
n
⊆ ω−1(P ). Since ω is Scott continuous, ω−1(P ) is a sub-dcpo

of C-Idl(P )n, and by Corollary 3.4 it includes (η(P ))n. Hence by Proposition 2.8 it includes P
n
.

Theorem 3.6 Let D be a dcpo and let ωD : Dn → D be a continuous map. Let further f : P →
D be a monotone and cover preserving homomorphism. Then the extension f : P → D (defined
in the proof of Theorem 2.7) is also a homomorphism.

Proof. Consider the set

{(I1, . . . , In) ∈ P
n
| ωD(f(I1), . . . , f(In)) = f(ω(I1, . . . , In))}.

This is a sub-dcpo of P
n

because it is the equalizer of the two Scott-continuous functions ωD ◦f
n

and f ◦ ω. It includes the image of Pn under ηn since

ωD(f(η(a1)), . . . , f(η(an))) = ωD(f(a1), . . . , f(an))

(f is a homomorphism) = f(ω(a1, . . . , an))

= f(η(ω(a1, . . . , an)))

(Corollary 3.4) = f(ω(η(a1), . . . , η(an)))

Hence it equals P
n
.

From a topological point of view, we can say the following about the algebra P .

The d-topology Since a function between dcpos is Scott-continuous if and only if it is
monotone and d-continuous, it then follows from Proposition 3.2 that C-Idl(P ) is a topological
algebra with respect to the d-topology. Since η(P ) is a subalgebra of C-Idl(P ) it now follows
for completely general reasons that its d-closure is a subalgebra as well. As noted at the end of
Section 2, the d-closure is exactly P .

The µ-topology We note that the operation ω on C-Idl(P ) is µ-continuous because it is
Scott-continuous and order-preserving. Hence C-Idl(P ) is a topological algebra with respect to

the µ-topology as well, and hence the µ-closure P of η(P ) is also a subalgebra. By Proposition 2.9
it contains P .
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4 Inequations

We are ready to embark on the main result of this paper, namely, that the free dcpo algebra P
satisfies all inequations that are valid in the preordered algebra P . The setting is slightly more
general than in the previous section: we assume we are given a dcpo presentation (P ;⊏∼, C) and a
signature Ω of operation symbols, each of finite arity. We further assume that P is a preordered
Ω-algebra, which means that for every ω ∈ Ω with arity n a monotone map ωP : Pn → P has
been specified. (Below we will no longer distinguish between the function symbol ω and the
concrete operation ωP .) We also assume that C is stable with respect to all operations ωP ,
ω ∈ Ω.

Definition 4.1 For Ω a set of function symbols, an inequation is a first-order formula of the
form (∀~x)t1 ⊑ t2, where t1 and t2 are Ω-terms whose variables all appear in the vector ~x.

The notion of algebra (model) for an inequational theory can be defined in any preorder-
enriched category with products. For the purposes of this paper, we are interested in the
categories Pre (of preorders) and dcpo.

Proposition 4.2 Let (P ;⊏∼,Ω) be a preordered Ω algebra and C a set of covers stable for all
ω ∈ Ω. Let P be the dcpo algebra presented by (P ;⊏∼, C) with Scott-continuous operations ω
(ω ∈ Ω) as defined in the previous section. Then any inequation that is valid in P also holds
in P .

Proof. Let (∀~x)t1 ⊑ t2 be an inequation that is valid in P . The terms t1 and t2 define n-ary
monotone operations on P , hence extend to n-ary Scott-continuous operations t1, t2 on P by
Proposition 3.5. The set X of tuples ~a in P

n
for which t1(~a) ⊑ t2(~a) holds, is a sub-dcpo of P

n
.

It includes (η(P ))n because the inequation holds in P and η is a monotone homomorphism by
Corollary 3.4. By Proposition 2.8, X is the whole of P

n
.

Note that the analogous statement for the ambient algebra C-Idl(P ) is false in general. An
example is easily given. Let P be trivially ordered and carry a binary operation that satisfies
x ∗ x = x; let the set C of covers be empty. The set of C-ideals consists of all subsets of P .
Clearly, forming the product A ∗A of a subset A ⊆ P with more than one element may contain
elements not belonging to A.

Definition 4.3 For Ω a set of function symbols, an inequational theory is simply a set E of
inequations over Ω. A preordered algebra supporting all operations in Ω is called a (Ω, E)-algebra
if it satisfies the inequations in E. We often abbreviate the pair (Ω, E) to T.

Theorem 4.4 Let T = (Ω, E) be an inequational theory and P a preordered T-algebra. Let C
be a set of covers stable for all operations in Ω. Then η : P → P makes P freely generated as a
dcpo-T-algebra that respects the T-algebra structure of P and preserves the C-covers.

Proof. That P is a dcpo-T-algebra follows from the preceding proposition. Freeness was
shown in Theorem 3.6.

The phenomenon reported in this theorem was first noted by Abramsky and Vickers for a
special algebraic theory; it is the essence of their “coverage theorem” in [AV93]. We believe
that it is the “general unifying account” that is asked for in [VT04, page 301]. We will examine
how the various coverage theorems in the literature follow from it in Section 6 below. In the
remainder of the present section we indicate how Theorem 4.4 could have been established by
other means.

The d-topology C-Idl(P ) is a topological algebra with respect to the d-topology. The
subalgebra η(P ) satisfies the inequation of P as it is a monotone homomorphic image of P .
Since the d-topology is Hausdorff, the topological closure preserves the inequalities. Finally, the
closure is exactly P .
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The µ-topology Here we can not just invoke the topological closure argument because the
µ-topology may not be Hausdorff. Still, the desired result holds:

Proposition 4.5 The µ-closure P of η(P ) satisfies the inequations of P .

Proof. Let t1, t2 be two terms such that the corresponding term functions t1, t2 do not satisfy

t1 ⊑ t2 on P . This means that there exists a vector ~I of C-ideals, all taken from P , such that
t1(~I) 6⊑ t2(~I). The operations are µ-continuous on C-Idl(P ) as they are Scott-continuous, and

this extends to term functions. So we find approximating ideals ~I ′ from η(P ) such that t1(~I
′)

belongs to the µ-open set ↓t1(~I)\↓t2(~I). It follows that η(P ) does not satisfy (∀~x)t1 ⊑ t2 either,
and neither does P .

Iterated ideal completion Yet another way to establish our main theorem is via the
transfinite generation process described at the end of Section 2. One first shows the following
result directly (rather than relying on the fact that it is the special case C = ∅ in Proposition 4.2):

Proposition 4.6 An inequational law that is valid in P also holds in Idl(P ).

Then it is easy to see that inequations are preserved at every stage of the transfinite process.

5 Extensions

The phenomenon we are reporting in this paper is very robust and can be extended in a number
of ways. First of all, the restriction to single-sorted algebras was purely for the sake of expository
simplicity — the results of sections 3 and 4 hold equally well in the many-sorted case. Of course,
one then deals with a dcpo presentation for each sort separately.

More interesting is the case where we are given an operation that takes values in Idl(P ) rather
than P . This situation arises frequently in domain theory and also in the “flat site” coverage
theorem at the end of this paper. We show how this case can be reduced to the standard one,
so let ω : Pn → Idl(P ) be a monotone map. By setting

ω′( ~A) :=
⋃

{ω(~a) | ~a ∈ ~A}

we obtain a monotone operation of the usual kind on the ordered set Idl(P ). The idea is now
to complete Idl(P ), rather than P itself. We lift the given set C of covers to a set C ′ of covers
on Idl(P ) through the following two rules:

(a ⊳ U) ∈ C
(lift)

(↓a ⊳ {↓U}) ∈ C ′

A =
⊔

↑

i∈I

Ai in Idl(P )

(cont)
(A ⊳ {Ai | i ∈ I}) ∈ C ′

Proposition 5.1 The dcpo P presented by (P ;⊏∼, C) is isomorphic to Idl(P ) presented by
(Idl(P );⊆, C ′).

Proof. We show that Idl(P ) has the required extension property. Consider the following
diagram:

P
↓- Idl(P )

η- Idl(P )

@
@

@
@

f
R ª¡

¡
¡

¡

f ′

D

f ′

?
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where we assume that D is a dcpo and f preserves covers. The function f ′ is the unique Scott-
continuous map for which f = f ′ ◦ ↓. We show that it preserves the covers in C ′. For covers
created by the (lift)-rule, we compute:

f ′(↓a) = f(a)
(f preserves covers in C) ⊑

⊔
↑{f(x) | x ∈ U}

=
⊔

↑{f(x) | x ∈ ↓U}
=

⊔
↑{f ′(↓x) | x ∈ ↓U}

(f ′ is continuous) = f ′(
⊔

↑{↓x | x ∈ ↓U})
= f ′(↓U)

Covers created by the (cont)-rule are preserved because f ′ is continuous. It follows that the
extension f ′ exists and satisfies

f ′ ◦ (η ◦ ↓) = f ′ ◦ ↓ = f

If we had another continuous map g : Idl(P ) → D with g◦(η◦↓) = f , then g◦η would be another
continuous map into D extending ↓ and so would have to be equal to f ′. (Here we are using
that η is Scott-continuous, which is enforced by the covers created through the (cont)-rule.)
However, g ◦ η = f ′ forces g = f ′ by the universal property of Idl(P ).

In order to apply our theory of Section 3 we need to find a suitable requirement on C that
ensures that C ′ is ω′-stable. Since ω′ is Scott-continuous, stability for the covers created by the
(cont)-rule is automatic.

Ensuring stability for the covers created by the (lift)-rule would lead to an awkward condition
on ω, but luckily, the situation becomes much more malleable through the following concept:

Definition 5.2 For C a set of covers on a preorder (P ;⊏∼) define the saturation sat(C) of C
by the following rules:

(a ⊳ U) ∈ C
(inc)

(a ⊳ U) ∈ sat(C)

a′ ⊏∼ a (a ⊳ U) ∈ sat(C) ↓U ⊆ ↓U ′

(mon)
(a′ ⊳ U ′) ∈ sat(C)

(a ⊳ U) ∈ sat(C) ∀b ∈ U.(b ⊳ V ) ∈ sat(C)
(trans)

(a ⊳ V ) ∈ sat(C)

It is clear that a monotone function that preserves the covers in C also preserves those in the
saturation, and therefore that (P ;⊏∼, C) and (P ;⊏∼, sat(C)) present the same dcpo P .

Definition 5.3 Let ω : Pn → Idl(P ) be a monotone operation. A set of covers C is called ω-
stable if whenever we have p ∈ ω(a1, . . . , an) and ai ⊳ U belongs to C, then p ⊳ U ′ for some
U ′ ⊆ ω(a1, . . . , U, . . . an).

Proposition 5.4 If C is ω-stable for ω : Pn → Idl(P ) then sat(C ′) is ω′-stable for ω′ : Idl(P )n →
Idl(P ).

Proof. Let ↓a ⊳ {↓U} be a cover in C ′ created by the (lift)-rule. Given any vector of directed
ideals A1, . . . , Ai−1, Ai+1, . . . , An we need to show that

ω′(A1, . . . , ↓a, . . . , An) ⊳ ω′(A1, . . . , ↓U, . . . , An)

belongs to sat(C ′). This will follow from (cont) and (trans) if we can show

↓p ⊳ ω′(A1, . . . , ↓U, . . . , An)

10



for every p ∈ ω′(A1, . . . , ↓a, . . . , An) =
⋃

ak∈Ak
ω(a1, . . . , a, . . . , an). However, by ω-stability

of C we have p ⊳ U ′ for some directed set U ′ ⊆ ω(a1, . . . , U, . . . , an) ⊆ ω′(A1, . . . , ↓U, . . . , An)
and the desired cover belongs to sat(C ′) by rules (mon), (lift), and (cont).

To complete the translation from P to Idl(P ) observe that if an inequation (∀~x)t1 ⊑ t2 is
valid in P then it also holds in Idl(P ). By the extension Theorem 4.4 it will then also hold in
the presented dcpo-algebra Idl(P ).

6 Applications

6.1 Quotients and colimits in DCPO

Given a dcpo D we may wish to force certain inequalities to hold. The results of Section 2 show
how this can be done, namely by collecting the inequations into a set of covers C, but they also
show that the process of forming the quotient is non-trivial; this is because the naive (preorder)
quotient may contain directed sets that did not exist before.

One application of quotienting is the construction of the coequalizer in DCPO. Coproducts
are just disjoint unions, so together we have a fairly concrete description of colimits in DCPO.

6.2 Free dcpo algebras

Let T be an inequational theory. One of our main results, Theorem 4.4, shows that from a
T-algebra (P ;⊏∼) in Pre, equipped with a dcpo presentation that is stable for the operations in
T, the dcpo P presented is a free T-algebra in dcpo over P . In this section we shall use the
result to construct, given a dcpo D, a free T-algebra over D in dcpo. In other words, we are
constructing a left adjoin to the forgetful functor Alg

T
(dcpo) → dcpo. (For simplicity we are

assuming here that T is single-sorted. However, the extension to many-sorted theories is easy.
It will give a left adjoint to the forgetful functor Alg

T
(dcpo) → dcpoSort, where Sort is the set

of sorts for T.)
Let D be a dcpo. We shall assume D is presented as P for some given dcpo presentation

(P ;⊏∼, C). In a sense this is unnecessary, since D has a canonical presentation in which P = D
and C has a cover for every directed subset of D. However, there is some advantage in knowing
how the construction can be made in terms of presentations. We proceed in a number of steps.

First, let PT be the term algebra, the set of all terms made from elements of P and operators
in T.

Second, let ⊏∼T
be the smallest congruence preorder on PT that includes ⊏∼ and satisfies the in-

equational laws in T. By congruence preorder, we mean a preorder with respect to which the op-
erations are monotone. That is to say, if b ⊏∼T

c then ω(a1, . . . , b, . . . , an) ⊏∼T
ω(a1, . . . , c, . . . , an)

for any operator ω and elements ai. (PT;⊏∼T
) is a T-algebra in Pre.

Third, let CT be the smallest dcpo presentation on PT that includes C and is stable for all
the operators in T.

Theorem 6.1 Let (PT, ⊏∼T
, CT) be as above. Then P T is the free dcpoT-algebra over D.

Proof. Let E be a dcpoT-algebra, and let f : D → E be a continuous map. By definition of
dcpo presentation, f is equivalent to a monotone, cover-preserving function f : P → E. This
extends uniquely to a homomorphism fT : PT → E. The inverse image of ⊑E is a congruence
preorder on PT that includes ⊏∼ and satisfies the inequational laws in T, and it follows that fT

is monotone with respect to ⊏∼T
. Similarly, by considering those pairs (a, U) ∈ PT × PPT, with

U directed, such that fT(a) ⊑
⊔↑

u∈U fT(u), we see that fT preserves the CT-covers. Hence by

Theorem 4.4 fT extends uniquely to a homomorphism f
T

: P T → E.
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6.3 Coverage theorems

The content of Theorem 4.4 is that it shows that the same structure (P ) can be presented by
generators and relations in two different ways: either as a dcpo,

dcpo〈P | a ⊑
∨↑

U (a ⊳ U)〉

or as a dcpo-T-algebra,

dcpoT〈P (qua T-algebra) | a ⊑
∨↑

U (a ⊳ U)〉.

Presenting as a dcpo-T would, other things being equal, create a larger structure since all the
T-terms have to be generated. But this is compensated for by the “qua T-algebra”, in effect
extra relations, which constrain the newly generated terms to relate to what already exists in
P .

This is the typical pattern of the “coverage theorems” known from locale theory. In fact the
underlying question is seen more widely in mathematics. One example from ring theory is the
basic property of ideals. If R is a ring and I an ideal, then we have

Ring〈R (qua ring) | a = 0 (a ∈ I)〉
∼= Ab〈R (qua Abelian group) | a = 0 (a ∈ I)〉.

The ideal property RIR ⊆ I may be seen as a “multiplication stability” of the subgroup I.
The original locale-theoretic coverage theorem is that of [Joh82], which describes the con-

struction of the frame of C-ideals on a site, a meet-semilattice equipped with a meet-stable
coverage (not necessarily a dcpo presentation). It was also shown that the frame of C-ideals was
freely generated over the semilattice, with respect to transforming covers to joins. In fact the
constructions there underlie much of the present paper. However, something that was not ex-
plicit in [Joh82] was the fact that, even without the meets structure, the set of C-ideals could be
presented as a sup-lattice (complete join semilattice). This was stated and exploited in [AV93].
If (S,C) is the site, then

Fr〈S (qua ∧ -semilattice) | a ⊑
∨

U (a ⊳ U)〉

∼= SupLat〈S (qua poset) | a ⊑
∨

U (a ⊳ U)〉,

with both isomorphic to the set of C-ideals. There are two directions in which this can be
used. One is that if a frame is presented by generators and relations (in other words, it is
the Lindenbaum algebra for a propositional geometric theory), then the presentation can be
manipulated into site form and then the result shows how to define sup-lattice homomorphisms
from the frame. This was particularly useful in the context of [AV93], which involved quantales
and modules over them, which are sup-lattices but not frames in general. The other direction
was that it shows how to generalize the coverage theorem to get presentations for structures
other than frames, specifically quantales and their modules.

A specific aspect of the technique is that once the existence of the sup-lattice SupLat〈S (qua
poset)| a ⊑

∨
U (a ⊳ U)〉 is known, one can forget its concrete representation as a set of C-ideals.

Its universal property as sup-lattice can be used to define meet on it as a bilinear (with respect
to joins) operation, and then show that the operation gives meet with respect to the sup-lattice
order. This is similar to the way in which we here extend operations from the preorder to the
dcpo.

In [JV91] those same ideas were developed with sup-lattices replaced by preframes – a
preframe is a dcpo with finite meets, binary meet distributing over directed joins. It was shown
how frame presentations in a certain form could be reduced to preframe presentations. This time,
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the set of generators was a join-semilattice. The relations were all of the form
∧

S ≤
∨↑

i

∧
Ti,

with a certain join-stability property. Again, once the presented preframe was known to exist
(this was a substantial result of the paper), its frame structure could be proved from the universal
properties.

[VT04] combines those “sup-lattice” and “preframe” coverage theorems to prove a “double”
coverage theorem that relates frame presentations to dcpo presentations. In fact it is a direct
corollary of our Theorem 4.4.

[VT04] summarizes the coverage theorems in a cubical diagram

∨-SemiLat ¾ DL

I@
@

@
@ ¡

¡
¡

¡µ

SupLat ¾ Fr

dcpo
?

¾ PreFr
?

ª¡
¡

¡
¡ @

@
@

@R
Poset

?
¾ ∧-SemiLat

?

Each arrow here represents a forgetful functor that has a left adjoint, a free algebra functor.
Note that some of the arrows are between finitary theories, and there are already non-trivial
coverage theorems for those. However, our main Theorem, 4.4, is about dcpos and the coverage
theorems for the central square.

6.3.1 Immediate applications

The following two results in [VT04] are immediate corollaries of Theorem 4.4. Note that [VT04]
deals with equations: each “directed relation” is an equation between two joins of directed
families. Our inequational form is normally more general, but in the case of semilattices each
inequation can be expressed as an equation.

Proposition 6.2 Let P be a join semilattice and R a join-stable set of directed relations on it.
Then

Sup〈P (qua ∨ -SemiLat) | R〉 ∼= dcpo〈P (qua poset) | R〉.

Proof. [VT04] says, “The standard technique applies.” What is meant by this is that once
the RHS is known to exist then its universal property can be used to define ∨. The task then is
to show that the operation so obtained turns the RHS into a sup-lattice, and to prove the sup-
lattice universal property required by the left-hand side. Our Theorem 4.4 works differently; the
operation ∨ on P extends to an operation ∨ for the general reasons explained in Section 3, and
it satisfies all inequations that ∨ satisfies. This is enough to show that ∨ is the sup-operation on
the ordered set P , or more precisely, that A ⊆ B holds if and only if A∨B = B for all C-ideals
A,B ∈ P .

Assume A ⊆ B. Then A∨B ⊆ B∨B = B by monotonicity and idempotence, and B ⊆ A∨B
holds because it holds for ∨ on P .

Conversely, assume A∨B = B. Then A ⊆ A∨B = B, again using that (∀x, y)x ≤ x∨y holds
in the sup-lattice P .
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Theorem 6.3 (Double Coverage Theorem) If (P,R, ...) is a DL-site, then

Fr〈P (qua DL) | R〉 ∼= dcpo〈P (qua poset) | R〉

Proof. “DL-site” means that P is a distributive lattice and each relation in R is in the form
of an equation between two joins of directed families in P . Moreover, the equation set is join-
and meet-stable. Each equation can be expressed as a pair of inequations, so the whole site can
be rephrased as a join- and meet-stable dcpo presentation.

The order on P is linked to the join operation as in the previous proposition, and to meet
by equations. Hence the order on P is linked to ∨ as before and also to ∧ because the equations
are preserved.

Proposition 6.4 Let P be a meet semilattice and R a meet-stable set of directed relations on
it. Then

PreFr〈P (qua ∧ -SemiLat) | R〉 ∼= dcpo〈P (qua poset) | R〉.

Proof. The proof that the order on P is given by ∧ is analogous to the one given for ∨ above.

As a corollary of Proposition 6.2, we get the following. It illustrates a typical technique of
expanding the generator set with operations that are preserved, and expanding the relation set
to ensure stability.

Corollary 6.5 Let P be a preorder and C a coverage on it (not necessarily directed). Then

Sup〈P (qua preorder) | a ⊑
∨

U (a ⊳ U)〉

is isomorphic to

dcpo〈FP (qua ⊏∼L -preorder) |

B ∪ {a} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ FU} (B ∈ FP, a ⊳ U)〉.

Here FP is the finite powerset, and the lower preorder ⊏∼L is defined by A ⊏∼L B if for every
a ∈ A there is some b ∈ B with a ⊏∼ b.

Proof. One first shows that Sup〈P (qua preorder)| a ⊑
∨

U (a ⊳ U)〉 is isomorphic to

SupLat〈FP (qua ∪ -semilattice) |

B ∪ {a} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ FU} (B ∈ FP, a ⊳ U)〉.

This uses straightforward calculations with presentations. In one direction a maps to {a}, while
in the other A maps to

∨
A. The relations are ∪-stable, and then Proposition 6.2 can be applied.

6.3.2 The standard coverage theorems

The original coverage theorem was that if (S,C) is the site, then

Fr〈S (qua ∧ -semilattice) | a ⊑
∨

U (a ⊳ U)〉

∼= SupLat〈S (qua poset) | a ⊑
∨

U (a ⊳ U)〉.

Using Corollary 6.5, the RHS can be reduced to a dcpo presentation in which the generators
are FP preordered by ⊏∼L. These already form a distributive lattice, with A ∧ B = {a ∧ b |
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a ∈ A, b ∈ B}, and this allows us to deduce by the same means that the dcpo presented can be
given a frame presentation, which can then be proved isomorphic to the LHS. We do not give
the details here, since the discussion in Section is similar but more general.

[JV91] proves a preframe coverage theorem.

Theorem 6.6 Let S be a ∨-semilattice, and let R be a set of preframe relations of the form∧
A ⊑

∨↑

i∈I

∧
Bi, where the Bis form a directed family with respect to the upper order ⊏∼U .

(A ⊏∼U B if for every b ∈ B there is some a ∈ A with a ⊑ b.) Suppose also that the set of

relations is ∨-stable, in the sense that if
∧

A ⊑
∨↑

i∈I

∧
Bi is in R, and x ∈ S, then the relation

∧
{x ∨ y | y ∈ A} ⊑

∨↑

i∈I

∧
{x ∨ y | y ∈ Bi}

is also in R. Then

Fr〈S (qua ∨ -semilattice) | R〉 ∼= PreFr〈S (qua poset) | R〉.

Proof. We have PreFr〈S (qua poset)| R〉 ∼= PreFr〈FS (qua ∪ = ∧-semilattice)| R〉, and
FS/ ⊏∼U is a distributive lattice. The preframe presented is in turn isomorphic to

PreFr〈FS (qua ∪ = ∧-semilattice) | C ∪
m⋃

j=1

Aj ⊑
∨↑

{C ∪
m⋃

j=1

Bij
| ij ∈ Ij}

(C ∈ FS,
∧

Aj ⊑
∨↑

i∈Ij

∧
Bi in R〉,

and the relations here are both ∧-stable and ∨-stable. We can now use Theorem 4.4 to see that

dcpo〈FS (qua ⊏∼U -preorder) | C ∪
m⋃

j=1

Aj ⊑
∨↑

{C ∪
m⋃

j=1

Bij
| ij ∈ Ij}

(C ∈ FS,
∧

Aj ⊑
∨↑

i∈Ij

∧
Bi in R〉

is isomorphic both to the preframe presented above and to the frame

Fr〈FS (preserving ∪ and ∧ ) | C ∪
m⋃

j=1

Aj ⊑
∨↑

{C ∪
m⋃

j=1

Bij
| ij ∈ Ij}

(C ∈ FS,
∧

Aj ⊑
∨↑

i∈Ij

∧
Bi in R〉

which in turn is isomorphic to Fr〈S (qua ∨-semilattice)| R〉.

6.3.3 Flat sites

We discuss here the original sup-lattice coverage theorem in a slightly generalized form.
A flat site is defined in [Vic06] as a triple (P,⊏∼, ⊳0) where (P,⊏∼) is a preorder and ⊳0 is a

subset of P × PP such that if a ⊳0 U and b ⊏∼ a, then b ⊳0 V for some V ⊆ b ↓ U . (We write
A ↓ B for (↓ A) ∩ (↓ B), ↓ A for the down-closure of A.)

In fact, this is just re-notation for the inductively generated formal topologies of [CSSV03].
Each flat site presents a frame Fr〈P,⊏∼, ⊳0〉, defined as

Fr〈P (qua preorder) | 1 ⊑
∨

P

a ∧ b ⊑
∨

(a ↓ b)

a ⊑
∨

U (a ⊳0 U)〉.
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This generalizes the [Joh82] notion of site, though in a way that is already understood from
the way Grothendieck topologies are used in topos theory. If P is a meet-semilattice then
the condition on the coverage is equivalent to meet stability, and the first two relations given,
together with “qua preorder”, are equivalent to preservation of finite meets of P .

Theorem 6.7

Fr〈P,⊏∼, ⊳0〉 ∼= SupLat〈P (qua preorder) | a ⊑
∨

U (a ⊳0 U)〉.

Proof. By Corollary 6.5, the RHS in the statement is isomorphic to

dcpo〈FP (qua ⊏∼L -preorder) |

B ∪ {a} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ FU} (B ∈ FP, a ⊳0 U)〉.

FP is already a semilattice, with ∪ providing a join with respect to ⊏∼L. But it also has a
meet operation ∧ : FP ×FP → Idl(FP ),

A ∧ B = {S ∈ FP | (∀s ∈ S)(∃a ∈ A)(∃b ∈ B)s ∈ a ↓ b}

= {S ∈ FP | S ⊏∼L A,S ⊏∼L B}.

Extending these to operations on Idl(FP ), we find they make it a distributive lattice. Notably,
A ∧ (B1 ∨ B2) = (A ∧ B1) ∨ (A ∧ B2). For if S ⊏∼L A and S ⊏∼L B1 ∪ B2 then we can find
S = S1 ∪ S2 with Si

⊏∼L Bi, and this suffices to show S ∈ (A ∧ B1) ∨ (A ∧ B2).
The coverage as it stands is obviously ∨-stable. However, for ∨-stability we shall need to

extend it. By induction on n one sees that the dcpo as presented is isomorphic to

dcpo〈FP (qua ⊏∼L -preorder) |

B ∪ {a1, . . . , an} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ F(

n⋃

i=1

Ui)}

(B ∈ FP, n ≥ 0, ai ⊳0 Ui for 1 ≤ i ≤ n)〉.

This is still ∨-stable. For ∧-stability, suppose we have B ∪ {a1, . . . , an} ⊳ {B ∪ U ′ | U ′ ∈
F(

⋃n
i=1

Ui)}, deriving from B ∈ FP and ai ⊳0 Ui. Suppose S ∈ C ∧ (B ∪ {a1, . . . , an}) =
(C ∧ B) ∨ (C ∧ {a1, . . . , an}), so S = S1 ∪ S2 with S1

⊏∼L B and S2
⊏∼L {a1, . . . , an}. If

S2 = {b1, . . . , bm} then for each j we have bj
⊏∼ ai for some i, so bj ⊳0 Vj ⊆ bj ↓ Ui. Then

{B ∪ V ′ | V ′ ∈ F(
m⋃

j=1

Vj)} ⊆ C ∧ {B ∪ U ′ | U ′ ∈ F(
n⋃

i=1

Ui)}

as required for ∧-stability.
We can now apply Theorem 4.4 to see that this dcpo is isomorphic to

Fr〈FP (qua ⊏∼L -preorder) | ∨, ∧ , 1 and 0 preserved,

B ∪ {a1, . . . , an} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ F(

n⋃

i=1

Ui)}

(B ∈ FP, n ≥ 0, ai ⊳0 Ui for 1 ≤ i ≤ n)〉,

which in turn is isomorphic to Fr〈P,⊏∼, ⊳0〉.
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