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Point-free analysis

Work within constraints of geometricity (colimits, finite limits) —
see Vickers “Generalized point-free spaces, pointwise” [Vic22].

Strengths

» Point-free maps can be defined pointwise.

» All maps automatically continuous.

» Topos-valid.

» Deals with generalized spaces (toposes as well as locales).
>

Fibrewise topology of bundles.

Weaknesses

» Lack of lN-types: non-trivial to extract geometric content from
established arguments, even constructive ones.



Point-free analysis

Opportunities

» Much simpler manipulation of bundles: work fibrewise.

» Dependent type theory of spaces: dependent type = bundle.

Threats

» Don’t know how deep it goes, eg into original applications of
toposes such as algebraic geometry. Finding out takes effort.

Typical features

» Careful to distinguish 1-sided reals (lower or upper) vs. 2-sided
(Dedekind).

» Prominent use of hyperspaces (powerlocales).

» Currying/uncurrying without cartesian closure.



Point-free analysis: Currying

To define f: X x Y — Z:
1. Say “fix x:X".
2. Define f(x,—): Y — Z (necessarily continuous).

3. Uncurry to get f.

With cartesian closure:
Step (2) defines curry curf: X — (Y — Z).

Geometrically:

Step (1) declares we're working in sheaves over X

— so reasoning must be at least topos-valid!

Then Y and Z interpreted as bundles X x Y, X x Z over X.
Step (2) defines bundle map X x Y — X x Z. First component
must be projection to X, second componentis f: X x Y — Z.



Point-free analysis: Real exponentials and logarithms

Ming Ng's thesis ([Ng22]; see also [NV22]) geometrically develops
7%, log, x, and usual algebraic rules.

Proof:

» For rational x, 7~ defined using powers v", reciprocals
/=" =1/~", and radicals v1/" = -

» For x a 1-sided real use sups or infs.

» Combine these for 2-sided reals.

> log, is inverse of x i 7~

We now deal with differentiation, integration, e, and natural logs.



A possible standard path

1. Define natural log Inx = [{" dt/t.
2. Show In(yy') = Iny + In+/, deduce (with a little work)
In(v) = xIn~, so Inx = In~'°& % = log., xIn~y.
3. Hence log, x is an integral, [[1/(tInv)dt.
4. By the Fundamental Theorem of Calculus (FTC), log, is
differentiable, with derivative x — 1/(xIn~).
5. Writing exp, x = 7*, the inverse of log,, use the chain rule to
show x — X is differentiable, with derivative
x = 1/(1/(v*Iny)) = Inyy.
Along the way, can define e as unique value such that Ine =1, so
Inx = log, x and x +— e* is its own derivative.



Geometricity: Differentiation

f(x) differentiable if ...?

Most common definition
)~ ()
y=x oy —X

Then f’(x) is that limit.

exists.

Geometrically: use Carathéodory derivative

There is a slope map f1)(x, y) (necessarily continuous and unique)
such that

Fly) = F(x) = F 0, y)(y = x).
Then f'(x) = {1 (x, x).
Essentially equivalent, but [Vic09] Carathéodory good geometrically,
where all maps are continuous and limits harder to discuss.



Geometricity: Integration

1-sided integrals (lower, upper) established geometrically [Vic08].

» Lower integrals f fdy have f valued in non-negative lower
reals, 1 a vaIuatlon on X — like a measure, but only on opens,
with 11U a non-negative lower real.

> Upper integrals TX fdv, using upper reals instead of lower, and
v a covaluation on X. Think of ¥U as the measure of X — U.

> Riemann integrals [} f(t)dt constructed as [, 1fdAq
Axy is Lebegue valuatlon (Wlth complement covaluatlon
(A )U = (¥ — x) — Ay (U)). Combines lower and upper
integrals of the lower and upper parts of f.



Geometricity: FTC(1)

Suppose f(x f g(t)dt. Then f is differentiable with
f'(x) = g(X)

Proof

For x # y, slope map is

Y o(t)dt
F(x,y) = ) e(t)dt :/ gd (Axy ) :/ gdusy,
y—-x [x.y] y—X [x.y]

where v, is the uniform probability valuation on [x, y].
But v,y is defined even if x = y, and then get f1)(x, x) = g(x).

Suffices to define v,, on rational open intervals (a, b) —

q < vxy(a, b) if either q(y — x) < Ay (a, b),
ora<x,y<bandg<l.



Geometricity: FTC(2)

If £ is differentiable, then

Fly) — F(x) = /y £(t)dt
Proof

Fixing xo, define gy, (x) = [ f'(t)dt.

By FTC(1), gy, is dlfferentlable and g, = f', 5o (f — gx) = 0.
Using Rolle’s Theorem, f — g, is constant f(xg) — gx,(X0) = f(x0),
and the result follows.



Geometricity

» Rolle’s Theorem: already known geometrically — see [Vic09].

> Riemann integral [” g(t)dt for y < x, and equation

[ ety = [ eteyee = / “g(r)at

Not that hard, and proved in my new notes [Vic23].
> 2-sided integrals [, fdp: non-trivial [Vic23].



2-sided integrals

For 2-sided integrals with respect to uniform probability valuations:

Theorem

Let X be a compact, overt space, let f: X — [0,00), and let u be
a valuation on X that is finite (ie uX is Dedekind).

Then the pair

[ = ( / XL(f)du,/XR(ﬂd(w))

is a Dedekind section. Here L and R extract the lower and upper
parts.

Can then generalize to signed f: X — R:

[xfdp = [y frdu— [y f-dp, where
fr = max(f,0), f- = max(—f,0).



2-sided integrals: Proof

X compact, overt

These imply that X, as subspace of itself, corresponds to a point in
its Vietoris hyperspace VX.

Image under f is (VF)(X) in VR, a compact, overt subspace of R.
It has a sup K, say, in R.

See [Vic09] for details.



2-sided integrals: Lower integral [ L(f)du
L x

Supremum over rational sequences 0 =rg < --- < r, (n > 1) of

I(ri)i = Z(fi — ri—1)uf*(ri, 00)
i—1




2-sided integrals: Upper integral TXR(f)d(ﬂ,u)

Infimum over rational sequences 0 =rp < --- < r, (n > 1,
X < £*[0, 1)) of

1(ri)i =Y (ri = rica) (uX = pf*[0, 1))
i=1




2-sided integrals: Locatedness

For rationals g < r, want either g < I(r;); for some (r;);, or I(r;);
for some (r;);.

Strategy
> Seek a single sequence (r;); for which I(r;); and I(r;); are
sufficiently close together.
» Choose r, > K.

» Error of I(r;); is bounded by sizes of squares along diagonal
(diagram previous slide).

» Aim for r; = ir,/n, n large to make squares small.

n
I(r;)i = rapX — n Z/lf*[Q ri-1)
i—1

> Leta=r >, puf*[0,ri_1), and seek r; so that I(r;); + a'is
close to r,uX.



2-sided integrals: Locatedness

n—1 n
[(r,-),- +a=n <Z ,uf*(r,-, OO) + Zuf*[o, r,-1)>
i=1

i=1

n—1
>n Z (uf*(ri-1,00) + pf*0,r;))
i—2

n—1

=n Y (uX+pf(ri1,n))
i=2

> (rp—2n)uX

We can choose n to make 2r; uX as small as we like.



2-sided integrals: Locatedness

How small is small enough?

>

>
>
>
>

Canfind ¢ <q" <rpuX <r withr—-qg <r—aq.
Choose n so that 2rnuX < q” —¢q'.

Then ¢’ < I(r;)i +a,s0 ¢ =s+ t with s < I(r;);, t < a.
If g < s then g < I(r);.

Otherwise, s < g, have
X —r<r —r<qg —qgq=s+t—qg<t<a,

so I(r;)i=rapuX —a<r.



2-sided integrals: Disjointness

Show we cannot have I(r;); < g < I(r}).
» By refining sequences, can assume use same one for / and /.
> Get g =31 q; =31 g/ with

qi < (ri—ri—a)pf*(ri,00),  (ri—ri—1) (pX — pf*[0,ri-1)) < qi.
» Can't have g/ > ¢ for all i, so g < g/ for some i. Then
uX — pf*[0, ri—1) < pf*(ri, 00)
and we get a contradiction from

puX < pf*[0,ri—1) + pf*(ri, 00)
= uf*([0, ri—1) V (r;,00)) < pX.



Conclusions
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>

With the right fundamental results, geometric reasoning can
be reasonably pain-free.

The result on 2-sided integrals encapsulates some detailed
constructive reasoning about approximating reals.

Further work: integration and differentiation for vectors and
complex numbers.

Work in progress: trigonometry. Extract cos, sin from group
homomorphisms R — S! (use [—1, 1] as Escardé-Simpson
interval object, [Vic17]). Use FTC to get 7 and differentiation.

Further work: power series.

Related work: | have results describing projective space kP" as
subspace of the lower hyperspace P k"*!, and showing that
the real and complex projective lines RP! and CP! are the
circle S' and the (Riemann) sphere S2.



Appendix: Trigonometry (work in progress)

» Seek group homomorphisms E,: (R, +) — (St x),
Ea(9) — e27ria49_

» S! = unit circle in C

» @ is in angular units of a revolutions

» cos and sin are real and imaginary parts of E,

» Seek E; (angular unit = revolution) first.

To get group homomorphism:

Define midpoint homomorphism from I = [~1, 1] to part of S!,
then extend.

Angular midpoint structure on S* — {—1}

» /z = square root with positive real part
> m(Zl,Zz) = \/21\/22



[ is an Escardé-Simpson interval object [ES01, Vicl7]

Midpoint hom I — A uniquely determined by images of +1
— provided A is iterative.

For every X, h and t, there is a Ax X M A A

unique M making the diagram <h’t>T lm

commute.

X — A

Proof for compact metric space A:
T operator on maps X — PyA, At
where m'(a, —) = Py(m(a, —)). Ax X —— Ax PyA
Let M be least fixpoint of T. <h7t>T lm,
Suppose rT(f)(x) < yrf(x), v < 1. X T(f) oA
(r = radius) — v

Then M factors via A. _
For I, v = 1/2: m(a, K) has half the radius of K.



Arcs as iterative midpoint algebras

» Arc A inherits midpoints from

\A S {11,

» A homeomorphic to interval on
= \ y-axis
1 0 1 » — hence inherits metric.
» But not midpoint isomorphic,

/ because of curvature.
>

Approximate flatness = can
—i adjust ~y in previous proof.

A iterative = midpoint isomorphism I — A.
Can scale to larger and smaller arcs, and to group homomorphism
Eli R — 51.



Calculus

> We expect - arcsmy =1/y/1-—

» Hence defme

. Yoo dt .1
arcsiny = —————; also m = 4arcsin —.
0

1—¢2 V2

» Lemma: Suppose z1, 22,212 all in arc A. Then
arcsin $(z1z2) = arcsin §z; + arcsin Szp.

P arcsin oS is locally the inverse of a homomorphism
E.: R — S and a=1/27.

> Write By /»-(¢) = cos +isin6. (0 in radians.)



Calculus - derivatives

> FTC = di’y arcsiny = 1/4/1 — y? as expected.
» On a restricted interval, chain rule =

isinH: V1 —sin’6 = cos¥b,

do
and then
d d 1\ —2sinfcost
90 cos dQV sin (2) Y sin

> Extend these to the whole of R using homomorphism property
of Exq: sin(6 + ¢) = sinf cos ¢ + cos O sin ¢, etc.
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