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Point-free analysis

Work within constraints of geometricity (colimits, �nite limits) �
see Vickers �Generalized point-free spaces, pointwise� [Vic22].

Strengths

I Point-free maps can be de�ned pointwise.

I All maps automatically continuous.

I Topos-valid.

I Deals with generalized spaces (toposes as well as locales).

I Fibrewise topology of bundles.

Weaknesses

I Lack of Π-types: non-trivial to extract geometric content from
established arguments, even constructive ones.



Point-free analysis

Opportunities

I Much simpler manipulation of bundles: work �brewise.

I Dependent type theory of spaces: dependent type = bundle.

Threats

I Don't know how deep it goes, eg into original applications of
toposes such as algebraic geometry. Finding out takes e�ort.

Typical features

I Careful to distinguish 1-sided reals (lower or upper) vs. 2-sided
(Dedekind).

I Prominent use of hyperspaces (powerlocales).

I Currying/uncurrying without cartesian closure.



Point-free analysis: Currying

To de�ne f : X × Y → Z :

1. Say ��x x :X �.

2. De�ne f (x ,−) : Y → Z (necessarily continuous).

3. Uncurry to get f .

With cartesian closure:
Step (2) de�nes curry curf : X → (Y → Z ).

Geometrically:

Step (1) declares we're working in sheaves over X
� so reasoning must be at least topos-valid!
Then Y and Z interpreted as bundles X × Y , X × Z over X .
Step (2) de�nes bundle map X × Y → X × Z . First component
must be projection to X , second component is f : X × Y → Z .



Point-free analysis: Real exponentials and logarithms

Ming Ng's thesis ([Ng22]; see also [NV22]) geometrically develops
γx , logγ x , and usual algebraic rules.

Proof:

I For rational x , γx de�ned using powers γn, reciprocals
γ−n = 1/γn, and radicals γ1/n = n

√
γ.

I For x a 1-sided real use sups or infs.

I Combine these for 2-sided reals.

I logγ is inverse of x 7→ γx .

We now deal with di�erentiation, integration, e, and natural logs.



A possible standard path

1. De�ne natural log ln x =
∫ x
1
dt/t.

2. Show ln(γγ′) = ln γ + ln γ′, deduce (with a little work)
ln(γx) = x ln γ, so ln x = ln γ logγ x = logγ x ln γ.

3. Hence logγ x is an integral,
∫ x
1
1/(t ln γ)dt.

4. By the Fundamental Theorem of Calculus (FTC), logγ is
di�erentiable, with derivative x 7→ 1/(x ln γ).

5. Writing expγ x = γx , the inverse of logγ , use the chain rule to
show x 7→ γx is di�erentiable, with derivative
x 7→ 1/ (1/(γx ln γ)) = ln γγx .

Along the way, can de�ne e as unique value such that ln e = 1, so
ln x = loge x and x 7→ ex is its own derivative.



Geometricity: Di�erentiation

f (x) di�erentiable if ...?

Most common de�nition

lim
y→x

f (y)− f (x)

y − x
exists.

Then f ′(x) is that limit.

Geometrically: use Carathéodory derivative

There is a slope map f 〈1〉(x , y) (necessarily continuous and unique)
such that

f (y)− f (x) = f 〈1〉(x , y)(y − x).

Then f ′(x) = f 〈1〉(x , x).

Essentially equivalent, but [Vic09] Carathéodory good geometrically,
where all maps are continuous and limits harder to discuss.



Geometricity: Integration

1-sided integrals (lower, upper) established geometrically [Vic08].

I Lower integrals
∫
X
fdµ have f valued in non-negative lower

reals, µ a valuation on X � like a measure, but only on opens,
with µU a non-negative lower real.

I Upper integrals
∫
X fdν, using upper reals instead of lower, and

ν a covaluation on X. Think of νU as the measure of X − U.

I Riemann integrals
∫ y
x f (t)dt constructed as

∫
[x ,y ]fdλxy :

λxy is Lebegue valuation (with complement covaluation
(¬λxy )U = (y − x)− λxy (U)). Combines lower and upper
integrals of the lower and upper parts of f .



Geometricity: FTC(1)

Suppose f (x) =
∫ x
x0
g(t)dt. Then f is di�erentiable with

f ′(x) = g(x)

Proof
For x 6= y , slope map is

f 〈1〉(x , y) =

∫ y
x g(t)dt

y − x
=

∫
[x ,y ]

gd

(
λxy
y − x

)
=

∫
[x ,y ]

gdυxy ,

where υxy is the uniform probability valuation on [x , y ].
But υxy is de�ned even if x = y , and then get f 〈1〉(x , x) = g(x).

Su�ces to de�ne υxy on rational open intervals (a, b) �

q < υxy (a, b) if either q(y − x) < λxy (a, b),
or a < x , y < b and q < 1.



Geometricity: FTC(2)

If f is di�erentiable, then

f (y)− f (x) =

∫ y

x
f ′(t)dt.

Proof
Fixing x0, de�ne gx0(x) =

∫ x
x0
f ′(t)dt.

By FTC(1), gx0 is di�erentiable, and g ′x0 = f ′, so (f − gx0)′ = 0.
Using Rolle's Theorem, f − gx0 is constant f (x0)− gx0(x0) = f (x0),
and the result follows.



Geometricity

I Rolle's Theorem: already known geometrically � see [Vic09].

I Riemann integral
∫ y
x g(t)dt for y < x , and equation∫ z

x
g(t)dt =

∫ y

x
g(t)dt =

∫ z

y
g(t)dt

Not that hard, and proved in my new notes [Vic23].

I 2-sided integrals
∫
X fdµ: non-trivial [Vic23].



2-sided integrals

For 2-sided integrals with respect to uniform probability valuations:

Theorem
Let X be a compact, overt space, let f : X → [0,∞), and let µ be
a valuation on X that is �nite (ie µX is Dedekind).
Then the pair∫

X
fdµ =

(∫
X

L(f )dµ,

∫
X
R(f )d(¬µ)

)

is a Dedekind section. Here L and R extract the lower and upper
parts.

Can then generalize to signed f : X → R:∫
X fdµ =

∫
X f+dµ−

∫
X f−dµ, where

f+ = max(f , 0), f− = max(−f , 0).



2-sided integrals: Proof

X compact, overt

These imply that X , as subspace of itself, corresponds to a point in
its Vietoris hyperspace VX .
Image under f is (Vf )(X ) in VR, a compact, overt subspace of R.
It has a sup K , say, in R.
See [Vic09] for details.



2-sided integrals: Lower integral
∫
X
L(f )dµ

Supremum over rational sequences 0 = r0 < · · · < rn (n ≥ 1) of

I (ri )i =
n∑

i=1

(ri − ri−1)µf ∗(ri ,∞)

r =0
0

r
1

r
2

r
3

r
nn−1

r



2-sided integrals: Upper integral
∫
XR(f )d(¬µ)

In�mum over rational sequences 0 = r0 < · · · < rn (n ≥ 1,
X ≤ f ∗[0, rn)) of

I (ri )i =
n∑

i=1

(ri − ri−1) (µX − µf ∗[0, ri−1))

1
r
2

r
3

rr
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r
0 n n
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2-sided integrals: Locatedness

For rationals q < r , want either q < I (ri )i for some (ri )i , or I (ri )i
for some (ri )i .

Strategy

I Seek a single sequence (ri )i for which I (ri )i and I (ri )i are
su�ciently close together.

I Choose rn > K .

I Error of I (ri )i is bounded by sizes of squares along diagonal
(diagram previous slide).

I Aim for ri = irn/n, n large to make squares small.

I

I (ri )i = rnµX − r1

n∑
i=1

µf ∗[0, ri−1)

I Let a = r1
∑n

i=1 µf
∗[0, ri−1), and seek r1 so that I (ri )i + a is

close to rnµX .



2-sided integrals: Locatedness

I (ri )i + a = r1

(
n−1∑
i=1

µf ∗(ri ,∞) +
n∑

i=1

µf ∗[0, ri−1)

)

≥ r1

n−1∑
i=2

(µf ∗(ri−1,∞) + µf ∗[0, ri ))

= r1

n−1∑
i=2

(µX + µf ∗(ri−1, ri ))

≥ (rn − 2r1)µX

We can choose n to make 2r1µX as small as we like.



2-sided integrals: Locatedness

How small is small enough?

I Can �nd q′ < q′′ < rnµX < r ′ with r ′ − q′ ≤ r − q.

I Choose n so that 2r1µX < q′′ − q′.

I Then q′ < I (ri )i + a, so q′ = s + t with s < I (ri )i , t < a.

I If q ≤ s then q < I (ri )i .

I Otherwise, s < q, have

rnµX − r < r ′ − r ≤ q′ − q = s + t − q < t < a,

so I (ri )i = rnµX − a < r .



2-sided integrals: Disjointness

Show we cannot have I (ri )i < q < I (r ′i ′)i ′ .

I By re�ning sequences, can assume use same one for I and I .

I Get q =
∑n

i=1 q
′
i =

∑n
i=1 q

′′
i with

q′i < (ri−ri−1)µf ∗(ri ,∞), (ri−ri−1) (µX − µf ∗[0, ri−1)) < q′′i .

I Can't have q′′i > q′i for all i , so q′′i ≤ q′i for some i . Then

µX − µf ∗[0, ri−1) < µf ∗(ri ,∞)

and we get a contradiction from

µX < µf ∗[0, ri−1) + µf ∗(ri ,∞)

= µf ∗([0, ri−1) ∨ (ri ,∞)) ≤ µX .



Conclusions

I With the right fundamental results, geometric reasoning can
be reasonably pain-free.

I The result on 2-sided integrals encapsulates some detailed
constructive reasoning about approximating reals.

I Further work: integration and di�erentiation for vectors and
complex numbers.

I Work in progress: trigonometry. Extract cos, sin from group
homomorphisms R→ S1 (use [−1, 1] as Escardó-Simpson
interval object, [Vic17]). Use FTC to get π and di�erentiation.

I Further work: power series.

I Related work: I have results describing projective space kPn as
subspace of the lower hyperspace PLk

n+1, and showing that
the real and complex projective lines RP1 and CP1 are the
circle S1 and the (Riemann) sphere S2.



Appendix: Trigonometry (work in progress)

I Seek group homomorphisms Ea : (R,+)→ (S1,×),
Ea(θ) = e2πiaθ.

I S1 = unit circle in C
I θ is in angular units of a revolutions

I cos and sin are real and imaginary parts of Ea

I Seek E1 (angular unit = revolution) �rst.

To get group homomorphism:

De�ne midpoint homomorphism from I = [−1, 1] to part of S1,
then extend.

Angular midpoint structure on S1 − {−1}
I
√
z = square root with positive real part

I m(z1, z2) =
√
z1
√
z2



I is an Escardó-Simpson interval object [ES01, Vic17]

Midpoint hom I→ A uniquely determined by images of ±1
� provided A is iterative.

For every X , h and t, there is a
unique M making the diagram
commute.

A× X A× A

X A

A×M

m〈h,t〉

M

Proof for compact metric space A:
T operator on maps X → PUA,
where m′(a,−) = PU(m(a,−)).
Let M be least �xpoint of T .
Suppose rT (f )(x) ≤ γrf (x), γ < 1.
(r = radius)
Then M factors via A.

A× X A× PUA

X PUA

A×f

m′〈h,t〉

f

T (f )

For I, γ = 1/2: m(a,K ) has half the radius of K .



Arcs as iterative midpoint algebras

∼=

−1 0 1

i

−i

A

I Arc A inherits midpoints from
S1 − {−1}.

I A homeomorphic to interval on
y -axis

I � hence inherits metric.

I But not midpoint isomorphic,
because of curvature.

I Approximate �atness ⇒ can
adjust γ in previous proof.

A iterative ⇒ midpoint isomorphism I→ A.
Can scale to larger and smaller arcs, and to group homomorphism
E1 : R→ S1.



Calculus

I We expect d
dy arcsin y = 1/

√
1− y2 ...

I Hence de�ne

arcsin y =

∫ y

0

dt√
1− t2

; also π = 4 arcsin
1√
2
.

I Lemma: Suppose z1, z2, z1z2 all in arc A. Then

arcsin=(z1z2) = arcsin=z1 + arcsin=z2.

I arcsin ◦= is locally the inverse of a homomorphism
Ea : R→ S1, and a = 1/2π.

I Write E1/2π(θ) = cos θ + i sin θ. (θ in radians.)



Calculus - derivatives

I FTC ⇒ d
dy arcsin y = 1/

√
1− y2 as expected.

I On a restricted interval, chain rule ⇒

d

dθ
sin θ =

√
1− sin2 θ = cos θ,

and then

d

dθ
cos θ =

d

dθ

√
1− sin2 θ =

(
1

2

)
−2 sin θ cos θ√

1− sin2 θ
= − sin θ.

I Extend these to the whole of R using homomorphism property
of E2π: sin(θ + φ) = sin θ cosφ+ cos θ sinφ, etc.
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