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ABSTRACT

The Kripke-Joyal semantics is used to interpret the fragment of intuitionistic
logic containing A, — and V in the category of locales. An axiomatic theory is
developed that can be interpreted soundly in two ways, using either lower or up-
per powerlocales, so that pairs of separate results can be proved as single formal
theorems. Openness and properness of maps between locales are characterized
by descriptions using the logic, and it is proved that a locale is open iff its lower
powerlocale has a greatest point. The entire account is constructive and holds
for locales over any topos.

1 Introduction

“Topology without points” is the clarion call of locale theory, yet it is usually
hard to develop locale-theoretic results without some conception of what the
points ought to be, if only we were allowed to see them. Indeed one often has
the feeling that a frame-theoretic proof is no more than a mask for a natural
argument using points.

To be sure, the global points of a locale D, i.e., maps from 1 to D, are in
general insufficient. However, if one considers generalized points in the form of
maps to D from an arbitrary locale then one can properly use descriptions in
terms of points. For instance, the universal characterization of a product D x F
can be stated as “the points of D x E are the pairs (z,y) where x and y are
points of D and FE respectively”.

The aim of this paper is to present some illustrative results that indicate
a framework for using points to reason about locales. It brings together three
main features.

First, we use the Kripke-Joyal semantics to support an interpretation of a
logic with A, — and V.

Second, we accept as fundamental the order enrichment in the category of
Loc locales, so the logic includes the specialization order C as well as equality.



Third, we use the lower and upper powerlocales P;, and Py to access within
Loc functions between frames that are more general than the frame homomor-
phisms — namely, homomorphisms of suplattices and preframes respectively.

Our main new results here, such as they are, concern open and proper maps:
we show, for example, that a locale map f: D — FE is open iff Prf has a right
adjoint that makes a certain diagram commute, and is proper iff Py f has a left
adjoint that makes a corresponding diagram (replacing P, by Py and making
other changes) commute. Our axiomatic approach puts these results into a
common abstract context of order-enriched category with powerobject monad
and there supports a reasoning style using points.

We shall take as a standing assumption for all our axiomatics that we are
given a poset-enriched category C, with order C. The primitive paradigm for C
is Pos, the category of posets, with monotone functions as morphisms, ordered
pointwise; but later we shall also examine Loc and Loc®.

We shall also assume that C has finite limits in a 2-categorical sense: it has
products and inserters (see Power and Robinson [15]).

Products must respect the order, which makes them slightly stronger than
ordinary categorical products. For instance for a binary product Dy x Dy with
projections fst and snd, we have for any other object E that the canonical
function from C(E, Dy x D3) to C(FE, D1) x C(F, Dy) is an order-isomorphism
(not just a bijection).

An inserter is a 2-categorical analogue of an equalizer: it’s a universal so-
lution to the problem of ordering two parallel morphisms. If f.g : D — E,
then the inserter 2 : I — D has ¢; f C 12;g and is such that for any object F,
the canonical function from C(F, 1) to {i" € C(F, D) :¢'; f C ¢';¢} is an order
isomorphism.

In Pos, products are Cartesian products and the inserter of f,¢g: P — () is
{p € P: f(p) C g(p)} with the order inherited from P.

1.1 Constructivity

Our standing references for locale theory are Johnstone [8] and Vickers [17] (we
shall follow the notation of the latter). However, we take much more care to
argue constructively so that our results hold for locales over any topos. Indeed,
the results on open locales (see Theorem 4.9) are of little interest otherwise,
for classically all locales are open. Such issues are dealt with in Joyal and

Tierney [12].



2 Outline of Point Logic

We outline the Kripke-Joyal semantics, which is sound for intuitionistic logic.
However, the interpretation of some of the connectives relies on fixing a notion
of “cover” and it is not yet obvious to me what this should be in the category of
locales. Hence, for the purpose of this paper, the important part is the fragment
of intuitionistic logic whose connectives are A, — and V (= and C are treated as
extralogical symbols), since the semantics of these is independent of the cover.
We continue to work in an unspecified category C.

A type is to be interpreted as an object of C. A term of type D is to be
interpreted as a morphism targeted at D, which we shall call a point of D;
its source — corresponding to the free variables in the term — is its stage of
definition. A formula with free variables of type D (using a product to deal
with more than one free variable) is to be interpreted as a sieve (or crible) at
D, that is to say a family P of morphisms targeted at D and closed under
precomposition — if x € P and «; x is defined, then a;x € P. If v : 0 — D is a
point of D, and P is a sieve at D, then P(x) (or more formally, o [F P(x)) is to
mean that * € P. It remains to interpret the logical connectives as operations
on sieves.

A : Conjunction is intersection of sieves.

— : Ifx: 0 — D is a point of D, then let us write ex for the sieve at D
generated by . Then z € P — @ iff ex C P — (), which must be iff
ex N P C @ (to ensure that intuitionistic logic is interpreted soundly).
Hence

reP—Qiffforall a:7 — o, if a;z € P then ajz € ().
This is often expressed as follows:
olb (P — Q)(x)iff for all o : 7 — o, if 7 IF P(a; ) then 7 IF Q(o; x).

V:Let f: D — F beamap. If Q) is a sieve at F, then f*Q = {z : z; f €
('} defines the sieve operation that corresponds to substitution — f*@
interprets Q(fxz). We write V; for the right adjoint for f*. Then y €
VP < oy CV ;P < f*(oy)C P. If y: 7 — F, then this condition
says that whenever we have o : ¢ — 7 and z : 0 — D with x; f = a3y,
then = € P.

The familiar application to logic is obtained when f is a product projec-
tion, say f: D x E — E. (f*Q)(x,y) then represents Q(y) with an un-
used free variable x, and (V;P)(y) is Va.P(x,y). We have 7 |- Va.P(x,y)
iff



for every oo : 0 — 7 and for every x : ¢ — D we have o |F P(z, o5 y).

If P(x) and Q(«) are formulae in x of type D (denoting sieves at D), let us
write P(2) =y.p Q(2) iff the sieve for P(x) is included in that for Q(z); we shall
also write =,.p Q() iff the sieve for Q(x) comprises all morphisms targeted at
D. It is immediate from the adjunctions that —

o Plx) Erp Qz)ANQ'(2) iff P(x) Fup Q) and P(x) Epp Q' ()
o P(z) Fup Qz) = R(x) il P(2) AQ(z) Fup R(z)

o Ply) Eyr Vo : D.Q(x,y) iff P(y) Fopyr Qz,y)

2.1 Representable Sieves

A sieve is representable iff it is of the form ex for some morphism z — =«
can be thought of as a generic point for the property corresponding to the
sieve. The semantic concept of representability blurs the syntactic distinction
between terms and predicates: every point represents a sieve, and some sieves
are represented by points. The use of representatives (generic points) simplifies
the reasoning, since ex C P iff @ € P. It also takes the sting out of the fact
that since Loc is large, the sieves are proper classes.
We note that —

o If x and y are points of D, then ex A ey is represented by the pullback of
x and y.

o If v is a point of D, and f : F — D, then f*(ex) is represented by the
pullback f*z.

o The equality predicate on D, a sieve at D?, is represented by the diagonal
A:D— D2

e The inequality predicate C on D, a sieve at D? is represented by the
inserter for the two projections from D? to D.



3 The Abstract 2-Categorical Axioms

3.1  The Powerobjects

Axiom 3.1 C is equipped with a KZ monad L with a unit | and multiplication
Ll

When C is Pos, LP is the set of lower closed subsets of P, ordered by C.
l: P — LP maps z to the principal ideal | x, and || : LLP — LP is union.
(Strictly speaking one should write “p” and “[|p” for “|” and “|]” here, but 1
shall frequently omit such subscripts when there is no risk of confusion.) “KZ”
means that || is left adjoint to | cp, and in fact it follows that for any L-algebra
P, the structure map from £ to P is left adjoint to |p and hence is uniquely
determined by P. It also follows that | | is right adjoint to £ |p. (See Kock [13].)
Definition 3.2 [fx: D andY : LD (i.e., for some stage o we have morphisms
z:0—=DandY 10— LD inC) then we write x € Y iff L « T X.

In Pos, € is just elementwise elementhood.

Axiom 3.3 For every D,

EVe,y:D(x€ly+ xCy)

It is not hard to see that this means the components | of the unit of the
monad are monic in a 2-categorical sense: that x;[C y; | implies x C y.
Axiom 3.4 If f: D — FE is a morphism, then

EVX:LDVYY : LE(LFIX)CY & Va:D(xe X — f(x)€Y))

Let us make the meaning of this more explicit. By the remarks of Section 2,

we find that this axiom is equivalent to the conjunction of two others:

LFX)CY Az e X Excepycrex f(2) €Y
Vo : D(l’ eX — f(l') - Y) |:X:/LD,Y:/LE ,Cf(X) CY
The first of these holds automatically: for, given the premises, we have
Lf@)=Lf({x) CE Lf(X)CZY. However, the second takes a little unraveling.
Let (Xo,Yo) : 0 = LD x LE. Then (X, Yp) is in the sieve for Vo : D.(x € X —
flz) e Y)iff id, is in (Xo, Yo)* (Vo : D.(x € X — f(x) €Y)), i.e.,
Fuwe Yo D.(z € Xo(w) — f(z) € Yo(w))

i.e.

r € Xo(w) Ewewp f(r) € Yo(w)

Now the sieve for © € Xo(w) (at D x o) is represented by (g, wo) in the
comma square



T

>
o LD
Xo

Hence our condition @ € Xo(w) Fuwwwep f(2) € Yo(w) holds iff o; f; [
wo; Yo, and our axiom requires that this holds exactly when Xg; £f C Y.
This is a non-trivial property of C, though it is easy to prove for Pos. In

the context of locales, it is harder and requires sharp application of Johnstone’s
coverage theorem and its preframe analogue. Note also that if points are inter-
preted as global points, i.e., maps from 1, then it is patently false: take D = F
(with f the identity) to be a non-trivial locale with no global points at all. Clas-
sically the global points of P D are in order-reversing bijection with the opens
of D, so there are distinct points X and Y of Pr D that cannot be distinguished
by global points of D.

Axiom 3.5 Let D and E be objects of C. Then there is a morphism x :
LD x LE — L(D x E) such that

EVe:DNy: EVX: LDVY : LE((z,y) e X XY a2 XAyeY)

(We write X x Y for x(X,Y).)
For Pos, x is just Cartesian product.

The following result, in addition to putting the condition of Axiom 3.5 in
categorical form, also shows that it characterizes x uniquely.
Proposition 3.6 Aziom 3.5 is equivalent to L preserving finite products “up
to right adjoint”, in other words that (Lfst, Lsnd) : L(D x E) — LD x LFE
always has a right adjoint, which is X.
Proof There are two inequalities for the adjunction: x; (Lfst, Lsnd) C id and
(Lfst, Lsnd); x Tid. Consider the first. It is equivalent to x; Lfst C fst with a
similar inequality for snd, in other words for all tuples of points (X : LD, Y :
LE) we want Lfst(X x V) C X and Lsnd(X x Y) C Y. By Axiom 3.4 (with
fst or snd for f), this is equivalent to the — half of Axiom 3.5.

Now consider the second inequality. Again by Axiom 3.4, but this time with
idp for f, we find the inequation is equivalent to

(2,y) € Z FepyE z0DxE) (T,y) € LIst(Z) x Lsnd(Z) ()



Suppose we do have Axiom 3.5. Using Axiom 3.4 we have that
(l’, y) €z |:x:D,y:E,Z:/L(D><E) r € /:'fSt(Z) A Yy € ESHd(Z)

and combining this with Axiom 3.5 gives us (x). Conversely, if we have (%)
and © € X Ay €Y, then putting Z =] (z,y) in (%) tells us that

(x,y) € Lfst({ (x,y)) x Lsnd({ (z,y)) 1 ax | y (by naturality of |)

C XxY

O
This binary case clearly extends to finite products of more than two objects,
but let us note also the nullary case, which can be proved from the KZ structure.
Proposition 3.7 The right adjoint of ! : L1 — 1 is |;.
Proof 1isan L-algebra, and by the K7 property its structure map (necessarily
1) is left adjoint to };. O
Definition 3.8 Let f: D — E be a morphism in C. Then [ is semi-upper iff
there is a morphism f~' 1 LE — LD satisfying

EVe: DVY : LE.(x € f_l(Y) « f(z) €Y)

Again, the following result shows that the condition of Definition 3.8 char-
acterizes f~1 uniquely.
Proposition 3.9 [~! : LE — LD satisfies the given condition in Defini-
tion 3.8 iff it is right adjoint to Lf : LD — LFE.
Proof As in 3.6, consider the inequalities for the adjunction: [~ Lf C id
and id C Lf; f~!. By 3.4, the first is equivalent to the — direction in 3.8 and
the second is equivalent to

v €X Espxicp v € [THLIX)) (*)

We get from 3.8 to (*) by putting Y = L£f(X) in 3.8, and the converse by
putting X =] x in (). O
In Pos, as it happens, every morphism is a semi-upper. In Loc, the semi-
upper maps are those for which Qf has a left adjoint 3y, while in Loc®™ they
are the perfect maps (those for which the right adjoint of Qf preserves directed
joins).
Definition 3.10 Let f: D — E inC be a semi-upper. Then [ isupper iff the
following diagram commutes:



f-1

LE LD

(L) L{id, [)
@

LD x LE L(D x E)
X

The inequality shown exists in any case: for it is equivalent to

LGN ESMUy)x Ly

and by 3.4 this is equivalent to

v € [T y) Fepwr (2. f(2) € fH L y)x Ly
which, in the light of 3.3, 3.5 and 3.8, is obvious.

Hence, the upperness amounts to the following condition, which expresses
the opposite inequality:

f@)CyANyY CyEepyyre (2,y) € LOd A (L y)

The critical case is when y' = y, so the condition is equivalent to

f) Cy Fepyr (2,y) € LA y) (%)

Let us examine this condition in Pos. It says that if f(z) C y, then there is
some ' : D with f(2') C y and (x,y) C (', f(2')). Hence y = f(a') for some
2’ J x. In other words for all x, f maps T x onto T f(x), so the direct image of
any upper closed set of points is upper closed. This explains the terminology.
Definition 3.11 An object D is upper iff ! : D — 1 is upper.

Proposition 3.12 An object D is upper iff | : D — 1 is semi-upper.

Proof We have our inverse image morphism ™' : L1 — LD with = €
1Y) <= !€Y, and we must show that the equation (*) under 3.10 holds.
y and f(a) must be the unique point ! of 1, so we must show

Since ! €]! we know that « €!7*(|!), and it follows that

(2.1) = (id, () € LG, (1)



Theorem 3.13 An object D is upper iff LD has a greatest point,ie., T :1 —
LD satisfying

|:90:D T € T
It’s not hard to see that this condition on 7T is equivalent to its being right
q g rig

adjoint to ! : LD — 1.)
Proof

= : T =|;1"':1 = LD. For any z : D we have x €!7'({!) iff | €]!, which is
true.

< : Suppose ! : LD — 1 as a right adjoint T". Define
U= (LT;): £1 = LD — LD

We show that = € LJ(LT(Y)) <wpy.ci! € Y. One way, if | € Y then
we have x € T =] | T = ULT(!) C U(LT(Y)). The other, if » €
L(LT(Y)) then

e CLILT(Y))) = ULHLT(Y)) = UL(L o TYY)EUL L (V) =Y

(We have L! o T'C| by 3.5 because if € T' then ! =I(x) €]!.)

4 Loc and the Lower Powerlocale

We now turn to the case of Loc. It is easy to construct finite products and
inserters in Loc; products are well-known, and an inserter [ for f,g: D — F

is defined by
QI = Fr(QD(qua Fr) | Qf(b) < Qg(b)(b € QF))

Our £ will be Fy,.

Definition 4.1 If D is a locale then PrD, the lower powerlocale over D, is
defined by
OPLD = Fr{oa(a € QD) | oV, a; = V; 0a;)

In other words, Q Py D is the free frame generated by QD qua suplattice.

A global point of P D is a suplattice homomorphism from QD to €. Clas-
sically, these are in order-reversing bijection with the opens of D — such a
homomorphism corresponds to the join of all the opens that it maps to false —
and hence, classically, they can be identified with closed sublocales of D. This



argument does not hold constructively, but nonetheless it is known (Bunge and
Funk [4]) that there is an order-isomorphism between the global points of PrD
and certain sublocales of D (technically, the weakly closed sublocales with open
domain). This holds out the hope that set-theoretic intuitions might reasonably
be applied to general points of Pr D, that in some sense they are determined by
the points of D that they “contain”. We shall justify this by proving (Proposi-
tion 4.4) that Axiom 3.4 holds.
Prisa KZ-monad. Py, as afunctor is defined by (for f : D — E) QP f(ob) =
o2 f(b), the unit | by Q | (¢a) = a and the multiplication by Q| [(¢a) = coa. It
is easy to check that | |5 is a left adjoint to [p, p. Since ¢;Q |=idgp, it follows
that € | is onto and Axiom 3.3 holds.
Lemma 4.2 ©: QD — QFPpD is left adjoint to Q) |.
Proof Q| (¢a) = a. For the other composition, because ¢ and €2 | are both
suplattice homomorphisms it suffices to check the inequality on basic opens
N oa; of PpD. o(2 ] (A;oa;)) = o(N\; Q] (0a;)) = o(As ai) < A, oa,. O
A map from D to PpFE is just a suplattice homomorphism from QF to
QD, and a crucial tool is a sharpening of Johnstone’s [8] coverage theorem for
frames that allows us to describe suplattice homomorphisms between frames.
The sharpening is discussed in detail in Abramsky and Vickers [1] and we shall
merely summarize it here.
Theorem 4.3 (Johnstone’s Coverage Theorem) Let S be a meet semilattice,
and let C' — “covers” — be a relation between pS and S such that —

o ifr e X Cuthenax <u (ie, if X Cuthen X Clu)
e f XCuandse Sthen{eNs:x € X} CuAhs

(Any presentation of a frame by generators and relations can be manipulated
into this form.)
Then Fr(S(qua A-semilattice) | u <\ X(X C u))
= SupLat(S(qua poset) | u <V X(X C u))
Proposition 4.4 (Aziom 3.4) If f : D — F is a map of locales, then

EVX:PLDNYY : PLE(PLf(X)CY & Ve:D(x e X — f(z)€Y))

Proof As discussed in Section 3, we consider points X and Y of PpD and
PLFE (at stage o), and consider the comma square



T D
@ 1
>
o P.D

We first find — and this does not depend on Y — a left adjoint 34 for Qo.
n fact, though we shan’t need this, ¢ 1s open.
In f hough han’ d thi i

Qr =2 Fr(QD,Qo(qua Fr) | a @ true < true ® QX(a))

(Here we use the usual notation for opens of D x o, and also abuse notation by
treating QX as a suplattice homomorphism from QD to Qo.)

= Fr(D x Qo(qua A-semilattice) | @ bilinear w.r.t V
ahNu@v<ahu®X(a)Av)
= SupLat(QD x Qo (qua poset) | same relations)

It follows that we can define a suplattice homomorphism 3 : Qr — Qo
by Js(u @ v) = QX (u) A v, and it is easy to show the inequations to make it
left adjoint to Q¢. (To show further that ¢ is open, one checks the Frobenius
identity: Jy(u @ v Atrue @) = QX (u) Av Ab=3Jy(u@v)Ab.)

Now we need to show that if @; f; [T ¢; Y then X; PLf C Y. In Qr, Qf(a)®

true < true ® QY (a) for all « € QD. Applying 34, we get QX (Qf(a)) <
QX (true) A QY (a) < QY (a), and hence X; PLf C Y. O
Proposition 4.5 (Aziom 3.5) P, preserves finite products “up to right ad
joint”.
Proof Let D and F be locales. We want a suplattice homomorphism ¢ =
o; Q%) from QD x F) to Q(PrD x PLE). Because Q(D x FE) is the suplattice
tensor product of QD and QF, this amounts to a suplattice-bilinear function
from QD x QF to Q(PrD x PLE), so it suffices to define ¢(a @ b) = oa @ ob
and check bilinearity (which is obvious).

To show that x is right adjoint to (Ppfst, Prsnd), we must show that (x)
is left adjoint to Q(Ppfst, Prsnd), in other words that Q(x); Q(Ppfst, Prsnd) >
id and Q(Ppfst, Ppsnd); Q(x) < id. For the former, it suffices to show that
&; (Prfst, Ppsnd) > o:



Q(Ppfst, Prsnd)(od(a @ b)) = Q(Ppfst, Ppsnd)(oa @ ob)
= o(a @ true) A o(true @ b)
> o(a®b)
For the latter, it suffices to check on the generators ¢a @ true(a € QD) and
true @ ob(b € QF): e.g.,

Q(x) o Q(Prist, Prsnd)(eoa @ true) Q(x)(o(a @ true))

= oa ® otrue < oa ® true

4.1 Results on Open Maps and Locales

(See Joyal and Tierney [12] for the basic properties of open maps.)
Proposition 4.6 Let f: D — FE be a map of locales. Then f is semi-upper
(in the sense of 3.8) iff Qf has a left adjoint 35 : QD — QF.

Proof <«: Given 34, define Q(f™) : QP D — QPLFE a frame homomorphism
such that o; Q(f™') = 3y 0.

o QU ) QPLf = 30 QPLf =3 5Qf 50 >0 hence Q(f71); QPLf > id
QP = Qf ;0 =Qf;35;0 <o hence QPLf;Q(f7!) <id

Therefore Q(f~!) is the left adjoint to QP f, f~! is right adjoint to P, f.
=: Given f~! define 3 = o;: Q(f71); Q(]).

550f = 010U QF = 5O OPLAOM) 2 (L) = id
Of;3r = Qf0Q(71); Q) = QP Q(f71); Q) () =id
Therefore 3y is the left adjoint to Qf. O
Theorem 4.7 f: D — F is upper (in the sense of the 3.10) iff it is open.
Proof Consider o(a @ b) € QPL(D x E). Round the upper right path of the

diagram from 3.10, we have

> o3 ()
<o)

ola @b) — o(aNQf(b)) — oFs(a AQF(b)) — Fe(a N Qf(D))
Round the lower left path,
ola @b) — oa®obr Jra Nb

Hence the diagram commutes iff for all « € QD and b € QF, 3;(a AQf(b))
dra A'b, in other words iff the Frobenius condition holds making f open.

oo

The general results of the previous section now give us the following:



Proposition 4.8 A locale D is open iff Pr!: PLD — Ppl has a right adjoint
(i.e., iff — as Joyal and Tierney [12] have already proved — Q! has a left adjoint.
The Frobenius condition follows automatically in this case.)
Theorem 4.9 A locale D is open iff | : PLD — 1 has a right adjoint.
Classically, this result is trivial: all locales are open, and Pr D always has a
greatest point given by the suplattice homomorphisms QD — € under which all
opens except false map to true (corresponding to the whole of D as a closed
sublocale). But our argument — and in particular the sharpened coverage
theorem — also holds constructively, when openness is a non-trivial property of
locales.

5 Loc™ and the Upper Powerlocale

The theory with Py, replaced by the upper powerlocale, Py, is very similar except
that all the adjunctions work the opposite way round. We can bring this into
the general theory by treating Py as a monad on Loc®™, i.e., Loc with the
order enrichment reversed. However, to avoid the confusion of having the two
opposite orders, we prefer to dualize the axioms and results of Section 3.
Definition 5.1 If D is a locale, then Py D, the upper powerlocale over D, is
defined by
QPyD = Fr(Qa(a € QD) | O \/ZT a; = \/ZT Oa;, ONA; a; = A;Oa; (finite meet))

In other words, QPyD s the free frame generated by QD qua preframe.
(A preframe is a poset with directed joins and finite meets, with binary meet
distributing over the directed joins. A homomorphism of preframes preserves
all directed joins and finite meets.)

A point of Py D is a preframe homomorphism from QD to 2 and these are
equivalent to Scott open filters in QD. Classically, the Hofmann-Mislove [6]
theorem (see also Vickers [17] for the remark that it doesn’t depend on spa-
tiality) tells us that these are in bijection with the compact saturated sets of
global points of D, such a homomorphism corresponding to the intersection of
all the extents of opens that it maps to true. This bijection is order reversing:
the specialization order on Py D is the superset order on compact saturated
subsets. Constructively, one has to replace the Hofmann-Mislove theorem by
a result of Johnstone [9]: Scott open filters of QD are equivalent to compact
fitted sublocales of D.

Py is a co-KZ-monad. As a functor it is defined by (for f : D — F)
QPy f(Ob) = ONf(b), the unit T is © 1 (Ha) = a and the multiplication [ ]
is (2 ])(0a) = OOa. It is easy to check that [, is right adjoint to Tp,p.
Because O0; Q 1= id, it follows that 1 is a 2-categorical monic (Axiom 3.3).
Lemma 5.2 0O: QD — QFPyD is right adjoint to Q) T.

Proof Q1 (Oa) = a. For the other composition,



0@ 1 (V;Oai)) =0V, @ 1 (Hai)) = OV, ai) = V;Oa; O

(Interestingly, this shows that O preserves all meets, not just finite ones.)

A map from D to Py FE is just a preframe homomorphism from QF to QD,
and again we need techniques that allow us to describe preframe homomor-
phisms between frames. These are provided by Johnstone and Vickers [11], and
it is worth pointing out that the arguments presented there (and those of Ba-
naschewski [2] on which they rely) are constructively valid — they hold in any
elementary topos. Let us briefly recall here a preframe version of the coverage
theorem, and the preframe account of product locales.
Theorem 5.3 (The Preframe Coverage Theorem) Let P be a join semilattice,
and let C — “covers” — be a relation between pF P and FP (F for the finite
power set) such that —

o fTcXCSthenT <y S (e, Vse STFHeTt<s).
o if X C S then X s directed with respect to <.
o f XCSanduée P then{{zVu:2eT}:TeX}C{zVu:zeS}

(Any presentation of a frame by generators and relations can be manipulated
into this form.)

Then Fr{P (qua V-semilattice) | NS < VAT : T € X} (X C S))

>~ Prelr( P (qua poset) | NS < VAT : T € X} (X C S))

From this it can be proved that is that if D and E are locales, then Q(D x F)
is a tensor product in a natural sense of 2D and QF qua preframes. To define
a preframe homomorphism out of Q(D x FE), it suffices to define its values on
the elements @’2b = a @ true V true ® b and show that the resulting function
from QD x QF is “preframe bilinear” — it preserves directed joins and finite
meets in each of the arguments (when the other argument is held fixed).
Proposition 5.4 (Aziom 3.4) If f : D — F is a map of locales, then

EVX:PuDNY : PpE(Puf(X)dY & Vae:D(x e X — f(z)€Y))

(Note: “x € X7 now means X CT x.)
Proof The proof is not very different from the P, case, but let us sketch it to
illustrate the preframe techniques. Let X and Y be points at stage o and let 7
be the comma object that interprets @ € X over o.

Qr Fr(QD, Qo (qua Fr) | false’2Q X (a) < wofalse)
PreFr(QD x Qo (qua poset) | 8 is bilinear w.r.t. V! and A

aVweQX(a)Ve<aVu®@uv)

~
~

It follows that we can define a preframe homomorphism « : Q7 — Qo by

a(wgv) = QX(u) Vo. (In fact o is the right adjoint of Q¢, and indeed ¢



is proper). Suppose also we have the commutative diagram corresponding to
r € X Fup f(x) € Y, which amounts to saying that in Qr, Qf(a)sfalse >
false’®QY (a) for all « € QD. By applying o, we get QX (Qf(a)) > QX (false)V
QY (a) > QY (a), and hence X; Py f JY. O
Proposition 5.5 (Aziom 3.5) Py preserves finite products “up to left adjoint”.
Proof Let D and E be locales. We want a preframe homomorphism ¢ =
0; Q(x) from Q(D x F) to Q(PuyD x PyFE). Because Q(D x FE) is a preframe
tensor product of QD and QF, this amounts to a preframe-bilinear function
from QD x QF to Q(PyD x Py FE), so it suffices to define ¢(a’9b) = Qa2b
and check bilinearity (which is obvious). The rest of the proof is just like that
of Proposition 4.5, though of course the inequalities are reversed. O

5.1 Results on Proper Maps

Note: The word “proper” has been applied to locale maps f in more than one
sense. Hofmann and Lawson [5] use it to mean simply that the right adjoint v/
of Qf preserves directed joins (see Proposition 5.6 below), but we shall follow
Vermeulen [16] in requiring in addition that a Frobenius condition be satisfied,
Vi(Qf(b)Va) =bVV(a). He shows that this definition is equivalent to D being
compact over F when considered as a frame object in the category of sheaves
over £. Such maps were called perfect in Johnstone [7], where proper was used
in a third sense, namely that D is compact regular over K.

Proposition 5.6 Let f: D — FE be a map of locales. Then f is semi-upper
in Loc®™ iff the right adjoint of Qf preserves directed joins.

Proof We write V; for the right adjoint of Qf.

=: Given f~! define G =0;Q(f71); Q7).

G Qf =0;0(f71); 0 (1) 0f = 05 9(f~ b QP f:(1) < 0: (1) = id
Of;G = Qf; 0001 Q) = O; QP £;Q(F~1): Q1) > 0, (1) = id

Therefore G is right adjoint to Qf and so ¢ = V;. But G is a preframe
homomorphism.

«: If V; preserves directed joins, then we can define Q(f™') : QPyD —
QPyE a frame homomorphism such that O; Q(f~!) = V,; O

O: Q) QP f =V, 0: QP f =V Qf;0 <O hence Q(f~1); QP f <id
O: QP f; QY =0, 1) =Qf;Vy;0 >0 hence QP f;Q(f71) > id

Therefore Q(f~1) is right adjoint to QPyf, f~! is the left adjoint to Py f.
O

Theorem 5.7 f: D — E is upper in Loc™ iff it is proper.
Proof The proof is just like that of Theorem 4.7: straightforward diagram



chasing shows that it commutes iff the Frobenius condition holds. O
Theorem 5.8 A locale D is compact iff | : D — 1 is proper.
Proof See Vermeulen [16]. O
As before, we can now apply the general results.
Proposition 5.9 A locale D is compact iff Py! : PuD — Pyl has a left
adjoint.
Theorem 5.10 A locale D is compact iff PuD has a least point (ie., | :
PuD — 1 has a left adjoint).
Even constructively, this result is not difficult. The frame homomorphism
Q' Q — QD always has a right adjoint, Vi, say, and we find true < Vi(a) iff
true < a, so the predicate Vy corresponds to the subset {true} of QD. V,is a
preframe homomorphism iff D is compact, and this is then the least point of
Py D. Classically, we have the Hofmann-Mislove theorem under which this least
point of Py D is identified with the whole of D as a compact saturated set.

6 Conclusions

What we have presented here only touches the surface, and so obvious further
work is to test the approach, to find a tidy axiomatization and to develop the
logic so that one can reason very generally about locales in a point-based fashion.

That in itself is no light task, but I believe it is only preliminary to a much
harder question of applying the ideas to toposes, thus bringing the idea of topos
as generalized space much closer to the mathematical surface. Though I believe
that for locales the interaction of P; with Py is potentially fruitful, I do not
know what the topos-theoretic analogues of these powerlocales are. Plausible
candidates are bagtoposes (Vickers [18], Johnstone [10]) and symmetric toposes
(Bunge and Carboni [3]).

There are various other properties that it would seem desirable to axiom-
atize, though how they could be captured as a tidy system I don’t know. For
instance, the system should include stability under lax pullback or pullback of
various classes of maps and some important properties of open maps axiom-
atized by Moerdijk [14]. Also, in an axiomatization that has two interacting
monads corresponding to P, and Py, they should commute (Johnstone and
Vickers [11] — the maps from D to PPy FE correspond to functions from QF
to QD that preserve directed joins).

We have not mentioned disjunction or existential quantification in our logic.
To bring this into the Kripke-Joyal semantics requires a notion of covering, and
the work of Till Plewe on “triquotient” maps of locales promises some relevance
here.

Finally, let us mention a result that holds in Loc and Loc®™, but fails in
Pos. The map |: D — LD (L being P, or Py) is a pullback of two equalizers,



for the following parallel pairs sourced from L£D:

LD x LD

NN

The reason is that these diagrams require ¢ to preserve nullary and binary

meets, or O to preserve nullary and binary joins. The result fails in Pos because
it would say that a lower set is principal iff it is directed.
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