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1 Introduction

In [2] and, subsequently, [11], different ideas of process semantics (in the com-
puter science sense) are compared using the algebraic structures of quantales
and modules over them.

To a significant extent, that approach is already a topological one, at least in
the localic sense (see, e.g. [6,15]). The quantales themselves are a generaliza-
tion of frames — those complete lattices that in the localic account are the
topologies — which yields a kind of noncommutative topology (see [8] for a
survey), and moreover there arose numerous frames as topologies of spaces of
processes.

However, there also remain places where the previous theory worked with
untopologized sets. The aim of the present paper is to show how topologies
may be incorporated, and to lay the ground for a more expressly topological
development.

There is some interest in topologizing for its own sake. However, we have a
deeper motivation: the failure to topologize is related to a failure to reason
constructively, and we wish also to rectify that. As a general principle the
relation is seen most clearly when the constructive discipline is the stringent
geometric one, as used systematically in [17], giving a mathematics that is
preserved by the inverse image functor of geometric morphisms. We want to
use locales, for much of topology constructivizes more smoothly in localic
form — as has been seen both in toposes [7] and in type theory [14]. However,
constructing the set of points of a locale is not geometric: replacing the locale
by the set of points (with its discrete topology) has not only changed the
topology but has also made a constructive modification to the points that will
show up when one tries to transfer to a different set theory along an inverse
image functor. It follows that a constructive treatment should properly pay
attention to the topology.

We remark that our notation and terminology for locales will always be such
as to let them appear to be spaces. When we need to refer more concretely
to the frame of opens of a locale X, we shall usually call it ΩX. Notation
such as f : X → Y for locales will always mean a map (morphism) of locales,
corresponding to a frame homomorphism Ωf : ΩY → ΩX.

We write v for the order enrichment (the specialization order) of the category
Loc of locales: if f, g : X → Y , then f v g if for all b ∈ ΩY we have
Ωf(b) ≤ Ωg(b).
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1.1 Suplattice duality

As a more concrete example, consider sup-lattice duality. This was given an
intuitionistically constructive treatment in [7], and used heavily in [2]. If M is
a sup-lattice — a complete join semilattice — then it also has all meets and so
its opposite Mop is also a sup-lattice. Moreover, if f : M → N is a sup-lattice
homomorphism — i.e., preserving all joins — then it has a right adjoint which
preserves all meets, and hence corresponds to a sup-lattice homomorphism
f op : Nop → Mop. However, the application in [2] smuggled in classical rea-
soning by treating Mop as the set of sup-lattice homomorphisms from M to
the two element chain 2. Then if M was viewed as a set of properties with
a defined notion of disjunction (the joins), Mop could be viewed as the sets
of models of those properties. But there is a problem here constructively. An
element of Mop is a function from 1 to Mop, and hence corresponds to a sup-
lattice homomorphism from Ω = P1 to Mop, since [7] a powerset PX is the
free sup-lattice over X. Dualizing, this corresponds to a homomorphism from
M to Ωop, not to Ω. Since Ωop is not the lattice of truth values, it is wrong to
view such a homomorphism as a model of the properties in M . We repair this
by replacing the [7] dual, a set, by a locale M̂ for which M provides a base of
opens and the points of M̂ are the sup-lattice homomorphisms from M to Ω.
In §3 we shall expound a corresponding theory of “localic sup-lattices” which
will underlie our topologized approach to process semantics.

1.2 Tropological systems

In those earlier papers [2,11] the fundamental model of “process” is taken to
be the labelled transition system or LTS, that is to say (with respect to a set
Act of “actions”) a set P (of “states”) equipped with an Act-indexed family of
binary relations

α→ ⊆ P × P (α ∈ Act). In the concurrency literature various
equivalences have been defined on states of LTSs (see, e.g. [4,5]), and the aim
has been to characterize a significant number of such equivalences in terms of
the kind of observations that can be made on LTSs: more observations will
lead to a finer equivalence.

The actions themselves can be understood as observations (“see α happen-
ing”), but their dynamic nature means that one has to be explict about the
order and multiplicity of the observations, and they are taken algebraically
as being elements of a (unital) quantale, a sup-lattice equipped with monoid
structure for which multiplication distributes over arbitrary joins. Other ob-
servations may also be available in particular computing contexts. In partic-
ular, acceptances α

√
indicate that α is possible without actually doing it (for

instance, one might see it on a menu), and refusals α× indicate that α is im-
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possible (for instance, one might see it “greyed out” on a menu). Observing an
acceptance or refusal does not (unlike observing an action) change the state
of the system.

The natural order on the quantale refers to both “before” and “after” states
for an observation: a ≤ b means that whenever p can change to q with a
observed, then p can also change to q with b observed. But it is also necessary
to treat the observations as determining properties of the “before” state: if
p changes to something with a observed then a “is possible” for p, and we
also need an order a ≤′ b meaning that for all states p, if a is possible for
p then so is b. This is conveniently handled by using a left module over the
quantale in a sense exactly analogous to that of modules over rings, and leads
to the tropological systems of [11], systems combining a process set P with
a quantale Q and a left Q-module L (generalizing Q′ in [2]). This involves
a quantale homomorphism from Q to the relational quantale P(P × P ) (in
which multiplication is relational composition) and a module homomorphism
Π from L to the left P(P × P )-module PP . We write p ² x if p ∈ Π(x), in
which case we say that p satisfies the property corresponding to x.

In §2 we provide some background on tropological systems, presenting them
in a way that fits the purposes of this paper.

1.3 Completeness

In [2] three notions of completeness (two of them being completeness of the
relations used to present quantales and left modules) are defined and proved in
several process theoretic examples. From this point of view, LTSs are “models”
in a logical sense, for the notions of completeness are defined by reference to
them.

In any LTS P , the interpretations of acceptances and refusals are determined
by the transition relations

α→. If Q and L are then chosen to be generated
by the particular combination of operators available in some given computing
context then we find, as unique extension theorems, that P can be made into
a tropological system with Q and L in a unique way [11,9]. This then leads
to a preorder on the elements of P : p v q if, for every x ∈ L, if p ² x then
q ² x. The “first completeness” results in [2,11] were to show that this preorder
coincided with some process preorder already known.

In addition, further “second completeness” and “third completeness” results
concerned the way that Q and L were presented by generators and relations,
specifically, that the relations were complete with respect to LTSs. Second
completeness says that for all a, b ∈ Q, if for every LTS P and for every

p, q ∈ P we have p
a→ q implies p

b→ q, then a ≤ b. In other words, if a is
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semantically less than b — with respect to all the LTSs as models —, then
it is syntactically less than b — with respect to the presenting relations that
govern the order in Q itself. Third completeness is similar for L. It says that
for all x, y ∈ L, if for every LTS P and for every p, q ∈ P we have p ² x implies
p ² y, then x ≤ y.

In this paper we shall largely concern ourselves with third completeness, so let
us outline the classical argument that appeared in [2]. Given Q and L, let Lop

be the sup-lattice dual to L — as a sup-lattice it is L with the opposite order,
and is a right Q-module. Certain elements of Lop were then defined to be
“pointlike”, and it was shown that (i) they form an LTS, a “master transition
system” Proc, and (ii) (using the axiom of choice) every element of Lop is a
join of pointlikes. This then is classically enough to show third completeness,
for if x � y in L then y � x in Lop, there is some pointlike p ≤ y with p � x,
and that shows that p ² x but p 2 y.

1.4 Localic transition systems

It seems that the above argument is inextricably classical, but in §4.4 we shall
give a constructive development that relies in part on using localic transition
systems: the set P is to be replaced by a locale P . This idea goes back to [1]
and such systems appeared in [2] and [11] and were defined implicitly in the
“S-frames” and “RS-frames”. The transition structure is defined by sup-lattice
endomorphisms 〈α〉 on ΩP , in other words continuous locale maps from P to
the lower powerlocale PLP — conceptually, a point of P maps to the sublocale
of those points to which it can undergo a transition under α. However, whereas
in a classical LTS we can always find the complements needed to interpret
refusals, this is not possible for the locales in general. We therefore get a
range of different kinds of localic transition systems. The “S-systems” (S for
simulation) simply have the sup-lattice endomorphisms 〈α〉, while in an “RS-
system” (RS for ready simulation) the frame elements 〈α〉> are required to
have Boolean complements. In addition, “B-systems” (for bisimulation) have
been studied in [11]. We treat the S-, RS- and B-systems as a localic splitting
of the classical idea of LTS and regard them as the models with respect to
which we define completeness. In §5.1 we provide a brief description of these
systems. All kinds of systems are appropriate to the T (trace), A (acceptance),
AT (acceptance trace) and S (simulation) semantics, whereas for F (failure),
FT (failure trace), RT (ready trace) and RS (ready simulation) semantics, RS-
or B-systems are needed, and for B (bisimulation) semantics, B-systems are
needed. We leave the detailed proof of this fact to a subsequent paper, but
provide a brief explanation in §5.2.

An interesting consequence of the localic approach is that we now have final
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S-, RS- and B-systems TrS, TrRS, and TrB. We call these tree locales, since,
essentially, their points are synchronization trees modulo simulation, ready
simulation and bisimulation. Another such locale is constructed in [1], covering
systems with divergence. As final systems, they provide semantic domains
for transition systems of the appropriate kinds. By definition we have maps
TrB → TrRS → TrS, and we conjecture that they are localic surjections. If
this holds, then where there is a choice of which kind of system to use, it
makes no difference from the point of view of third completeness.

1.5 Localic tropological systems

In order to proceed we also need to redefine tropological systems in a localic
setting. In §4 we present a corresponding notion of localic tropological system,
in which the set of states is replaced by a locale. In order to guarantee that
the states of such systems behave appropriately, we impose a new stability
axiom (which is shown to be trivial in the classical theory), of which we give
a detailed study in §4.2. The localic setting provides us with algebraic tools
otherwise unavailable, such as the possibility of presenting systems by gen-
erators and relations. In particular this automatically yields notions of final
semantics, which we discuss in §4.3, and as a consequence leads to more conve-
nient definitions of second and third completeness, described in §4.4, whereby
it is only required that certain maps be 1-1. There are also unique extension
theorems, for the T, A, F, R, AT, FT, RT, S, RS, and B semantics, which
relate localic transition systems and localic tropological systems, and depend
crucially on the stability axiom. We explain the main ideas behind this in §5.2,
where we also discuss the significance of the theorems for completeness, but
defer the detailed proofs to a subsequent paper.

The strategy for proving third completeness now requires that we convert
Lop and Proc to locales. Lop will be replaced by the sup-lattice dual L̂ already
mentioned. Then we define Proc to be a particular sublocale of L̂ and show it to
be a localic transition system of the appropriate kind. As already stated, third
completeness means that certain functions are 1-1, and this will correspond
to certain maps between locales being surjections. One of these in particular
will correspond naturally to the classical lemma that elements of Lop are joins
of pointlikes, but instead of using the axiom of choice to prove this (part of
which is using choice to prove the sufficiency of points in a locale) we shall
define maps by a constructive manipulation of presentations of the locales.
This is described in §4.4, and in §5.3 we apply this technique to the example
of failures semantics F.
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2 Background

In this section we introduce technical preliminaries, terminology and notation,
along with an overview of tropological systems meant to present them in a
way which is appropriate for the applications in the later sections.

2.1 Preliminaries

The category SL [7] has the complete lattices — sup-lattices — as objects
and the maps that preserve arbitrary joins as morphisms — sup-lattice homo-
morphisms . A homomorphism f : L → M is strong if it preserves the top:
f(>L) =>M . We denote the minimum element of a sup-lattice by 0.

The tensor product of sup-lattices L ⊗ M is characterized by the property
that homomorphisms from it to any sup-lattice N are equivalent to “bilinear”
functions from L×M to N , i.e., those that preserve joins in each component
separately. This makes SL a monoidal category [7], and the monoids in it are
the unital quantales , i.e., sup-lattices equipped with an associative multipli-
cation · (with a unit — usually denoted by 1) that distributes over all joins
in both variables. A unital right module over a quantale Q, or (unital) right
Q-module, is a unital right action (usually also denoted by ·) over the monoid
Q in SL, and similarly for left modules. Homomorphisms of unital quantales
are maps that preserve the monoid structure and all the joins, and homomor-
phisms of modules, for each Q fixed, are maps that commute with the action
and preserve all the joins (the definitions are therefore entirely analogous to
those for rings and ring modules, except that the underlying abelian group
structure has been replaced by the sup-lattice structure). We shall also work
extensively with strong homomorphisms between unital left Q-modules, with
respect to which the module Q ·>= {a ·> | a ∈ Q}, whose action is multi-
plication on the left, is an initial object; that is, given any other unital left
Q-module M there is a unique strong homomorphism Q ·>Q → M of left Q-
modules [11, Prop. 3.6(8)]. Further details about quantales and modules can
be found in [12,2,11,13].

We denote the category of unital quantales by Qu. Other categories that we
shall mention in this paper are: DL (bounded distributive lattices and their
homomorphisms); Fr (frames and their homomorphisms); ∨-sL (join semilat-
tices, with bottom, and their homomorphisms); ∧-sL (meet semilattices, with
top, and their homomorphisms). All these categories are algebraic, and for a
presentation by generators and relations we usually write C〈G | R〉, where C
is the name of the corresponding category, italicized, G is the set of generators,
and R is the set of defining relations of the presentation; if R = ∅ we write
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only C〈G〉. For instance, Qu〈G | R〉 is the unital quantale generated by G
with relations in R. Often, too, G should not be taken to be just a set, but
rather an object of another category D, whose structure should be preserved
in the presentation. Instead of adding this restriction to the sets of relations
we write instead C〈G (qua D) | R〉 to indicate that the structure of G as an
object of D should be preserved. For instance, if L is a sup-lattice we write
Fr〈L(qua SL)〉, or Fr〈L(qua sup-lattice)〉, for the frame freely generated by
L as a sup-lattice (i.e., whose injection of generators is a universal sup-lattice
homomorphism).

Let S be a poset, and let C be a precoverage on S, by which we mean a
function assigning a set of subsets of ↓(x) to each x ∈ S. The sup-lattice

SL〈 S (qua poset) | x =
∨

U [U ∈ C(x)] 〉

can be concretely described [2] as the set of C-ideals of S, where by a C-ideal
we mean a lower closed subset J ⊆ S such that x ∈ J whenever U ⊆ J and
U ∈ C(x).

An important technical tool is the following version of Johnstone’s [6] coverage
theorem, where by a coverage C on a meet semilattice S we mean a precoverage
on S such that whenever U ∈ C(x) then

{y ∧ u | u ∈ U} ∈ C(y ∧ x) (“meet-stability”) .

Theorem 2.1 Let S be a meet semilattice, and let C be a coverage on S.
Then,

Fr〈 S (qua ∧-sL) | x =
∨

U [U ∈ C(x)] 〉
is order-isomorphic to

SL〈 S (qua poset) | x =
∨

U [U ∈ C(x)] 〉 .

PROOF. See [2].

2.2 Tropological systems

Now we recall the notion of system of [2,11], where unital quantales are al-
gebras of finite observations and unital left quantale modules are algebras of
capabilities (also sometimes called “finitely observable properties”). We refer
the reader to [2] or [11] for further motivation regarding these ideas, or to the
short survey in [9].

The underlying notion of system in [2,11] is that of tropological system [11],
which can be presented as being a structure (P,Q, L, Π) consisting of
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• A set P (of states);
• A unital quantale Q (of finite observations);
• A unital left Q-module L (of finitely observable properties);
• A unital left action of Q on PP ;
• A strong homomorphism of left Q-modules Π : L → PP .

The left Q-module structure on PP defines, for each observation a ∈ Q, a
binary relation

a→ ⊆ P × P , the transition relation of a, by

p
a→ q ⇐⇒ p ∈ a · {q} ,

where p
a→ q can be read as saying that if the system is at state p then (i) a

can be observed and (ii) after it has been observed the resulting state may be
q. Conversely, the left action can be recovered from the transition relation:

a ·X = {p ∈ P | ∃q ∈ X . p
a→ q} .

The homomorphism Π gives us, for each property ϕ ∈ L, the set of states
where ϕ holds. We also write p ² ϕ when p ∈ Π(ϕ), and call the binary
relation ² ⊆ P ×L thus defined the satisfaction relation of the system. When
p ² ϕ we say that p satisfies ϕ.

We call a structure (P,Q, L, Π) as above, but where Π is not required to be
strong, a pre-tropological system.

We shall take the view that Q and L provide information about single “ob-
servational runs” on processes. The elements of L denote properties of the
starting state of the run, as observably known at the end of the run, and Q
acts on L by prefixing observation steps from Q: a · ϕ means “after a, ϕ is
possible” and to observe it from the starting state p you first observe a hap-
pening, moving to some state q, and then observe the property ϕ starting from
q. (We shall later — §4.1 — argue that repeated observational runs correspond
to logical conjunction.) The following properties of transition and satisfaction
relations bring out these intuitions more clearly, and hold of any tropological
system:

• p
1→ q if and only if p = q ,

• p
a·b→ q if and only if p

a→ r
b→ q for some r ∈ P ,

• p

∨
X→ q if and only if p

a→ q for some a ∈ X ,
• p ²>,
• p ² a ·ϕ if and only if p

a→ q and q ² ϕ for some q ∈ P ,
• p ² ∨

Y if and only if p ² ϕ for some ϕ ∈ Y .

In fact, the structure (P,Q, L, Π) is a tropological system if and only if the
above six conditions hold [11], and the strength of Π is equivalent to the fourth
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condition.

Any sup-lattice homomorphism f : L → M has a right adjoint f∗ : M →
L that preserves meets and thus defines a sup-lattice homomorphism f op :
Mop → Lop; moreover, the passage f 7→ f op preserves joins. It follows that if
L is a left Q-module then Lop is a right Q-module (a similar argument will
appear in Corollary 3.5), and from the classical fact that set complementation
makes PP self-dual it follows that if (P,Q, L, Π) is a pre-tropological system
then PP is also a right Q-module. Its action is referred to as the dynamics ,
and it is defined explicitly as follows.

X · a = {q ∈ P | ∃p ∈ X . p
a→ q} ,

p
a→ q ⇐⇒ q ∈ {p} · a .

Moreover, using again set complementation we obtain a homomorphism of
right Q-modules

PP
∼=−→ (PP )op Πop−→ Lop ,

which can be identified with a map K : P → Lop because PP is freely gener-
ated by P as a sup-lattice. Explicitly, K is given by

K(p) =
∨{ϕ ∈ L | p 2 ϕ}

(the join is calculated in L, not in Lop). Using again classical reasoning, Lop is
order isomorphic to the sup-lattice L̆ whose elements are the complements of
the principal ideals of L, ordered under inclusion, and if we substitute L̆ for
Lop in the definition of K we obtain

K(p) = {ϕ ∈ L | p ² ϕ} .

Hence, K(p) contains the information of which properties ϕ ∈ L are satisfied
by p ∈ P — the “capabilities” of p — and hence expresses a semantics by
capabilities.

L̆ (and indirectly Lop) thus contains meanings of states (“processes”), but also
the meanings of sets of states, calculated as joins. In particular, the bottom
element ∅ ∈ L̆ is the meaning of the empty set of states. We normally reinforce
this idea by requiring the states p ∈ P to have K(p) 6= ∅, which is equivalent
to Π being strong.

Hence, another way of presenting tropological systems consists of the following
data:

• A set P ;
• A unital quantale Q;
• A unital left Q-module L;
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• A Q-indexed family of maps P → PP that jointly define a right Q-module
structure on PP (the dynamics);

• A map K : P → L̆ that extends to a right Q-module homomorphism
PP → L̆ and factors via L̆ \ ∅.

A pre-tropological system is the same, except that K is not required to factor
via L̆ \ ∅.

The purpose of the present section has been to give some background on
tropological systems, and we conclude with a brief remark about some gener-
alizations, which however will not be further addressed in the present paper.
For instance, it is possible to allow the module structures of both L and PP to
be pre-unital [9,10] (i.e., satisfying only 1 ·ϕ ≥ ϕ and X ·1 ⊇ X, respectively)
in order to deal with systems that have hidden unobservable behaviour, which
is equivalent to replacing the first of the three properties of the transition
relation stated above by the weaker

p
1→ p for all p ∈ P .

Other generalizations can be obtained by replacing PP by other kinds of
lattices, such as lattices of projections on a Hilbert space for systems with
quantum behaviour (see [9] for a preliminary account of this), which may also
bring tropological systems closer to the study of points of quantales [10].

3 Localic sup-lattices

A poset X is a sup-lattice if and only if the function ↓ : X → LX has a left
adjoint, LX being the set of lower closed subsets of X. The corresponding
localic construction is the lower powerlocale PL, defined by

ΩPLX = Fr〈ΩX(qua SL)〉 .

If a is an open for X then we write ♦a for the corresponding subbasic open
of PLX; hence, “qua SL” means then that ♦ preserves all joins. The points
of PLX can be identified with the “weakly closed sublocales of X with open
domain” [3,16]. For present purposes, however, we do not need this precise
characterization and it is not too misleading to think of the points in the
classically equivalent way as the closed sublocales.

PL is the functor part of a KZ-monad on Loc. Following [18], and in imitation
of the poset notation, we shall write ↓ and t for the unit and multiplication
of the monad. Then a locale X is a PL-algebra (in a unique way) if and only
if ↓X has a left adjoint, which we shall write as t. We call PL-algebras localic
sup-lattices, and write LocSL for the category of them.
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Proposition 3.1 LocSL is sup-lattice enriched, the order being the special-
ization order v.

PROOF. First, note that the Kleisli category for PL is sup-lattice enriched:
for it is dual to the full subcategory of SL whose objects are frames. The
ordering is v, for if f, g : X → PLY then

f v g ⇐⇒ ∀c ∈ ΩPLY . Ωf(c) ≤ Ωg(c)

⇐⇒ ∀b ∈ ΩY . Ωf(♦b) ≤ Ωg(♦b) .

Now suppose that Y is a localic sup-lattice. We show that for any locale X,
the homset Loc(X,Y ) is a sup-lattice with respect to v. For let ϕi : X → Y
(i ∈ I), let ϕ′ : X → PLY be the join of the Kleisli morphisms ϕi; ↓ and let
ϕ = ϕ′;t : X → Y . We have ϕi = ϕi; ↓;t v ϕ′;t = ϕ, and if every ϕi v ψ
then ϕi; ↓ v ψ; ↓, so ϕ′ v ψ; ↓ and by the adjunction t a ↓, ϕ v ψ. Hence ϕ
is the join in Loc(X,Y ) of the ϕis.

If χ : W → X, then for any map α : X → PLY the composite χ; α is equal to
the Kleisli composite of χ; ↓ with α, and it follows that χ; ϕ′ is the join of the
maps χ; ϕi; ↓ and hence that χ; ϕ is the join of the maps χ; ϕi: precomposition
by arbitrary maps distributes over the joins. For postcomposition, by ω : Y →
Z, we must take Z also to be a localic sup-lattice and ω to be a homomorphism.
The Kleisli compositions of ϕi; ↓ and of ϕ′ with ω; ↓ are ϕi; ω; ↓ and ϕ′; PLω
respectively, and we deduce the join of the maps ϕi; ω is ϕ′; PLω;t = ϕ′;t; ω =
ϕ; ω.

Finally, we must show that if X too is a localic sup-lattice and every ϕi is a
homomorphism then so is ϕ, i.e., t; ϕ = PLϕ;t. The w direction holds if and
only if

PLα v t; α; ↓ = t; ↓; PLα

which is obvious. Hence ϕ is a homomorphism if and only if t; ϕ v PLϕ;t.
But t; ϕ is the join of the maps t; ϕi, and t; ϕi = PLϕi;t v PLϕ;t.

This proves the result: every homset of LocSL is a sup-lattice with respect to
v, and composition distributes over joins on both sides.

If Q is a quantale, we can also define the notion of localic Q-module as a
localic sup-lattice L equipped with a quantale homomorphism from Q to
LocSL(L,L). To distinguish right from left, we must be careful to distinguish
the two categorical orders of composition: the diagrammatic order f ; g is the
one that requires the target of f to be the source of g, while the applicative
order is g ◦ f = f ; g.
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Definition 3.2 Let Q be a quantale. A localic sup-lattice L is a right localic
Q-module when it is equipped with a quantale homomorphism

ρ : Q → (LocSL(L,L), ; )

If a ∈ Q and x : 1 → L is a point of L (or, more generally, if x : X → L is a
generalized point at stage of definition X), then we write x · a for x; ρ(a).

Similarly, L is a left localic Q-module when it is equipped with a quantale
homomorphism

λ : Q → (LocSL(L,L), ◦)
and then we write a · x for x; λ(a) = λ(a) ◦ x.

Definition 3.3 Let M be a sup-lattice. Then its localic sup-lattice dual, M̂ ,
is defined by

ΩM̂ = Fr〈M(qua SL)〉 .

We shall write ♦x for x ∈ M considered as a generator of ΩM̂ . This extends
the notation used for subbasic opens of the lower powerlocale, for which we
have PLX = Ω̂X.

Notice that the points of M̂ are the sup-lattice homomorphisms from M to
Ω. Classically, Ω ∼= Ωop and so those points are equivalent to sup-lattice ho-
momorphisms from Ω to Mop, i.e., to functions from 1 to Mop (since for any
set X we have that PX is the free sup-lattice over X), i.e., elements of Mop.
(Compare with the lower powerlocale, where classically the points of PLX are
the elements of ΩXop, i.e., the closed sublocales of X. But constructively the
points are less simply described [3,16].) Hence this localic sup-lattice dual is
a localic analogue of the ordinary sup-lattice dual, and in fact it seems that
the purposes in [2] for which the sup-lattice dual were used are in fact bet-
ter served by the localic sup-lattice dual. We do not claim that it provides a
duality between SL and LocSL.

Proposition 3.4 The construction ̂ provides a contravariant, sup-lattice en-
riched functor from SL to LocSL.

PROOF. First we show that if M is a sup-lattice then M̂ is a localic sup-
lattice. Define t : PLM̂ → M̂ by Ωt(♦x) = ♦♦x. We have Ω↓ ◦ Ωt(♦x) =
♦x, and so ↓;t = Id

M̂
. A subbase of opens for PLM̂ is provided by the opens

♦(♦x1 ∧ · · · ∧ ♦xn) and

Ωt ◦ Ω↓(♦(♦x1 ∧ · · · ∧ ♦xn)) = Ωt(♦x1 ∧ · · · ∧ ♦xn)

= ♦♦x1 ∧ · · · ∧ ♦♦xn ≥ ♦(♦x1 ∧ · · · ∧ ♦xn)

13



Hence t; ↓ w Id
PLM̂

and it follows that t is left adjoint to ↓.

If f : M → N is a sup-lattice homomorphism, then we define f̂ : N̂ → M̂ by
Ωf̂(♦x) = ♦f(x). This is a PL-homomorphism, for

Ωt ◦ Ωf̂(♦x) = Ωt(♦f(x)) = ♦♦f(x)

=♦Ωf̂(♦x) = ΩPLf̂(♦♦x) = ΩPLf̂ ◦ Ωt(♦x)

and it follows that t; f̂ = PLf̂ ;t. The construction is clearly functorial.

To show that ̂ is sup-lattice enriched, let ϕi : M → N (i ∈ I) be sup-
lattice homomorphisms. The proof of Proposition 3.1 showed that the join∨

i ϕ̂i in LocSL(N̂ , M̂) is also a join in Loc(N̂ , M̂), which is order isomorphic
to SL(M, ΩN̂), corresponding to the join of the sup-lattice homomorphisms

♦; Ωϕ̂i = ϕi;♦. That join is (
∨

i ϕi);♦, corresponding to
∨̂

i ϕi.

Corollary 3.5 If Q is a quantale and M is a left Q-module, then M̂ is a
localic right Q-module.

PROOF. The left Q-module structure on M is given by a quantale homomor-
phism from Q to the endomorphism quantale SL(M, M) (with multiplication
being composition in applicative order: f ·g = f ◦ g). The functor ̂ maps this
contravariantly to LocSL(M̂, M̂), preserving sups, and thus makes M̂ a right
Q-module.

Proposition 3.6 Let M be a sup-lattice, X a locale, f : X → M̂ a map
and f : PLX → M̂ its lifting to a localic sup-lattice homomorphism. Then

f = Ω̂f ◦ ♦. (Note that we are using PLX = Ω̂X.)

PROOF. We have f = PLf ;
⊔

, so we can calculate

Ωf(♦x) = ΩPLf(♦♦x) = ♦Ωf(♦x) .

One might expect the injection of generators, M → ΩM̂ , to be 1-1. It seems
to be an open question whether this is indeed the case in general, but we shall
prove some special cases. Some of these will be used later.

Proposition 3.7 Let M be a sup-lattice, and ♦ : M → ΩM̂ the injection of
generators.

1. If M is a frame then ♦ is 1-1.
2. Classically, ♦ is 1-1 for every M .

14



3. If M is an algebraic lattice then ♦ is 1-1. (An “algebraic lattice” is the
ideal completion of a join semilattice.)

PROOF. (1) The universal property of ΩM̂ gives a frame homomorphism
ΩM̂ → M that splits ♦.

(2) Classically Ω is 2, so suppose ♦x ≤ ♦y in ΩM̂ and define a suplattice
homomorphism f : M → 2 such that f(z) = 0 if and only if z ≤ y. Then
f extends to a frame homomorphism f ′ : ΩM̂ → 2, and f(x) = f ′(♦x) ≤
f ′(♦y) = f(y) = 0, so x ≤ y.

(3) Note that our dual M̂ , whose points are sup-lattice morphisms from M
to Ω, is quite different from dual X̂, defined for continuous lattices in general
and algebraic lattices in particular, whose elements are the Scott open filters
of X — see, e.g., [6].

Let M0 be the join subsemilattice of compact elements of M . Suplattice ho-
momorphisms from M to a frame are equivalent to join semilattice homomor-
phisms from M0 to the frame, and it follows that

ΩM̂ = Fr〈M0 (qua ∨-sL)〉
∼= Fr〈DL〈M0 (qua ∨-sL)〉 (qua DL)〉
∼= Idl(DL〈M0 (qua ∨-sL)〉)

The free meet semilattice over M0 qua poset is FM0/ vU , where FM0 is
the finite powerset (the free semilattice with ∪ the binary operation) and the
“upper order” vU is defined by S vU T if for every y ∈ T there is some x ∈ S
with x ≤ y. It is easily checked that FM0/ vU is not only a meet semilattice,
but also a distributive lattice with

S ∨ T = {s ∨ t | s ∈ S, t ∈ T}
In fact, it is isomorphic to DL〈M0 (qua ∨-sL)〉. We thus have a concrete
representation of ΩM̂ as Idl(FM0/ vU). The injection of generators maps
x ∈ M to ♦x =

⋃{↓{x′} | x′ ≤ x, x′ ∈ M0}. If ♦x ≤ ♦y, then for every
compact (i.e., in M0) x′ ≤ x we have {x′} vU {y′} for some compact y′ ≤ y,
so x′ ≤ y′ ≤ y and it follows that x ≤ y.

4 Localic tropological systems

In the present paper we provide a more constructive approach to the issues
addressed in [2,11], namely requiring P to be a locale instead of a discrete set.
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This approach provides us, as was already mentioned in the introduction and
will become clear below, with algebraic tools otherwise unavailable, and opens
the way to constructive reasoning.

4.1 Pre-systems

Definition 4.1 A localic pre-tropological system (P,Q, L, K), or (localic) pre-
system, consists of

• a locale P , whose points are called states ,
• a unital quantale Q, of finite observations ,
• a unital left Q-module L, of finitely observable properties ,
• a Q-indexed family of locale maps P → PLP that, via the order isomorphism

Loc(P, PLP ) ∼= LocSL(PLP, PLP ), give a localic right Q-module structure
on PLP , referred to as the dynamics of the system;

• a locale map K : P → L̂ whose extension to a homomorphism of localic sup-
lattices PLP → L̂ is a homomorphism of localic right Q-modules, referred
to as the behaviour map.

A pre-system (P,Q, L, K) is referred to as a pre-system over (Q,L), or a pre-
(Q,L)-system, and the pre-system itself is often denoted only by (P, K). The
pre-system is discrete if P is a discrete locale.

Similarly to classical tropological systems, localic pre-systems can be presented
in more than one way. In particular, the map K is uniquely determined by
a homomorphism Π : L → ΩP of left Q-modules, which we refer to as the
property interpretation map:

Proposition 4.2 A pre-(Q,L)-system (P,K) can be equivalently presented
as being a pair (P, Π), where P is a locale whose frame of opens ΩP is a left
Q-module, and Π : L → ΩP is a left Q-module homomorphism.

PROOF. Because Kleisli morphisms for PL are dual to sup-lattice homo-
morphisms between frames, we see that the dynamics can equivalently be
characterized as a left Q-module structure on ΩP . Π is defined as ΩK ◦ ♦,
where ♦ : L → ΩL̂ is the injection of generators in the frame presentation
of ΩL̂. Let K : PLP → L̂ be the homomorphic extension of K : P → L̂. By
Proposition 3.6, K = Π̂. It is a right module homomorphism if and only if for
every a ∈ Q we have K; a = a; K : PLP → L̂. Now,

ΩK ◦ Ωa(♦x) = ΩK(♦(a · x)) = ♦Π(a · x)

Ωa ◦ ΩK(♦x) = Ωa(♦Π(x)) = ♦(a · Π(x))
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Using the fact (Proposition 3.7, part 1) that ♦ : ΩP → ΩPLP is 1-1, we see
that K is a right localic Q-module homomorphism if and only if Π is a left
Q-module homomorphism.

Henceforth we will consistently use the notation K and Π with the meanings
above.

Notice the role of the meet in ΩP . As argued in [15], this should represent
an observational conjunction, but it should be thought of as implemented by
repeated observational runs. To observe x∧ y of a process p, you must first be
able to save a backup copy of p, then you observe x, then you reinstate the
saved version of p, then you observe y.

This contrasts with the sup-lattice L whose elements represent single obser-
vational runs. Though L has a lattice theoretic meet, it does not in general
distribute over joins and is not considered to have observational significance
as a conjunction.

4.2 State axioms

Similarly to the situation with classical tropological systems, we wish to ex-
clude the bottom point 0 from the image of K. The sublocale {0} is the closed
complement of the open sublocale ♦>L (we identify the open sublocale of X
corresponding to x ∈ ΩX with x itself), and so the analogue of excluding the
bottom point is to to require K to factor via the open sublocale ♦>L. In terms
of frames, the open sublocale ♦>L is defined by

Ω♦>L = Fr〈 ΩL̂ (qua Fr) |>≤ ♦>L 〉 ,

and K factors via ♦>L if and only if Π factors through the injection of gener-
ators L → ΩL̂ and the quotient ΩL̂ → Ω♦>L, which is equivalent to Π being
strong. States such that K(p) = 0 are regarded as “nonexistent” (cf. §2 —
they have the same meaning as the empty set of states), which motivates the
following terminology.

Definition 4.3 A pre-system (P, K) satisfies the existence axiom if K factors
via the open sublocale ♦>L or, equivalently, Π is strong.

However, we need to go a little further in order to get a suitable localic ana-
logue of tropological systems. If a is a subunit of a unital quantale Q (i.e.,
a ≤ 1Q) then in a discrete system the dynamics gives us p · a ⊆ {p}. Hence,
insofar as p · a exists at all (i.e., insofar as a is possible for p), it is the whole
of {p}. In non-discrete pre-systems this is not automatic, for p is no longer
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an atom of the specialization preorder of P . However, we would like to retain
some “dynamic atomicity”, meaning that if a state q equals p · a for some
a ≤ 1Q then q should coincide with p. In other words, the system should re-
main in the same state — “stable” — if only subunits are observed, and we
need a new “stability axiom” to enforce this.

In the idea just described, that if a is a subunit then “insofar as p · a exists
at all, it is the whole of {p}”, the meaning of “existence” should be that p · a
exists if it is a point of PLP that satisfies the open ♦>. In other words, if we
let e : PLP → $ be the map to $ corresponding to ♦> ($ is the Sierpiński
locale, whose frame is free on one generator and whose points are thus the
truth values), then e assigns to the points of P the truth value>, and e(p · a)
is the truth value for “p · a exists”.

Now we shall need a “selection map” s : $×P → PLP such that s(t, p) is “↓p,
insofar as t is true (and ∅ otherwise)”. The motivation is that if θa : P → $×P
is the pairing 〈e ◦ (− · a), Id〉, then the map s ◦ θa : P → PLP assigns to each
state p the point “↓p, insofar as p · a exists” — and the stability axiom that
we are looking for should therefore correspond to requiring

− · a = s ◦ θa . (1)

In general, $ is the ideal completion of the two-element lattice {0,>} with
the general point t being the directed join

∨↑({0} ∪ {> | t}) (classically this
is either 0 or>). Since s must preserve directed joins, we deduce the general
form of s(t, p),

s(t, p) =
∨↑

({∅} ∪ {↓q | q = p and t}) ,

and we have s(0, p) = ∅ and s(>, p) = ↓p. [It actually comes from a very general
result that maps from $×X to Y are equivalent to pairs (f, g) of maps from
X to Y with f v g — or more generally in the category of toposes, a 2-cell
f ⇒ g. In other words, the exponential Y $ is also a lax kernel pair of IdY . In
the present case, s corresponds to the pair (∅◦!, ↓P ), with ∅◦! : P → 1 → PLP .]

Proposition 4.4 Equation (1) holds if and only if a · x = a ·>∧ x for all
x ∈ ΩP .

PROOF. The frame homomorphism for s is given by ♦x 7→ {>} × x ({>} is
the generator of Ω$), and for e ◦ (−·a) we have {>} 7→ ♦>7→ a ·>. Hence, the
pairing θa gives a frame homomorphism {>} × x 7→ a ·>∧ x, and Ω(s ◦ θa) is
♦x 7→ a ·>∧ x. On the other hand, Ω(− · a) is ♦x 7→ a · x, and thus (1) is
equivalent to requiring a ·x = a ·>∧ x for all x ∈ ΩP .

Definition 4.5 Let (P, K) be a pre-system.
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1. (P, K) satisfies the stability axiom if for all subunits a the map −·a : P →
PLP factors as s◦ θa : P → $×P → PLP , or, equivalently, a ·x = a ·>∧x
for all x ∈ ΩP .

2. (P, K) is a localic tropological system (or simply a system, when no confu-
sion may arise) if it satisfies both the existence and the stability axioms,
otherwise known as the first and second state axioms .

We have found two different but equivalent formulations of the stability axiom,
formulated respectively in terms of localic right modules and of left modules.
Incidentally, the latter, too, has a simple intuitive meaning, for it expresses
the idea that if a ≤ 1, in which case observing a should not change the state,
a state p “belongs to” the open a · x — telling us that a can be observed at
p with the resulting state being in x — if and only if a can be observed at p
and p itself belongs to x.

Proposition 4.6 Let (P, Q, L,K) be a pre-system.

1. The stability axiom is equivalent to each of the following conditions:
(1) a ·x ≥ a ·>∧ x for all x, y ∈ ΩP and all subunits a;
(2) a ·x ∧ y = a · (x ∧ y) for all x, y ∈ ΩP and all subunits a.

2. The stability axiom implies distributivity of the left action over binary
meets: a · (x ∧ y) = a ·x ∧ a · y for all x, y ∈ ΩP and all subunits a.

3. The stability axiom implies idempotence of the left action: a · a ·x = a ·x
for all x ∈ ΩP and all subunits a.

4. The stability axiom implies commutativity of the left action: a·b·x = b·a·x
for all x ∈ ΩP and all subunits a and b.

PROOF. 1(1) is immediate because a · x ≤ a ·> follows from x ≤ >, and
a ·x ≤ x follows from a ≤ 1. The condition 1(2) obviously implies the stability
axiom (let x =>), and it is implied by it because (a ·x)∧ y = (a ·>∧ x)∧ y =
a ·>∧ (x ∧ y) = a · (x ∧ y). For condition 2 we have a · (x ∧ y) = a ·>∧ x ∧ y =
(a·>∧x)∧(a·>∧y) = a·x∧a·y. Condition 3 follows from a·(a·x) = a·>∧a·x = a·x.
Finally, for condition 4 we have a · b ·x = a ·>∧ b ·x = a ·>∧ b ·>∧ x = b ·a ·x.

Now we show that, as expected, stability is automatic in discrete pre-systems:

Proposition 4.7 The stability axiom holds trivially for discrete pre-systems.

PROOF. Let (P, K) be a discrete pre-(Q, L)-system. Let also p be a state,
a ≤ 1 in Q, and X ⊆ P . We will prove that a · P ∩ X ⊆ a · X. Assume
p ∈ a · P ∩ X. We have a · P =

⋃
q∈P a · {q}, so p ∈ a · {q} for some q. But

a · {q} ⊆ 1 · {q} = {q}, so p = q and hence p ∈ a · {p} ⊆ a ·X.
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4.3 Semantic domains

Now we bring to the localic context the intuitions about capabilities and se-
mantics that were described in §2 for classical tropological systems.

Let S = (P,Q, L, K) be an arbitrary (localic) pre-system.

Definition 4.8

1. Let ϕ ∈ L, and let p be a state, i.e., a point of P . We say that ϕ is a
capability of p, and write p ² ϕ, if p is in the open Π(ϕ) — or, equivalently,
K(p) is in the open ♦ϕ. 1

2. Let p be a state. Then K(p) is the behaviour , or meaning , of p.
3. Let p and q be states. If K(p) v K(q) (equivalently, p ² ϕ ⇒ q ² ϕ for

all ϕ ∈ L), we write p . q, and we write p ∼ q if both p . q and q . p,
in which case the states p and q are said to be behaviourally equivalent .
(Localically, . and ∼ are sublocales of P × P .)

We are thus seeing L̂ as a semantic domain for pre-(Q, L)-systems. The “locale
P modulo behavioural equivalence” is the image of P in L̂, which we will
denote by P/∼, and whose frame of opens is spanned by the image Π[L] in
ΩP . In other words,

Definition 4.9 The locale P/∼ is defined up to isomorphism by the epi-mono
factorization:

L̂

P/∼
1 Q

bbEEEEEEEEE

P .

K

OO

<< <<yyyyyyyy

If the state axioms hold, not all the points of L̂ can be behaviours of states of
pre-(Q,L)-systems, which means that L̂ is larger than necessary as a semantic
domain. For instance, the existence axiom tells us that behaviours lie in the
open sublocale ♦>L, but that is still too large if both state axioms hold. In
order to find a semantic domain that is exactly as large as necessary for (Q,L)-
systems we first introduce morphisms of (pre-)systems.

Definition 4.10 Let P = (P,K) and P′ = (P ′, K ′) be pre-(Q,L)-systems. A

1 This still makes sense if p : X → P is a generalized point of P . The formula
“p ² ϕ” then denotes a truth value at stage X, i.e., a map from X to the Sierpiński
locale $, got by composing p; Π(ϕ) : X → P → $. This uses the fact that opens of
a locale correspond to maps from it to $.
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map f : P → P′ is a locale map f : P → P ′ such that PLf is a homomorphism
of localic right Q-modules (equivalently, Ωf is a homomorphism of left Q-
modules) and K = K ′ ◦ f (equivalently, Π = Ωf ◦ Π′). The category of
(Q,L)-systems is defined to be the full subcategory of the category of pre-
(Q,L)-systems whose objects are the (Q,L)-systems, and we denote it by
(Q,L)-Sys.

Next we prove that (Q,L)-Sys has a final object. A reader who wishes to skip
the details of the construction may go directly to Definition 4.22.

Definition 4.11 We define the following categories:

• (Q,L)-pFrm is the dual of the category of pre-(Q,L)-systems;
• (Q,L)-Frm is the dual of the category of (Q, L)-systems, i.e., (Q,L)-Frm =

(Q,L)-Sysop.

The morphisms in these categories are referred to as homomorphisms (of pre-
systems and systems, respectively).

Now we study the initial objects in (Q, L)-pFrm.

Definition 4.12 Let Q be a unital quantale and L a unital left Q-module.
By a (Q,L)-semilattice we mean a meet-semilattice S (with>) equipped with

• a unary operation x 7→ a ∗ x, for each a ∈ Q,
• a nullary operation ϕ, for each ϕ ∈ L,

and satisfying the following laws:

a ∗ (b ∗ x) = (a · b) ∗ x (2)

1 ∗ x = x (3)

a ∗ x≤ (a ∨ b) ∗ x (4)

a ∗ (x ∧ y)≤ a ∗ x (5)

ϕ≤ϕ ∨ ψ . (6)

A homomorphism h : S → S ′ of (Q, L)-semilattices is a homomorphism of
meet-semilattices (with>) that also preserves the additional operations. The
resulting category is denoted by (Q, L)-sL.

The category of (Q,L)-semilattices is a category of finitary algebras, and there-
fore has an initial object. Every pre-(Q,L)-system is a (Q,L)-semilattice in an
obvious way, and every homomorphism between pre-(Q,L)-systems is a homo-
morphism of (Q,L)-semilattices. In other words, there is a forgetful functor
from (Q, L)-pFrm to (Q,L)-sL, and in order to obtain an initial object of
(Q,L)-pFrm we will show that the forgetful functor has a left adjoint. For that
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we introduce a notion of coverage for (Q,L)-semilattices (cf. Theorem 2.1).
Recall (§2.1) that a precoverage on a poset S is a function assigning a set of
subsets of ↓(x) to each x ∈ S.

Definition 4.13 Let S be a (Q,L)-semilattice. A (Q,L)-coverage on S is a
precoverage C on S, such that, for all x ∈ S, Φ ⊆ L, and A ⊆ Q,

• {ϕ | ϕ ∈ Φ} ∈ C(
∨

Φ),
• {a ∗ x | a ∈ A} ∈ C((

∨
A) ∗ x),

and whenever U ∈ C(x) then, for all y ∈ S and a ∈ Q,

• {y ∧ u | u ∈ U} ∈ C(y ∧ x) (“meet-stability”),
• {a ∗ u | u ∈ U} ∈ C(a ∗ x) (“action-stability”).

Now we can state a result similar to Theorem 2.1:

Theorem 4.14 Let S be a (Q,L)-semilattice and C a (Q,L)-coverage on S.
Then,

M = (Q,L)-pFrm〈 S (qua (Q,L)-sL) | x =
∨

U [U ∈ C(x)] 〉

is order isomorphic to

N = SL〈 S (qua poset) | x =
∨

U [U ∈ C(x)] 〉 .

PROOF. The injection of generators S → M is monotone, it trivially re-
spects the defining relations x =

∨
U of N (they are the same as those of M),

and thus it extends uniquely to a sup-lattice homomorphism f : N → M .

We also want to find a sup-lattice homomorphism in the opposite direction,
so let us define a structure of pre-(Q,L)-system on N . First we remark that
a (Q,L)-coverage on a (Q,L)-semilattice S is also a coverage in the sense
of Theorem 2.1, and thus N is a frame. Let a ∈ Q, and let the injection
of generators of N be η : S → N . The map a ¯ (−) : S → N defined by
a ¯ x = η(a ∗ x) respects the defining relations of N , for if x =

∨
U is a

defining relation then so is a ∗ x =
∨{a ∗ u | u ∈ U}, due to the action-

stability of C; furthermore, the map is monotone, i.e., it respects the “qua
poset” requirement. Thus we obtain, by homomorphic extension, a sup-lattice
endomorphism a · (−) on N for each a ∈ Q, such that

a · η(x) = a¯ x = η(a ∗ x) . (7)

This defines a unital left action of Q on N , whose unitality and associativity
follow easily from conditions (2) and (3); and the distributivity on the left
variable is a consequence of the second of the four items of Definition 4.13,
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due to which there is a defining relation
∨{a ∗ x | a ∈ A} = (

∨
A) ∗ x in

the definition of N . Similarly, the first of these items adds a defining relation∨{ϕ | ϕ ∈ Φ} =
∨

Φ, which means that the inclusion of L into N preserves
joins.

The injection of generators η : S → N preserves finite meets (cf. Theorem 2.1),
and thus condition (7) shows that η is a homomorphism of (Q,L)-semilattices,
i.e., it respects the “qua (Q,L)-sL” requirement in the presentation of M ;
besides, it trivially respects the defining relations of M , and thus extends
uniquely to a homomorphism g : M → N (in (Q,L)-pFrm). Since both f and
g restrict to the identity on S we have g = f−1.

The set of precoverages on a poset S is ordered by pointwise inclusion:

C ≤ C ′ ⇐⇒ C(x) ⊆ C ′(x) for all x ∈ S .

The pointwise intersection of a nonempty family of precoverages {Cα}α defines
a precoverage C(x) =

⋂
α Cα(x), and it is easily seen that if S is a (Q,L)-

semilattice and each Cα is a (Q,L)-coverage then so is C. Furthermore, the
greatest precoverage C(x) = P(↓(x)) is also a (Q,L)-coverage, and thus the
(Q,L)-coverages on S form a complete lattice; in particular, there is a least
(Q,L)-coverage.

Corollary 4.15 Let S be a (Q, L)-semilattice, and let C be the least (Q,L)-
coverage on S. Then,

(Q, L)-pFrm〈 S (qua (Q,L)-sL) 〉

is order isomorphic to

SL〈 S (qua poset) | x =
∨

U [U ∈ C(x)] 〉 .

Hence, the pre-(Q,L)-system freely generated by a (Q,L)-semilattice S can
be concretely described as consisting of the lattice of C-ideals for the least
(Q,L)-coverage on S.

Definition 4.16 Let S be a (Q,L)-semilattice, and let C denote the least
(Q,L)-coverage on S. We refer to the C-ideals for this coverage as the (Q,L)-
ideals of S. We write 〈X〉 for the (Q,L)-ideal generated by a set X ⊆ S,
i.e., the least (Q,L)-ideal that contains X. The principal (Q,L)-ideals are
the ones generated by singletons, written simply 〈x〉 for each x ∈ S. The
(Q,L)-completion of S is the lattice of all its (Q,L)-ideals and it is denoted
by (Q, L)-Idl(S).

Corollary 4.17
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1. Let S be a (Q,L)-semilattice. Then (Q,L)-Idl(S) is a pre-(Q, L)-system.
The action on principal (Q,L)-ideals satisfies a · 〈x〉 = 〈a ∗ x〉.

2. The assignment S 7→ (Q,L)-Idl(S) extends to a functor which is left
adjoint to the forgetful functor from (Q,L)-pFrm to (Q,L)-sL. The unit
of the adjunction sends each x ∈ S to 〈x〉.

3. There is an initial object in (Q,L)-pFrm, which coincides with the (Q,L)-
completion of the initial (Q,L)-semilattice.

We remark that a more explicit description of (Q, L)-ideals can be obtained as
follows, where for each x in a (Q,L)-semilattice S and each m in the monoid
coproduct (Q, ·)q (S,∧) we write m(x) to denote the action on S that freely
extends the monoid action of Q on S, given by (a, x) 7→ a ∗ x, and the action
of S on itself; that is, such that

1. a(x) = a ∗ x for all a ∈ Q,
2. y(x) = y ∧ x for all y ∈ S.

We shall refer to such an m as a Q-meet on S.

Proposition 4.18 Let S be a (Q,L)-semilattice. A subset I ⊆ S is a (Q,L)-
ideal if and only if it is lower closed and satisfies the following conditions, for
all x ∈ S, ϕ ∈ L, Φ ⊆ L, A ⊆ Q, and all Q-meets m on S:

{m(ϕ) | ϕ ∈ Φ} ⊆ I ⇒ m(
∨

Φ) ∈ I ;

{m(a ∗ x) | a ∈ A} ⊆ I ⇒ m((
∨

A) ∗ x) ∈ I .

PROOF. The least (Q,L)-coverage on S is the least precoverage C such that,
for all x ∈ S, ϕ ∈ L, Φ ⊆ L, A ⊆ Q, and all Q-meets m on S,

{m(ϕ) | ϕ ∈ Φ}∈C(m(
∨

Φ)) ,

{m(a ∗ x) | a ∈ A}∈C(m((
∨

A) ∗ x)) .

Hence, C(x) consists of all the sets of the form {m(ϕ) | ϕ ∈ Φ}, for each m
and Φ such that x = m(

∨
Φ), together with all the sets {m(a ∗ x) | a ∈ A},

for each m and A such that x = m((
∨

A) ∗ x). The result now follows from
the definition of C-ideal.

For systems everything is similar. Each state axiom can be expressed entirely
within the theory of (Q,L)-semilattices: the existence axiom simply says that
the top of a (Q,L)-semilattice coincides with>L, and the stability axiom tells
us that a ∗>∧ x = a ∗ x for all a ≤ 1Q. This leads to the following result.
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Definition 4.19 Let S be a (Q,L)-semilattice. We say that S is strict if the
following conditions hold:

• >L is the top of S;
• a ∗>∧ x = a ∗ x for all a ≤ 1Q.

Theorem 4.20 Let S be a strict (Q,L)-semilattice. Then (Q,L)-Idl(S) is a
(Q,L)-system.

PROOF. The condition >L = >S tells us that the injection of generators
Π : L → (Q,L)-Idl(S) is strong, i.e., the existence axiom holds. For the
stability axiom, let a ≤ 1Q, and let X be a (Q,L)-ideal. In (Q,L)-Idl(S) the
ideal X can be expressed as a join of [principal (Q,L)-ideals generated by]
elements of S, say X =

∨
i xi. Hence, we obtain

a ·>∧X = a ·>∧ (
∨

i

xi) =
∨

i

(a ·>∧ xi) =
∨

i

(a ·xi) = a · (∨
i

xi) = a ·X ,

that is, the stability axiom holds.

Finally, since strict (Q,L)-semilattices form another finitary algebraic theory
we obtain:

Corollary 4.21 There is an initial object in (Q,L)-Frm, which coincides
with the (Q,L)-completion of the initial strict (Q,L)-semilattice.

¿From here on we only deal with systems.

Definition 4.22 We denote the final (Q,L)-system (i.e., the final object in
(Q,L)-Sys) by Sys(Q,L). If Q and L are clear from the context, we write
only Sys .

We can also see Sys as a semantic domain, in that each state p of a (Q,L)-
system P is mapped to a unique state pQ,L of Sys by the unique map ! : P →
Sys , and we can think of pQ,L as being the abstract dynamic behaviour of p.
But many different states of Sys can be behaviourally equivalent, and thus
Sys is not a behaviourally abstract semantic domain.

Definition 4.23 The locale Sys/∼ is called the locale of processes , and its
points are called processes .

Notice that both Sys and Sys/∼ provide semantic domains for systems, but
whereas the former assigns to each state p of a system an abstract represen-
tative pQ,L of its behaviour, with all the dynamics included , the latter assigns
to p its behaviour K(p), which is a representative of p modulo behavioural
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equivalence, albeit without any a priori dynamics defined on it; that is, Sys/∼
is not necessarily a (Q, L)-system, or at least not in a canonical way.

The basic construction of Sys/∼ by image factorization of the locale map
Sys → L̂ is simple but gives us very little information about it. In particular
cases we shall have to work hard to discover more.

4.4 Completeness criteria

Let us address the completeness criteria that were defined in [2], namely “first
completeness”, “second completeness”, and “third completeness”.

First completeness is not intrinsic to a pair (Q,L) but instead relates the
behavioural preorders of tropological systems over (Q,L) to other preorders
defined elsewhere for labelled transition systems, typically preorders associated
to notions of process semantics such as trace semantics, simulation, bisimula-
tion, etc. See also §5.2.

In [2] the notions of second and third completeness were also defined in terms
of labelled transition systems and process semantics. However, contrary to
first completeness, this is inessential because they can be given an intrinsic
formulation, strictly in terms of tropological systems [11]. In this section we
adapt this to localic systems, and we study constructive versions of some proof
techniques for third completeness that were used in [2].

Let Q and L denote respectively a unital quantale and a unital left Q-module.
The notions of second and third completeness in [2,11] are equivalent to the
following.

Definition 4.24 The pair (Q,L) is said to be second complete if the following
condition holds for all a, b ∈ Q: if for every (Q,L)-system (P, K) and for every
x ∈ ΩP we have a · x ≤ b ·x, then a ≤ b.

The pair is third complete if the following condition holds for all ϕ, ψ ∈ L: if
for every (Q,L)-system (P, K) we have Π(ϕ) ≤ Π(ψ), then ϕ ≤ ψ.

An advantage of the localic framework is that each of these conditions can be
reduced to a question about a single system.

Proposition 4.25

1. Let Sys1 be the (Q,L)-system for which ΩSys1 is freely generated (in
(Q,L)-Frm) by one open, y. Then (Q,L) is second complete if and only
if the function Q → ΩSys1, a 7→ a · y, is 1-1.
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2. (Q,L) is third complete if and only if Π : L → ΩSys is 1-1.

PROOF. 1. By the freeness property, a ·y ≤ b ·y if and only if a ·x ≤ b ·x for
every x in every ΩP .

2. We have Π(ϕ) ≤ Π(ψ) in ΩSys if and only if we have Π(ϕ) ≤ Π(ψ) in every
ΩP .

Let us now outline, based on this proposition, a constructive localic strategy
to proving third completeness. It is the constructive analogue of the “every
point is a join of pointlikes” technique that was used extensively in [2]. We
assume henceforth that L is algebraic.

In the classical theory [2], within the sup-lattice dual Lop we had a master
transition system. This was a set Proc of “pointlikes”, typically defined such
that p is pointlike if and only if p 6= 0 and for every “propositional” observation
ϕ — essentially, ϕ ≤ 1 in Q — such that p · ϕ 6= 0 we have p · ϕ = p.
We can rephrase this when we reinterpret “Lop” as the localic sup-lattice
dual, saying that if p ² ϕ ·> then p v p · ϕ, i.e., for every x ∈ L, we have
p ² ♦x ⇒ p ² ♦(ϕ · x). In other words, p is in the sublocale presented by
pointlikeness relations

>≤♦>
ϕ ·>∧ ♦x≤♦(ϕ ·x)

Note that these are exactly analogous to the state conditions in the definition
of tropological system, but with the big difference that the x there was an
arbitrary frame element and in particular could be a meet of generators from
L. We shall take Proc to be a particular sublocale of L̂, typically presented by
the relations just described.

Because of the close relationship between the state conditions and the point-
likeness relations, it is typically trivial to show that the map K : Sys → L̂
factors via Proc, as a composite Cap; i : Sys → Proc → L̂ where i is the
sublocale inclusion.

The function Π : L → ΩSys whose injectivity we are trying to prove can be
decomposed as

L
♦−→ ΩL̂

Ωi−→ ΩProc
ΩCap−→ ΩSys

and hence it suffices to show, first, that ♦; Ωi is 1-1, and, second, that ΩCap
is 1-1 (i.e., that Cap is a localic surjection).
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To show ♦; Ωi is 1-1: It suffices (and in fact, by Proposition 3.7, it is necessary)
to show injectivity of the composite

L
♦−→ ΩL̂

Ωi−→ ΩProc
♦−→ ΩPLProc

and this is equal to the composite

L
♦−→ ΩL̂

Ωt−→ ΩPLL̂
ΩPLi−→ ΩPLProc

x 7→ ♦x 7−→ ♦♦x 7−→ ♦Ωi(♦x)

Hence so long as L falls within the scope of Proposition 3.7 it suffices to show
that PLi;t is a localic surjection.

This is in fact a localic version of the classical lemma that every element of Lop

is a join of pointlikes. The map PLi;t is the homomorphic extension to PLProc
of i and it calculates the joins in L̂ of certain sublocales of Proc. Conceptually,
therefore, to show it is a surjection is to show every point of L̂ is a join of
pointlikes. Our strategy is to show it is in fact a split localic surjection, in
effect by a map taking each point x of L̂ to the sublocale of Proc whose points
are the pointlikes less than x. In [18] it is shown that if f : X → Y is a map
of locales, then Ωf has a left adjoint ∃f if and only if PLf has a right adjoint,
written there as f−1, which serves to describe the inverse images under f of
points of PLY . Such a map f is called semiopen. Our plan is to show that i is
semiopen, and that

L̂
↓−→ PLL̂

i−1−→ PLProc
PLi−→ PLL̂

t−→ L̂

is the identity on L̂.

To show Cap is a localic surjection: Our aim here is to show that Proc is itself
a (Q,L)-system, with i = KProc. Then, because Sys is a final system, we get
a system morphism Φ : Proc → Sys . We have Φ; Cap; i = Φ; KSys = KProc = i
and, because i is an inclusion, Φ; Cap = IdProc and so Cap is a split surjection.

To summarize,

Theorem 4.26 Let (Q, L) be a quantale and left module, with L algebraic.
Suppose

1. i : Proc → L̂ is a sublocale inclusion;
2. K : Sys → L̂ factors via Proc;
3. i is semiopen;
4. ↓; i−1; PLi;t = Id

L̂
;

5. Proc is a (Q,L)-system, with i = KProc.

Then (Q,L) is third complete.
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In practice, a central part of the third completeness proofs that follow this
strategy is to obtain a sup-lattice presentation of ΩProc in order to get the
necessary maps to PLProc. In §5.3 we illustrate this with the example of the
failures semantics.

5 Process semantics

In this section we describe applications to process semantics which aim to show
that localic tropological systems are suitable for the kind of applications orig-
inally proposed in [2,11]. First, in §5.1, we address localic notions of labelled
transition system. Then in §5.2 we discuss unique extension theorems , which
state that in various cases localic transition systems can be “identified” with
localic tropological systems, and we discuss the significance of these results. Fi-
nally, §5.3 contains an example of the proof techniques for third completeness
described in §4.4, for the particular case of failures semantics.

5.1 Localic transition systems

Let Act be a set. A labelled transition system over Act in the classical sense
can be equivalently defined to be a binary operation 〈−〉− : Act ×PP → PP
that preserves unions in the second variable,

〈α〉⋃

i∈I

Xi =
⋃

i∈I

〈α〉Xi ,

where 〈α〉X is the set of all the states p ∈ P such that p
α→ q for some state

q ∈ X. In generalising to a localic setting we are led naturally, by analogy
with what we did for tropological systems, to replacing the set P by a locale,
the powerset PP being replaced by the frame of opens ΩP . Hence, each action
α ∈ Act can be seen as defining a sup-lattice endomorphism 〈α〉 of the frame
ΩP (the “inverse image map” of the action α), or, equivalently, a map of locales
P → PLP (the “direct image map” of α). This leads to a basic definition of
localic transition system that coincides with the S-locales of [2], and which we
recall here for convenience:

Definition 5.1 An S-locale (over Act) is a locale X whose frame of opens ΩX
is equipped with an Act-indexed family of unary join-preserving operations 〈α〉
(α ∈ Act). A map of S-locales h : X → Y is a locale map whose inverse image
frame homomorphism Ωh preserves every 〈α〉, i.e., such that Ωh(〈α〉Y y) =
〈α〉X(Ωh(y)) for all y ∈ ΩY . We call the frame of opens of an S-locale an
S-frame. By S-homomorphism we mean the inverse image homomorphism of
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a map of S-locales. The category of S-locales and their maps is denoted by
S-Loc.

Hence, an S-locale is essentially a function from Act to SL(ΩP, ΩP ), and,
similarly to classical labelled transition systems, there are various alternative
and equivalent definitions, such as the following:

• a function from Act to Loc(P, PLP );
• a sup-lattice homomorphism from PAct to SL(ΩP, ΩP );
• a sup-lattice homomorphism from PAct ⊗ ΩP ∼= Ω(Act × P ) to ΩP ;
• a map from P to PL(Act × P );
• a (QT, LT)-system, where QT = Qu〈Act〉 = P(Act∗) is the free unital quan-

tale on Act (Act∗ is the free monoid on Act), and LT is the initial (with
strong homomorphisms) module QT ·> (cf. §2.1 and Proposition 5.3).

If we define an S-lattice over Act to be a bounded distributive lattice D
equipped with an Act-indexed family of operations 〈α〉 : D → D (α ∈ Act)
that preserve finite joins, the ideal completion functor from distributive lat-
tices to frames restricts to a functor from S-lattices to S-frames, which is right
adjoint to the obvious forgetful functor from S-frames to S-lattices. It follows
that the category of S-locales S-Loc has a final object TrS, whose frame of
opens is the ideal completion of the initial S-lattice, and which is a final coal-
gebra for the functor PL(Act ×−). The terminology used in S-locales, where
“S” stands for simulation, is justified because for a large class of labelled tran-
sition systems (including the image-finite ones) the final semantics defined by
final S-locales coincides with the process theoretic notion of simulation; that
is, two states are assigned to the same point of TrS if and only if they are
similar (more precisely, the simulation preorder is the inverse image of the
specialisation preorder on TrS). Hence, we can think of the points of TrS as
labelled transition systems modulo simulation. These can be represented by a
certain class of trees whose edges are labelled by actions, thus justifying that
we call TrS a tree locale.

We have replaced the notion of (discrete) labelled transition system by that of
S-locale. However, as mentioned in §1.4, in the localic setting it is necessary
to define various notions of localic transition system, whose states can be
separated to a lesser or greater extent. Examples are the RS-locales of [2] for
ready-simulation, the B-locales of [11] for bisimulation, or the locales in [1]
for a much finer bisimulation semantics including divergence. We briefly recall
the definitions of RS-locale and B-locale.

Definition 5.2 An RS-locale over Act is an S-locale whose frame of opens is
equipped with an Act-indexed family of 0-ary operations α̃ (α ∈ Act), where
each α̃ is the complement of 〈α〉>, and is called the refusal of α. A map of
RS-locales is just a map of S-locales between RS-locales (its inverse image ho-

30



momorphism necessarily preserves refusals). The category of RS-locales and
their maps is denoted by RS-Loc. A B-locale over Act is an S-locale X such
that for all x ∈ ΩX, if x has a complement x′ then 〈α〉x has a complement,
which we denote by [α]x′. A map of B-locales is a map of S-locales between
B-locales (whose inverse image homomorphism necessarily preserves all com-
plements that exist). The category of B-locales and their maps is denoted by
B-Loc.

Notice that an obvious finer “spectrum” of definitions could be given by vary-
ing the elements of an S-locale that we require to be complemented. For in-
stance, a notion of “RS2-locale” could be defined similarly to RS-locales but
requiring also “depth 2 complements”, i.e., unary operations α̃β to be com-
plements of 〈α〉〈β〉>, etc.

The categories of RS-locales and B-locales can be studied in much the same
way as described above for S-locales. In particular, there are final locales in
each case, respectively TrRS and TrB, whose points can be thought of as
“trees” modulo ready-simulation and bisimulation. See [2,11] for further de-
tails.

We conjecture that the unique S-locale maps TrB → TrRS → TrS are localic
surjections.

5.2 Unique extension theorems

The applications of quantales and modules to process semantics in [2,11] were
all based on the fact that for each equivalence E the corresponding quantale
QE contains the set of actions Act as some of the generators, and thus a
tropological system whose quantale is QE restricts to a labelled transition
system over Act . Furthermore, for each of the process semantics E that were
handled in those papers using quantales and modules, there is a quantale QE

and a left QE-module LE such that every labelled transition system over Act
extends to a tropological system over (QE, LE). First completeness is then the
statement that the behavioural preorder of the tropological system coincides
with the preorder associated with E.

The simplest example of this situation is trace semantics, whose quantale is
the free quantale QT = Qu〈Act〉, and whose module is LT = QT ·>(Q′

T in [2]).
Hence, every labelled transition system over Act can be uniquely extended to
a tropological system over (QT, LT), and this also holds for localic systems:

Proposition 5.3 (Unique extension theorem for T) Let P be an S-locale
over Act. Then there is a unique homomorphism Π : LT → ΩP that makes
P a (localic) (QT, LT)-system such that α · x = 〈α〉x for all α ∈ Act and all
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x ∈ ΩP .

PROOF. The action of Act on ΩP extends in a unique way to QT because
the quantale is free, and the initiality of LT (with strong homomorphisms —
cf. §2.1) gives us a unique strong homomorphism of left QT-modules Π : LT →
ΩP .

Notice that the existence axiom is needed for the above uniqueness to hold,
and it plays the same role that it does in classical tropological systems. The
stability axiom was not needed, however, and in fact it is trivial in this exam-
ple, since there are no subunits besides ∅ and the unit itself.

The above proposition provides a way of characterizing trace semantics for an
arbitrary S-locale P : we can define its trace preorder to be the behavioural
preorder . of the unique (QT, LT)-system associated with the S-locale P , and
P/∼ is the associated quotient locale. Of course, for discrete systems this
yields the usual definition of trace semantics.

The other process semantics addressed in [2,11] (except A, F and R, which
were handled with quantaloids) can be approached in a similar way, because
there are unique extension theorems for them, even though their quantales are
not free on Act . The details of this will appear elsewhere, but we provide here
a generic explanation about how the stability axiom enables one to prove such
theorems.

Suppose (P, K) is a (Q,L)-system. If a is a subunit element of Q, then stability
and existence imply that the action of a on ΩP is determined by Π, as follows:

a ·x = a ·>ΩP ∧ x = Π(a ·>L) ∧ x .

In several process-theoretic examples, namely T, AT, FT, and RT, the quan-
tale Q is generated by the actions α ∈ Act and subunits like α

√
or α×: so

the Q-action is determined by the LTS structure and the values α
√ ·>ΩP and

α× ·>ΩP . In each of these cases the quantale and module (Q,L) are such that

α
√
·>L = α ·>L in L, (8)

naturally telling us that being able to observe α
√

— i.e., being able to observe
that α can be done — is the same capability as being able to observe α itself,

α× ·α = 0 in Q, (9)

i.e., observing that α cannot be done cannot be followed by an observation of
α, and

α ·>L ∨ α× ·>L =>L in L, (10)
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meaning that either α can be observed or α× can.

Hence, from the existence axiom together with (8) and (10) we have

α
√
·>ΩP = Π(α

√
·>L) = Π(α ·>L) = α ·>ΩP ,

α× ·>ΩP ∨ α ·>ΩP = Π(α× ·>L ∨ α ·>L) = Π(>L) =>ΩP ,

and, using the stability axiom and (9) we get

α× ·>ΩP ∧ α ·>ΩP = α× ·α ·>ΩP = 0ΩP .

It follows that α× ·>ΩP is uniquely determined as the Boolean complement of
α ·>ΩP , if it exists (in RS-locales it is α̃), which explains why unique extension
theorems for FT and RT require RS-locales, whereas S-locales suffice for AT,
which only uses α

√
.

Classically, unique extension theorems for tropological systems were known [11,9],
but the present paper enables us to adopt a different point of view, realizing
that the reason why these results hold is the triviality of stability in discrete
systems (cf. Proposition 4.7), and this understanding helps produce clearer
and more explicit proofs of them.

Unique extension theorems are also useful from the point of view of the com-
pleteness criteria described in §4.4, because the reason why second and third
completeness, as described in [2] with reference to labelled transition systems,
is the same as in Definition 4.24, which makes no reference to transition sys-
tems, is precisely the fact that transition systems for the quantales and mod-
ules in [2] are “the same as” tropological systems, due to the unique extension
theorems.

Still another application of unique extension theorems with regard to com-
pleteness criteria lies in the proof techniques for third completeness (see §4.4
and also §5.3), which are often based on showing that a certain locale Proc
is a system. The unique extension theorems reduce this problem to that of
showing that it is an S-locale, RS-locale, or B-locale, as appropriate.

5.3 Third completeness for F

Let us now apply the constructive localic approach to third completeness
summarized in Theorem 4.26, in the particular case of the failures semantics
F.

This is in some respects an atypical semantics, treated in [2] using quantaloids
instead of quantales. We shall show that this can be replaced by a pair (QF, LF)
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in which LF is not a homomorphic image of QF. One feature of the atypicality is
that third completeness for F is not fully captured by Definition 4.24, because
the criterion of Definition 4.24 is too weak, and we strengthen it by taking
completeness with respect to a restricted class of “standard” (QF, LF)-systems.
Nonetheless, the techniques used are illustrative of those for other semantics.

A central part of the calculation is going to be to obtain a sup-lattice pre-
sentation of ΩProc in order to get the maps to PLProc that are necessary to
make Proc a localic transition system. Already the calculations are non-trivial,
though one should bear in mind that they are replacing the classical use of
choice.

For the remainder of this section we shall fix a set Act of actions. Act need
not be finite, but we do require it to have decidable equality. We define

QF = Qu〈Act〉 = P(Act∗)

LF = QF-Mod 〈FAct (qua poset under ⊇ ) |
α · ∅× ≤ ∅× (α ∈ Act)

U× ≤ α · ∅× ∨ (U ∪ {α})× (α ∈ Act , U ⊆fin Act) 〉

Here we use F for the finite powerset, and write U× for the generator of LF

corresponding to the finite subset U — it is to denote a conjunction of refusals
of the actions in U .

Notice that the presentations of both QF and LF are coherent (no infinite
joins), and it follows that LF is algebraic as required in Theorem 4.26.

We now prove, not a unique extension theorem, but a canonical extension
theorem for (QF, LF), which will be used later. (The difficulty is that because
the refusals are not part of the quantale, the state axioms give us no control
over them.)

Lemma 5.4 Let P be an RS-locale. Then there is a least strong module ho-
momorphism Π : LF → ΩP making (P, Π) a (QF, LF)-system.

PROOF. For existence, define

Π(U×) =
∧

β∈U
β̃

It is easily checked that this respects the relations and is strong. Now suppose
Π′ is another such. We show by induction on U (this is the “F -induction”
of [17]) that Π(U×) ≤ Π′(U×). If U = ∅, this follows from strength. If U =
U0 ∪ {α}, then
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Π(U×) = α̃ ∧ Π(U×
0 ) ≤ α̃ ∧ Π′(U×

0 )

≤ α̃ ∧ α ·Π′(∅×) ∨ Π′((U0 ∪ {α})×) ≤ Π′(U×) .

Definition 5.5 A (QF, LF)-system (P, Π) is standard if

(1) P , already known to be an S-locale, is an RS-locale, and
(2) Π is as defined in Lemma 5.4.

Notice that a map of standard (QF, LF)-systems is just a map of RS-locales.
It follows that the full subcategory of (QF, LF)-Sys whose objects are the
standard (QF, LF)-systems is isomorphic to RS-Loc.

Lemma 5.6

LF
∼= SL 〈Act∗ ×FAct |

(s, (U ∪ V )×) ≤ (s, U×)

(s · t, ∅×) ≤ (s, ∅×)

(s, U×) ≤ (s ·α, ∅×) ∨ (s, (U ∪ {α})×) 〉

PROOF. Let us write L′F for the sup-lattice presented on the right-hand side.
First, we show that this is a left QF-module. If γ ∈ Act then it acts by

γ · (s, U×) = (γ · s, U×)

and this clearly respects the relations, so it extends to a sup-lattice homo-
morphism. Since QF is free, this collection of homomorphisms extends to a
QF-module action.

We can now define a module homomorphism θ : LF → L′F by U× 7−→ (1, U×),
with again an easy check that the relations are respected.

Inversely, we define a sup-lattice homomorphism ϕ : L′F → LF by (s, U×) 7−→
s·U×. The only relation of L′F that causes any trouble is the second, for which
we must show that s · t ·∅× ≤ s ·∅×, and this requires an induction on t. Then,
to show that ϕ is a module homomorphism it suffices to check

γ ·ϕ((s, U×)) = γ · s ·U× = ϕ(γ · (s, U×))

Now to show θ; ϕ = Id we use

U× 7−→ (1, U×) 7−→ 1 ·U× = U×

while for ϕ; θ = Id we use

(s, U×) 7−→ s ·U× 7−→ s · (1, U×) = (s, U×) .
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Corollary 5.7

ΩL̂F = Fr 〈Act∗ ×FAct |
(s, (U ∪ V )×) ≤ (s, U×)

(s · t, ∅×) ≤ (s, ∅×)

(s, U×) ≤ (s ·α, ∅×) ∨ (s, (U ∪ {α})×) 〉

The pointlikeness conditions (taken essentially from [2]) are not exactly of the
pattern mentioned in §4.4; we require α ·>∧ α× ≤ 0. Hence,

Definition 5.8

ΩProcF = Fr 〈Act∗ ×FAct |
(s, (U ∪ V )×) ≤ (s, U×)

(s · t, ∅×) ≤ (s, ∅×)

(s, U×) ≤ (s ·α, ∅×) ∨ (s, (U ∪ {α})×)

>≤ (1, ∅×)

(α, ∅×) ∧ (1, {α}×) ≤ 0 〉

Lemma 5.9 In ΩProcF we have (1, (U ∪ V )×) = (1, U×) ∧ (1, V ×).

PROOF. First,

(1, U×) ∧ (1, α×)≤ ((α, ∅×) ∨ (1, (U ∪ {α})×)) ∧ (1, {α}×)

= (1, (U ∪ {α})×) .

The full result can now be deduced by induction on V .

We can simplify the presentation by defining a partial order on Act∗ ×FAct :

Definition 5.10 If (s, U×) and (t, V ×) are elements of Act∗ × FAct , define
(s, U×) ≤ (t, V ×) if either s = t and U ⊇ V , or t is a prefix of s (i.e., s = t ·u
for some u) and V = ∅.

Now we have an order on F(Act∗ × FAct), namely the upper order vU (cf.
end of §3): if A and B are finite subsets of Act∗ × FAct , then A vU B if
and only if for every (t, V ×) ∈ B there is some (s, U×) ∈ A with (s, U×) ≤
(t, V ×). We recall that the free meet semilattice over Act∗ × FAct qua poset
is F(Act∗ ×FAct)/ vU , with meet calculated as ∪.
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Lemma 5.11

ΩProcF
∼= SL 〈 F(Act∗ ×FAct)/ vU (qua poset) |

A ∪ {(s, U×)} ≤ (A ∪ {(s ·α, ∅×)}) ∨ (A ∪ {(s, (U ∪ {α})×)})
A ≤ A ∪ {(1, ∅×)}
A ∪ {(α, ∅×), (1, {α}×)} ≤ 0 〉

PROOF.

ΩProcF = Fr 〈Act∗ ×FAct(qua poset) |
(s, U×) ≤ (s ·α, ∅×) ∨ (s, (U ∪ {α})×)

>≤ (1, ∅×)

(α, ∅×) ∧ (1, {α}×) ≤ 0 〉
∼= Fr 〈F(Act∗ ×FAct)/ vU (qua ∧-semilattice) |

A ∪ {(s, U×)} ≤ (A ∪ {(s ·α, ∅×)}) ∨ (A ∪ {(s, (U ∪ {α})×)})
A ≤ A ∪ {(1, ∅×)}
A ∪ {(α, ∅×), (1, {α}×)} ≤ 0 〉

This presentation is now in the form of a site (with a meet semilattice of
generators and meet stability in the relations), and the result follows from
Johnstone’s coverage theorem in the form proved in [2].

Definition 5.12 Let A be a finite subset of Act∗ ×FAct .

1. The head refusal of A is defined as

hr(A) =
⋃{U | (1, U×) ∈ A} .

2. A is inconsistent if there is some (α · s, U×) ∈ A with α ∈ hr(A).

There are some constructive subtleties here connected with finiteness; see [17]
for a discussion. For instance, to see that hr(A) is finite one should check that
{U | (1, U×) ∈ A} is finite. This follows because emptiness of the sequence s
in (s, U×) is decidable.

Lemma 5.13 If Act has decidable equality, then inconsistency is decidable.

PROOF. Its negation is ∀(α · s, U×) ∈ A . α /∈ hr(A), and α /∈ hr(A) is
equivalent to ∀β ∈ hr(A) . β 6= α.

Lemma 5.14 Let A,B be finite subsets of Act∗×FAct, and suppose A vU B.
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1. hr(A) ⊇ hr(B).
2. If B is inconsistent then so is A.

PROOF. 1. Suppose α ∈ V with (1, V ×) ∈ B, and suppose (1, V ×) ≥
(s, U×) ∈ A. We have V 6= ∅ (because α ∈ V ), so we deduce s = 1 and
V ⊆ U , so α ∈ U ⊆ hr(A).

2. Suppose (α·t, V ×) ∈ B with α ∈ hr(B), and suppose (α·t, V ×) ≥ (s, U×) ∈
A. Then α · t is a prefix of s, and by part (1) α ∈ hr(A), so it follows that A
is inconsistent.

Lemma 5.15 i : ProcF → L̂F is semiopen, and ↓; i−1; PLi;t = Id
L̂F

.

PROOF. We define a sup-lattice homomorphism ∃i : ΩProcF → ΩL̂F by

∃iA =





0 if A is inconsistent,
∧

A ∧ (1, hr(A)×) otherwise.

It follows from Lemma 5.14 that the definition respects vU . It is fairly immedi-
ate that it respects the second and third relations, but the first is substantially
harder. Given A, s, U and α, let us write

A1 = A ∪ {(s, U×)} ,

A2 = A ∪ {(s ·α, ∅×)} ,

A3 = A ∪ {(s, (U ∪ {α})×)} .

We then need to prove ∃iA1 ≤ ∃iA2 ∨ ∃iA3. Note that this is trivial whenever
A1 is inconsistent.

First, we consider the case s 6= 1. If either A2 or A3 is inconsistent then so is
A1. If all three are consistent then

∃iA1 = ∃iA ∧ (s, U×)

≤∃iA ∧ ((s ·α, ∅×) ∨ (s, (U ∪ {α})×))

= ∃iA2 ∨ ∃iA3 .

Now we turn to the case s = 1. If A2 is inconsistent then either A is, and
hence also is A1, or α ∈ hr(A). In that case,
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∃iA1 =
∧

A ∧ (1, (hr(A) ∪ U)×)

=
∧

A ∧ (1, (hr(A) ∪ U ∪ {α})×)

= ∃iA3 .

If A3 is inconsistent then either A1 is or we have some (α · t, V ×) ∈ A. In that
case ∧

A ≤ (α · t, V ×) ≤ (α, ∅×) ,

so

∃iA1 =
∧

A ∧ (1, (hr(A) ∪ U)×) ≤ ∧
A ∧ (α, ∅×) ∧ (1, hr(A)×) = ∃iA2 .

If s = 1 and all three are consistent, then

∃iA1 =
∧

A ∧ (1, (hr(A) ∪ U)×)

≤∧
A ∧ (1, hr(A)×) ∧ ((α, ∅×) ∨ (1, (hr(A) ∪ U ∪ {α})×))

= ∃iA2 ∨ ∃iA3 .

To show that i is semiopen, we must check that ∃i is left adjoint to Ωi. Using
Lemma 5.9, ∃i; Ωi = IdΩProcF

. To show Ωi;∃i ≤ Id
ΩL̂F

, it suffices to check on
finite meets of generators and follows from the fact that ∃iA ≤ ∧

A. Finally,
for ↓; i−1; PLi;t = Id

L̂F
we must check (looking at functions between frames)

that Ωi;∃i acts as the identity function on generators (s, U×) of ΩL̂F, and this
is clear.

Lemma 5.16 ProcF is a (QF, LF)-system, with i = KProcF
.

PROOF. For γ ∈ Act and A a finite subset of Act∗ ×FAct , we write

γ ◦ A = {(γ · s, U×) | (s, U×) ∈ A} .

Then the γ-action on ΩProcF is defined by

γ ·A =





0 if A is inconsistent,
∧

γ ◦ A ∧ (γ, hr(A)×) otherwise.

Then, much as in Lemma 5.15, one can show that this respects the sup-
lattice defining relations of Lemma 5.11, and thus ProcF is an S-locale. Clearly
(1, {α}×) is the boolean complement of (α, ∅×), and so ProcF is an RS-locale
and thus (by Lemma 5.4) a (QF, LF)-system in a canonical way. The fact that
i = KProcF

, as defined in Lemma 5.4, follows from Lemma 5.9.
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We have now finished the constructive third completeness argument for the
failures semantics. If (as assumed throughout this section) Act has decidable
equality, then we have:

Theorem 5.17 (QF, LF) is third complete with respect to standard (QF, LF)-
systems.

PROOF. For any RS-locale P , the map K : P → L̂F induced by Lemma 5.4
factors via ProcF. This includes the case of Sys , taken here to be the final
standard (QF, LF)-system (which is just the tree locale TrRS because the cat-
egory of standard (QF, LF)-systems is isomorphic to RS-Loc). We can now
apply the argument of Theorem 4.26 to see that the function Π : LF → ΩSys
is 1-1.

Of course, it follows that (QF, LF) is also third complete according to Defini-
tion 4.24, i.e., with respect to all the (QF, LF)-systems.

6 Conclusions

The methods of [2] appeared inescapably classical, but by topologizing (locali-
cally) we have arrived at constructive techniques, valid in toposes, for express-
ing and proving the completeness results in a way that preserves the intuitive
understanding of the classical proofs. The notions of transition systems as
models, of sup-lattice duals as semantic domains, and of master transition
systems as sup-lattice bases of those domains, all survive the constructiviza-
tion once it is accepted that their topologies cannot be ignored.

The treatment includes a development of algebras for the lower powerlocale
monad as localic analogues of sup-lattices and quantale modules.

At the same time, more recent ideas, including tropological systems and the
state axioms, have been used in order to bring unity to a diverse range of
apparently ad hoc features such as the “pointlikeness” conditions.

The present paper has studied in detail the third completeness of the failures
semantics, and has proposed a general approach that can be expected to apply
to third completeness of other semantics.

A weakness of our present 3rd completeness proof is that it appears to require
the set Act of actions to have decidable equality. We do not know to what
extent this is an essential limitation.
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