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Abstract

Results of Bunge and Funk and of Johnstone, providing constructively sound descriptions
of the global points of the lower and upper powerlocales, are extended here to describe the
generalized points and proved in a way that displays in a symmetric fashion two complemen-
tary treatments of frames: as suplattices and as preframes. We then also describe the points
of the Vietoris powerlocale.

In each of two special cases, an exponential $" ($ being the Sierpinsky locale) is shown to
be homeomorphic to a powerlocale: to the lower powerlocale when I} is discrete, and to the
upper powerlocale when I} is compact regular.

1 Introduction

The aim of this paper is to investigate the points of the lower, upper and Vietoris powerlocales
PrD, Py D and VD, for a locale D. (We shall use the term “point” in a generalized sense: a point
of a locale D is a map targeted on D. A point in the narrower sense, a map from 1 to D, we shall
call a global point.)

The paper falls into two somewhat separate parts. The first describes the points of the three
powerlocales of D in complete generality, as sublocales, and the second describes the points in two
special cases — of Pr D when D is discrete and of Py D when D is compact regular — by showing
a homeomorphism with $~.

Let us first briefly summarize our basic language.
Definition 1.1

1. A suplattice (Joyal and Tierney [10]) is a complele join semilaltice. A homomorphism
between suplattices 1s a function that preserves all joins.

2. A preframe (Banaschewski [2]; but see mainly Johnstone and Vickers [9]) is a directed
complete partial order (dcpo) with all finite meets, such that binary meet distribules over
directed jorn. A homomorphism between preframes is a function that preserves directed joins
and finite meets. We shall use the notation ”\/T” to indicate that a join is directed.

3. A frame is a complete laltice in which binary meet distributes over arbilrary joins. (The
main reference is Johnstone [5], but we shall largely follow the notation of Vickers [13] and



m particular we shall make heavy use of the technique of presenting frames by generators
and relations.) A homomorphism between frames is a function that preserves arbilrary joins
and finite meets — so it 1s both a suplattice homomorphism and a preframe homomorphism.

4. A locale D is equipped with a frame QD. A map (or continuous map) between locales
(f:D — E)is a frame homomorphism Qf : QE — QD. A point of D is a map targeted on
D; the source of the map s the stage of definition of the point, and the point is global iff its
stage of definition is the terminal locale 1 (which is defined by Q1 = Q = pl, the subobject
classifier), so a global point of D is a frame homomorphism from QD to . An open of D is
an element of QD. These are equivalent to maps from D to the Sierpinsky locale $, defined
by Q% = free frame on one generator.

5. A sublocale of D is a reqular subobject. Various ways of describing sublocales are discussed
in the standard texts; we shall frequently view them as sets of extra relations imposed on Q2D
as constraints narrowing the range of points. If E 1s a sublocale of D, given by reqular monic
i:F — D, and a and b are opens of D, then we shall write “a < b(mod E)” to mean that
Qi(a) < Qi(b).

6. We shall normally identify an open a (element of QD )} with ils corresponding open sublocale
(often writlen u(a)), which is presenied by the extra relation true < a. We have b <
e(mod a) iff b Aa < c. For a general sublocale E, we have thalt a < b(mod E) iff, in the
lattice of sublocales, a N E < b.

7. We shall write D — a for the corresponding closed sublocale, often wrilten c¢(a), which is
presented by a < false. We have b < ¢(mod D —a) iff b < ¢V a.

8. Some miscellaneous notation: We write ! : D — 1 for the unique locale map, so that Q! :
Q — QD 1is the unique frame homomorphism. If f : D — E is a locale map, then we write
V¢ for the right adjoint of Qf and 3¢ for the left adjoint (if it exists). Note that if I; ewists,
then it 1s necessarily a suplattice homomorphism. Vi always exists, and preserves all meets,
but need not preserve directed joins. When it does then it is a preframe homomorphism.

Definition 1.2 Let D be a locale. The lower powerlocale, Py D is defined by:
QPLD = Fr< $ala € QD) | & preserves all joins >
In other words, QPrD 1is the free frame over QD qua suplattice.
The upper powerlocale, Py D, s defined by:
QPy D = Fr<UOa(a € QD) | O preserves finite meets and directed joins >
In other words, QPyD s the free frame over QD qua preframe.
The Vietoris powerlocale, VD, (Johnstone [7]) is defined by:

QVD = Fr< $a,0ala € QD) | & preserves all joins,
O preserves finitte meets and directed joins
Oa A Qb < $(and)
O(aVvb) <OaV ob >

The lower and upper powerlocales are known in computer science as the localic forms of —
respectively — the Hoare and Smyth powerdomains. The Vietoris powerlocale V' D was introduced
and comprehensively treated in Johnstone [7], and it corresponds to the convex, or Plotkin pow-
erdomain. Notice that we do not follow the widespread computer science practice of “excluding
the empty set” by imposing relations Ofalse < false or true < {true.

In the second part of the paper we show how in some special cases we have results relating the
powerlocale points to opens. If D is discrete, then the exponential $7 exists (of course, so much is



very well-known already, for a discrete locale is locally compact and hence exponentiable) and is
homeomorphic to Py, D. This essentially says that the points of Py D are the opens of D, for the
opens of D are the maps from D to $. Similarly, if D is compact regular then $7 is homeomorphic
to Py D. Meanwhile, we shall continue this Introduction by summarizing the established results
on global points of powerlocales.

1.1 The lower powerlocale Pj,

Turning first to the lower powerlocale Py D, a global point (which by definition is equivalent to
a suplattice homomorphism X from QD to ) is classically equivalent to an open of D, namely
a=\/{b: X(b) = false}. Then X(b) = true <= b £ a. This sets up the bijection. A large point
X (i.e., lots of b’s with X(b) = true) corresponds to a small a, so the bijection is order-reversing
and to counter this it is usual to identify the point with the closed sublocale D — a. Then

X(b) = true <= (D —a)Ab# @ (in the lattice of sublocales)
<= b # false(mod D — a)

Unfortunately, this simple argument relies heavily on classical principles and is constructively
(i.e., in a general topos) unsound. Bunge and Funk [3] identified the global points constructively
with the weakly closed sublocales with open domain. To motivate this result, let us quickly point
out some constructive flaws in the classical reasoning.

First, given a suplattice homomorphism X : QD — , consider the relations b < Q!o X (b)(b €
QD). Classically, each of these is either trivial (when X (b) = true) or presents the closed sublocale
D — b (when X (b) = false). Either way, it presents a closed sublocale, so taking all the relations
together gives a meet of the closed sublocales, which is again closed — it’s D—\/{b : X (b) = false}.

Constructively, however, we may have other values for X (b), giving non-closed sublocales. Tt
therefore seems that the suplattice homomorphism X in general contain more information than
is naturally expressed through closed sublocales: so we generalize to weakly closed sublocales,
presented by relations b < Q!(p)(p € Q).

Next, from a closed sublocale D — a, the function X : QD — € corresponds to a subset of
QD, namely {b : b £ a}. But constructively, this subset does not in general give an X that is a
suplattice homomorphism — because from \/; b; € a we can’t deduce that b; £ a for some . The
problem here is with the non-classical negation. Since b £ a iff b # false(mod D — a), one can
address the problem through a more careful analysis of “non-emptiness” of opens.

Definition 1.3 A sublocale E of a locale D is weakly closed iff QF can be presented over QD
by a set of relations of the form a < Q(p)(e € QD,p € Q).

Classically, the relations described in Definition 1.3 are either a < true, which can be omitted,
or a < false, which presents the closed sublocale D —a. It follows that classically weak closedness
1s equivalent to closedness.

This is not actually the definition to which Bunge and Funk work. Instead, following John-
stone [8], they make a definition out of what appears below as Proposition 1.5 (2).

Definition 1.4 A continuous map f : D — E is strongly dense (Johnstone [8]) iff [ is dense
under pullback along every closed sublocale of 1.
Proposition 1.5

1. A continuous map f: D — E 1s strongly dense iff
Vp € QVa € QE.(Qf(a) < Ql(p) = a < Ql(p))



2. A sublocale E of a locale D is weakly closed iff every strongly dense inclusion £ — E', E'
also a sublocale of D, 1s a homeomorphism.

Proof

1. The closed sublocales of 1 are those of the form 1 — p,p € £, and the pullbacks referred to
in the definition are the sublocales D — Q!(p) and E — Q!(p) of D and E. The pulled back
map is dense iff Va € QF.(Qf(a) < Ql(p) = a < Ql(p)).

2. =: Let F — FE’ — D be sublocale inclusions, with £ — P’ strongly dense. By strong
density, every presenting relation for 2F also holds in QE’, and it follows that £ — E’ is a
homeomorphism.

«<: Let E', a sublocale of D, have QFE’ presented over 2D by all relations of the form
a < QY(p) where a € QD p € Q and a < Q!(p)(mod E). Then F — FE’ is strongly dense and
hence a homeomorphism, so QF can be presented by those used for QFE’, which are all of
the required form.

We now address the other point, about “non-emptiness” of opens.

Definition 1.6 (Johnstone [6]) Let D be a locale.

1. An open a € QD is positive iff whenever a < \/ S(S C QD) then S is inhabiled.

2. D s open tff every open a € QD is a join of positive opens.

Classically, S C QD is either empty or inhabited, and it follows that a is positive iff a # false.
If @ = false then a = \/ @, and otherwise a = \/{a} is a join of positives. Hence classically every
locale 1s open.

Proposition 1.7 A locale D is open iff Q! : Q — QD has a left adjoint 3,. Moreover, if these
hold we then have for each a € Q2D,Fva is the truth value of “a ts positive”.

Proof Johnstone [6]. O

(Following Joyal and Tierney [10], Proposition 1.7 is normally taken as the definition of open-
ness. Then Definition 1.6 (2) appears in Johnstone [6] as a Proposition. Johnstone also proves
the useful result that if D is open, then for any S C QD we have \/ S = \/{a € S : a positive}.)

If D’ is a sublocale of D, then we say that D’ has open domain iff D’ is an open locale. It is
important to realize that this is quite different from saying that D’ is an open sublocale of D.

Theorem 1.8 (Bunge and Funk [3])

Let D be a locale. Then there is a bijection between the global points of Pr, D and weakly closed
sublocales of D with open domain.

Proof Bunge and Funk prove this in the course of a more general result describing arbitrary
weakly closed sublocales. A simple direct proof can be derived from our proof of 2.3. (I



1.2 The upper powerlocale Py

The global points of Py D are, immediately from the definition, equivalent to preframe homomor-
phisms from 2D to €2, or to Scott open filters in £2D. The Hofmann-Mislove [4] theorem then
shows an order reversing bijection between these and the compact saturated sets of global points
of D by which a Scott open filter F' corresponds to [{extent(b) : b € F'}. (A saturated subset is
one that 1s upper closed in the specialization preorder, and that is equivalent — classically — to
being an intersection of open subsets.) Actually, Hofmann and Mislove assumed spatiality for D,
but their proof is localic and it is not hard to see (Vickers [13]) that it holds for arbitrary locales
— indeed, it can be naturally used in proving a number of standard spatiality results.

The Hofmann-Mislove result relies on the axiom of choice (or, more precisely, the prime ideal
theorem) and is constructively unsound. Johnstone [7] proved a different result, showing an order
reversing bijection between global points of Py D and compact fitted sublocales of D. (Fitted is
the localic analogue of saturated: a sublocale is fitted iff 1t is a meet of opens, in other words it
can be presented by a set of relations of the form true < b.)

Recall that we are writing ¥y for the right adjoint of Q!, the unique frame homomorphism from
the initial frame Q. Clearly Vi(a) = true iff ¢« = true, so Vi(a) is the truth value [a = true].
It follows that the locale D is compact iff V, preserves directed joins, and hence is a preframe
homomorphism.

Note that a sublocale is fitted iff it can be presented by a set of relations of the form Q!(p) <
ala € QD p € Q). For Q!(p) = \/{true : p}, so the relation Q!(p) < a is equivalent to the set of
relations {true < a : p}.

Theorem 1.9 (Johnstone [7])

Let D be a locale. Then there is a bijection between global points of Py D and compact fitted
sublocales of D.

Proof Johnstone’s proof uses ordinal-indexed chains, but the result is constructively sound. A
rather simpler proof based on the preframe methods of Johnstone and Vickers [9] is easily derived
from our proof of Theorem 3.3. (I

1.3 The Vietoris powerlocale V

For the Vietoris powerlocale V' D, there are classical results identifying the points with subspaces of
D only in special cases — for instance (Johnstone [7]) if D is stably locally compact. Johnstone [7]
identified them for a general locale with the compact, semifitted sublocales of D. (A sublocale is
semifitied iff it is the meet of a fitted sublocale and a closed sublocale.) Johnstone himself pointed
out that the result is constructively unsound and that more careful consideration had to be given
to the openness of locales (as in Joyal and Tierney [10]). In fact the problems are essentially those
that arise with the lower powerlocale, and we shall prove that there is a bijection between points
of VD and weakly semifitied (meet of fitted with weakly closed) sublocales with compact open
domain.

1.4 Coverage Theorems

Throughout the paper we shall make heavy use of two “coverage theorems”, so called because
they arise out of considerations of Johnstone’s [5] original coverage theorem. This states that if a
meet semilattice S is equipped with a coverage C, a relation between pS and S satisfying certain
conditions, then the so-called C'-ideals of S form a frame with a certain universal property in the
category of frames that can be conveniently described as a frame presentation by generators and
relations.



A more refined analysis in Abramsky and Vickers [1] — which we refer to as the suplattice
coverage theorem — shows that the suplattice of C-ideals also has a universal property in the
category of suplattices that can be conveniently described as a suplattice presentation. Hence it
shows how to translate frame presentations into suplattice presentations. The preframe coverage
theorem (Johnstone and Vickers [9]) is an analogous result for getting preframe presentations.

The importance of these results lies in the fact that maps from D to Pr E or Py E are equivalent
to suplattice or preframe homomorphisms from QF to QD.

Theorem 1.10 The Suplattice Coverage Theorem.

Let S be a A-semilallice, and let C' (“covers”) be a relation from pS to S such that if X covers
u then (the “coverage condilion”):

o ifr e X thenx <u

o ifacSthen{eANa:ze X} coversuAa

Then
Fr< S(qua A-semilattice) |u <\ X (X covers u) >
= SupLat < S(qua poset) | u < \/ X (X covers u) >

(“Qua A-semilatiice” means that the injection of generalors, a function from S to the frame,
1s to be a N-semilattice homomorphism. This can be achieved by adding extra relations to the
presentation. “Qua posel” is similar.)

Proof The proofis given in Abramsky and Vickers [1] and what we must note here is that it is
constructive. The first step to show that

SupLat < S(qua poset) | u <V X (X covers u) >

exists. This can be done by explicit construction as Johnstone’s [5] C'— IdI(S), or by the standard
methods of universal algebra that first construct the free suplattice over S (which is pS by Joyal
and Tierney [10]) and then factor out an appropriate suplattice congruence. Both methods are
constructive. Once we have this suplattice, it 1s simple and constructive to use its universal
properties to describe its frame structure and to prove that it is Fr < S(qua A-semilattice) | u <

X (X covers u) >. O
VX ( )

Theorem 1.11 The Preframe Coverage Theorem.

Let S be a V-semilatlice, and let C (“covers”) be a relation from pFS to FS such that if X
covers (7 then:

e ifFEX then F <y G

o X is inhabited

o if F'1, Fy € X then there is some F € X with F; <y F(i=1,2)
o ifacSithen {{aVva:zeF}:FeX} covers {yVa:yeG}

(Here FS is the finite powerset of S, and if F,G € FS then we write F <y G {o mean Yy €
GIze Fa<y.)

Then
Fr< S(qua V-semilattice) | NG < \/}EX ANF (X covers G) >

= PreFr < S(qua poset) | NG < \/}EX ANF (X covers G) >

Note that the middle two coverage conditions ensure that the joins ”\/T” are directed.

Proof The proof is given in Johnstone and Vickers [9], and again we must note its constructive



validity. Once the preframe presented in the statement is known to exist, it 1s fairly easy to
show — much as in the suplattice case — that i1t is a frame and that it can be presented as
stated. However, the existence of the preframe is by no means easy. We do not have a concrete
description analogous to Johnstone’s C'— Idl(.S), and the standard techniques of universal algebra
cannot be applied straightforwardly. In fact, the main result of “Preframe Presentations Present”
(its Proposition 3.2) is that any presentation of a preframe by generators and relations does indeed
present a preframe. The proof as given is constructive; it also relies on a constructively valid result
of Banaschewski [2]. O

Though the frame presentations described in these two theorems look special, in fact any frame
presentation can be manipulated into equivalent ones in these two forms. Hence, the theorems
provide general techniques for converting frame presentations into suplattice presentations and
preframe presentations, and hence for defining suplattice homomorphisms and preframe homo-
morphisms out of frames. Moreover, though we shan’t use this here, it can be used to show
how the powerlocales can be constructed by geometric (i.e., stable under inverse image parts of
geometric morphisms) manipulation of frame presentations.

2 The lower powerlocale

We are interested in the general points of Py D, at stage of definition # — z.e., the maps from E
to PrD. By analogy with functions from X to @Y, which are equivalent to subsets of X x Y, we
might hope for such points to be equivalent to certain sublocales D’ of ' x D, and indeed this is
the case. However, we also need D’ to be “weakly closed with open domain” over E and so we
must first define these notions.

Definition 2.1 Let f : D — E be a map of locales.

1. D is open over E iff f is an open map. In other words (Joyal and Tierney [10]), Qf has a
left adjoint 3¢ that satesfies the Frobenius identity

Ar(a AQf(b)) =Franb

2. A sublocale D' of D is weakly closed (in D) over E iff its frame can be presented over 2D
by relations of the form a < Qf(b)(a € 2D, b€ QF). We also say that D’ has open domain
over F if it is open over E.

3. The weak closure of D' in D over E is the sublocale of D presented by all the relations
a < Qf(b)(a €D, be QF) that hold modulo D'.

Lemma 2.2 Let D and E be locales. We writep : B x D — FE and q : - x D — D for the
projections. Let i : D' — E x D be a sublocale that is open over E, and let X be the suplatiice
homomorphism Q(i;q); Jip : QD — QFE. Then the weak closure of D' in E X D over E can be
equivalently be presented by the relations true ® b < X(b) @ true (b € QD).

Proof Because the elements ¢ ® b form a base of opens of E x D, the weak closure is presented
by the relations ¢ ® b < a @ true that hold modulo D’. But

c®b < a@true(mod D) <= Q(i;p)(c) A QG Qb)) < Q4 p)a) <= Fip(Q3p)(e) A
i 4)(8)) = ¢ A 3oy 0 Qi )(B) = ¢ A X (D) < a
The relations true®b < X(b) @ true are the special case when ¢ = true and a = X (b). Now if

eAX(b) < a, then from true®b < X(b)®@true we deduce that c®b < (e AX (b)) @true < a®true.
(I



Theorem 2.3 Leit D and E be locales. Then there is an order isomorphism, natural in E,
between the points of Pr D at stage E and the sublocales of £ x D that, over E, are weakly closed
with open domain.

Proof Asin 2.2, we write p and ¢ for the projections from F x D.

Ifi: D' — ExDis, over E, a weakly closed sublocale with open domain (indeed, any sublocale
with open domain over F), then the function X as in 2.2 is a point of Py, D at stage F. D’ is
its own weak closure in £ x D over £, and hence by Lemma 2.2 is presented by the relations
true® b < X(b) @ true.

On the other hand, if we have a point of Pr D, given by a suplattice homomorphism X :
QD — QF, then we can present a sublocale ¢ : D' — FE x D, weakly closed over F, by the
relations true® b < X (b) @ true. To show that D’ has open domain over F, we define a suplattice
homomorphism 3;,, : QD' — QF by 3, 0 Qi(a ®b) = a A X(b). If this is possible, then 3, ., is the
left adjoint to £2(i; p) with the Frobenius condition holding. For

Qi(a ®b) < Qi(a A X(b) @ true) by definition of D

= Q(i;p) o3y o0 Qi(a & b)

J;.p 0 Qi(a @ true) = a A X(true) < a

For the Frobenius identity, we have

T (QEp) ) AQi(c@b)) =TFipoQi((anc)@b)=aAcAX(b)=aATipoQi(c®b)
and this suffices because the elements Qi(e ® b) generate QD' as a suplattice. We also get that
X = Q(4¢); Jip, the X described in Lemma 2.2.

To show that 3;,, is well-defined, we use the suplattice coverage theorem.

QD' =TFr < QF x QD (qua A-semilattice) (we shall write ¢ ® b for the pair (a, b)) |

® is bilinear with respect to \/,
a@b<(aAX®)) @b (a€QE LY €QD) >
=~ SupLat < QF x QD (qua poset) | same relations >  (by Theorem 1.10)

Therefore, to check that 3;,, is well-defined, we just need to check that the function from
QF x QD to QF given by a ® b — a A X (b) respects the relations. This is obvious.

We have now established the bijection. Tt is clear that it preserves order — if X C X' (i.e.,
X(b) < X'(b) for all b) then the relations true ® b < X’(b) ® true are less constraining than
those for X, and so present a larger sublocale. As for naturality in F, suppose f : E' — FE is
a map of locales. This acts on points by taking X : QD — QF to X;Qf, and on sublocales by
pullback along f x idp. These match, because the pullback of the sublocale presented by relations
true ® b < X(b) @ true is presented by relations true® b < Q2f o X(b) ® true. O

It 1s worth mentioning that some of this manipulation of generators and relations can be
expressed more categorically. Lemma 2.2 says that the weak closure of D’ is constructed by a
comma square. For the openness of i;p tells us that Pr(7;p) has a right adjoint (i;p)~!: PLE —
Pr D' (see Vickers [12]), and then X corresponds to the map

Li(Gp) Y Pr(isq) : BE— PLE — PpD' — PrD (] E — PpE is given by Q | ({a) = a). If we
construct the comma square

1D D
!
|
K PrD




then D" is the sublocale of E x D presented by the relations true @ b < X(b) ® true.

Theorem 2.3 shows in some detail that in a comma square like the one above the left hand
side is open. However, once one knows this in the generic case where ¥ = P;r D and the bottom
map is the identity — and this is shown in Vickers [12] — then the more general case follows from
the fact that pullbacks of open maps are open: for the general comma square is a pullback of the
generic one.

3 The upper powerlocale
Again, we must first relativize some of our notions.
Definition 3.1 Let f : D — E be a map of locales.

1. D is compact over E iff f is a proper map. In other words (Vermeulen [11]), Qf has a right
adjownt ¥y that preserves directed joins and satisfies the Frobenius identity

Vi(aVQf(b)) =VaVvh

2. A sublocale D' of D isfitted (in D) over E iff ils frame can be presented over QD by relations
of the form Qf(b) < ala € QDb € QF).

We also say that D' has compact domain over E if it is compact over E.

3. If D' is a sublocale of D, then the fitted hull of D' in D over E is the sublocale of D presented
by all the relations Qf(b) < ala € QD,b € QF ) that hold modulo D'. Il is the least sublocale
of D, fitted over E, that contains D'.

Lemma 3.2 Let D and E be locales. We write p : B x D — FE and q : - x D — D for the
projections. Let 1: D' — E x D be a sublocale that is compact over E, and let X be the preframe
homomorphism Q(%;q); ¥ : QD — QEFE. Then the fitted hull of D' in E x D over E is presented
by the relations X (b) @ true < true ® b(b € QD).

Proof If u € QF @ QD, then u = \/T{/\j(cj?bj) : \;(¢;®b;) < ub. (We follow Johnstone
and Vickers [9] in writing ¢8b for ¢ @ true V true ® b — these elements generate QF @ QD as a
preframe. The meets mentioned are finite, of course.) Now

a ® true < u(mod D) < Q(i;p)(a) < Qi(u)

= a < Vipo Qi(u) = VA Vi (i 0)(e) v Qi 0)(8)) : Aegwti) < uh = VHA (G v
Vip 0 Qi q)(b;)) : A\j(e79by) <t = VA (e v X(5)) : A\j(eb;) < u)

By considering the meet /\j(cj?bj) where j ranges over a singleton, ¢; = false and b; = b,
we see that X(b) ® true < true ® b(mod D') and hence that relation holds modulo the fitted

hull. On the other hand, if a @ true < wu(mod D'), then it is deducible from the relations
X(b) ® true < true ® b:

a® true < \/T{/\j(cj VX (b)) @ true: A\ (c;b;) < u}
< VA (e72b5) + \j (b)) < up < u 0
Theorem 3.3 Let D and E be locales. Then there ts an order antitsomorphism, natural in E,

between the points of Py D at stage E and the sublocales of E x D that, over E, are fitted with
compact domain.

Proof We write p: £ x D — F and ¢ : E x D — D for the projections.



Ifi: D' — E x Dis, over I, a fitted sublocale with compact domain (indeed, any sublocale
with compact domain over E), then the function

X =Q(4¢);Yip : QD = QE x D) — QD — QF
i1s a preframe homomorphism, and hence a point of Py D at stage F. By fittedness over F, and

using Lemma 3.2, I’ is presented by the relations X () ® true < true @ b.

On the other hand, if we have a point of Py D, given by a preframe homomorphism X :
QD — QF, then we can present a sublocale 7 : D' — E x D, fitted over F, by the relations
X(b) @ true < true ® b. To show that D’ has compact domain over E, we define a preframe
homomorphism V;., : QD' — QF by V., 0 Qi(a2b) = a VvV X (b). If this is possible, then V., is right
adjoint to §2(¢; p) with the Frobenius condition holding:

Q(i;p) o Viyp 0 Qi(e9b) = Q4 p)(c vV X (b)) = Qi(epfalse v X (b)pfalse) < Qi(e¢gb) by presen-
tation of 1)’

Vip 0 Q¢ p)(c) = V4 0 Qi(cpfalse) = ¢ vV X (false) > ¢

Vi (& p)(a) V Qi(eRb)) = Vip o Qi(aV eRb) = aV eV X(b) = aVV;y, o Qi(cpb)

To show that V;,, is well-defined, we use the preframe coverage theorem.

QD' =TFr < QF x QD (qua V-semilattice) (we shall write a’®b for the pair (a, b)) |

% 1s bilinear with respect to A and \/T,
(aVX(B))eb<agb (a€QFE VY <beQD)>
= PreFr < QF x QD(qua poset) | same relations >  (by Theorem 1.11)

Therefore, to check that V;,, is well-defined, we just need to check that the function from
QF x QD to QF given by @b — a V X (b) respects the relations. This is obvious.

We have now established the bijection. Tt is clear that it reverses order — if X C X’ (i.e.,
X(b) < X'(b) for all b) then the relations X'(b) @ true < true ® b are more constraining than

those for X, and so present a smaller sublocale. As for naturality in £, the proof is similar to 2.3.
O

4 The Vietoris powerlocale

We write |}: VD — PrD and f): VD — PyD for the obvious maps (2 | ($a) = $a and
Q1 (0a) =0a). (U, : VD — PrD x PyD is an inclusion of locales.

Definition 4.1

1. A sublocale D' of D is weakly semifitted iff it is the meet of a fitted sublocale and a weakly
closed sublocale. (Johnstone [7] defines a sublocale to be semifitted tff il is the meel of a fitled
sublocale and a closed sublocale.) If f : D — FE is a map, then D' is weakly semifitied over E
iff it is the meet of a fitted sublocale and a weakly closed sublocale over E: in other words, it

can be presented by relations of the form b < Qf(a) and Qf(a’) <V (a,a’ € QF bV € QD).

2. If f: D — FE is open, then we define L : E — PrD by QL({$a) = Jra. (This is the left Kan
extenston of |: D — PrD along f, and when E = 1 it is the greatest point of PrD, right
adjoint to ! : PpD — 1.) In terms of Vickers [12], this can also be described as |; f=1 where
F~1 is the right adjoint of Prf that exists by openness of f.

3. If f: D — FE is proper, then we define R: F — PyD by QR(Oa) = Vsa. (This is the right
Kan extenston of T: D — Py D along f, and when E = 1 it is the least point of PyD, left
adjoint to ! : Py D — 1.) Again in terms of Vickers [12], R =1; f=1 where this time f~1 is
the left adjoint to Py f.
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The following result is proved when F = 1 by Johnstone [7] in the classical case, referring to
Johnstone [6] for the constructive version (although the result is not stated explicitly there, it is
certainly very easy using the techniques presented).

Lemma 4.2 Let f: D — E be open and proper. Then < L, R >: F — PrD x Py D factors via
amap = E—= VD,

Proof QZE must map {a to 3ya,0a to ¥ya, so it remains to check that this respects the mixed
relations:

VianTpb=35(Qf oVpaAb) <Ff(anb)
Vi(aVb) <Ve(aVQfodsb)=VYraV3h O

Theorem 4.3 Let D and E be locales. Then there is a bijective correspondence, natural in E,
between points of VD at stage E and sublocales of £ x D that, over F, are weakly semifitted with
compact, open domain.

Proof Though more intricate, the proof is structured along similar lines to those of Theorems 2.3
and 3.3 for the lower and upper sublocales.

Suppose ¢ : D' — E x D is, over I/, a weakly semifitted sublocale of £ x D with compact, open
domain. Then Lemma 4.2 gives us a point 2 : £ — VD' so X = Z;V(i;q) : F — VD is a point
of VD at stage E.

We now show that D’ is presented by the following relations:

(1) true® b < QX ($b) @ true
(2) QX(Ob) ® true < true® b

We have

QX(Ob) = Q20 QVio QV¢(Ob) = Q=20 QVi(Q(true® b)) = Q=0 QVio Q | ($(true® b)) =
EoQ | oQPLi(O(true® b)) = QL($Qi(true ® b)) = J;i.p 0 Q(4;¢)(b)

It follows from Lemma 2.2 that the relations (1) present the weak closure of D' over E.

Similarly, by Lemma 3.2, the relations (2) present the fitted hull over E, and it follows from weak
semifittedness that together the relations present D’.

We have now shown, much as before, how from a weakly semifitted sublocale with compact,
open domain we can construct a point of VD, and then how we can recover the original sublocale
from it.

Now from a point X : £ — VD, we can present a sublocale 1 : D’ — E x D, weakly semifitted
over I, by the relations (1) and (2). We shall define suplattice and preframe homomorphisms 3;.,
and V;., : QD" — QF such that 3, 0 Qi(c ® b) = ¢ AQX(Ob) and ¥, 0 Qi(e9b) = ¢V QX (D).

If we can do this, then we have 3;, 4 Q(i;p) 4 V;,, with the Frobenius identities — the
calculations are virtually identical to those in Theorems 2.3 and 3.3.

It would follow that D’ is compact and open over E, giving, at stage F, points L and R of
Pr D and Py D', and Z of VD'. Now Z;V(i;q); U= Z; §; Pr(é;q) = L; Pr(i; ¢) = X; U by definition
of 3;, : for

QL o QPL(4;¢)(Ob) = QL(GQ(4; ) (b)) = Fsp 0 Qi(true ® b) = QX($h)

Similarly Z; V(4; q); = X; 1, and hence, because <|}, 1> makes V' D a sublocale of Pr, D x Py D,
we get that Z;V(i;q) = X and so X is recovered by the construction first described. All that
remains is to justify the definition of 3;,, and ;.

For 3;.,,
QD' =TFr < QF x QD (qua A-semilattice)( writing, as usual, ¢ ® b for (¢, b)) |
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® bilinear with respect to \/
c@b < cAQX(OV)Y@bifb <
eAQX(OV) @b <cAQX(OV)RbAY >
= SupLat < QF x QD (qua poset) | same relations >

Hence we must show that ¢ ® b — ¢ AQX({b) respects the relations. The first two are just as
for the lower powerlocale. For the third,

e AQX(OV) AQX(Ob) = ¢ A QX (DY A Gb) < e A QX (TH) A QX (O(bAY))

Next, for V;,,

QD' =TFr < QF x QD (qua V-semilattice)( writing ¢'2b for (¢, b)) |
% bilinear with respect to A and \/T
eV OQX(OV)eb < ogbif b < b
eVOX(QY)YRb VY < eV OQX(OV)eb >

= Prefr < QF x QD (qua poset ) | same relations >

Just as for 3;,, the first two relations are similar to the upper powerlocale, and the third
corresponds to the other mixed relation in the Vietoris powerlocale. This completes the proof. O

5 Open sublocales of discrete locales

We now turn to two results that seem somewhat perverse in the light of the preceding sections, in
that they identify points of powerlocales as open sublocales. Specifically, let D be a locale, and let
$ be the Sierpinsky locale. If the exponential $” exists, then its global points are the continuous
maps from D to $, i.e., the opens of D. We show that in the special cases where D is discrete or
compact regular, $” (exists and) is homeomorphic to PrD or Py D respectively. (The existence
of $¥ is well-known in these cases, for discrete locales and compact regular locales are locally
compact and hence exponentiable.)

In this section we consider discrete D). For general D, of course, it is absolutely out of the
question to expect the sublocales described in the Bunge-Funk Theorem, the weakly closed sublo-
cales with open domain, to be the same as the open sublocales — for instance, the former are
lower closed under the specialization order, whereas the latter are upper closed. However, this
does not apply to discrete locales, because they are T7. If D is discrete, then a simple argument
shows that the global points of Pr D are equivalent to the opens of D. For a global point of Pr D
is a suplattice homomorphism from Q2D (i.e., pD) to 2. By Joyal and Tierney [10] pD is the free
suplattice over D, so these are equivalent to functions from D to €2, i.e., subsets of D, i.e., opens
of D. We argue more carefully to give a result holding for all points of PrD, not just the global

ones.

Theorem 5.1 Let E and D be locales, with D discrete, and let D' be a sublocale of E x D. Then
the following are equivalent:

1. D' is open in E x D.

2. Over E, D' is weakly closed in E x D with open domain.

Proof Asin Lemma 2.2, we write p and ¢ for the projections from F x D and i for the sublocale
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inclusion of D' in £ x D. If D' is open in £ x D, then ¢ and p are both open maps, and hence
D' is open over E. Hence for both directions of the proof we can take it that D’ has open domain
over . Let X = Q(i;¢) o3;, as in Lemma 2.2.

By Lemma 2.2, the weak closure of D' (in E x D over E) is presented by the relations true @
{z} < X({z}) ® true and from these we quickly deduce that true <\/ ., X({x}) ® {z}, using
the fact that in QD we have true = \/ . {2}. However, the converse also holds, for

brue @ {y} < Vyep X({eh) © ({2} A {y}) < X({5h) © true

It follows that the weak closure of D’ is the open sublocale \/, ., X({z}) @ {«}.

Imediately, if D’ is weakly closed then it is open. Conversely, if D’ is open then it can be
expressed in the form \/ . by @ {z}. Then

X({y}) =3p 0T 0o Qio(true® {y})

=H(Veep be @ {2} Atrue® {y}) = 3,(by @ {y}) = by A QoI {y}

= by since {y} is positive.

Hence 1’ isits own weak closure. O

Note from the case E' = 1 that if, as classically, “weakly closed with open domain” is equivalent
to “closed”, then in any discrete locale all opens are clopen — in other words, the topos we are
working in is Boolean.

Theorem 5.2 Let D be a discrete locale. Then Pr D = §P.

Proof Define a map e : PLD x D — § by the open \/ ., Oz} @ {z}. Thenif f: EF — PLD
corresponds to X : QD — QF, we have (f x Id);e given by the open \/ ., X({r}) ® {x} and
from the proof of Theorem 5.1 this is the corresponding weakly closed sublocale with open domain
(over F). Hence the function Loc(E, P D) — Loc(FE x D,$), [ — (f x Id);e, is a composite of
1somorphisms

Loc(E, Pr D) = { sublocales of F x D as in Theorem 2.3 }
= { open sublocales of E x D}
= Loc(E x D,§) O

6 Open sublocales of compact regular locales

We now prove an analogous result: when ) i1s compact regular, then g7 Py D. Of course, it is
not the case that the open sublocales of D are the same as the compact fitted sublocales; rather,
the result comes by two oddities canceling out. First, for a compact regular locale D the compact
sublocales (all sublocales of D are fitted, because the relation a < b is equivalent to the set of
relations true < bV —ad’ for o' well inside a) are the same as the closed sublocales; and next,
because the specialization order on Py D is reversed (big sublocales are low in the ordering), we
get that the global points of Py D are in order isomorphism with the open sublocales. Again, we
prove the result for generalized points.

Theorem 6.1 Let E and D be locales, with D compact reqular, and let D' be a sublocale of
E x D. Then the following are equivalent:

1. D' is closed in F2 x D.

2. Quver E, D' is fitted in E x D with compact domain.

Proof Asin Lemma 3.2, we write p and ¢ for the projections from E x D and i for the sublocale
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inclusion of D' in F x D. If D' is closed in £ x D, then ¢ and p are both proper maps, and
hence D' is compact over F. Hence for both directions of the proof we can take it that D’ is
compact over E; let X = Q(7;¢);V;p, so that by Lemma 3.2 its fitted hull in F x D over F is
presented by relations (1) X(b) ® true < true ® b. We show that this is closed, and in fact is
presented by the relations (2) X (b) ® ¢ < false (whenever b A ¢ < false). From (1) we have that
X(b)®@e<true® b Ac <falseif b A ¢ < false. Conversely, assume (2). Then by regularity,

X(b) @ true = V' {X (V) @ true : Ie.(bV ¢ = true, b’ A ¢ = false)}

But given such ' and ¢, we have X (V') @ true = X(b') @bV X (V') @ c = X (V') ® b (modulo
(2)) < true® b.

Immediately, we see that if D’ is fitted then it is closed. Conversely, suppose that D’ is closed.
It suffices to show that any relation a ® b < false holding modulo D' also holds modulo the fitted
hull D" (say). a@b=\/"{a®¥ : Je.(bV ¢ = true, ' A ¢ = false)}. Given such b and ¢, we have
a®@true=a®bVa®c<a®cmodulo D' and hence also modulo the fitted hull D”. Hence
a®@lb <a®b Ac(mod D) = false. O

Theorem 6.2 Let D be a compact regular locale. Then PyD =2 $P.

Proof Defineamape: PyDxD — $by the open \/{Ob®c : bAc = false}. Thenif f : £ — PyD
corresponds to X : QD — QF, we have (f x Id); e given by the open \/{X(b) ® ¢ : b A ¢ = false}
and from the proof of Theorem 6.1 this is the complement of the corresponding compact fitted
sublocale (over E). Hence the function Loc(F, PyD) — Loc(E x D,$), f — (f x Id);e, is a
composite of isomorphisms

Loc¢(E, Py D) = { sublocales of E x D as in Theorem 3.3 }°°

= { closed sublocales of E x D}°P

= Loc(E x D,§) O
As a corollary, consider relations in the category of compact regular locales. A relation from X

to Y, a subobject of X x Y in that category, is just a closed sublocale of X x Y. These correspond
(reversing the order) to maps X — PyY and hence to preframe homomorphisms QY — QX.

7 Conclusions

Though the constructive treatment of the global points is more complicated that the classical
treatment — we have had to generalize “closed” to “weakly closed” and restrict at a certain point to
open locales — the complications display a remarkable symmetry that is quite invisible classically
and which leads to proofs of Theorems 2.3 and 3.3 that are virtually identical in structure. On the
one hand we have the lower powerlocale, suplattices, open locales and weakly closed sublocales,
while on the other we have the upper powerlocale, preframes, compact locales and fitted sublocales.

Much of the argument here is amenable to the “synthetic” reasoning of Vickers [12], and it
would be interesting to push this further. I would hope that the manipulations of generators and
relations could thereby be packaged up into a few axioms of the synthetic point-based logic.
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