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Abstra
tOur work is entirely 
onstru
tive; none of the mathemati
s developed uses theex
luded middle or any 
hoi
e axioms. No use is made of a natural numbers obje
t.We get a glimpse of the parallel between the preframe approa
h and the SUP-latti
e approa
h to lo
ale theory by developing the preframe 
overage theorem andthe SUP-latti
e 
overage theorem side by side and as examples of a generalized
overage theorem.Proper lo
ale maps and open lo
ale maps are de�ned and seen to be parallel.We argue that the 
ompa
t regular lo
ales are parallel to the dis
rete lo
ales. It isan examination of this parallel that is the driving for
e behind the thesis.We pro
eed with examples: relational 
omposition in Set 
an be expressed asa statement about dis
rete lo
ales; we then appeal to our parallel and examinerelational 
omposition of 
losed relations of 
ompa
t regular lo
ales. A te
hni
ala
hievement of the thesis is the dis
overy of a preframe formula for this relational
omposition.We use this formula to investigate ordered 
ompa
t regular lo
ales (where theorder is required to be 
losed). We �nd that Banas
hewski and Br�ummer's 
ompa
tregular biframes (Stably 
ontinuous frames [Math. Pro
. Camb. Phil. So
. (1988)104 7-19℄) are equivalent to the 
ompa
t regular posets with 
losed partial order.We also �nd that the ordered Stone lo
ales are equivalent to the 
oherent lo
ales.This is a lo
ali
, and so 
onstru
tive, version of Priestley's duality.Further, using this relational 
omposition, we 
an de�ne the Hausdor� systemsas the proper parallel to Vi
kers' 
ontinuous information systems (Information sys-tems for 
ontinuous posets [Theoreti
al Computer S
ien
e 114 (1993) 201-229℄) The
ategory of 
ontinuous information systems is shown by Vi
kers to be equivalent tothe (
onstru
tively) 
ompletely distributive latti
es; we prove the proper parallelto this result whi
h is that the Hausdor� systems are equivalent to the stably lo-
ally 
ompa
t lo
ales. This last result 
an be viewed as an extension of Priestley'sduality.
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Introdu
tionSay we are given a topologi
al spa
e X and are required to des
ribe the set ofopens of the produ
t spa
e X �X . The obvious answer is to look at the followingsubsets of X �X : U � V = f(u; v)ju 2 U; v 2 V gwhere U; V are arbitary opens of X . We note that the 
olle
tion of all su
h sets i.e.� � fU � V jU; V are open subsets of Xgis 
losed under �nite interse
tions. (Sin
e (U1�V1)\(U2�V2) = (U1\U2)�(V1\V2).)So � forms a basis for a topology. We form the whole topology by taking all unionsof sets of the form U � V , i.e. by taking the least sub(SUP-latti
e) of P (X �X)generated by �. (Re
all that a SUP-latti
e is a poset with arbitary joins, and sothe union operation tells as that P (A) is a SUP-latti
e for any set A.)There is, however, a parallel solution to this problem. Look at the followingsubsets of X �X : UOV � f(u; v)ju 2 U or v 2 V gwhere again U; V are open subsets of X . It is easy to 
he
k that (U1OV1) [(U2OV2) = (U1 [ U2)O(V1 [ V2), and so we 
on
lude that the 
olle
tion
 � fUOV jU; V are open subsets of Xgis 
losed under �nite unions. We want to generate a topology from 
, and so weneed a 
olle
tion of subsets (of X � X) that is 
losed under arbitary unions and�nite intersetions. It is a well known (latti
e theoreti
) fa
t that an arbitary union
an always be expressed as a dire
ted union of �nite unions. For if (Bi)i2I is a
olle
tion of subsets of some set A, then[i2IBi = S"f�Ij�I�I;�I �nite g([i2�IBi)The " on [ indi
ates that the union is a union of a dire
ted set. i.e. the set isnon-empty and if a; b are in the set then there exists 
 in the set su
h that a; b � 
.Now 
 is 
losed under �nite unions, so all we need to do is 
lose it with respe
tto dire
ted unions and �nite interse
tions in order to 
reate a topology. De�ne �to be the 
olle
tion of all dire
ted unions of �nites interse
tions of elements of 
.It 
an be seen that � is 
losed under dire
ted unions and �nite interse
tions. i.e.it is a subpreframe of P (X �X). Clearly it is the least subprefame of P (X �X),
ontaining 
 and �nally (by distributivety of P (X � X) ) � is 
losed under �nite7



unions. So � forms a topology.We have now de�ned two topologies for X � X ; one is the least sub(SUP-latti
e)of P (X �X) 
ontaining all the sets U �V for U; V open in X , and the other is theleast subpreframe of P (X � X) 
ontaining all the sets of the form UOV for U; Vopen in X .But UOV = (U �X) [ (X � U)U � V = (UO�) \ (�OV )and so a short proof allows us to 
onl
ude that these two toplogies are the same.We 
ould hase used either approa
h in order to de�ne the produ
t topology.The example just given is the most straightforward way of des
ribing the par-allel whi
h forms the ba
kbone to this thesis: there are two ways of looking at anytopology, as a free SUP-latti
e or as a free preframe.However it must be emphasised that the work presented here is not about topologi-
al spa
es. The example above is 
ou
hed in topologi
al language in order to makeit more a

essible: this is a thesis about lo
ale theory.Lo
ale TheoryThe �rst thing to say about lo
ales is that they are like topologi
al spa
es. Lo-
ale theory is de�ned so that we 
an treat lo
ales as if they are topologi
al spa
es:we talk of sublo
ales (
f subspa
es), spe
ial 
ases being dense, 
losed and opensublo
ales (
f dense, 
losed and open subspa
es). We talk of 
ontinuous maps be-tween lo
ales (
f 
ontinuous maps between topologi
al spa
es), spe
ial 
ases beingproper maps and open maps (
f proper and open 
ontinuous fun
tions betweenspa
es). We talk of 
ompa
t lo
ales (
f 
ompa
t topologi
al spa
es), and similarlymost of the usual separation axioms on topologi
al spa
es have their lo
ali
 trans-lations: e.g. we talk of 
ompa
t Hausdor� lo
ales and dis
rete lo
ales (
f 
ompa
tHausdor� spa
es and dis
rete spa
es).This analogy between lo
ale theory and topologi
al spa
e theory is not exa
t: ifit were lo
ale theory and topologi
al spa
e theory would be indistinguishable andso lo
ale theory would be redundant.What exists is a translating devi
e between the two theories: whenever we aregiven a lo
ale X there is a topologi
al spa
e ptX naturally asso
iated with it. Andwhenever we are given a topologi
al spa
e Y there is a lo
ale 
Y naturally asso
i-ated with it. Categori
ally what this means is that there is a pair of fun
tors goinginbetween the 
ategory Lo
 of lo
ales and the 
ategory Sp of topologi
al spa
es.pt :Lo
�!Sp
 : Sp �!Lo
Now say we are given a lo
ale X and we translate it into a spa
e (ptX) and thentranslate it ba
k into a lo
ale (
ptX): do we 
ome ba
k to the same lo
ale? Simi-larly, if we are given a spa
e Y , is pt
Y the same thing (up to isomorphism) as Y ?The answer is no, in general, sin
e if we did get the same thing then the translationwould be exa
t.However the 
olle
tion of all topologi
al spa
es Y su
h that pt
Y is the same thingas Y is important: we shall 
all these the sober spa
es. Similarly the 
olle
tion of8



lo
ales X su
h that 
ptX is X is important: these are the spatial lo
ales. Whatis important about these 
olle
tions is that if we restri
t our attention to the soberspa
es and to the spatial lo
ales then the restri
ted translations are exa
t i.e. thetheory of sober spa
es and the theory of spatial lo
ales are the same. Categori
allythis means that there is an equivalen
eSLo
�=Sobwhere Slo
 is the 
ategory of spatial lo
ales and Sob is the 
ategory of sober spa
es.So the next question is: how many spa
es are sober? i.e. is the 
olle
tion of soberspa
es large enough to in
lude most of the examples of topologi
al spa
es that area
tually used in pra
ti
e? The answer to this question, fortunately for lo
ale theory,is yes. \... in e�e
t, one sa
ri�
es a small amount of pathology (non-soberspa
es) in order to a
hieve a 
ategory that is more smoothly and purely`topologi
al' than the 
ategory of spa
es itself. " [Joh85℄This is a good reason to take a serious look at lo
ale theory: in pra
ti
e when westudy topologi
al spa
es we are almost always looking at sober spa
es and so wemight as well be working within the 
ategory of lo
ales.There are, however, mu
h more 
ompelling reasons why the 
ategory of lo
alesshould be 
onsidered the 
orre
t framework within whi
h to do topology: the studyof lo
ales is, in a sense, logi
ally purer than the study of topologi
al spa
es. Provingresults in lo
ale theory requires less axioms of our mathemati
s than the 
orrespond-ing proofs in topologi
al spa
e theory.A dis
ussion of these axioms and how the need for them is removed by looking atlo
ale theory will lead us to a point where the results of this thesis start.AxiomsThe law of ex
luded middle has a long history in mathemati
s. It is widely a

eptedas being true. Our intuitions about the real world indi
ate that statements are eithertrue or false and so it understandable that the statment(8p)(p _ :p)has been allowed as an axiom of our mathemati
s. In the work that follows weprove results and develop some theory that does not require this axiom to be true.Mathemati
s without this axiom (the intuitionisti
 approa
h) has a long historyaswell. Earlier this 
entury Brouwer and Heyting both tried to develop an intuitis-tionisti
 version of mathemati
s (for a good introdu
tion look at [TD88℄). It is therelatively new idea of a topos however that gives us some more impetus for takingthe intuitionisti
 approa
h seriously.Toposes are mathemati
al universes. Some toposes are Boolean (satisfy the lawof ex
luded middle) but there are enough non-Boolean naturally o

uring toposesto make it 
lear that there are important mathemati
al universes where the law ofex
luded middle fails. So if we want to be sure that our mathemati
s 
an be 
arriedout in any topos (=mathemati
al universe) then we must make sure that it is notdependent on the law of ex
luded middle.Very often the dependen
e of a topologi
al proof on the law of ex
luded middlevanishes when we translate it into a proof about lo
ales. This is one of the pay-o�sof lo
ale theory. We a
hieve a proof that is logi
ally purer: it 
an be 
arried out9



in any topos. Interestingly enough the fa
t that dependen
e on ex
luded middlevanishes is really only the i
ing on the 
ake: histori
ally the reason why mathe-mati
ians looked at lo
ales was to avoid dependen
e on an axiom that has an evenmore tenuous 
onne
tion with reality: the axiom of 
hoi
e.The axiom of 
hoi
e states that if Xi is a 
olle
tion of non-empty sets (where iranges over some indexing set I) then the produ
t QiXi is non-empty. One may ormay not �nd this axiom in agreement with ones intuitions of how in�nite produ
tsof sets should behave. Certainly this axiom 
aused many more logi
al `waves' whenits importan
e to mathemati
s was dis
overed than did the law of ex
luded middle.But it was found that a lot of mathemati
al results used it: one of the most famousexamples being the proof that the produ
t of 
ompa
t topologi
al spa
es is always
ompa
t (this is Tyh
hono�'s theorem; re
all that a topologi
al spa
e X is 
ompa
tif for any dire
ted 
olle
tion of opens (Ui)i2I we have that X � ["iUi implies thatX � Ui for some i 2 I). Indeed it was shown that some of these results not onlyused the axiom of 
hoi
e but they needed it, i.e. an assumption of the result leadsto a proof of the axiom of 
hoi
e. Given this fa
t and the general usefulness ofthe axiom it is understandable that 
ertain pathologies that 
ould be derived fromit (e.g. the Tarski-Bana
h paradox, see pp. 3-6 of [Je
73℄) were ignored . Indeedthe task of developing a `
hoi
e free' mathemati
s would seem impossible given thedependen
y results just referred to: if we want the Ty
hono� theorem (and for anyuseful topology we most 
ertainly do) then we need the axiom of 
hoi
e.Unless we 
hange the de�nition of topology.This is exa
tly what we do when we move to lo
ales. By tampering slightly withthe de�nition of a topologi
al spa
e we a
hieve a new 
ategory in whi
h to 
arry outour topologi
al results. Cru
ially we �nd that the Ty
hono� theorem 
an now beproved without the axiom of 
hoi
e. The mathemati
s of lo
ale theory is `
hoi
e free'.Of 
ourse the question remains as to whether lo
ale theory is really topology.One of the main problems of lo
ale theory is to translate the ideas, 
on
epts and�nally results of topologi
al spa
e theory. The translating devi
e referred to earlierdoes not 
ompletely solve this problem. An aim of lo
ale theory and of this thesisis to 
arry out this translation further.If we take another look at the Ty
hono� theorem, and in parti
ular the de�-nition of 
ompa
tness we see that it is a `preframe' result; it is saying somethingabout dire
ted unions. Also, it is dependent on the de�nition of produ
t spa
es. Aswe have shown, (in the �rst part of this introdu
tion) there are two equivalent waysof de�ning su
h produ
ts. This fa
t has a lo
ali
 analogue: a produ
t lo
ale (indeedany lo
ale) 
an be treated as a free SUP-latti
e or as a free preframe. As with top-logi
al spa
es it was the SUP-latti
e de�nition that was originally a

epted as thede�nition of a produ
t lo
ale and when Johnstone originally proved the Ty
hono�theorem for lo
ales (in [Joh81℄) he used the SUP-latti
e de�nition of the produ
t.But the Ty
hono� theorem is a `preframe' result and so it is pleasing to note thaton
e the equivalent preframe de�nition of a produ
t lo
ale had been worked out([JV91℄), the proof of the Ty
hono� theorem was greatly simpli�ed. This exempli-�es a lot of the work that will take pla
e in this thesis: if we are dealing with aresult about 
ompa
tness we need to look at the lo
ales 
on
erned as free preframesrather than as free SUP-latti
es. On
e the preframe de�nition is taken the algebrai
manipulations be
ome a lot easier.The parallel between the SUP-latti
e approa
h and the preframe approa
h leadsnaturally to the 
onsideration of two 
lasses of lo
ales: the 
ompa
t Hausdor� lo-10




ales and the dis
rete lo
ales. These turn out to be parallel to ea
h other in mu
hthe same way that the SUP-latti
e and the preframe de�nitions are parallel. Thedetails of how these two approa
hes �t together, appli
ations of them (su
h as a
onstru
tive proof that the 
ategory of 
ompa
t Hausdor� lo
ales is regular), andhow knowledge about theorems on one side of the parallel 
an help us prove parallelresults on the other side forms the 
ore of this thesis.
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Te
hni
al Introdu
tionChapter 1 is devoted to the basi
s of lo
ale theory. The �rst se
tion is devotedto mathemati
al ground rules. All results are 
onstru
tive: we are working in anarbitary topos. Or, more su

intly, no use is made of any of the 
hoi
e axioms or theex
luded middle. It is sometimes not 
ompletely 
lear what the word `�nite' meansin an arbitary topos and so some e�ort is taken to 
larify that we mean Kuratowski�nite.We do not assume a natural number obje
t in our topos. So 
are is neededto make that we 
an de�ne the free Boolean algebra on a distributive latti
e; weadapt Vi
kers' 
ongruen
e preorders ([6.2.3℄ of [Vi
89℄) in order to prove that su
ha free Boolean algebra exists. Later on in the 
hapter 
are is also needed to makesure that the Prime Ideal Theorem 
an be dis

used without assuming the ex
ludedmiddle (sin
e usual statments of the theorem 
ontain a negation). We introdu
ethe 
onstru
tive prime ideal theorem.In Chapter 2 there are two new o�erings. Firstly there is the realization thatK�r�i�z's pre
ongruen
es [K�r�i�z86℄ 
an also be used on preframes. It is easy to see whata preo
ngruen
e on a preframe should be, and we have a preframe universal resultwhi
h is just a restating of K�r�i�z's frame universal result. This preframe universalresult essentially tells us that preframe presentations present; and it is this fa
tthat enables us to view frames as preframes. i.e. to 
onstru
t frame 
oprodu
t frompreframe tensor and to prove a preframe version of the 
overage theorem.The next o�ering is a generalized 
overage theorem. This theorem is a statementabout any symmetri
 monoidal 
losed 
ategory C: it shows us how 
oequalizers 
anbe 
onstru
ted in the 
ategory of monoids over C from 
oequalizers in C. Givenfurther assumptions on C (for instan
e that a free 
ommutative monoid 
an be 
on-stru
ted on any C obje
t and C has image fa
torizations) we prove a result whi
h
an be viewed as a 
onverse to the 
overage theorem: 
oequalizers in C 
an be 
al-
ulated as images of 
ertain 
oequalizers in the 
ategory of 
ommutative monoidsover C. Standing alone both these results are straightforward to prove. They areinteresting in this 
ontext be
ause from them we 
an dis
over a plethora of otherresults. The main results are the 
overage theorems: not only do we get the SUP-latti
e and the preframe versions of the 
overage theorem we also get a 
overagetheorem for quantales and rings. Be
ause of the 
onverse of the 
overage theoremwe are able, from the 
onstru
tion of 
oequalizers in the 
ategory of SUP-latti
es,to 
onstru
t 
oequalizers in the 
ategory of dire
ted 
omplete partial orders (=d
-pos). The 
overage theorem applied to d
pos then implies that 
oequalizers existsin the 
ategory of preframes. i.e. we have with these results reproved that preframepresentations present.What is being o�ered here doesn't add any new mathemati
al results. On
e12



the `Preframe Presentations Present' paper [JV91℄ is understood we know that the
ategory of preframes has 
oequalizers, and this fa
t for d
pos is of 
ourse wellknown. What we now have is an ability to see that all these theorems stem fromthe same results that 
an be proved when you 
onsider the 
ategory of 
ommutativemonoids over any symmetri
 monoidal 
losed 
ategory C. i.e. they are all variationson the same theme, the theme being that there are ways of lifting and droping 
o-equalizers between the 
ategory C and the 
ategory of 
ommutative monoids over C.Chapter 3 introdu
es proper and open maps between lo
ales. We prove somebasi
 (well knwon) results about them. The investigation is mu
h as in Joyal andTierney's paper An extension of the Galois theory of Grothendie
k [JT84℄ the onlynew aspe
t being that we develop the theory of open and proper maps side by side.So it is quite 
lear, for instan
e, that the proof that proper maps are pullba
k stableis really just a repetition of the proof that open maps are pullba
k stable but with`has a left adjoint whi
h is a SUP-latti
e homomorphism' being repla
ed with `hasa right adjoint whi
h is a preframe homomorphism'. The proper results are provedin [Ver92℄; the novelty is with our program of `parallel proofs for parallel results'.Towards the end of the Chapter we prove that the dis
rete lo
ales are those whose�nite diagonals are open and the 
ompa
t regular lo
ales are those whose �nitediagonals are proper. The former result is in [JT84℄ and the latter result is in Ver-meulen's paper `Some Constru
tive Results Related to Compa
tness' [Ver91℄. Ourproof doesn't follow his: we use the preframe te
hniques that have been developedin Chapter 2. Given this last result it should be understandable why, for the restof the text, we refer to the 
ompa
t regular lo
ales as the 
ompa
t Hausdor� lo
ales.Another reason to state and prove these results side by side is to �x in thereader's mind the idea that the 
ompa
t Hausdor� lo
ales are parallel to the dis-
rete lo
ales in mu
h the same way that the proper maps are parallel to the openmaps. As an aside we present an argument whi
h shows that the 
onstru
tive primeideal theorem is parallel to the ex
luded middle. We then 
he
k that the 
ompa
tHausdor� lo
ales form a regular 
ategory. Classi
ally this fa
t follows from theregularity of the 
ategory of 
ompa
t Hausdor� spa
es.On
e it is known that the 
ompa
t Hausdor� lo
ales form a regular 
ategorywe 
an immediately dedu
e that there is an allegory whose obje
ts are 
ompa
tHausdor� lo
ales and whose morphisms are 
losed relations. Composition is givenby relational 
omposition. We are of 
ourse assuming familiarity with the work ex-plained in Chapter 1.5 of Freyd and S
edrov's book `Categories Allegories'; thereinis an explanation of how to 
onstru
t an allegory of obje
ts and relations from anyregular 
ategory. This leads us neatly to the main te
hni
al insight of the the-sis whi
h is that we 
an �nd a formula for relational 
ompostion between 
losedsublo
ales of 
ompa
t Hausdor� lo
ales. Chapter 4 starts with a des
ription of thisformula.Further there is the realization that just as spatially (when we are dealing withrelations on sets) we 
an talk about `lower 
losure of a subset with respe
t to a re-lation', `a relation is transitive/symmetri
/interpolative' et
 we 
an state the samenotions for our allegory of 
ompa
t Hausdor� lo
ales and relations. In this 
aselower 
losure (with respe
t to some 
losed relation) will 
orrespond to an endo-morphism on the set of 
losed sublo
ales (a 
losed sublo
ale is taken to its lower
losure). The formula for relational 
ompostion allows us to express this endomor-phism as a parti
ular preframe endomorphism on the frame of opens of the 
ompa
tHausdor� lo
ale. In fa
t, just as in the spatial 
ase where there is a well known
orresponden
e between arbitary relations on a set and SUP-latti
e endomorphismson the power set we are able to �nd a bije
tion between preframe endomorphismsand 
losed relations. This fa
t, expressed in generality, 
an be viewed as a 
ategor-13



i
al equivalen
e: the 
ategory of 
ompa
t Hausdor� lo
ales and formally reversedpreframe maps between them is equivalent to the allegory of 
ompa
t Hausdor�relations. Stated as an equivalen
e this result is new, however it should be notedthat the essen
e (i.e. the 
orreponden
e between preframe homomorphisms on theframe of opens of 
ompa
t Hausdor� lo
ales and 
losed relations) 
an be found ina result of Vi
kers' ([Vi
94℄) whi
h states that if X is a 
ompa
t Hausdor� lo
alethen, PU (X) �= $Xwhere PU is the upper power lo
ale 
onstru
tion and $ is the Sierpinsksi lo
ale (i.e.the lo
ale whose frame of opens is the free frame on the terminal obje
t of our ba
k-ground topos). This 
orresponden
e between preframe homomorphisms and 
losedrelations is used again and again. Essentially it is used to turn spatial intuitionsabout what is going on into formulas about opens.In Chapter 5 we look at ordered lo
ales. Just as in ordered topologi
al spa
etheory we �nd that the lo
ales of interest are the 
ompa
t Hausdor� ones. Theformulas that we have developed allow us to neatly reprove some basi
 results fromordered toplogi
al spa
e theory in a lo
ali
 
ontext. In parti
ular we show thatthere is a lo
ali
 analogue to the result: if X is a 
ompa
t order-Hausdor� posetthen the sets of the form U \ V , where U is an open upper set and V is an openlower set, form a base for the topology on X . This leads us to the new 
on
lusionthat Banas
hewski and Br�ummer's 
ategory of 
ompa
t regular biframes is dual tothe 
ategory of 
ompa
t order-Hausdor� lo
ali
 posets with order preserving lo
alemaps. This fa
t will be reused in Chapter 8 when we are looking at stably lo
ally
ompa
t lo
ales.Chapter 6 is 
alled `Lo
ali
 Priestley Duality'. It 
ontains a proof that the
ategory of 
oherent lo
ales is equivalent to the 
ategory ordered Stone lo
ales.Classi
ally the ordered Stone lo
ales are just the ordered Stone spa
es whi
h are,by Priestley's original result, equivalent to the spe
tral spa
es. This is one of themain results of the thesis: we have taken a well known 
lassi
al topologi
al resultand proved it in a lo
ali
 
ontext. Some work has already been done in this dire
-tion: in Jean Pretorius' thesis [Pre93℄ there is a 
onstru
tive proof that the 
oherentlo
ales are equivalent to a parti
ular 
ategory whi
h is 
lassi
ally equivalent to theordered Stone spa
es. So what is new is the realization that this `parti
ular 
ate-gory' is equivalent to the ordered Stone lo
ales i.e. it is the lo
ali
 analog to theordered Stone spa
es. We prove lo
ali
 Priestley duality dire
tly rather than go viaPretorius' result.Chapter 7 
an roughly be understood as `extending Priestley's duality'. Infa
t,the problem of extending from a 
ategori
al point of view 
an be solved with afew remarks: Banas
hewksi and Br�ummer [BB88℄ prove that the 
ompa
t regularbiframes are dual to the stably lo
ally 
ompa
t lo
ales with semi-proper maps andwe have seen (Chapter 5) that the 
ompa
t regular biframes are dual to the 
om-pa
t order-Hausdor� posets; so the 
ompa
t order-Hausdor� posets are equivalentto the stably lo
ally 
ompa
t lo
ales with semi-proper maps. But ordered Stonelo
ales form a full sub
ategory of 
ompa
t order-Hausdor� posets, and 
oherentlo
ales form a full sub
ategory of stably lo
ally 
ompa
t lo
ales with semi-propermaps: we have extended Priestley's duality.This extension relies on 
onstru
ting a 
ompa
t order-Hausdor� poset from a stablylo
ally 
ompa
t lo
ale. Instead of going via Banas
hewski and Br�ummer's 
onstru
-tion [BB88℄ (whi
h relies on the ex
luded middle in Lemma 3), we give a new 
on-stru
tion whi
h redu
es the amount of algebra required. However the main thrust of14



the 
hapter is about a set of 
ategori
al equivalen
es whi
h are between 
ategoriesthat have similar obje
ts to 
ompa
t order-Hausdor� posets and stably lo
ally 
om-pa
t lo
ales, but whi
h have very di�erent morphims. Here motivation is important:we are trying to dis
over the proper parallel to Vi
kers' results about 
ontinuousinformation systems [Vi
93℄. Given that these results 
an be viewed as statementsabout the allegory of sets and relations then it is 
lear what the proper parallelsshould be. We dis
over a new proof whi
h is easily seen to be the proper parallel tothe result that the 
ategory of 
ontinuous information systems and approximablemappings is dually equivalent to the 
ategory of 
ompletely distributive latti
es andframe homomorphisms. It is also shown that variations of this equivalen
e (
hang-ing approximable maps to lower aprroximable semi-mappings and Lawson maps)have proper parallels. We derive the proper parallel to Ho�man-Lawson duality on
ontinuous posets.
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Chapter 1Lo
ale Theory1.1 Introdu
tionIn this 
hapter we give an introdu
tion to lo
ale theory. Our main purpose isto set notation and to reemphasise the 
onstru
tivety of our results. The reader isassumed to know what meets and joins on posets are, and what a distributive latti
eand a Boolean algebra is. We de�ne the 
ategory of lo
ales and remind the readerhow the pt and 
 fun
tors relate lo
ales to the 
ategory of topologi
al spa
es. Wedis
uss how the algebrai
 d
pos and the 
ontinuous posets 
an be viewed as lo
alesthat are 
onstru
tively spatial. We develop the lo
ale theory and introdu
e the
onstru
tive prime ideal theorem whi
h is 
lassi
ally equivalent to the ordinaryprime ideal theorem. We 
he
k that some well known 
lasses of lo
ales (e.g. theStone lo
ales) are spatial if and only if the 
onstru
tive prime ideal theorem is true.Apart from the use of 
ongruen
e preorders and the introdu
tion of the 
onstru
tiveprime ideal theorem all the results of this 
hapter are well known.1.2 Mathemati
al Ground RulesEssentially we work in an arbitrary topos. Rather than go into the details of thiswe simply assume that we have sets, fun
tions and subsets and manipulate themin the usual way that is taught to �rst year undergraduates ex
ept we do not allowuse of the law of ex
luded middle or any of the 
hoi
e axioms.For motivation we will o

asionally want to work 
lassi
ally i.e. we might wantto assume that the ex
luded middle and/or some 
hoi
e axiom is true. Wheneverwe are working 
lassi
ally a 
lear referen
e to this fa
t is made in the text.The other pie
e of mathemati
al furniture that is to be removed is the natu-ral numbers obje
t. We remove it be
ause we don't need it. All the proofs o�eredare free of any need to enumerate things or to rely on the naturals in some other way.A 
onsequen
e of working in an arbitrary topos is that we are for
ed to thinkmore 
arefully about what it means for a set to be �nite. We 
an no longer rely onjust `
ounting' the elements of it. In fa
t the de�nition of �nite that we 
hoose hasthe property that it is not the 
ase that subsets of �nite sets are ne
essarily �nite.(For the details of this 
ounter example see Exer
ise 9.2 of [Joh77℄.)We use Kuratowski �nite for our de�nition of �nite. (As introdu
ed by Ku-ratowski in [Kur20℄; however see [KLM75℄ whi
h examines the de�nition in the17



18 CHAPTER 1. LOCALE THEORY
ontext of an arbitrary topos.) We say that �A � A is a �nite subset of A if andonly if it belongs to the free _-semilatti
e generated by A (viewed as a subset ofPA). We 
an 
onstru
t this free _-semilatti
e as the least subset X of PA su
hthat (i) � 2 X , (ii) if A1,A2 is in X then A1 [ A2 is in X and (iii) the image ofthe singleton in
lusion fg : A ! PA is in X . We give this 
onstru
tion expli
itlysin
e the usual proof of a `presentations of �nite algebrai
 theories present' resultrequires the natural numbers.It is not immediately apparent that the 
onstru
tion just given is the free join semi-latti
e on X . To see that it is note that for any given fun
tion f : X ! A where Ais a join semilatti
e the setf�I � X j _ ff(i)ji 2 �Ig existsg
ontains all the singletons, the empty set and is 
losed under �nite unions. Soit 
ontains FX and we 
an therefore de�ne a fun
tion �f : FX ! A su
h that�f Æ fg = f .To 
he
k that �f is the unique su
h join preserving map from FX to A, say g :FX ! A is a join preserving map su
h that g Æ fg = f , then the setfI � X jI 2 FX; g(I) = �f(I)g
ontains singletons, the empty set and is 
losed under �nite union. Hen
e it is thewhole of FX . The proof that the the free semi-latti
e on a set 
an be 
onstru
tedin a topos without a natural numbers obje
t is originally due to Mikkelsen.Reassuringly we have now des
ribed all the ma
hinery that is needed. i.e. sets,fun
tions, subsets and the above de�nition of Kuratowski �nite is enough of a math-emati
al foundation to prove the rest of the thesis.We go through some basi
 
onsequen
es of these assumptions.Lemma 1.2.1 1, the terminal obje
t in our ba
kground topos, is �nite.Proof: 1 is the one element set, 1 = f�g. We need to show that 1 2 F1 whereF1 is the free _-semilatti
e on 1. F1 is the interse
tion of all X � P1 whi
h are
losed under �nite unions and whi
h 
ontain the image of fg : 1 ! P1. Any su
hX 
ontains f�g = 1 and so 1 2 F1 as required. 2Lemma 1.2.2 (Indu
tion on �nite sets) Say p is a proposition about �nite subsetsof some set X (i.e. p � FX) su
h that p is satis�ed by the empty set and by all thesingletons fxg; x 2 X. If p also has the property that whenever p is satis�ed by Iand J then it is satis�ed by I [ J , then p is satis�ed by all �nite sets.Proof: The statement of the lemma tells us that FX � p sin
e FX is the leastsubset of PX satisfying 
onditions that are satis�ed by p. 2Lemma 1.2.3 The produ
t of two �nite sets is �nite. i.e. if I 2 FX and J 2 FYfor two sets X;Y then I � J 2 F (X � Y )Proof: Double indu
tion. Consider the set:� � fI � J jI 2 FX; J 2 FY gWe need to show that if � � P (X � Y ) is a set with the properties that(i)f(x; y)g 2 � for every x 2 X and every y 2 Y(ii) � 2 �(iii) A;B 2 � then A [ B 2 �



1.2. MATHEMATICAL GROUND RULES 19then � � �. First noti
e that 
ertainly ��; �fyg � � where�� � fI � �jI 2 FXg �fyg � fI � fygjI 2 FXgThe latter is by indu
tion on FX . Finally for any J 2 FY de�ne �J = fI � J jI 2FXg. To prove that � � � 
learly it is suÆ
ient to verify that �J � � for every�nite J . But we 
an 
on
lude `for every �nite J ' by using using indu
tion on FY .We have started this indu
tion with the statement ��; �fyg � � and shall now
omplete it by 
he
king that �J1 ; �J2 � � implies �J1[J2 � �. This follows fromthe fa
t that � satis�es 
ondition (iii) above. 2Lemma 1.2.4 Say f : A! B is a fun
tion between sets A and B. Then the imageof any �nite subset of A is a �nite subset of B.Proof: FA is the free join semilatti
e on the set A and so there exists a uniquejoin preserving map Ff making the diagramA fg - FABf? fg- FBFf ?
ommute. But when we proved that FA is the free join semilatti
e on A we wereable to give an expli
it formula for Ff and from that formula it is 
lear that Ff isjust the usual set theoreti
 image map. 2Lemma 1.2.5 A join semilatti
e (A;_; 0) has all �nite joins.Proof: The set fI 2 FAjW I exists g
ontains the singletons and is 
losed under �nite unions. Hen
e it is the whole ofFA. 2It is an easy appli
ation of the indu
tion lemma given above to prove for anydistributive latti
e A that8I � A; I �nite, (W I) ^ b = Wfa ^ bja 2 Ig(we know fa^ bja 2 Ig is �nite sin
e the image of any �nite set is �nite). Also notethat (FA)op is the free meet semilatti
e on A, and so we see that meet semilatti
e(A;^; 1) has all �nite meets in mu
h the same way that we saw that any join semi-latti
e has all �nite joins. We now look at a slightly more 
ompli
ated distributivitylaw:Lemma 1.2.6 If A is a distributive latti
e and (ai)i2I , (bi)i2I are �nite 
olle
tionsof elements of A. (I �nite, or more pre
isely we assume I 2 FA.) Then^i2I (ai _ bi) = W[(^i2J1ai) ^ (^i2J2bi)℄where the join is taken over all pairs J1; J2 � I su
h that I = J1[J2; J1; J2 �nite.Proof: We have assumed I 2 FA and so it is natural to go by the indu
tiontheorem already proven. The 
ase when I = � is trivial. Say I = f�g. We need toprove that



20 CHAPTER 1. LOCALE THEORYa� _ b� = W[(^i2J1ai) ^ (^i2J2)℄where the join is over pairs of subsets J1; J2 � I su
h that I � J1 [ J2. Buta�; b� � W[(^i2J1a1) ^ (^i2J2bi)℄(take J1 = I J2 = � and then J1 = � J2 = I). Say we are given J1; J2 � I;I � J1 [ J2 then we will be done with the 
ase I = f�g if we 
an show(^i2J1ai) ^ (^i2J2bi) � a� _ b�Sin
e I � J1 [ J2 then either � 2 J1 or � 2 J2. In the former 
ase we have(^i2J1ai) ^ (^i2J2bi) � a�and in the latter we have, (^i2J1ai) ^ (^i2J2bi) � b�And so (^i2J1ai) ^ (^i2J2bi) � a� _ b�as required.Now say we are given two �nite sets I�; I� (in FA) su
h that^i2I�(ai _ bi) = W[(^i2J1ai) ^ (^i2J2bi)℄^i2I� (ai _ bi) = W[(^i2J1ai) ^ (^i2J2bi)℄Then^i2I�[I� (ai _ bi) = (^i2I� (ai _ bi)) ^ (^i2I� (ai _ bi))= (_[(^i2J�1 ai) ^ (^i2J�2 bi)℄ ^ (_[(^i2J�1 ai) ^ (^i2J�2 bi)℄)= _[(^i2J�1 [J�1 ai) ^ (^i2J�2 [J�2 bi)℄where the last join is over quadruples J�1 ; J�2 (� I�); J�1 ; J�2 (� I�) su
h thatI� = J�1 [ J�2 and I� = J�1 [ J�2 . We want this last line to be equal toWI�[I�=J1[J2 [(^i2J1ai) ^ (^i2J2bi)℄However for any J1; J2 in this last join set J�i = Ji \ I� and set J�i = Ji \ I�(i = 1; 2). So J�i ; J�i enjoy the propertyI� = J�1 [ J�2I� = J�1 [ J�2We see Ji = J�i [ J�i for i = 1; 2 and so we see thatW[(^i2J1ai) ^ (^i2J2bi)℄ � W[(^i2J�1 [J�1 ai) ^ (^i2J�2 [J�2 bi)℄The reverse inequality is easy. 2



1.3. THE FREE BOOLEAN ALGEBRA 211.3 The free Boolean algebraWe now address the question of 
onstru
ting the free Boolean algebra on a dis-tributive latti
e. It is not possible in our 
ontext to use the usual �nitary universalalgebrai
 proof (e.g. Chapter 1 of [Joh87℄) sin
e this requires the natural numbers.We use a 
onstru
tion via 
ongruen
e preorders whi
h is equivalent to the more wellknown (e.g. [Pre93℄) 
onstru
tion via 
ongruen
es.If D is a distributive latti
e then -� D�D is a 
ongruen
e preorder if and only ifit satis�es a � a0 - b0 � b ) a - b(8S � D �nite) a - b 8a 2 S ) _S - b(8S � D �nite) a - b 8b 2 S ) a -^Sa - b; b - 
 ) a - 
a - aThese were suggested to the author by Vi
kers and are an adaptation of his frame
ongruen
e preorders ([6.2.3℄ of [Vi
89℄).Lemma 1.3.1 There is an order preserving bije
tion between the poset of 
ongru-en
es on a distributive latti
e and the poset of 
ongruen
e preorders.Proof: Take a 
ongruen
e � to the 
ongruen
e preorder - where a - b, a^b � band take a 
ongruen
e preorder - to the 
ongruen
e - ^ &. 2Noti
e that the poset of 
ongruen
e preorders on D (written ConP (D)) has a leastelement (�) and a greatest element (D �D).Also noti
e that 
ongruen
e preorders are 
losed under arbitrary interse
tion. Itfollows that the poset of 
ongruen
e preorders has all joins. In parti
ular it has�nite joins. We prove that it is a distributive latti
e:Lemma 1.3.2 ConP (D) is a distributive latti
e.Proof: First note that it is suÆ
ient to prove that for any -2 ConP (D) the orderpreserving map - \( ) : ConP (D) �! ConP (D)has a right adjoint. For then - \( ) preserves arbitrary joins and so it 
ertainlypreserves �nite joins. i.e. ConP (D) is distributive.The right adjoint is given by -0 7�!- = -0where - = -0� f(z; �z)j(z ^ y) - (�z _ �y) whenever y -0 �yg. 2We 
onstru
t the free Boolean algebra on a distributive latti
e as a parti
ular sub-latti
e of ConP (D).



22 CHAPTER 1. LOCALE THEORYFor all a 2 D de�ne a pair of 
ongruen
e preorders -[a;0℄;-[1;b℄ byx -[a;0℄ y , x � y _ ax -[1;b℄ y , x ^ b � yNoti
e that -[a;0℄ \ -[1;a℄=�= 0ConP (D)and -[a;0℄ _ -[1;a℄= D �D = 1ConP (D)To see the latter note that a -[a;0℄ 0 and 1 -[1;a℄ aand so (a; 0); (1; a) 2-[a;0℄ _ -[1;a℄. But then (1; 0) 2-[a;0℄ _ -[1;a℄ by transitivityof 
ongruen
e preorders.Thus -[a;0℄ and -[1;b℄ are 
omplemented elements of ConP (D) for every a; b. Itis easy to 
he
k, in any distributive latti
e, that �nite joins and �nite meets of
omplemented elements are 
omplemented. De�ne-[a;b℄�-[a;0℄ _ -[1;b℄So the setB � f^i2I -[ai;bi℄ j(ai; bi)i2I a �nite 
olle
tion of elements of Dgis a Boolean algebra. Any element of B 
an be expressed as^i2I (-[ai;0℄ _: -[bi;0℄)for some �nite 
olle
tion (ai; bi)i2I , where : is the Boolean algebra negation.There is a distributive latti
e in
lusion: i : D ,! B given by i(a) =-[a;0℄.Say f : D ! �B is a distributive latti
e homomorphism to some Boolean algebra �B.If we have found two �nite sets of elements fai; biji 2 Ig; f�a�i;�b�ij�i 2 �Ig su
h that^i(-[ai;0℄ _: -[bi;0℄) = �̂i(-[�a�i;0℄ _: -[�b�i;0℄), we would like to 
he
k,Lemma 1.3.3 ^i(fai _ :fbi) = �̂i(f�a�i _ :f�b�i)(For then it will be `safe' to de�ne � : B ! �B by �(-) = ^i(fai _ :fbi) for any
olle
tion fai; biji 2 Ig su
h that -= ^i[-[ai;0℄ _: -[bi;0℄℄.)Proof: To 
on
lude that ^I (fai _ :fbi) � ^�I (f�a�i _ :f�b�i) we need to prove thatfor every �i and for every pair J1; J2 � I with I � J1 [ J2 we have(^i2J1fai) ^ (^i2J2:fbi) � (f�a�i _ :f�b�i)This relies on the �nite distributivity law of Lemma [1.2.6℄ being applied to themeet ^i(fai _ :fbi). But the last inequality 
an be manipulated tof((^i2J1ai ^ �b�i) _ _i2J2bi) � f((�a�i ^ �b�i) _ (_i2J2bi))and so we want to 
he
k:(^i2J1ai ^ �b�i) _ _i2J2bi � (�a�i ^ �b�i) _ (_i2J2bi) � (�)But the assumption



1.3. THE FREE BOOLEAN ALGEBRA 23^i(-[ai;0℄ _: -[bi;0℄) � �̂i(-[�a�i;0℄ _: -[�b�i;0℄)
an via the same manipulations be shown to imply:(^i2J1 -[ai;0℄ ^ -[�b�i;0℄) _ _i2J2 -[bi;0℄� (-[�a�i;0℄ ^ -[�b�i;0℄) _ (_i2J2 -[bi;0℄):(�) follows sin
e i is a distributive latti
e in
lusion. 2We 
he
k that �, so de�ned, preserves �nite meets. For if-1= ^i2I (-[ai;0℄ _: -[bi;0℄) and -2= ^i2�I (-[ai;0℄ _: -[bi;0℄) )-1 ^ -2= ^I[�I(-[ai;0℄ _: -[bi;0℄). So�(-1 ^ -2) = ^I[�I(fai _ :fbi)= [^i2I (fai _ :fbi)℄ ^ [^i2�I (fai _ :fbi)℄= �(-1) ^ �(-2)Similarly for _s.Hen
e � is the unique Boolean algebra homomorphism from B to �B that satis�esthe 
ondition that � Æ i = f . i.e. B is the free Boolean algebra on the distributivelatti
e D.We have one �nal use for our 
ongruen
e preorders whi
h is to show how they
an be used to form the quotient of a distributive latti
e by an ideal. An ideal I ofa distributive latti
e D is a subset of D whi
h satis�es:(i) I is lower 
losed. i.e. # I = I;(ii) 0 2 I(iii) a; b 2 I implies a _ b 2 IIt follows immediately that for any ideal I the set-I� f(x; y)j9i 2 I x � y _ igis a 
ongruen
e preorder. We now quotient by the 
orresponding 
ongruen
e, i.e.we de�ne an equivalen
e relation �I on D by a �I b if and only if a -I b andb -I a. Then the set of equivalen
e 
lasses, D=�I , is a distributive latti
e. Theequivalen
e 
lass of an element a in D is denoted by [a℄. So there is a distributivelatti
e surje
tion [ ℄ : D ! D= �I . Given this 
onstru
tion we haveLemma 1.3.4 (i) [a℄ = [0℄ if and only if a 2 I(ii) For any se
ond distributive latti
e �D there is a bije
tion between the distributivelatti
e homomorphisms f : D= �! �D and the distributive latti
e homomorphisms�f : D ! �D with the property that �f(a) = 0 8a 2 I. The bije
tion is given byf 7�! f Æ [ ℄Proof: (i) Say a 2 I . Then a � 0 _ i for some i 2 I and 0 � a _ i for some i 2 I .i.e. a -I 0 and 0 -I a and so a �I 0. i.e. [a℄ = [0℄ .Conversely if [a℄ = [0℄ then a �I 0. So a -I 0. Hen
e a � 0 _ i for some i 2 I .Therefore a 2 I as I is lower 
losed.(ii) Say f : D= �I! �D is given. Then for all i 2 I (f Æ [ ℄)(i) = f([i℄) = f([0℄) =0. Say �f : D ! �D has property �f(i) = 0 for every i 2 I . De�ne f : D= �I! �D byf [a℄ = �f(a). This is well de�ned for if [a1℄ = [a2℄ then a1 -I a2 and so there existsi 2 I su
h that a1 � a2 _ i.



24 CHAPTER 1. LOCALE THEORY�f(a1) � �f(a2 _ i) = �f(a2) _ �f(i) = �f(a2) _ 0 = �f(a2)Similarly �f(a2) � �f(a1). It is also easy to see that f so de�ned is a distributivelatti
e homomorphism. Hen
e f 7�! f Æ [ ℄is a surje
tion. Finally say f1 Æ [ ℄ = f2 Æ [ ℄Then f1 = f2 sin
e [ ℄ is a surje
tion (surje
tions are epimorphisms). Hen
ef 7! f Æ [ ℄ is a bije
tion. 21.4 Dire
ted subsetsAlongside the �nite subsets we have another important 
lass of subsets, the dire
tedsubsets. These are parti
ular subsets of posets.De�nition: A subset �A of a poset A is said to be dire
ted if and only if (i) 9a 2 �A(ii) 8b; 
 2 �A 9d 2 �A su
h that b � d and 
 � d.We use the up-arrow " in �A �" A to denote the fa
t that �A is a dire
ted subset ofA. Noti
e that a lower 
losed subset of a distributive latti
e is an ideal if and onlyif it is a dire
ted subset. We use the notation W" to denote the join of a set that isdire
ted. A 
omplete latti
e is a poset with all joins.Lemma 1.4.1 Any join _ �A de�ned on a 
omplete latti
e A 
an be expressed as adire
ted join of �nite joins of elements of �A.Proof: The set � �= f_BjB � �A; B 2 FAg is a dire
ted subset of A. ClearlyW" � = _ �A. 2A poset is 
alled a d
po (dire
ted 
omplete partial order) if and only if alldire
ted subsets have joins. A fun
tion between posets is a d
po homomorphismi� it preserves dire
ted joins. We have de�ned the 
ategory d
po. If x; y 2 A forsome d
po A then we say that x is way below y and write x� y i� for all dire
tedS �" A if y � W" S then x � s for some s 2 S. An element x 2 A that is waybelow itself (x � x) is said to be 
ompa
t. The set of dire
ted lower subsets ofa poset A is 
alled the ideal 
ompletion of A and it is denoted Idl(A). Idl(A) isalways a d
po and there is a poset in
lusion #: A! Idl(A) whi
h takes an elementof A to the set of elements lower than it in the order. IdlA is the free d
po onthe poset A. The set of all d
pos of the form IdlA for some poset A is important.They are 
alled the algebrai
 d
pos. Given an algebrai
 d
po an isomorphi
 
opyof the poset of whi
h it is an ideal 
ompletion 
an be found as the poset of 
ompa
telements. i.e. for every algebrai
 d
po A if KA is the poset of 
ompa
t elementsthen A �= Idl(KA) (where �= of 
ourse denotes the existen
e of an order preservingisomorphism between the two posets). Further if IdlK1 �= IdlK2 then K1 �= K2.We use alg-d
po to denote the full sub
ategory of d
po whose obje
ts are thealgebrai
 d
pos. Another 
hara
terization of the algebrai
 d
pos is the following: ad
po A is algebrai
 i� 8a 2 A(i) fbjb� b; b � ag is dire
ted(ii) W"fbjb� b; b � ag = a
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lass larger than the 
lass of algebrai
 d
pos is the 
lass of 
ontinuous posets. Ad
po A is a 
ontinuous poset (or sometimes `is 
ontinuous') if and only if(i) fbjb� ag is dire
ted for every a 2 A.(ii) W"fbjb� ag = a 8a 2 ARe
all that if A;B are two obje
ts of a 
ategory C then we say that A is a retra
t ofB if and only if there are two maps i : A! B, p : B ! A in C su
h that p Æ i = Id.The following result is impli
it in [S
o72℄:Lemma 1.4.2 (S
ott) A d
po A is a 
ontinuous poset if and only if there existsan algebrai
 d
po B su
h that A is a retra
t of B in d
po.Proof: Say A is a 
ontinuous poset. Then ## : A! IdlA given by##(a) = fbjb� agis a d
po map to an algebrai
 d
po. But W" : IdlA ! A is also a d
po map (it isleft adjoint to # and so preserves all joins) and W" Æ## = Id by the de�nition of a
ontinuous poset. Hen
e A is the retra
t of an algebrai
 d
po.Conversely say A is a retra
t of B, an algebrai
 d
po. Certainly B is a 
ontinuousposet. So there exists d
po maps i : A ! B and p : B ! A with the propertyp Æ i = Id. I 
laim thata�A �a , 9�b 2 B a � p(�b) �b�B i(�a)Say a �A �a then sin
e i(�a) = W"f�bj�b �B i(�a)g, we 
an apply p to both sides and�nd that �a = pi(�a) = p( "_f�bj�b�B i(�a)g= "_fp(�b)j�b�B i(�a)gand so a � p(�b) for some �b�B i(�a).Conversely say there exists �b 2 B su
h that a � p(�b) and �b �B i(�a), and say�a � W" S for some S �" A. Theni(�a) � i( "_S)= "_fi(s)js 2 SgHen
e �b � i(s) for some s 2 S. We �nd that a � s by applying p to both sides ofthis last 
on
lusion. So I have veri�ed my 
laim.Noti
e that this 
laim in parti
ular shows that if �a 2 A and b 2 B then b �B i(�a)implies p(b)�A �a. And so for any �a 2 A�a = pi(�a) = p( "_fbjb�B i(�a)g= "_fp(b)jb�B i(�a)g= _faja�A �ag
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he
k that the set faja�A �ag is dire
ted for every �a 2 A. Thisfollows as an appli
ation of the 
laim from the fa
t that fbjb�B �bg is dire
ted forevery �b 2 B. 2For te
hni
al use later we haveLemma 1.4.3 In a 
ontinuous latti
e A the way below relation � is interpolative.i.e. if a� b then there exists 
 su
h that a� 
� b.Proof: De�ne S = fd 2 Aj(9
 2 A)(d� 
� b)g. It follows that S is dire
ted andb � W" S 2For more ba
kground on 
ontinuous posets 
onsult 2.1 VII of [Joh82℄.1.5 The Category Lo
A frame is a poset with all joins and �nite meets su
h that the arbitrary joinsdistribute over �nite meets. i.e. for any subset S of the frame and for any elementa we have WS ^ a = Wfs ^ ajs 2 SgAn example of a frame is the set of opens of a topologi
al spa
e. Frame homo-morphisms are required to preserve �nite meets and arbitrary joins. Given any
ontinuous fun
tion f : X ! Y for topologi
al spa
es X and Y it is 
lear that theinverse image of f is a frame homomorphism from the opens of Y to the opens ofX . i.e. f�1 : 
X ! 
Yis a frame homomorphism where 
X is the frames of opens of X and 
Y is theframe of opens of Y . We de�ne Lo
, the 
ategory of lo
ales, to be the opposite ofthe 
ategory frames (=Frm). What has just been des
ribed is a fun
tor from the
ategory of topologi
al spa
es (Sp) to the 
ategory of lo
ales:
:Sp�!Lo
Having just given the impression that we shall talk about the lo
ale 
X wenow 
onfuse the reader by �xing a di�erent notation for lo
ales whi
h will seemperverse to the new
omer: we shall talk about the lo
ale X , but whenever we doany manipulations on it we shall talk about the 
orresponding frame of opens 
X .The reason for doing this is to make sure that the dis
ussions of lo
ales and the dis-
ussions of frames are kept separate. Clearly the distin
tion is only mathemati
allyimportant when we are dealing with the morphisms, but having a di�erent notationfor the obje
ts will make it 
learer whi
h 
ategory we are working in. It will betremendously helpful to talk about pullba
ks and produ
ts of lo
ales sin
e these
an be visualised as topologi
al pullba
ks and produ
ts and so having a distin
tnotation will help reinfor
e the spatial intuitions that are behind the lo
ali
 results.Of 
ourse all this will seem like an irritating synta
ti
 distra
tion for the new
omer.If f : X ! Y is a lo
ale map between lo
ales X and Y then we write 
f forthe 
orresponding frame homomorphism from 
Y to 
X . Noti
e that sin
e 
fpreserves arbitrary joins it has a right adjoint. This right adjoint is denoted 8f andis given by the formula: 8f : 
X �! 
Ya 7�! "_fbj
f(b) � ag
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f has a left adjoint it is denoted by 9f .The subobje
t 
lassi�er is a frame. If we assume the ex
luded middle it isthe frame of two elements: true and false. In an arbitrary topos it is well knownthat the subobje
t 
lassi�er is the power set of the terminal obje
t (i.e. P1 where1 = f�g) and 
learly any power set is a frame with the order given by ordinarysubset in
lusion. In fa
tLemma 1.5.1 
, the subobje
t 
lassi�er, is initial in the 
ategory of frames.Before proof let us make a seemingly inno
uous observation: if T 2 P1 thenT = Sff�gj� 2 Tg.(Certainly [ff�gj� 2 Tg � T . Conversely for any x 2 T we have x = �. Hen
e� 2 T and so x 2 [ff�gj� 2 Tg.) Expressed as a fa
t about the frame of opens ofthe lo
ale it reads 8i 2 
 i = Wf1j1 � igThis will be used a lot when reasoning about 
. It 
orresponds to the idea of
on
luding that two propositions are equal whenever they logi
ally imply ea
h other.Proof that 
 is initial: Say X is a lo
ale. De�ne ! : X ! 1 by
! : 
 �! 
XT 7�! _f1
X j� 2 Tg(Re
all 
 = Pf�g.) Clearly 
! preserves �nite meets and arbitrary joins. Say
f : Pf�g �! 
X is some frame homomorphism. Then 8T � f�g,
f(T ) = 
f[ff�gj� 2 Tg= _f
ff�gj� 2 Tg= _f
f1
j� 2 Tg= _f1
X j� 2 Tg = 
!(T ) 2We use 1 to denote the lo
ale 
orresponding to the frame 
.Given a lo
ale X we 
an 
onstru
t a topologi
al spa
e ptX (`point' X). The under-lying set of ptX is given byfpjp : 1! X p a lo
ale map gThese ps are 
alled the points of the lo
ale X . (Not to be 
onfused with the elementsa 2 
X ; they are the opens of the lo
ale X .) The points of X 
orrespond to framehomomorphisms from 
X to 
.Noti
e that if p1 : 1 ! X , p2 : 1 ! X are two points of some lo
ale X thensin
e i = Wf1j1 � ig for any i 2 
 we have that for any a 2 
X
p1(a) = Wf1j1 � 
p1(a)gIt follows that if we know that for all a 2 
X 
p1(a) = 1 , 
p2(a) = 1 thenp1 = p2. It follows that a point is uniquely determined by the true kernel of its
orresponding frame homomorphism.The topology on this set of points is given by all sets of the form:fpj
p(a) = 1g



28 CHAPTER 1. LOCALE THEORYwhere a ranges over all elements of the frame 
X and where 1 is the top elementof the subobje
t 
lassi�er 
. That this set forms a topology follows easily enoughfrom the fa
t that 
p is a frame homomorphism for any point p.If f : X ! Y is a lo
ale map then 
omposition of arrows in Lo
 
learly de�nes afun
tion from the underlying set of ptX to the underlying set of ptY ; it is easy tosee that this fun
tion is 
ontinuous and so we 
an view pt as a fun
tor:pt:Lo
�!SpTheorem 1.5.1 pt is right adjoint to 
.Proof: De�ne a natural transformation � : Id :! pt
 by�X : X �! pt
Xx 7�! fxWhere fx(U) = Sff�gjx 2 Ug. So fx(U) = 1 , x 2 U , and from now on wewill de�ne points by simply giving the true kernel of the 
orresponding frame ho-momorphism. The reader 
an 
he
k that (i) fx is a frame homomorphism for everyx, (ii) �X is 
ontinuous for every spa
e X and (iii) � is a natural transformation.To de�ne a natural transformation � : 
pt :! Id we need to de�ne a map�Y : 
ptY �! Yin Lo
 for every lo
ale Y . We de�ne a 
lass of frame homomorphisms by
�Y : 
Y �! 
ptYa 7�! fpj
p(a) = 1gWarning: notation does 
lash here. When the fun
tor 
 is applied to the spa
e Xwe get a lo
ale 
X . However the frame of opens of this lo
ale is denoted by 
Xrather than 

X .The reader 
an 
he
k that 
�Y is a frame homomorphism for every Y and that �,so de�ned, is a natural transformation.So to verify that 
 a pt we just need to 
he
k the triangular equalities for � and �.We �rst examine 
X 
�X- 
pt
X�����id R 
X�
X?This amounts to 
he
king that��1
�
X(U) = U 8U 2 
Xi.e. that ��1fpj
p(U) = 1g = U . Butx 2 ��1fpj
p(U) = 1g , fx 2 fpj
p(U) = 1g, fx(U) = 1 , x 2 U



1.5. THE CATEGORY LOC 29The other triangular equality isptY �ptY- pt
ptY�����id R ptYpt�Y?Say �p 2 ptY . So �p : 1! Y is a lo
ale map. Then �ptY (�p) is a lo
ale map from 1 to
ptY . It is given by the fun
tion p�p : 
ptY ! 
 wherep�p(U) = 1 , �p 2 Upt�Y takes p�p to the 
omposition
Y 
�Y�! 
ptY p�p�! 
But 8a 2 
Y p�p
�Y (a) = 1 , p�pfpj
p(a) = 1g = 1, �p 2 fpj
p(a) = 1g, 
�p(a) = 1Thus pt�Y Æ �ptY (�p) = �p. 2A short note is appropriate at this point to the e�e
t that `
ategory theory is
onstru
tive'; to 
on
lude that the triangular equalities are enough to imply an ad-jun
tion we are of 
ourse assuming the well known 
ategori
al proof whi
h veri�esthis fa
t. This 
ategori
al proof (see [Ma
71℄ p81 theorem 2(v)) is easily seen tobe 
onstru
tive (it does not rely on the ex
luded middle) and so our overall proofthat 
 a pt is 
onstru
tive. At a 
ouple of other points in the thesis we will say`by a well known 
ategori
al result...', and in all 
ases the proof being referred to is
onstru
tive.We say that a lo
ale X is spatial if and only if 
ptX is isomorphi
 (via theunit of the adjun
tion) to X and that a spa
e Y is sober if and only if pt
Y isisomorphi
 to Y via the 
ounit. Cru
ially: `most' spa
es are sober and so we
an view the 
ategory of lo
ales as a sensible (almost) generalisation of topologi
alspa
es. Further, in pra
ti
e, most lo
ales are spatial and so the 
ategory of lo
alesis (in pra
ti
e) not a massive generalization of the 
ategory of spa
es.Theorem 1.5.2 The retra
ts of spatial lo
ales are spatial.Proof: This is really just a pie
e of 
ategory theory. Say Y is spatial; i.e. �Y isan isomorphism in the 
ategory Lo
. Let X be a retra
t of Y ; say there existsi : X ,! Y and p : Y ! X with the property that p Æ i = 1. I 
laim that��1X = 
pt(p) Æ ��1Y Æ iFor �X Æ
pt(p) Æ ��1Y Æ i = p Æ �Y Æ ��1Y Æ i= p Æ i = 1;
pt(p) Æ ��1Y Æ i Æ �X = 
pt(p) Æ ��1Y Æ �Y Æ
pt(i)= 
pt(p) Æ
pt(i)= 
pt(p Æ i) = 
pt(1) = 1 2
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tively Spatial Lo
alesWe now look at an example of the 
 a pt adjun
tion being applied to 
ertainsub
lasses of lo
ales and spa
es. It will be useful to re
all that for any topologi
alspa
e X we 
an de�ne a spe
ialization order between the points of the spa
e:x1 v x2 if and only if 8U 2 
X x1 2 U ) x2 2 UNoti
e that a simple argument proves that any 
ontinuous fun
tion between spa
espreserves the spe
ialization order.Given an algebrai
 d
po X we say that U � X is S
ott open i� " U = U (i.e. 8x 2 Uif y � x then y 2 U ; U is upper 
losed) and for every dire
ted subset S �" X ifW" S 2 U then 9s 2 S su
h that s 2 U . The set of S
ott open subsets of a d
po Xis denoted �X . It is a frame with the order given by subset in
lusion.Theorem 1.6.1 If X is an algebrai
 d
po then �X is isomorphi
 as a poset toA(KX) where KX is the poset of 
ompa
t elements of X and A(KX) is the set ofall upper 
losed subsets of KX .Proof: Clearly the maps � : �X �! A(KX)U 7�! fk 2 KX jk 2 Ug : A(KX) �! �XV 7�! [k2V " kpreserve order. Trivially � (V ) = V for all V � KX with " V = V .We show  �(U) = U for every S
ott open U . Now �(U) � Usin
e U is upper. In the other dire
tion re
all that for every x 2 Ux = W"fkjk 2 KX k � xgsin
e X is algebrai
. But U is S
ott open and so there exists k � x su
h thatk 2 KX \ U . i.e. k 2  (U). Hen
ex 2 Sk2 (U) " k =  �(U) 2We 
all a topologi
al spa
e (X;
X) S
ott if and only if X has a partial orderon it whi
h makes it into an algebrai
 d
po and 
X = �X . Let S
ottSp be thefull sub
ategory of Sp whose obje
ts are all the S
ott spa
es.Lemma 1.6.1 If X is a S
ott spa
e then the order of the d
po is the spe
ializationorder.Proof: Say x1 � x2 in the d
po order and x1 2 U for some S
ott open U . Thenx2 2 U sin
e S
ott opens are upper 
losed. Hen
e x1 v x2 in the spe
ializationorder.Conversely say x1 v x2 in the spe
ialization order. Then if k � x1 for some 
ompa
tk we see that x1 2" k. But " k is a S
ott open sin
e k is 
ompa
t, and we �nd thatx2 2" k by the de�nition of spe
ialization order. i.e. k � x2 for every 
ompa
t kless than x1. But x1 is the join of all 
ompa
t elements less than it, and so x1 � x2in the d
po order. 2
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po�=S
ottSpProof: Clearly, by de�nition, both these 
ategories essentially share the same ob-je
ts. All that remains is to 
he
k that dire
ted join preserving fun
tions betweend
pos 
orrespond to 
ontinuous fun
tion between S
ott spa
es.Say f : X ! Y is a dire
ted join preserving fun
tion between d
pos X and Y . SayU � Y is S
ott open. Certainly f�1U is upper (N.B. it is easy to 
he
k that if fpreserves dire
ted joins then it preserves order, for if x � y then fx; yg is dire
ted).Now say S �" X and W" S 2 f�1U . Then f(W" S) 2 U ) W"ffsjs 2 Sg 2 Uand so there exists an s in S su
h that fs 2 U . Hen
e there exists an s in f�1Uand we see that f�1U is S
ott open. So f : X ! Y is a 
ontinuous fun
tion.Conversely say f : X �! Y is a 
ontinuous fun
tion between S
ott spa
es. So weknow that it preserves the spe
ialization order by an earlier remark, and sin
e wehave a lemma to the e�e
t that the spe
ialization order and the d
po order 
oin
idein this 
ase we know that f preserves the d
po order. Hen
e if S �" X is a dire
tedsubset of X we have that(i) ffsjs 2 Sg is a dire
ted subset of Y(ii) W"ffsjs 2 Sg � f(W" S).Say k � f(W" S) (k 
ompa
t). Then " k is open in Y as it is S
ott open. Thusf�1(" k) 2 
X . But W" S 2 f�1(" k) and so 9s 2 S su
h that s 2 f�1(" k) )k � fs � W"ffsjs 2 Sg. Hen
e f(W" S) � W"ffsjs 2 Sg sin
e every element of Yis the join of 
ompa
t elements less than it. 2Thus S
ottSp is just the full sub
ategory of d
pos given by the algebrai
 d
pos.But what are the lo
ales that are going to 
orrespond to the S
ott spa
es? Theyare the Alexandrov lo
ales. A lo
ale X is said to be Alexandrov if and only if
X = A(K) for some poset K. Let AlexLo
 be the full sub
ategory of Lo

onsisting of those lo
ales whi
h are Alexandrov.Theorem 1.6.2 pt;
 de�ne an equivalen
e S
ottSp �= AlexLo
.Some work has been done already in the proof of Lemma [1.6.1℄. This allowed us to
on
lude �Idl(K) �= A(K) for any poset K. All we need to do is prove that S
ottspa
es are sober and Alexandrov lo
ales are spatial.S
ott spa
es are sober. We need to 
he
k that �X : X ! pt
X (x 7! px) isa homeomorphism between topologi
al spa
es for any S
ott spa
e X . Re
all that
px(U) = 1 , x 2 U .Say 
p : 
X ! 
 is the frame homomorphism 
orresponding to some point p ofX . We know 
X �= A(KX) where KX is the set of 
ompa
t elements of X . De�neIp � KX by Ip � fkj
p(" k) = 1gNow 
ertainly 
p(KX) = 1. But KX = Sf" kjk 2 KXg. And so the following areequivalent, f�g = 1
 = [f
p(" k)jk 2 KXg� 2 
p(" k) for some k 2 KX1 = 
p(" k) for some k 2 KXk 2 Ip for some k 2 KX:



32 CHAPTER 1. LOCALE THEORYi.e. Ip is nonempty.Say k1; k2 2 Ip ) 
p(" k1) = 1;
p(" k2) = 1. Then 1 � 
p(" k1) \ 
p(" k2).i.e. 1 � 
p(" k1\ " k2). But" k1\ " k2 = Sf" kjk1; k2 � k; k 2 KXgand so by a similar argument (i.e. using the fa
ts that 1
 = f�g and join is givenby union in 
) we get that 
p(" k) = 1 for some k 2 KX with k1; k2 � k. i.e.k 2 Ip and Ip is seen to be dire
ted. i.e. Ip 2 IdlKX �= X .Thus f : p 7! Ip is a fun
tion from the spa
e pt
X to the spa
e X . Is it 
ontinuous?Say U � X is an open subset of X . Then for any p 2 f�1U we have Ip 2 U . ButIp = W"fkjk 2 Ipgand U is S
ott open, so there exists k in Ip su
h that k 2 U . Therefore1 = 
p(" k) � 
p(U). Hen
e 
p(U) = 1.Conversely say 
p(U) = 1. U = Sf" kjk 2 UgHen
e (again using the fa
t that 1
 = f�g) there exists k 2 U with 
p(" k) = 1.So k 2 Ip and hen
e Ip 2 U sin
e U is upper 
losed. This last implies p 2 f�1U . Itfollows that p 2 f�1U , 
p(U) = 1i.e. f�1U = fpj
p(U) = 1g, and so f�1 is open implying that f is 
ontinuous.Noti
e we have also veri�ed that Ip 2 U ,� 
p(U) = 1.We 
he
k that f Æ �X (x) = x 8x 2 X and �X Æ f(p) = p 8p 2 pt
X and so
on
lude that any S
ott spa
e is sober.f Æ �X (x) = f(px) = Ipx= fkj
px(" k) = 1g= fkjx 2" kg= fkjk � xgBut the ideal of the last line 
orresponds to x under the isomorphism IdlKX �= X .(�X Æ f(p))(U) = 1 , pIp(U) = 1, Ip 2 U, 
p(U) = 1The last equivalen
e is by the observation (�) above. Hen
e �X Æ f = Id andf Æ �X = Id.Alexandrov lo
ales are spatial: The frame homomorphism 
orresponding to�Y : 
ptY ! Y is given by 
�Y (a) = fpj
p(a) = 1g. Clearly 
�Y is a surje
-tive frame homomorphism. We would like to prove that it is inje
tive whenever
Y = A(K) for some poset K.Say we have a; b 2 
Y with the property that 8p : 1 ! Y (i.e. for all points p ofY ) we have 
p(a) = 1 , 
p(b) = 1. Does this imply a = b?Well a = T for some T � K " T = T and b = S for some S � K " S = S sin
e
Y = A(K) for some poset K.Say k 2 K. De�ne 
pk : 
Y ! 
 by 
pk( �T ) = 1 , k 2 �T for all �T in 
Y .Now say k 2 T . Then 
pk(T ) = 1. Thus 
pk(S) = 1. Thus k 2 S. Hen
e T � S.Symmetri
ally we get S � T . So S = T and 
�Y is inje
tive. Alexandrov lo
ales
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ertain extent this example is for
ed. There is no real reason to investi-gate the S
ott spa
es, other than that by looking at them it is 
lear that we 
anuse the pt;
 adjun
tion in order to prove the result of interest, namely that thealgebrai
 d
pos as a full sub
ategory of all d
pos is equivalent to the Alexandrovlo
ales. (And even this is not the most straightforward way of looking at the re-sult: we 
an't justify looking at lo
ales unless we are trying to model a parti
ular
lass of spa
es and we have just said that we are not really looking spa
es, we arelooking at d
pos. The result, most simply stated, is a statement to the e�e
t thatthe 
ategory whose obje
ts are A(K) for posets K and whose morphisms are framehomomorphisms between them is dual to the full sub
ategory of d
pos 
onsistingof the algebrai
 d
pos.) However there are reasons to examine this parti
ular ex-ample of the pt;
 adjun
tion in a
tion over others: it is 
onstru
tive. Thus, in our
urrent 
onstru
tive framework, we are permitted to make statements like `...if Xis an Alexandrov lo
ale and x 2 X then...' sin
e we know that we 
onstru
tivelyhave points.However most proofs that parti
ular 
lasses of lo
ales are spatial (and hen
e 
anbe thought of as spa
es) are 
lassi
al: they require some 
hoi
e axioms. We will seethese proofs in the �nal se
tion of this 
hapter.A spe
ial 
ase of the Alexandrov lo
ales is important: the dis
rete lo
ales. Theseare de�ned as those lo
ales whose frame of opens are the upper 
ompletions (A)of dis
rete posets. A poset is dis
rete i� x � y implies x = y. We use DisLo
 todenote the full sub
ategory of Lo
 
onsisting of the dis
rete lo
ales. All dis
retelo
ales are spatial sin
e the Alexandrov lo
ales are spatial.Clearly the dis
rete lo
ales are exa
tly those lo
alesX su
h that 
X = PA for someset A, and spatially we are thinking of the dis
rete spa
es. A restri
tion of the equiv-alen
e alg-d
po�=AlexLo
 to the dis
rete lo
ales shows us that Set �= DisLo
where Set is the underlying topos. To see this last 
on
lusion note thatK �= Idl(K)if K is a dis
rete poset.We now turn to the retra
ts of the Alexandrov lo
ales. These are spatial byTheorem [1.5.2℄, and we might hope that they 
orrespond to the 
ontinuous posetsgiven that we know that the 
ontinuous posets are the retra
ts of the algebrai
 d
posand the algebrai
 d
pos 
orrespond to the Alexandrov lo
ales. Indeed this fa
t 
anbe veri�ed (we point the reader to [Vi
93℄ for a formal proof however). The rest ofthis se
tion 
ontains a dis
ussion of another 
hara
terization of the 
lass of lo
ali
retra
ts of the Alexandrov lo
ales. They are the 
ompletely distributive lo
ales. i.e.those lo
ales whose frame of opens is a 
ompletely distributive latti
e. The usualde�nition of a 
ompletely distributive latti
e is roughly `arbitrary joins distributeover arbitrary meets'. Te
hni
ally this amounts to the statement: if fJiji 2 Ig isan indexed family of sets thenVfW Jiji 2 Ig = Wf^ff(i)ji 2 Igjf 2 Fgwhere F = ff : I !`i2I Jijf(i) 2 Ji 8ig.However showing results about 
ompletely distributive latti
es with this de�-nition 
an often require the axiom of 
hoi
e: e.g. showing that the opposite ofa 
ompletely distributive latti
e is 
ompletely distributive requires the axiom of
hoi
e (e.g. lemma VII (1.10) of [Joh82℄). Faw
ett, Roseburgh and Wood addressthe problem of trying to �nd a 
onstru
tive version of the 
omplete distributivityaxiom. They say that a 
omplete latti
e A is 
onstru
tively 
ompletely distributive



34 CHAPTER 1. LOCALE THEORYif and only if the join map W : D(A) ! A (where D denotes the a
tion of taking alllower 
losed subsets) has a left adjoint. We see ([FW90℄,[RW91℄) that the notions of
onstru
tive 
omplete distributivity and ordinary 
omplete distributivity 
oin
ideif and only if we assume the axiom of 
hoi
e.It might appear that a de�nition in terms of the existen
e of an adjoint is out ofstep with some of our other de�nitions; however note that a d
po A is 
ontinuousif and only if W" : IdlA! A has a left adjoint.As an aside it is worth mentioning that the opposite of a 
onstru
tively 
om-pletely distributive latti
e 
an be proven to be 
onstru
tively 
ompletely distributiveif and only if we assume the ex
luded middle. Thus we 
an translate the ex
ludedmiddle into a statement about 
onstru
tively 
ompletely distributive latti
es. See[RW91℄.We say that a lo
ale X is CCD (
onstru
tively 
ompletely distributive) if andonly if 
X is a 
onstru
tively 
ompletely distributive latti
e. Let CCDLo
 denotethe full sub
ategory of Lo
 whose obje
ts are CCD.Theorem 1.6.3 A lo
ale X is CCD if and only if it is the retra
t of some Alexan-drov lo
ale.Proof: Consult [Vi
93℄. 21.7 Lo
ale TheoryThe pre
eding dis
ussion about the 
 a pt adjun
tion is just a pie
e of history. Itserves to 
onvin
e the doubtful reader that the 
ategory of lo
ales is a plausibleenvironment in whi
h to do topologi
al spa
e theory. From now on we shall takethis motivation for granted, forget that spa
es ever existed and develop lo
ale theoryas if it was topologi
al spa
e theory. O

asionally the topologi
al intuitions behindwhat we do are expli
itly referred to but mostly this is done impli
itly throughthe 
hoi
es we make of topologi
al adje
tives used to des
ribe lo
ali
 
on
epts. Formore motivation 
onsult [Joh82℄, [Isb72℄ and [Joh91℄.1.7.1 Sublo
alesIf X0 � X is a subspa
e in
lusion, then its inverse image (going to the subspa
etopology) is a surje
tion. We take this as our de�nition of a sublo
ale: a lo
ale mapX0 ! X is a sublo
ale if and only if the 
orresponding frame homomorphism is asurje
tion. The sublo
ales form a poset whi
h is denoted by Sub(X).There are two important 
lasses of sublo
ales: the 
losed sublo
ales and the opensublo
ales. The spatial intuition behind these 
lasses of sublo
ales is the idea of
losed and open subspa
es.Given a lo
ale X and an element a of 
X we 
an de�ne two surje
tions away from
X .Open: 
X �! # ab 7�! a ^ b
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losed: 
X �! " ab �! a _ bWithin the 
ategory of lo
ales we use the expressionsa� X:a� Xto refer to the lo
ale maps 
orresponding to these two frame surje
tions. Spatiallywhen we write :a ,! X we are thinking of the 
losed subspa
e 
orresponding tothe set theoreti
 
omplement of the open a.Noti
e that we 
an take the 
losure of any sublo
ale. The 
losure of X0 ,! X is:8i(0) ,! XLemma 1.7.1 For any sublo
ale i : X0 ,! X and 
losed sublo
ale :a ,! XX0 �Sub(X) :a , :8i(0) �Sub(X) :aProof: First note that X0 �Sub(X) :8i(0), for we 
an de�ne a frame homomor-phism, 
n :" 8i(0) ! 
X08i(0) _ a 7! 
i(a):(This is well de�ned sin
e 
i8i(0) = 0 .) Also note that the diagramXo n - :8i(0)R�����i R 	�����	X
ommutes in Lo
 proving X0 �Sub(X) :8i(0).Further note :8i(0) � :a if and only if a � 8i(0). (Essentially be
ause
na :" a �! 8i(0)a _ b 7�! 8i(0) _ bis a well de�ned frame homomorphism if and only if a � 8i(0).)But a � 8i(0) if and only if 
p :" a �! 
X0a _ b 7�! 
i(a)is a well de�ned frame homomorphism and soX0 � :a , :8i(0) � :aas required. 2



36 CHAPTER 1. LOCALE THEORY1.7.2 DensenessA lo
ale map f : X ! Y is dense if and only if 8a 2 
Y (
f(a) = 0 ) a = 0). Itis 
lear from the formula for the right adjoint to 
f that density of f is just theassertion that 8f (0) = 0.If f : X0� X is some sublo
ale of X then it is a dense sublo
ale of its 
losure.If a; b 2 
X for some lo
ale X then a! b 2 
X is given by the formulaa! b = W"f
ja ^ 
 � bg! is the well known Heyting arrow (see I 1.10 of [Joh82℄); it enjoys the propertythat for any a; b; 
 2 
X a ^ b � 
 , a � b! 
We introdu
e it here sin
e it is needed in the following example of a dense sublo
ale:given any lo
ale X de�ne a new lo
ale X:: by 
(X::) = fa 2 
X j::a = ag where: is the Heyting negation, i.e. :a = a! 0. Noti
e that the map
X �! 
X::a 7�! ::ais a surje
tive frame homomorphism and so we have a sublo
ale X:: ,! X . Thefa
t that (::a = 0 ) a = 0) means that this in
lusion is dense. Indeed it is theleast dense sublo
ale of X . It is not the 
ase that all topologi
al spa
es have leastdense subspa
es.1.7.3 Separation axiomsA lo
ale X is said to be 
ompa
t if whenever we have a dire
ted subset S of 
Xsu
h that the join of S is the top element of X then the top element of X is in S.Clearly this is the lo
ali
 analogy to the spatial idea of 
ompa
tness.Given two elements a; b of a frame 
X we say a� b (a well inside b) if and only if9 
 2 
X su
h that a ^ 
 = 0b _ 
 = 1Lemma 1.7.2 a� b , :a _ b = 1 where :a is the Heyting negation of a. i.e.:a = W"f�aj�a ^ a = 0g.Proof If a� b then there exists 
 with a^ 
 = 0 and b_ 
 =. But a^ 
 = 0 impliesthat 
 � :a sin
e :a = W"f�
j�
 ^ a = 0g. Hen
e :a _ b = 1.If :a _ b = 1 then 
ertainly a� b sin
e a ^ :a is always equal to 0. 2We say that a lo
ale X is regular if and only if 8a 2 
Xa = W"fbjb� agRe
all that a topologi
al spa
e X is regular if and only if for every 
losed F andevery x 62 F there are disjoint opens U; V su
h the F � U and x 2 V . This 
onditionimplies and is implied by the 
ondition: for every open WW = S"fV jV �Wg



1.7. LOCALE THEORY 37i.e. a topologi
al spa
e is regular if and only if the lo
ale whose frame of opens arethe opens of the spa
e is regular.Theorem 1.7.1 (a): A sublo
ale of a regular lo
ale is regular.(b): A 
losed sublo
ale of a 
ompa
t lo
ale is 
ompa
t.(
): A 
ompa
t sublo
ale of a regular lo
ale is 
losed.Proof: (a) Say i : X0 ,! X is a sublo
ale su
h that X is regular. Clearlya� b ) 
i(a)�
i(b). If a 2 
X0 then a = 
i(a0) for some a0 in 
X . Buta0 = W"fbjb� a0gHen
e a = 
i(a0) = "_f
i(b)jb� a0g� "_f
j
�
i(a0)g� 
(a0) = a(b) Say :a ,! x is a 
losed sublo
ale of X and X 
ompa
t. So 
(:a) =" a. SayS �"" a and W" S = 1"a = 1
X . Then S �" 
X and W" S = 1
X . Hen
e 9s 2 Ssu
h that s = 1
X = 1"a i.e. " a is the frame of opens of a 
ompa
t lo
ale. i.e. :ais 
ompa
t.(
) Say i : X0 ,! X is a sublo
ale su
h that X0 is 
ompa
t and X is regular. Weknow that i 
an be fa
tored as X0 ,! :8i(0) ,! Xwhere the �rst part of the 
omposition is dense. By (a) we know that :8i(0) isregular, and so we 
an 
on
lude our result provided we show that if i : X0 ,! X isalso dense then it is an isomorphism.First we 
he
k that 8a 2 
X if 
i(a) = 1 then a = 1. Certainly a = W"fbjb� agsin
e X is regular. So 1 = 
i(a) = W"f
i(b)jb� agHen
e 9b�a su
h that 
i(b) = 1 (as X0 is 
ompa
t). Thus 9
 b^
 = 0 a_
 = 1.Thus 
i(
) = 
i(b)^
i(
) = 
i(b^
) = 0. But this implies 8i
i(
) = 0 as 8i(0) = 0sin
e i is assumed to be dense. And so 
 = 0 be
ause 
 � 8i
i(
). We 
on
ludea = 1 as a = a _ 0 = a _ 
 = 1.We want to prove that 
i is an inje
tion for then we 
an 
on
lude that i is a lo
aleisomorphism. Say 
i(b1) = 
i(b2). It is suÆ
ient to prove for all a 2 
X thata� b1 , a� b2in order to 
on
lude b1 = b2 sin
e X is regular.But a� b1 , :a _ b1 = 1, 
i(:a _ b1) = 1, 
i(:a) _ 
i(b1) = 1, 
i(:a) _ 
i(b2) = 1, 
i(:a _ b2) = 1, :a _ b2 = 1, a� b2 2



38 CHAPTER 1. LOCALE THEORYWe say a lo
ale X is lo
ally 
ompa
t if and only if for every a 2 
X we havethat a = Wfbjb� agSo a lo
ale X is lo
ally 
ompa
t if and only if 
X is a 
ontinuous poset. Spatiallywe are thinking of the lo
ally 
ompa
t spa
es.X is said to be stably lo
ally 
ompa
t if and only if (it is lo
ally 
ompa
t and) the� relation satis�es (i) 1� 1 i.e. X is 
ompa
t(ii) a� b1; a� b2 ) a� b1 ^ b2where a; b1; b2 are arbitrary elements of 
X .Banas
hewski and Br�ummer ([BB88℄) des
ribe these lo
ales as 
orresponding to themost reasonable not ne
essarily Hausdor� 
ompa
t spa
es.Theorem 1.7.2 Any 
ompa
t regular lo
ale is stably lo
ally 
ompa
t.Proof: It is suÆ
ient to prove that for any 
ompa
t regular X if a; b 2 X thena� b , a� b(For from the de�nition of � it is easy to see that 1� 1 and a� b1; b2 )a� b1 ^ b2.) Say a� b and b � W" S. Then :a _ b � 1 and so1 � :a _W" S = W"f:a _ sjs 2 SgThus 1 � :a _ s for some s by 
ompa
tness. Hen
e a � s for some s 2 S and we
on
lude a� b.Conversely say a � b. b = W"fb1jb1 � bg sin
e X is regular. Therefore a � b1 forsome b1 � b. Hen
e a� b. 2Another example of a stably lo
ally 
ompa
t lo
ale is a 
oherent lo
ale; spatially weare thinking of the 
oherent (or spe
tral) spa
es. A lo
ale X is said to be 
oherenti� (i) 1� 1(ii) 8k1; k2 2 
X if k1 � k1 and k2 � k2 then k1 ^ k2 � k1 ^ k2:(iii) 8a 2 
X a = "_fkjk � k; k � agWe use K
X to denote the subset of 
ompa
t opens of a lo
ale X . i.e. K
X �fk 2 
X jk � kg. So (i) and (ii) are saying that 
ompa
t opens are 
losed underthe formation of meets and (iii) is saying that every open is the join of 
ompa
topens less than it.From the above de�nition of a 
oherent lo
ale it is immediate that 
oherent lo
alesare stably lo
ally 
ompa
t.Just as algebrai
 d
pos 
an also be de�ned as those d
pos whi
h are ideal 
omple-tions of posets we �nd thatTheorem 1.7.3 A lo
ale X is 
oherent if and only if 
X �= Idl(D) for somedistributive latti
e D.Proof: What is needed is a repetition of the proof that a d
po is algebrai
 if andonly if it is the ideal 
ompletion of its 
ompa
t elements. We only need to further
he
k that the 
ompa
t elements form a distributive latti
e. It is trivial to 
he
k



1.7. LOCALE THEORY 39that the least element is 
ompa
t and that if a1; a2 are 
ompa
t then so is a1 _ a2.Further, 
losure of 
ompa
t opens under �nite interse
tion is part of the de�nitionof X being 
oherent; so the 
ompa
t elements form a subdistributive latti
e of 
X .2 Just as the 
ontinuous posets are the retra
ts of the algebrai
 d
pos, we �nd asimilar result applies to the stably lo
ally 
ompa
t lo
ales:Theorem 1.7.4 A lo
ale X is stably lo
ally 
ompa
t if and only if it is the retra
tin Lo
 of some 
oherent lo
ale Y .Proof: Say X is stably lo
ally 
ompa
t. Then 
X is a 
ontinuous poset. Butthe fa
t that any su
h poset is the retra
t of its ideal 
ompletion is seen in theproof [1.4.2℄ (whi
h showed us that the 
ontinuous posets are exa
tly the retra
tsof the algebrai
 d
pos). The d
po maps that prove that this retra
t exists are## : 
X ! Idl
X and W" : Idl
X ! 
X .However W" is left adjoint to #: 
X ! Idl
X and so preserves joins. ## is leftadjoint to W" and so W" preserves meets. Hen
e W" is a frame homomorphism.But ##, as a left adjoint, preserves all joins and the fa
t that it preserves �nite meetsfollows from the 
onditions (i) and (ii) in the de�nition of stably lo
ally 
ompa
tabove. Hen
e 
X is the retra
t in Frm of the frame of opens of some 
oherentlo
ale. Hen
e X is the retra
t in Lo
 of some 
oherent lo
ale.In the other dire
tion say X is the retra
t of some 
oherent lo
ale Y . Then thereis a retra
t diagram 
X - 
X�����
i �
Y
p ?\in Frm. 
Y is an algebrai
 d
po and so 
X is a 
ontinuous poset by [1.4.2℄. Weonly have to 
he
k the stability 
onditions (i),(ii) in order to verify that X is stablylo
ally 
ompa
t.But re
all the 
laim of the proof of [1.4.2℄ whi
h showed us:a�
X �a if and only if 9�b 2 
Y a � 
i(�b) �b�
Y 
p(�a)The stability 
onditions for X follow from the fa
t that they hold for Y . 2Finally, just as the ideal 
ompletion of a poset is the free d
po over that posetwe �nd that the ideal 
ompletion of a distributive latti
e is the free frame over thatdistributive latti
e. The proof follows the same route: if f : D ! 
X is a dis-tributive latti
e homomorphism to some frame 
X then the frame homomorphism
orresponding to it is given by: 
p : IdlD ! 
X where 
p(I) = W"ff(k)jk 2 Ig.In the other dire
tion a frame homomorphism from IdlD to 
X is taken to itsrestri
tion to 
ompa
t opens.A map f : X ! Y between stably lo
ally 
ompa
t lo
ales is said to be semi-proper if and only if 
f preserves the way below relation �. De�ne CohLo
, the
ategory of 
oherent lo
ales, to have 
oherent lo
ales as obje
ts and semi-propermaps as morphisms. Clearly the maps between 
oherent lo
ales that we are looking
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h preserve the 
ompa
t opens; they are de�ned in [Joh82℄ asthe 
oherent maps.What is the 
lass of lo
ales whi
h are both 
ompa
t regular and 
oherent? Theseare 
alled the Stone lo
ales. Before we o�er some alternative 
hara
terisations ofthem we need to de�ne what it means for a lo
ale to be zero-dimensional. A lo
aleX is zero-dimensional if and only if for every a in 
X we have thata = W"f�aj9
 �a ^ 
 = 0 �a _ 
 = 1 �a � agOf 
ourse we refer to elements �a 2 
X as 
omplemented if and only if there existssome 
 2 
X su
h that �a ^ 
 = 0 and �a _ 
 = 1. Noti
e that an open �a is 
omple-mented i� �a � �a. Further noti
e that the set of all 
omplemented opens (denoted(
X)
) forms a Boolean algebra. So the zero-dimensionality 
ondition 
ould equallywell have been written: every open is the join of 
omplemented opens less than it.Theorem 1.7.5 The following are equivalent for any lo
ale X.(i) X is Stone:(ii) X is 
ompa
t and zero-dimensional.(iii) 
X is the ideal 
ompletion of some Boolean algebra:Proof:(i))(ii). 8a; b 2 
X we know a� b, a� b sin
e 
X is 
ompa
t regular. But Xis 
oherent so 8a 2 
X a = W"f�aj�a� �a �a � ag) a = W"f�aj�a� �a �a � agHowever `�a� �a' is just the same as saying `a is 
omplemented'.(ii))(iii). As X is 
ompa
t we know that whenever �a is 
omplemented (i.e. when-ever �a � �a) we have that �a � �a. i.e. �a is 
ompa
t. So in the presen
e of 
om-pa
tness the zero-dimensionality 
ondition implies that every open is the join of
ompa
t elements lower than it. But in the other dire
tion if �a � �a then be
ause�a = W"fa0ja0 � a0 a0 � �ag we have that �a � a0 � a0 � �a for some a0. Hen
ea0 = �a and the 
omplemented opens 
oin
ide with the 
ompa
t opens. The 
omple-mented opens are 
ertainly 
losed under meet and so we know that X is 
oherent:it is the ideal 
ompletion of its 
ompa
t opens. i.e. it is the ideal 
ompletion of its
omplemented opens. But these form a Boolean algebra.(iii))(i). 8a 2 
X we know a = W"fkjk � k k � ag. We also know that the setfkjk � kg is a Boolean algebra. So if k � k then there exists 
 su
h that k ^ 
 = 0and k _ 
 = 1. It follows that if k is less than a then k ^ 
 = 0 and a _ 
 = 1. i.e.k � a. Hen
e a = W"fbjb� ag 8a 2 
Xi.e. 
X is regular. Certainly X is (
ompa
t and) 
oherent sin
e Boolean algebrasare distributive latti
es.1.8 The Constru
tive Prime Ideal TheoremThe Prime Ideal Theorem (PIT) is the statement: for every distributive latti
e D,provided D is not trivial (i.e. provided D 6= f�g) then there exists an ideal I � D



1.8. THE CONSTRUCTIVE PRIME IDEAL THEOREM 41with the property that if a ^ b 2 I then either a 2 I or b 2 I and 1 62 I . i.e. I is aprime ideal.The prime ideal theorem is well known, 
lassi
ally, to be a weak form of the axiomof 
hoi
e (see e.g. Chapter 7 of [Joh87℄). Assuming the ex
luded middle (so thesubobje
t 
lassi�er is f0; 1g) if f : D ! 
 is a distributive latti
e homomorphismthen the set fajf(a) = 0g is a prime ideal. Certainly it is an ideal. If f(a ^ b) = 0and we �nd that both f(a) 6= 0 and f(b) 6= 0 then we 
an from these 
on
ludethat f(a ^ b) 6= 0. But we are assuming the ex
luded middle so we 
an use this
ontradi
tion to 
on
lude that either f(a) = 0 or f(b) = 0. Thus fajf(a) = 0g is aprime ideal for any distributive latti
e homomorphism f : D ! 
. This argumentworks in the other dire
tion: any prime ideal I � D gives rise to a distributivelatti
e homomorphism f : D ! 
 with the property that f(a) = 0 if and only ifa 2 I .Hen
e, if we are in a Boolean topos and so 
an use the ex
luded middle, we 
an �ndan equivalent form of the PIT: for every distributive latti
eD providedD 6= f�g thenthere exists a distributive latti
e homomorphism f : D ! 
. However we are letdown by the 
onditionD 6= f�g whi
h (although possible to de�ne in a general toposvia Heyting negation) is 
learly undesirable in our 
onstru
tive 
ontext. Howeverthe above observations help us home in on the following statement whi
h will makesense in any topos:Constru
tive Prime Ideal Theorem (CPIT): For every distributive latti
e Dif a 2 D has the property that f(a) = 0 for every distributive latti
e homomorphismf : D ! 
 then a = 0.(I'd like to thank Till Plewe for helping me towards this de�nition.)Theorem 1.8.1 CPIT , PIT in a Boolean topos. i.e. if we are allowed the ex-
luded middle then the prime ideal theorem and the 
onstru
tive prime ideal theoremare logi
ally equivalent.Proof: Assume CPIT and say we are given some distributive latti
e D whi
h isnot trivial. Then 1 6= 0 in D and so by CPIT there exists f : D ! 
. i.e. we haveveri�ed PIT.Conversely say we are given a distributive latti
e D and a 2 D has the property that8f : D ! 
, f(a) = 0. Say a 6= 0. Then the distributive latti
e # a is non-trivialand so there exists a distributive latti
e homomorphism ( �f say) from it to 
. Setf = �f Æ 
 where 
 is the distributive latti
e homomorphism from D to # a given by
(b) = a ^ b. Clearly f(a) = �f(1#a) = 1 6= 0 
ontradi
ting our assumption about a.Hen
e a = 0. 2We now note that just as the prime ideal theorem is well known to be equiv-alent to the statement `every non-trivial Boolean algebra has a prime ideal' thereis a similar 
onstru
tively equivalent way of stating the 
onstru
tive prime idealtheorem:Lemma 1.8.1 CPIT is equivalent to the statement: for every Boolean algebra B ifb 2 B is an element that satis�es f(b) = 0 for every Boolean latti
e homomorphismf : B ! 
 then b = 0.Proof: Clearly CPIT implies this statement. Conversely assume the statementholds for every Boolean algebra B. Say we are given a distributive latti
e D andsome a 2 D with the property that f(a) = 0 for every f : D ! 
. Then leti : D ,! B be the in
lusion of D into the free Boolean algebra over it. It followsthat �f(ia) = 0 for every Boolean homomorphism �f from B to 
. Hen
e i(a) = 0by the assumption of the statement. Hen
e a is zero as i is an inje
tion. 2



42 CHAPTER 1. LOCALE THEORYWe 
an now forget about the ex
luded middle and Boolean toposes. They wereonly introdu
ed in order to verify that our 
hoi
e for the 
onstru
tive prime idealtheorem was reasonable.Theorem 1.8.2 In any topos if CPIT holds then all 
oherent lo
ales are spatial.Proof: Say X is a 
oherent lo
ale. Noti
e that the frame homomorphism 
orre-sponding to the 
ounit of the adjun
tion is a surje
tion. It is given by
�X : 
X ! 
ptXI 7! fpj
p(I) = 1gWe want to show that this surje
tion is an inje
tion for every 
oherent X . Sayfpj
p(I) = 1g = fpj
p(J) = 1gfor some I; J 2 
X �= Idl(K
X). This implies that for every point p, 
p(I) and
p(J) are the same element of the subobje
t 
lassi�er 
 (re
all that i = Wf1j1 � igfor every i 2 
). It follows that 
p(I) � 
p(J) and in parti
ular that if 
p(J) = 0then 
p(I) = 0.Re
all that any distributive latti
e 
an be quotiented by an ideal (Lemma [1.3.4℄).We quotient K
X by J . So [b℄ = 0 , b 2 J 8b 2 K
X and there is a one toone 
orresponden
e between distributive latti
e homomorphisms f : K
X ! 
whi
h satisfy f(b) = 0 for all b 2 J and all distributive latti
e homomorphisms�f : K
X= �J! 
. It follows, from the fa
t that 
X �= Idl(K
X) is the free frameover the distributive latti
eK
X that there is a one to one 
orresponden
e betweenpoints, p, of X satisfying 
p(J) = 0 and distributive latti
e homomorphisms fromK
X= �J to 
.Now to verify I � J it is suÆ
ient to 
he
k that 8a 2 I and 8 �f : K
X= �J! 
�f [a℄ = 0for then by CPIT [a℄ = 0 i.e. a 2 J .However �f [a℄ = 0 , 
p(# a) = 0 where p is the point 
orresponding to �f (whi
hmust satisfy 
p(J) = 0). But 
p(# a) � 
p(I) � 
p(J) = 0. 2Re
all from Theorem [1.5.2℄ that the retra
ts of all spatial lo
ales are spatial. Itfollows immediately that provided CPIT holds (a) all stably lo
ally 
ompa
t lo
alesand (b) all 
ompa
t regular lo
ales are spatial. It is also worth saying that thereforethe Stone lo
ales are spatial (if we assume CPIT) for we haveTheorem 1.8.3 In any topos if the Stone lo
ales are spatial then the 
onstru
tiveprime ideal theorem is true.Proof: Say B is a Boolean algebra and b 2 B has the property that for everyBoolean map f : B ! 
, f(b) = 0. It follows that for every su
h f , f(:b) = 1.There is a one to one 
orresponden
e between these fun
tions f and points of theStone lo
ale whose frame of opens is given IdlB sin
e IdlB is the free frame overthe Boolean algebra B. It follows that for every point p of this lo
ale 
p(# :b) = 1Thus fpj
p(# :b) = 1g = fpj
p(# 1) = 1g.But we are assuming that the Stone lo
ales are spatial and so this 
ondition impliesthat # :b =# 1. Hen
e :b = 1, hen
e b = 0 and so by Lemma [1.8.1℄ the 
onstru
-tive prime ideal theorem is veri�ed.2



Chapter 2Preframes and theGeneralized CoverageTheorem
2.1 Introdu
tionThis 
hapter is more latti
e theoreti
 than lo
ali
. We give a des
ription of pre-frames (as introdu
ed by Banas
hewski [Ban88℄), and show how they form a sym-metri
 monoidal 
losed 
ategory. We prove this by adapting K�r�i�z's pre
ongruen
esto the 
ontext of preframes. We re
all [JT84℄ that the 
ategory of SUP-latti
esis symmetri
 monoidal 
losed. Further analogies between SUP-latti
es and pre-frames be
ome 
lear: frames 
an be viewed both as spe
ial types of monoids inthe symmetri
 monoidal 
ategory of preframes and as spe
ial types of monoids inthe symmetri
 monoidal 
ategory of SUP-latti
es. The latter fa
t is shown in Joyaland Tierney [JT84℄, the former in Johnstone and Vi
kers [JV91℄. Moreover frame
oprodu
t (=lo
ale produ
t) 
an be viewed as either tensor within the 
ategory ofpreframes or as tensor in the 
ategory of SUP-latti
es. This is the lo
ali
 versionof the motivating example whi
h is des
ribed in the introdu
tion to the thesis. Theusefulness of this result is seen immediately with a proof of the lo
ali
 Ty
hono�theorem.Not only 
an we view lo
ale produ
ts in these di�erent ways, the same applies toall lo
ale limits: in parti
ular frame 
oequalizers (=lo
ale equalizers) 
an be viewedas parti
ular SUP-latti
e 
oequalizers and as parti
ular preframe 
oequalizers. Boththese fa
ts stem from a general 
ategori
al result about any symmetri
 monoidal
losed 
ategory. We 
all this result the generalized 
overage theorem and note thatit has an `opposite'. The end of the 
hapter is about appli
ations of the generalized
overage theorem (and its opposite). In parti
ular the name of the theorem is jus-ti�ed: it 
overs both the preframe version and Johnstone's original (SUP-latti
e)version of the 
overage theorem. With the help of its `opposite' we are able todedu
e the fa
t that preframes have 
oequalizers from the fa
t that SUP-latti
eshave 
oequalizers. 43



44CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREM2.2 PreframesJohnstone's 
overage theorem [Joh82℄ gives us a 
on
rete des
ription of the frame
orresponding to a set of generators and frame relations. The fa
t that su
h a frameexists 
an be veri�ed easily enough by 
onstru
ting the free frame on the generatorsand then quotienting by the least 
ongruen
e 
ontaining the relations. Howeverthe advantage of the 
overage theorem is that it gives us a 
on
rete des
riptionof the frame being presented. Hen
e we have a 
on
rete des
ription of arbitraryframe 
oprodu
t, and this 
an then be used to prove that the 
oprodu
t of 
ompa
tframes is 
ompa
t. In other words the produ
t of 
ompa
t lo
ales is 
ompa
t (i.e.lo
ali
 Ty
hono� theorem). It was observed in Abramsky and Vi
kers' work onquantales ([AV93℄) that the real 
ontent of the 
overage theorem is the fa
t thatthe frame being presented is isomorphi
 to the free SUP-latti
e on another set ofgenerators and relations. This ability to des
ribe frames as parti
ular quotientsof free SUP-latti
es is useful in the 
ontext of quantales sin
e there one is oftentrying to �nd SUP-latti
e homomorphisms away from a parti
ular frame. In fa
tthe 
overage theorem extends very naturally to be
ome a statement about how topresent quantales as parti
ular SUP-latti
es.The proof of the lo
ali
 Ty
hono� theorem using Johnstone's original des
riptionof the 
oprodu
t frame (see III 1.7 of [Joh82℄) is far from straightforward. Manyattempts were made to simplify e.g.[Ban88℄, [JV91℄. In [JV91℄ the authors developthe theory of preframes, and 
he
k that given a set of generators and preframerelations then the preframe being presented is well de�ned. It is then possible to�nd a preframe version of the 
overage theorem: it states that given a set of gen-erators and frame relations then the frame being presented is isomorphi
 to thepreframe being presented by some other set of generators and relations. Just aswas done with the original 
overage theorem this preframe version 
an be used togive an expli
it des
ription of the 
oprodu
t of frames. Only now the 
oprodu
t ispresented as a preframe and sin
e we know that a frame is 
ompa
t if and only if aparti
ular preframe homomorphism exists with the frame as its domain, the proofof the lo
ali
 Ty
hono� theorem be
omes mu
h simpler. This is what motivates usto look at preframes.A preframe is a poset with dire
ted joins and �nite meets su
h that the dire
tedjoins distribute over the �nite meets. A preframe homomorphism preserves dire
tedjoins and �nite meets. The name `preframe' was introdu
ed by Banas
hewski inhis paper \Another look at the lo
ali
 Ty
hono� theorem" [Ban88℄, although theseobje
ts had already been looked at by Gierz et al as meet 
ontinuous semilatti
es[GHKLM80℄.We aim to show that the 
ategory PreFrm of preframes is symmetri
 monoidal
losed. Instead of just 
onstru
ting a tensor produ
t in PreFrm we address themore general question of whether preframe presentations present. i.e. if we aregiven a set G of generators and a set R of preframe equations of elements of G isthe preframe PreFrm< GjR >well de�ned?It is true that su
h a general presentation presents [JV91℄ though for our purposeswe only need to show that a smaller 
lass of presentations present. We aim to 
he
kthat for any meet semilatti
e S,PreFrm < S(qua meet semilatti
e)j _" X = _"Y (X;Y ) 2 R >



2.3. PRECONGRUENCES 45is well de�ned; where R is a set of pairs (X;Y ) with X and Y dire
ted subsets ofS. A note on notation is appropriate: the expression `qua meet semilatti
e' is short-hand for saying that the equationsa ^ b = a ^S b 8a; b 2 S1 = 1Smust be added to the presentation. This is saying that what is true in the semi-latti
e must be inherited by the preframe being presented. The meaning of theexpressions `qua preframe', `qua frame' et
 should now be 
lear.It is an easy exer
ise in the de�nition of what it means for a presentation topresent to 
he
k that we 
an further assume that the X and Y s in R are lower
losed and that R satis�es the following meet stability 
ondition:(8a 2 S)[(X;Y ) 2 R ) (fx ^ ajx 2 Xg; fy ^ ajy 2 Y g) 2 R℄2.3 Pre
ongruen
esThese were introdu
ed by K�r�i�z [K�r�i�z86℄ in his study of the 
ompletion of a uniformlo
ale. Given a frame 
X a pre
ongruen
e, R, on it is a subsetR � 
X �
Xsu
h that whenever aRb we have that the setfuj(a ^ u)R(b ^ u)gis a join basis for 
X . i.e. 8
 2 
X 
 = WU where U � fuj(a ^ u)R(b ^ u)g. Of
ourse this does not imply that a pre
ongruen
e satis�es any of the axioms of beingan equivalen
e relation.We say that u 2 
X is R-
oherent if and only if whenever aRb then(a � u) , (b � u)The set of R-
oherent elements is 
learly 
losed under all meets. Further we havethat if u is R-
oherent and 
 2 
X then 
 ! u is R-
oherent. For if aRb then9Q � fvj(v ^ a)R(v ^ b)g su
h that WQ = 
. Thena � 
! u , a ^ 
 � u, a ^ q � u 8q 2 Q, b ^ q � u 8q 2 Q, b ^ 
 � u, b � 
! uIt is a well known fa
t (see e.g. [6.2.8℄ of [Vi
89℄) that a subset A0 of a frame(
X) is a surje
tive image (via the map a 7! ^fb 2 A0ja � bg) of that frame ifit is 
losed under all meets and is 
losed under the Heyting arrow in the mannerdes
ribed above. i.e. (8u 2 A0)(8
 2 
X)(
 ! u 2 A0). So if we de�ne 
X(R)to be the set of R-
oherent elements of 
X then we see that there is a framesurje
tion �R : 
X ! 
X(R). �R(a) is given by ^fuja � u u R-
oherent g andso a � �R(a) 8a. Also, joins on 
X(R) are 
al
ulated as follows:



46CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMW
X(R) T = �R(WT )for all T � 
X(R)The map �R is universal in the following sense:Theorem 2.3.1 (K�r�i�z) Given a frame 
X with a pre
ongruen
e R on it any framehomomorphism 
f : 
X ! 
Y satisfying (aRb ) 
fa = 
fb) fa
tors (uniquely)through �R.Proof: Clearly it is enough to prove that8a 2 
X 
f�R(a) = 
f(a) (�)Set s(a) = Wfb 2 
X j
f(b) � 
f(a)g. Then if �aR�b we see that�a � s(a), 
f(�a) � 
f(a), 
f(�b) � 
f(a), �b � s(a)i.e. s(a) is R-
oherent, and so �R(s(a)) = s(a). Hen
e the fa
t that a � s(a) implies�R(a) � s(a). Clearly, by the fa
t that 
f preserves joins, we have
fs(a) � 
f(a).And so 
f(�R(a)) � 
f(a) from whi
h (�) follows as �R is in
ationary. 2The idea of prenu
lei was introdu
ed by Banas
hewski ([Ban88℄) to help withhis proof of a lo
ali
 version of Ty
hono�'s theorem. �0 : 
X ! 
X is a prenu
leusif(1) it is monotone(2) a � �0(a) 8a 2 
X(3) �0(a) ^ b � �0(a ^ b) 8a; b 2 
X .Condition (2) implies that the set of �0-�xed elements of 
X is 
losed underarbitrary meets. Say �0(u) = u and 
 2 
X , then �0(
 ! u) � 
 ! u i�
 ^ �0(
 ! u) � u. But 
 ^ �0(
 ! u) � �0(
 ^ (
 ! u)) � �0(u) � u and sothe set of �0-�xed elements is the frame of opens of a sublo
ale by the same reason-ing that allowed us to 
on
lude that 
X(R) is the frame of opens of a sublo
ale.Given a prenu
leus �0 : 
X ! 
X de�ne R�0 � 
X �
X byaR�0b , (8u 2 
X)[(�0u = u)) (a � u, b � u)℄Noti
e from this de�nition that �0(u)R�0u 8u.Lemma 2.3.1 R�0 is a pre
ongruen
e.Proof: Assume aR�0b.I 
laim that fvj(a^ v)R�0(b^ v)g is the whole of 
X and so 
ertainly is a join basisfor 
X .So I need to prove, given an arbitrary v 2 
X , that if u 2 
X satis�es �0(u) = uthen (a ^ v) � u , (b ^ v) � u



2.3. PRECONGRUENCES 47But (a ^ v � u , a � v ! u) and u �0-�xed ) (v ! u) �0-�xed (seeabove).So (a � v ! u , b � v ! u , b ^ v � u) as required. 2Cru
ially we �nd that the set of R�0 -
oherent elements is the same as the set of�0-�xed elements. One way round of this impli
ation is obvious from the de�nitionof R�0 : if u is �0-�xed then it is R�0-
oherent. Conversely say u is R�0 -
oherent.We know that �0(u)R�0u, and so �0(u) � u , u � u. Hen
e �0(u) = u.I am not sure of the extent to whi
h pre
ongruen
es and prenu
lei are the samething. Certainly they are used in the same way: K�r�i�z's universal theorem abovehaving an identi
al form to Banas
hewski's lemma 1 in [Ban88℄.Given a pre
ongruen
e R the mappingu 7�! u _Wfa ^ bj9
; 
Ra; 
 ^ b � ugis a prenu
leus, although (the trivial) proof of this fa
t doesn't require R to be apre
ongruen
e: it 
ould be any subset of 
X �
X .Also the pre
ongruen
es R�0 that we get from prenu
lei 
annot 
over all possible
ongruen
es. We saw that �0(u)R�0u for every u 2 
X , but the de�nition of pre
on-gruen
es allows for the empty pre
ongruen
e. We leave these theoreti
al dis
ussionsaside and use pre
ongruen
es only in what follows.For any meet semilatti
e A let �A be the set of lower 
losed subsets of A. It iswell known that �A is the free frame over the semilatti
e A.Theorem 2.3.2 Given a preframe A the setRA � f(X; # _"X)jX a dire
ted lower subset of Agis a pre
ongruen
e on �A. Moreover �A(RA) is the free frame over the preframe A.Remark: It is easy to see that the RA-
oherent elements of �A are exa
tly theS
ott 
losed subsets of A. i.e. the 
lassi
al 
omplements of the S
ott opens.Proof: That RA is a pre
ongruen
e is quite straight forward: it is well known thatthe set of sets of the form # a is a join basis for �A and sin
e# a \X = fx ^ ajx 2 Xg# a\ # "_X = # "_fx ^ ajx 2 Xgfor any lower 
losed dire
ted X we have that(# a \X)RA(# a\ # W"X)for every a.We now note that the 
omposite A #�! �A �RA�! �A(RA) is a preframe homomor-phism. To see this say we are given X �" A whi
h is lower 
losed and dire
ted. Weneed to prove that �RA # W"X = W"�A(RA)f�RA # xjx 2 XgBut �RA is a frame homomorphism and so"_�A(RA)f�RA # xjx 2 Xg = �RA "[f# xjx 2 Xg= �RAX



48CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMBut we know that �RA # W"X = �RAX from K�r�i�z's universal theorem. Hen
e�RAÆ # is a preframe homomorphism.Now say we are given some preframe homomorphism f : A ! B where B is someframe. Sin
e f is a meet semilatti
e homomorphism we know that it will fa
tor(uniquely) through #. i.e. 9! �f : �A! B (a frame hom.) su
h that �fÆ #= f .�f is given by �f(Y ) = WBff(y)jy 2 Y g. All we need to do (to 
he
k that �A(RA)is the free frame on A) is verify that �f satis�es the pre
ondition of K�r�i�z's universaltheorem; for then �f will fa
tor through �RA . i.e. we need that if URV then�fU = �fV . But this amounts to showing for any (lower) dire
ted X that�fX = �f # W"Xi.e. that W"ffxjx 2 Xg = f W"X , whi
h follows at on
e sin
e f is a preframehomomorphism. 2We 
an also de�ne pre
ongruen
es on preframes; and this will give rise to auniversal theorem identi
al to K�r�i�z's ex
ept that the word `frame' is repla
ed withthe word `preframe'. From this new universal theorem the fa
t that preframe pre-sentations present will follow as an easy 
orollary. Proof of this new theorem relieson applying K�r�i�z's universal theorem.Given a preframe A a pre
ongruen
e on A is a subset R � A�A su
h that if aRbthen fuj(a ^ u)R(b ^ u)g is a dire
ted join basis for A. i.e. 8a 2 A there existsU �" fuj(a ^ u)R(b ^ u)g su
h that a = W" U .Say we are given a preframe A with a pre
ongruen
e R on it. Then this pre
on-gruen
e gives rise to a pre
ongruen
e on the free frame on A in the following way:�R � �A(RA) � �A(RA) is de�ned to be f(# a; # b)jaRbg. We must 
he
k that �R isa pre
ongruen
e. Say # a �R # b. Now 8U 2 �A(RA) we have U = Su2U # u and soby applying �RA : �A ! �A(RA) we see that U = W�A(RA)f# uju 2 Ug. Hen
e to
on
lude that �R is a pre
ongruen
e we must but 
he
k that # u is a �A(RA)-join ofelements V 2 �A(RA) su
h that (# a \ V ) �R(# b \ V ) for any u 2 A.Sin
e u 2 A and aRb we know (by de�nition of pre
ongruen
e on a preframe)that u = W"Q for some Q su
h that (a ^ q)R(b ^ q) 8q 2 Q. We know that#: A �! �A(RA) is a preframe homomorphism and so# u = W"�A(RA)f# qjq 2 QgBut (a^q)R(b^q) implies # (a^q) �R # (b^q) and so (# a)^(# q) �R(# b)^(# q). Thus# a is a join of elements V 2 �A(RA) su
h that (# a \ V ) �R(# b \ V ) as required.Hen
e �R is a pre
ongruen
e on �A(RA). This 
onstru
tion (of �R from R ) will beused inTheorem 2.3.3 If R is a pre
ongruen
e on a preframe A then there exists an arrow
 : A! C in the 
ategory of preframes whi
h is universal amongst arrows with theproperty aRb ) 
(a) = 
(b).Proof: We know (see above) that �R � f(# a; # b)jaRbg is a pre
ongruen
e on thefree frame on A, �A(RA) and so there is a frame homomorphism� �R : �A(RA) �! �A(RA)( �R)The map #: A �! �A(RA) is a preframe inje
tion. De�ne C to be the leastsubpreframe of �A(RA)( �R) generated by the image of f# aja 2 Ag under � �R. Clearlythe map 
 : A! C de�ned by a 7! � �R # a is a preframe homomorphism. In fa
t itis easy to see that 
 is a preframe epimorphism. Also note that if aRb then # a �R # band so � �R(# a) = � �R(# b) by K�r�i�z's universal theorem, and so 
(a) = 
(b).Now say we are given f : A ! B, an arrow in PreFrm whi
h satis�es aRb )



2.4. PRESENTATIONS 49fa = fb.The in
lusion #: B ! �B(RB) of B into its free frame is a preframe homomorphismand so the 
omposite # Æf must fa
tor through the in
lusion of A into its free frame.i.e. there exists �f : �A(RA)! �B(RB) a frame homomorphism makingA � #- �A(RA)Bf?� #- �B(RB)�f?
ommute.Say # a �R # b. Then aRb and so fa = fb. So 
ertainly # fa =# fb i.e. �f # a = �f # b.It follows from K�r�i�z's universal theorem that there exists �g : �A(RA)( �R)! �B(RB)a frame homomorphism su
h that �g Æ � �R = �f . It follows at on
e that�g Æ � �R # a = �f # a =# faand so the set �g�1f# bjb 2 Bg is a subpreframe of �A(RA)( �R) whi
h 
ontains theset f� �R # aja 2 Ag. Hen
e it 
ontains C. It follows that �g restri
ts to a fun
tionfrom C to f# bjb 2 Bg �= B. So there is a preframe g : C ! B with g Æ 
 = f asrequired. The uniqueness of su
h a g is immediate from our remark earlier that 
is a preframe epimorphism. 2Notation: By analogy to K�r�i�z's result we 
all the C above A(R) and we use �R todenote the preframe map 
 : A! C.2.4 PresentationsFor a meet semilatti
e S re
all that IdlS is the set of lower dire
ted subsets of S.It 
an be 
he
ked that IdlS is the free preframe on the meet semilatti
e S. We arenow in a position to prove:Theorem 2.4.1 If S is a meet semilatti
e and R is a set of pairs (X;Y ) where X;Yare dire
ted lower 
losed subsets of S and R satis�es the following meet stability
ondition:(8a 2 S)[(X;Y ) 2 R ) (fx ^ ajx 2 Xg; fy ^ ajy 2 Y g) 2 R℄then PreFrm< S (qua meet semilatti
e) jW"X = W" Y (X;Y ) 2 R >is well de�ned.Proof: The set f# sjs 2 Sg is a dire
ted join basis for Idl(S) and so the 
onditionson R given in the statement of the theorem imply that R is a pre
ongruen
e on thepreframe Idl(S). We 
he
k thatIdl(S)(R) �=PreFrm< S (qua meet-semilatti
e) jW"X = W" Y (X;Y ) 2 R >IdlS is the free preframe on S and so given any meet semilatti
e homomorphisms : S ! B to some preframe B whi
h satis�es W"Bfs(x)jx 2 Xg = W"Bfs(y)jy 2 Y gfor every (X;Y ) 2 R we know that s fa
tors uniquely through #: S ! Idl(S). i.e.there exists �s : Idl(S)! B su
h that �sÆ #= s. But XRY implies �s(X) = �s(Y ) and
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tors through �R : Idl(S)! Idl(S)(R). 2The rest of this se
tion and Se
tion 2.6 to follow spell out the 
onsequen
esof the fa
t that preframe presentations present and as su
h are repetitions of theresults of [JV91℄.Now that Theorem [2.4.1℄ is proven we try out some examples. As with anypresentable algebrai
 theory we have a tensor produ
t. Given A and B there is apreframe A
B with a preframe bihomomorphismO : A�B ! A
 B whi
h is universal amongst all su
h bihomomorphisms. So setS � ^ � SLat < aOb; a 2 A; b 2 Bj(aOb1) ^ (aOb2) = aO(b1 ^ b2) a 2 A; b1; b2 2 B(a1Ob) ^ (a2Ob) = (a1 ^ a2)Ob a1; a2 2 A; b 2 B1 = 1Ob 8b 2 B1 = aO1 8a 2 A >and de�ne the tensor by:A
B � PreFrm < S qua meet-semilatti
ej "_i (aiOb) = "_i aiOb 8(ai) �" A;8b 2 B"_i (aObi) = aO "_i bi 8a 2 A; (bi) �" B >ClearlyA
( ) is left adjoint to the fun
tion spa
e fun
tor [A! ℄ :PreFrm!PreFrm.In fa
tTheorem 2.4.2 PreFrm is a symmetri
 monoidal 
losed 
ategory.Proof: The fa
t that presentations are well de�ned is the real `work' of this theorem.We use this proof to 
he
k that the subobje
t 
lassi�er (i.e. the power set of 1) isthe unit of the tensor. We de�ne two fun
tionsp : A ! A

a 7! aO0q : A

 ! Aby (aOi) 7! "_(fag [ f1Aj1 � ig)Clearly p is a preframe homomorphism. Assume for the moment that (a; i) 7!W"(fag [ f1Aj1 � ig) is a preframe bihomomorphism.qp(a) = q(aO0)= "_(fag [ f1Aj1 � 0g)= a



2.4. PRESENTATIONS 51We also want that pq(aOi) = aOi.pq(aOi) = p "_(fag [ f1Aj1 � ig)= ( "_(fag [ f1Aj1 � ig))O0= "_(faO0g [ f1j1 � ig)= "_(faO0g [ faO1j1 � ig)= aO "_(f0g [ f1j1 � ig)= aOiTo prove i � W"(f0g [ f1j1 � ig) re
all from Chapter 1 that it is suÆ
ient to
he
k that i = 1 implies 1 = W"(f0g [ f1j1 � ig). We now 
he
k that (a; i) 7!W"(fag [ f1Aj1 � ig) is a preframe bihomomorphism in order to be sure that q iswell de�ned. Fix i 2 
. Clearly W"f1g [ f1Aj1 � ig = 1. Say a; b 2 A."_(fag [ f1Aj1 � ig) ^ "_(fbg [ f1Aj1 � ig)= "_(fa ^ bg [ fbj1 � ig [ faj1 � ig [ f1j1 � ig)= "_(fa ^ bg [ f1j1 � ig)So (( ); i) 7! W"(f g [ f1j1 � ig) preserves �nite meets.Say T �" A then 8t 2 T 
ertainlyt � W"(ftg [ f1j1 � ig)hen
e W" T � W"t (W"(ftg [ f1j1 � ig)) and so an examination of 
ases tells usW"(fW" Tg [ f1j1 � ig) � W"t (W"ftg [ f1j1 � ig).N.B. non-emptiness of T is needed. Hen
e (( ); i) 7! W"(f g [ f1j1 � ig) preservesdire
ted joins.The fa
t that for any i; j 2 
; a 2 A we haveW"(fag [ f1j1 � i ^ jg)= W"(fag [ f1j1 � ig) ^W"(fag [ f1j1 � jg)is easy enough to see: use distributivity of dire
ted joins over �nite meets and notethat the sets fag and fag [ faj1 � ig [ faj1 � jg are the same. Finally for anya the fun
tion i 7! W"(fag [ f1j1 � ig preserves dire
ted joins. This follows from
ompa
tness of 
. 2We will need to 
onstru
t some in�nite 
oprodu
ts of preframes when we provethe lo
ali
 Ty
hono� theorem in Se
tion 2.8. We haveTheorem 2.4.3 PreFrm is 
o
omplete.



52CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMProof: Again the `work' has been done with the presentation result. SayD : J !PreFrm is a diagram of preframes. De�neS � ^ � SLat < ai2ObJD(i)j 1 = 1D(i) 8ia ^ b = a ^D(i) b 8a; b 2 D(i) 8ia = D(f)(a) 8a 2 D(i) 8f : i! j 2M(J) >Then the preframe 
olimit is given by:A � PreFrm < S qua meet semilatti
e jW" T = W"D(i) T 8T �" D(i) 8i > 22.5 The Generalized Coverage TheoremWe have a symmetri
 monoidal 
ategory PreFrm. Over any symmetri
 monoidal
ategory C we 
an 
onstru
t CMon(C), the 
ategory of 
ommutative monoids onthe tensor of C. We will �nd that frames 
an be 
hara
terised as spe
ial types ofobje
ts in CMon(PreFrm). In the next se
tion we will then be able to use thefollowing results to give us fa
ts about frames. We need the following well known(see e.g. lemma 4.1 of [JV91℄) general result about symmetri
 monoidal 
ategories,Theorem 2.5.1 CMon(C) has �nite 
oprodu
ts. They are given by tensor (andunit).Proof: Say (A; �A; eA); (B; �B ; eB) are two obje
ts of CMon(C), de�ne� : (A
B)
 (A
B)! (A
B) to be the 
omposite(A
B)
 (A
B) �=! (A
A)
 (B 
B) �A
�B�! A
Band e : 
! A
B to be 
 �=! 


 eA
eB�! A
B.From these de�nitions it is easily established that 
 
an be viewed as a fun
torCMon(C)�CMon(C)�!CMon(C). If 
 is left adjoint to the diagonal fun
tor� :CMon(C)�!CMon(C) � CMon(C)then 
 is a 
oprodu
t operation.Given a 
ommutative monoid (A; �A; eA) the map �A : A
A! A 
an be viewed asa natural transformation from 
� to Id and given a pair of 
ommutative monoids(A; �A; eA) and (B; �B ; eB) the mapsA �=! A

 1
eB�! A
BB �=! 

B eA
1�! A
Bde�ne a natural transformation from Id to �
.That these natural transformations satisfy the triangle equalities for 
 being leftadjoint to � follows from the fa
t that e is a unit. So 
 a � as required.That (
;�=; Id) is initial in CMon(C) requires a similar manipulation. 2It is not the 
ase that we 
an extend the above theorem to non-
ommutativemonoids. i.e. 
oprodu
t in Mon (C), the 
ategory of monoids over C, is not givenby tensor. The above proof breaks down sin
e �A : A 
 A ! A is not a monoidhomomorphism from A
A to A unless A is a 
ommutative monoid.As for a 
on
rete 
ounter example we look at the 
ase where C=Ab, Abelian groups.Then CMon(Ab) is the 
ategory CRng of 
ommutative rings and Mon(Ab) is
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ategory Rng of rings. Say R is a ring and x; y 2 R have the property thatxy 6= yx. There is a unique ring homomorphism (f) from the 
ommutative ringZ[x℄ of polynomials over x to R that maps the polynomial x to x, and similarlythere is a ring homomorphism (g) from Z[y℄ to R that maps y to y. NowZ[x℄
 Z[y℄ = Z[x; y℄where Z[x; y℄ is the 
ommutative ring of polynomials over the set fx; yg. So if thistensor gave 
oprodu
t in the 
ategory of rings we would �nd that there is a ringhomomorphism from Z[x; y℄ to R 
orresponding to f; g. The image of this ring ho-momorphism would be a 
ommutative subring of R. This 
ontradi
ts the fa
t thatxy 6= yx. In the 
ontext of a 
ounter example it is appropriate to use the ex
ludedmiddle: if a theorem is not true 
lassi
ally it 
ertainly won't be true 
onstru
tively.However, more subtly, the reader should be aware that whenever we make the as-sertion `Ab is monoidal 
losed', we are assuming a natural numbers obje
t. Thisis be
ause we need a natural numbers obje
t in order to prove that Abelian grouppresentations present.If we may assume further that C is symmetri
 monoidal 
losed (i.e. that 8A 2 Ob(C)A
 ( ) a [A! ℄) then we have another result about the 
reation of 
olimits:Theorem 2.5.2 The forgetful fun
tor F :CMon(C) ! C 
reates all �ltered 
olim-its.Proof: Say D : J �! CMon(C) is a �ltered diagram in CMon(C). Sin
e 
preserves 
olimits in ea
h of its 
oordinates we 
an do the following manipulations:
olimiFD(i)
 
olimjFD(j) �= 
olimi(FD(i)
 
olimjFD(j))�= 
olimi(
olimj(FD(i)
 FD(j)))�= 
olim(i;j)FD(i)
 FD(j)But from a pie
e of well known `abstra
t nonsense' we know that
olim(i;j)(FD(i)
 FD(j)) �= 
olimi(FD(i)
 FD(i))sin
e J is a �ltered 
ategory and so the monoid operation �D(i) on the D(i)s indu
ea fun
tion �D : 
olimiFD(i)
 
olimiFD(i)! 
olimiFD(i)As for a unit on 
olimiFD(i) note that the 
omposite
 eD(i)- FD(i) `FD(i)- 
olimiFD(i)(where the `FD(i) is an edge of the 
olimit 
o
one on FD) is the same for every i(use �lteredness of J) and so de�ne a unit (eD) for 
olimiFD(i). It is then easy to
he
k that (
olimiFD(i); �D; eD) is the 
olimit of D in CMon(C). 2So to 
omplete our dis
ussion about the existen
e of 
olimits in the 
ategoryCMon(C)all we need to do is �nd out whether 
oequalizers exists or not. It turns out that thewe have a more general theorem relating the existen
e of 
oequalizers in C to theexisten
e of 
oequalizers inMon(C), the 
ategory of monoids over C. Compare thisto our examination of �nite 
oprodu
ts above; there we saw that the des
ription of
oprodu
ts in terms of tensor did not extend to the non-
ommutative 
ase.



54CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMTheorem 2.5.3 (The generalized 
overage theorem) If C is a symmetri
 monoidal
losed 
ategory and (A; �A; eA) f-g- (B; �B ; eB)is a diagram in Mon(C) then if 
 : B ! C is the 
oequalizer ofB 
A
B �(1
 f 
 1)-�(1
 g 
 1)- B(where � is ternary multipli
ation indu
ed by �B) then C 
an be given a monoidstru
ture (C; �C ; eC) su
h that(A; �A; eA) f-g- (B; �B ; eB) 
- (C; �C ; eC)is a 
oequalizer diagram in Mon(C).Proof: The de�nition of eC is just the 
omposite 
 Æ eB . De�ning �C is a littlemore involved. Sin
e C is 
losed we know that the endofun
tor ( ) 
 B preserves
oequalizers, hen
e the diagramB 
A
B 
B �(1
 f 
 1)
 1-�(1
 g 
 1)
 1- B 
B 

 1- C 
Bis a 
oequalizer diagram in C. But by asso
iativity of the 
ommutative monoid Bthe morphisms �(1
 f 
 1)
 1 and �(1
 g
 1)
 1 are equalized by the morphismB 
B �B! B 
! Cand so there exists a (unique) map R : C 
B ! C su
h that R(

 1) = 
�B.But we have two 
ommutative squares:B 
B 
A
B 1
 �(1
 f 
 1)-1
 �(1
 g 
 1)- B 
BC 
B 
A
B

 1
 1
 1 ? 1
 �(1
 f 
 1)-1
 �(1
 g 
 1)- C 
B

 1?R(
 
 1) equalizes the top row and so sin
e 
 
 1 
 1 
 1 is an epimorphism (as 
is) we know that R will equalize the bottom row. Hen
e it will fa
tor through the
oequalizer of the bottom row. But the 
oequalizer of the bottom row is 1 
 
 :C 
B ! C 
C sin
e C 
 ( ) preserves 
oequalizers. Hen
e 9�C : C 
C ! C su
hthat R = �C Æ (1 
 
). It is now a routine exer
ise to 
he
k that (C; �C ; eC) is amonoid, that 
 is a 
ommutative monoid homomorphism and that(A; �A; eA) f-g- (B; �B ; eB) 
- (C; �C ; eC)is a 
oequalizer diagram in Mon(C) as required. For instan
e sin
e R = �C(1
 
)we have that �C(
 
 
) = �C(1 
 
)(
 
 1) = R(
 
 1) = 
�B . i.e. 
 is a monoidhomomorphism. Also (
 
 
 
 
) is epi
 and so asso
iativity for �C follows from
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iativity of �B. 2As an immediate example we 
an use the above to 
onstru
t 
oequalizers in the
ategory Rng of rings. If A f -g - Bis a digram in Rng, then it is well known that its 
oequalizer is given by taking thequotient of B by the two sided ideal generated by ff(a) � g(a)ja 2 Ag. Howeverthis two sided ideal is given byI = f�bi(f � g)(ai)
ijai 2 A; bi; 
i 2 BgBut the ring B=I is found by taking the quotient in Ab, and it is 
lear from theabove expression for I that the Abelian group B=I is the 
oequalizer in Ab ofB 
A
B �(1
 f 
 1)-�(1
 g 
 1)- BAs another appli
ation we have restri
tion to the 
ommutative 
ase. In the proof ofthe theorem it is a triviality to 
he
k that if B is a 
ommutative monoid then so isthe monoid stru
ture 
onstru
ted on C. Hen
e we are able to lift 
oequalizers fromC to CMon(C). In fa
t most of our examples will be 
ommutative, and in these
ases the following simpli�
ation of the generalized 
overage theorem is appropriate:Theorem 2.5.4 If C is a symmetri
 monoidal 
losed 
ategory and(A; �A; eA) f-g- (B; �B ; eB)is a diagram in CMon(C) then if 
 : B ! C is the 
oequalizer ofA
B �B(f 
 1)-�B(g 
 1)- Bthen C 
an be given a 
ommutative monoid stru
ture (C; �C ; eC) su
h that(A; �A; eA) f-g- (B; �B ; eB) 
- (C; �C ; eC)is a 
oequalizer diagram in CMon(C). 2A detailed dis
ussion of why [2.5.3℄ is 
alled the generalized 
overage theorem isomitted until Se
tion 2.9. There we will need a theorem that goes in the oppositedire
tion; a theorem whi
h shows how to �nd 
oequalizers in C given 
oequalizersin some 
ategory that behaves like CMon(C). The forgetful fun
tor going fromCMon(C) to C has a left adjoint if and only if free 
ommutative monoids 
an befound on C obje
ts. We �nd, opposite to the 
overage theorem, that if there issome 
ategory D and a faithful fun
tor U from D to C whi
h has a left adjoint then
oequalizers in C 
an be 
onstru
ted from parti
ular 
oequalizers in D providedwe also know that C has �nite limits and image fa
torisations (see e.g. 1.51 of[FS90℄ for a de�nition of image fa
torization). We know from Theorem [2.3.2℄how to 
onstru
t the free frame on a preframe and so we know that the forgetfulfun
tor from Frm to PreFrm has a left adjoint. It is easy to 
onstru
t �nite limits
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torisations in the 
ategory PreFrm of preframes (for the latter justtake the subpreframe generated by the set theoreti
 image of the fun
tion to befa
torized) so the next theorem will prove that PreFrm has 
oequalizers from anassumption that Frm has 
oequalizers. Indeed the proof to follow is really just arepetition of the preframe version of K�r�i�z's universal Theorem [2.3.3℄ (whi
h itselfis just a manipulation of the proof in [JV91℄ that preframe presentations present).Theorem 2.5.5 If C has �nite limits and image fa
torisations, and there is some
ategory D with a faithful fun
tor U : D ! C whi
h has a left adjoint F then forany diagram A f -g - Bin C its 
oequalizer is given by the image fa
torization of B �B� UFB Ue! UE whereFB e! E is the 
oequalizer in D ofFA Ff-Fg- FBProof: Let the image fa
torization des
ribed in the statement be writtenq : B ! e[B℄. Say there is a morphism B �e! �E in C su
h that �ef = �eg. So 
ertainlyF �eFf = F �eFg and so there is a morphism d of Dd : E �! F �Esu
h that de = F �e. Pull the monomorphism � �E ba
k along Ud to �nd a monomor-phism i : J � UE. But from the pullba
k diagram we see that the mapB �B� UFB Ue! UE fa
tors through i sin
e:Ud Æ Ue Æ � �B = U(d Æ e) Æ � �B= UF �e Æ � �B= � �E Æ �eand hen
e the subobje
t J 
ontains the subobje
t e[B℄. So there is a map �d frome[B℄ to �E su
h that �dq = �e. Uniqueness of �d follows if q is an epimorphism; but wehave equalizers in C and so the 
over q is an epimorphism. 22.6 Frames as 
ommutative monoidsWe �rst introdu
e the more well known way of looking at frames as 
ommutativemonoids i.e. as SUP-latti
es with a monoid stru
ture given by meet. Of 
ourse aSUP-latti
e is a 
omplete poset, i.e. a poset with all joins. SUP-latti
e homomor-phisms preserve all joins. We have de�ned the 
ategory SUP.The fa
t that SUP has 
oequalizers is shown in [JT84℄. In Proposition 4.3 ofChapter 1 they show that if R is any subset of M �M where M is a SUP-latti
ethen the quotient of M by the 
ongruen
e generated by R is given by the setQ = fx 2M j8(z1; z2) 2 R; z1 � x , z2 � xg
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f R-
oherent elements). So if B f -g - Ais a pair of arrows in SUP then use the relation f(fb; gb)jb 2 Bg to de�ne the
oequalizer of f and g. Clearly we 
an also use this general 
onstru
t to des
ribetensor produ
t of SUP-latti
es and so we see that SUP is a symmetri
 monoidal
losed 
ategory with 
oequalizers.Now say we are given a 
ommutative monoid (A; �; eA) over a SUP-latti
e Awhi
h is also a semilatti
e. i.e. � is idempotent. We 
an then give A a se
ond orderwith whi
h the � operation be
omes meet. This se
ond order will not ne
essarily
oin
ide with �A. However the two orders will 
oin
ide if (and only if) a �A eA forevery a 2 A. For if we assume a �A eA for every a 2 A then sin
e � is monotone inboth its 
oordinates we know�A(a
 b) �A �A(a
 eA)= a�A(a
 b) �A �A(eA 
 b)= bfor every a; b. Further if 
 �A a; b then 
 = �(
 
 
) �A �(a
 b) and so � is meetwith respe
t to the order �A. Clearly su
h a 
ommutative monoid will be a frame.So frames are parti
ular types of 
ommutative monoids over SUP. A (
ommu-tative) monoid (A; �A; eA) is a frame if and only if (1) a � eA 8a 2 A and (2)�A(a
 a) = a 8a 2 A. The �rst equation tells us that eA is the top element of A.We �nd ([JV91℄) that this result has a `preframe parallel':Theorem 2.6.1 The 
ategory of frames is isomorphi
 to the full sub
ategory ofCMon(PreFrm) 
onsisting of all obje
ts (A; �; e) satisfying(1) e(0) � a 8A(2) �(aOa) = aProof: Say A is a frame. Then _ : A�A! Ais 
learly a preframe bihomomorphism. It is easy to 
he
k thate : 
 �! Ai 7�! "_(f0g [ f1j1 � ig)is a preframe homomorphism (
 is 
ompa
t) and that this makes (A;_; e) into a
ommutative monoid whi
h satis�es (1) and (2).Conversely say (A; �; e) is a 
ommutative monoid whi
h satis�es (1) and (2). Cer-tainly e(0) is 0A and so A has a least element. We 
he
k that �(aOb) is the least up-per bound of a and b in A. The fa
t that e is a unit tells us that a = �(aOe(0)) (8a).But aOe(0) � aOb 8b and so a; b � �(aOb).
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 then aOb � 
O
 and so �(aOb) � �(
O
) = 
. 2Frames 
an thus be viewed as SUP-latti
es with a parti
ular monoid stru
ture(
orresponding to meet) or they 
an be viewed as preframes with a monoid stru
turegiving a �nitary join operation.Say (A; �A; eA); (B; �B ; eB) are two 
ommutative monoids in PreFrm. We knowthat their 
oprodu
t in CMon(PreFrm) is given by(A
B; �; e)where � : (A
B)
 (A
B) �=! (A
A)
 (B 
B) �A
�B�! A
B ande : 
 �=! 


 eA
eB�! A
BNow 8a 2 A; b 2 B we havee(0) = (eA 
 eB)(0O0)= eA(0)OeB(0) � aObif eA(0) � a 8a and eB(0) � b 8b So if A;B are frames then the setfu 2 A
 BjeA(0)OeB(0) � ugis a subpreframe of A 
 B that 
ontains all the generators of A 
 B and so is thewhole of A
B. Hen
e, if A;B are frames then A
B has a least element: 0AO0B.�((aOb)O(aOb)) = (�A 
 �B)((aOa)O(bOb))= (�A(aOa))O(�B(bOb))= aObif �A(aOa) = a 8a and �B(bOb) = b 8b.Noti
e that the equation �((aOb)O(aOb)) = aOb is enough to tell us that �(uOu) =u for any u 2 A
B. This is be
ause the setfu 2 A
Bj � (uOu) = ugis a subpreframe of A
B and 
ontains all the generators of A
B.Proof that it is a subpreframe: Certainly �(1O1) = 1. Say u; v satisfy �(uOu) =u and �(vOv) = v. Then�((u ^ v)O(u ^ v)) = �((uOu) ^ (vOv) ^ (uOv) ^ (vOu))� �((uOu) ^ (vOv))= �(uOu) ^ �(vOv) = u ^ vIn the other dire
tionu ^ v = �((u ^ v)O0) � �((u ^ v)O(u ^ v))Say T �" A
B is su
h that �(tOt) = t for all t 2 T . Then for all t 2 T :t = �(tOt) � �( "_TOt)� �( "_TO "_T )
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e W" T � �(W" TOW" T ). Conversely�( "_TO "_T ) = "_t �(tO "_T )= "_(t;�t)2T�T �(tO�t)� "_t2T �(tOt) = "_Twhere the penultimate impli
ation is by dire
tedness of T . 2So the above shows us that if (A; �A; eA); (B; �B ; eB) are both frames then their
oprodu
t in CMon(PreFrm) is also a frame. i.e. frame 
oprodu
t is given bypreframe tensor.Theorem 2.6.2 Lo
 has �nite produ
ts. If X;Y are two lo
ales then the frame ofopens of their produ
t is given by:
(X � Y ) �= 
X 

Ywhere the tensor 
 is either preframe tensor or SUP-latti
e tensor.Proof: We have shown the result for the preframe tensor. The result for theSUP-latti
e tensor (is well known and) follows exa
tly the same path. It relies onthe 
hara
terization of frames as those members A of CMon(SUP) whi
h satisfya � eA(1) 8a 2 A and �A(a
 a) = a for all a 2 A. Note that the proof that the setfuj � (u
 u) = ug is a subSUP-latti
e is less intri
ate. 2The `
reation of 
olimits' results of the previous se
tion also preserves the framestru
ture:Theorem 2.6.3 F :Frm!PreFrm 
reates �ltered 
olimitsProof: Say D : J !CMon(PreFrm) is su
h that its image is 
ontained withinFrm and J is �ltered. So D(i) = (FD(i); �i; ei) is a frame for every obje
t i of J .We saw in the last se
tion that 
olimD = (
olimFD; �; e) where� : 
olimFD
 
olimFD! 
olimFD is su
h thatFD(i)
 FD(i) �i- FD(i)
olimFD
 
olimFD�i 
 �i ? �- 
olimFD�i?
ommutes for every i,and e : 
! 
olimFD is su
h that
 ei- FD(i)�����e R
olimFD�i?
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ommutes for every i.Now re
all that 
olimFD =PreFrm<`i FD(i)jR >for suitable R (see Theorem [2.4.3℄) and �i : FD(i)! 
olimFD is given by a 7! a.So to prove e(0) � u 8u 2 
olimFD all we need to do is 
he
k thate(0) � a 8a 2`i FD(i)Say a 2 FD(i) then e(0) = �iei(0) = ei(0) � aand so e(0) � u 8u 2 
olimFD.Similarly to see that �(uOu) = u 8u 2 
olimFD simply note that �i(aOa) = awhenever a 2 FD(i). 2Again the SUP-latti
e parallel 
an be 
he
ked by an identi
al method and we
an write up both results as fa
ts about lo
ales:Theorem 2.6.4 Lo
 has 
o�ltered limits. If D : J �! Lo
 is a 
o�ltered diagramof lo
ales then 
limJD �= PreFrm <ai FD(i)jRPreFrm >�= SUP <ai FD(i)jRSUP >for suitable Rs. 2Theorem 2.6.5 If A f -g - Bis a diagram in Frm then the preframe 
oequalizer ofA
B �B(f 
 1)-�B(g 
 1)- Bis a frame, and is the 
oequalizer of f and g in Frm.Proof: As in the last proof the 
on
rete 
onstru
tion of the 
oequalizer enablesus to 
he
k the 
ommutative monoid stru
ture de�ned on it via Theorem [2.5.4℄satis�es the 
onditions (1) and (2).Say 
 : B ! C is the preframe 
oequalizer of �B(f 
 1); �B(g 
 1). Thenfa 2 CjeC(0) � agfa 2 Cj �C (aOa) = agare both subpreframes of C and 
 fa
tors through both of them sin
e B is a frame.Hen
e they are both the whole of C. 2It should be apparent that this last result 
ould also have been written withSUP-latti
es in pla
e of preframes. The lo
ali
 
on
lusion is:
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 has equalizers. IfX f -g - Yis a diagram in Lo
 then the equalizer, E, is given by
E �= PreFrm < 
X (qua preframe)j
f(b) _ a = 
g(b) _ a 8a 2 
X; b 2 
Y >�= SUP < 
X (qua SUP-latti
e)j
f(b) ^ a = 
g(b) ^ a 8a 2 
X; b 2 
Y > 2We will dis
uss how this last theorem is just the preframe version and the SUP-latti
e version of the 
overage theorem in Se
tion 2.9.When it 
omes to dis
uss the pullba
k stability of proper and open lo
ale mapsin the next 
hapter it will be useful to have the 
orollary:Corollary 2.6.1 Lo
 has pullba
ks. IfW p2 - Y
Xp1 ? f - Zg?is a pullba
k diagram in Lo
 then
W �=PreFrm< 
X 

Y (qua preframe) j(
f(
) _ a)Ob = aO(
g(
) _ b)8a 2 
X; b 2 
Y; 
 2 
Z >and
W �=SUP< 
X 

Y (qua SUP-latti
e) j(
f(
) ^ a)
 b = a
 (
g(
) ^ b)8a 2 
X; b 2 
Y; 
 2 
Z >(where the tensor is SUP-latti
e tensor in the se
ond equation and prefame tensorin the �rst).Proof: A pushout is just a parti
ular kind of 
oequalizer. The 
orollary is an ap-pli
ation of the last result. 22.7 Appli
ations in Lo
The following lemma shows us how the two des
riptions of lo
ale produ
t given inthe last se
tion lead to two very di�erent formulas for the 
losure of the diagonalof a lo
ale. The new preframe version of this formula will be used extensively lateron.Lemma 2.7.1 If X is any lo
ale then the 
losure of the diagonal � : X ,! X �Xis given by the 
losed sublo
ale :# ,! X �Xwhere # 2 
(X �X) is given by



62CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREM# = W"f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite gand equivalently by # = Wfa
 bja ^ b = 0g.This preframe formula for # 
an be found in [Vi
94℄.Proof: From Se
tion 1.7.1 we know that if i : Y ,! X is a sublo
ale then its 
losureis given by :8i(0) ,! Xand so all that we are doing is 
he
king that 8�(0) = #We prove the �rst 
laim of the theorem by looking at the 
ase where
� : 
X

X ! 
X is given by the unique preframe homomorphism whi
h sendsaOb to a _ b. It follows that8�(0) = W"fJ j
�(J) = 0gThe result then follows quite 
learly from the fa
t that for every J in 
X 

XJ = W"j ^i2Ij (ajiObji )for some suitable 
olle
tion of aji ; bji s (where all the Ijs are �nite). This is be
ausethe set of all elements of this form forms a subpreframe of 
X

X whi
h 
ontainsall the generators of the tensor.As for the SUP-latti
e presentation of the 
losure of the diagonal we use thesame argument. Su

ess of this argument hinges on the fa
t that the set of allelements of 
X 

X (=SUP-latti
e tensor) of the formWi2I ai 
 bifor some set I forms a subSUP-latti
e of 
X

X whi
h 
ontains all the generatorsof the tensor and so is the whole of 
X 

X . 
� sends a
 b to a ^ b.Noti
e also that these two parallel results are inter-provable; use the fa
t thata
 b = (aO0) ^ (0Ob). For then (a _ 0) ^ (0 _ b) = 0 if a ^ b = 0 and so 
ertainlyWfa
 bja ^ b = 0g � W"f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite gIn the other dire
tion say ^i2I(ai_bi) = 0. Then (^i2J1ai)^(^i2J2bi) = 0 for everyJ1; J2 �nite with J1; J2 � I; I � J1 [ J2 by the �nite distributivity law of [1.2.6℄.But by the same �nite distributivety law (and the equation aOb = (a
 1)_ (1
 b))we have ^i(aiObi) = ^i((ai 
 1) _ (1
 bi))= _[^i2J1(ai 
 1) ^ ^i2J2(1
 bi)℄= _[((^i2J1ai)
 1) ^ (1
 (^i2J2bi))℄= _(^i2J1ai)
 (^i2J2bi)� _fa
 bja ^ b = 0g 2Re
all in Chapter 1 that we de�ned the spe
ialization order on a spa
e. Thelo
ali
 analogue is the spe
ialization sublo
ale. It is 
lear that if, for any lo
ale X ,we de�ne v,! X �X by
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(v) � Fr < 
X 

X qua frameja
 1 � 1
 a 8a 2 
X >then we will have 
aptured the de�ning spatial 
hara
teristi
 of the spe
ializationorder (namely that x v y if and only if for every open a if x 2 a then y 2 a). Thetensor in the above is the SUP-latti
e tensor. On the preframe side we have:Lemma 2.7.2 
(v) �= Fr < 
X

X qua framejaO0 � 0Oa 8a 2 
X >, where
 is preframe tensor.Proof: Take aOb to (a
 1)_ (1
 b) and a
 b to (aO0)^ (0Ob). The relations arepreserved and so these assignments de�ne frame homomorphisms between the twopresentations of 
(v). 2Lemma 2.7.3 v ^ w= �, where ^ is meet in the poset Sub(X�X), and w� �Æ v(� is the twist isomorphism X �X ! X �X).Proof: (We prove this fa
t using preframe te
hniques though SUP-latti
e te
h-niques 
ould equally well have been used.)Certainly � �Sub(X�X)v, sin
e
l : 
(v) �! 
XaOb 7�! a _ bis 
learly well de�ned and soX l - vR������ R 	�����	X �X
ommutes.Symmetri
ally � � (w).Say z : Z ,! X �X is some sublo
ale with the property thatZ �Sub(X�X) (v); Z �Sub(X�X) (w)So there exists 
m : 
(v)! 
Z and 
m� : 
(w)! 
Z with
m(aOb) = 
z(aOb); 
m� (aOb) = 
z(aOb)It follows that for all b 2 
X
z(bO0) = 
m(bO0)� 
m(0Ob) = 
z(0Ob)and by the existen
e of m� we �nd
z(0Ob) = 
m� (0Ob)� 
m� (bO0) = 
z(bO0)i.e. 
z(bO0) = 
z(0Ob) and so �1 Æ z = �2 Æ z
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e Z �Sub(X�X) �. 2Of 
ourse this result is true spatially if (and only if) the topologi
al spa
e is T0.Our next 
omment is that we 
an now show that a lo
ale map f : X ! Y is asublo
ale if and only if it is a regular monomorphism. This is a well known basi
fa
t about lo
ales and is equivalent to the statement that a frame homomorphism isa regular epimorphism if and only if it is a surje
tion. But sin
e we have shown thatFrm is suitably algebrai
 this follows at on
e. [For a proof noti
e that if q : A! Cis a frame surje
tion then it is the 
oequalizer ofB �1 -�2 - Awhere B is the 
ongruen
e on A given by f(a1; a2)jq(a1) = q(a2)g. In the otherdire
tion we 
an use the 
overage theorem with C=SUP to show that 
oequalizersin Frm are surje
tions sin
e 
oequalizers in SUP are surje
tions.℄Inside Frm we then �nd that a homomorphism h : A! B 
an be fa
tored asA [ ℄�! (A= �h) i,! Bwhere [ ℄ is a surje
tion and �h is the frame 
ongruen
e a1 �h a2 if and only ifh(a1) = h(a2). This fa
torization enjoys the property that if h 
an also be fa
toredas A q�! C l�! Bfor some surje
tion q then there is a frame homomorphism k : C ! A= �h su
hthat k Æ q = [ ℄ i Æ k = lTranslated to a fa
t about lo
ales this means that if f : X ! Y is a lo
ale mapthen it 
an be fa
tored as X q! f [X ℄ i,! Ywhere q is an epimorphism and i is a regular monomorphism, and if f 
an also befa
tored as X �q! Z �i,! Ywhere �i is a regular monomorphism then there is a lo
ale map p : f [X ℄ ! Z su
hthat p Æ q = �q �i Æ p = iThis result implies that any lo
ale map fa
tors uniquely (up to isomorphism) asan epimorphism followed by a regular monomorphism. This is a well known resultof lo
ale theory.2.8 Ty
hono�'s theoremThe following proof is what appears in Johnstone and Vi
kers' paper [JV91℄.Theorem 2.8.1 The produ
t of 
ompa
t lo
ales is 
ompa
t



2.8. TYCHONOFF'S THEOREM 65Proof: We need to show, given a set (Ai)i2I of 
ompa
t frames, that their 
oprod-u
t `i Ai is 
ompa
t.It is well known that just as arbitrary joins 
an be written as dire
ted joins of �nitejoins, arbitrary 
oprodu
ts 
an be written as �ltered 
olimits of �nite 
oprodu
ts.We �rst 
he
k that �nite 
oprodu
ts of 
ompa
t frames are 
ompa
t. Sin
e 
 is
ompa
t we know that nullary frame 
oprodu
ts are 
ompa
t. Say A;B are two
ompa
t frames. Then the fun
tionsA ! 
a 7! (1 � a)B ! 
b 7! (1 � b)are both preframe homomorphisms and so(a; b) 7�! (1 � b) _ (1 � a)is a preframe bihomomorphism from A � B to 
 and hen
e indu
es a preframehomomorphism h : A
B ! 
. I 
laim thatfu 2 A
Bjh(u) = 1 ) u = 1gis a subpreframe of A
B and 
ontains all the generators aOb of A
B. That it isa subpreframe is easy enough (
 is 
ompa
t!), and so we 
he
k thath(aOb) = 1 ) aOb = 1.But h(aOb) = 1 ) (1 � a) _ (1 � b) and so 1 � aOb follows.Hen
e 8u 2 A 
 B h(u) = 1 ) u = 1. Now say S �" A 
 B has W" S = 1.Then h(W" S) = 1 ) W"s2S h(s) = 1 ) 9s 2 S h(s) ) s = 1, andso A
B is 
ompa
t.Now, as we said above, (`iAi) = 
olim�I(`i2�I Ai)where �I ranges over the �nite subsets of I , and we've just 
he
ked that `i2�I Ai is
ompa
t for every su
h �I .Sin
e all su
h `i2�I Ai are 
ompa
t we know that there are preframe homomor-phisms h�I :ai2�I Ai �! 
u 7�! (1 � u)and so (sin
e as we saw above 
olim�I(`i2�I Ai) is 
reated from the preframe 
olimit)there exists h :`i Ai ! 
a preframe homomorphism su
h thatai2�I Ai�����h�IRai Ai��I ? h - 
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ommutes for every �I .As before all we need to do (to 
on
lude that `iAi is 
ompa
t) is 
he
k that theset fu 2 `iAijh(u) = 1 ) u = 1gis a subpreframe of `iAi whi
h 
ontains all the generators. It is 
ertainly a sub-preframe.That it 
ontains all the generators is easy enough sin
e the set of generators is justthe disjoint union of the `i2�I Ai. 22.9 The Coverage Theorems2.9.1 SUP-latti
e versionWe des
ribe Johnstone's 
overage theorem as stated in II 2.11 of [Joh82℄. Given ameet semilatti
e A a fun
tion C : A! PPA is 
alled a 
overage if(i) T �# a 8a 2 A 8T 2 C(a) and(ii) C is meet stable, i.e. 8a 2 A;8T 2 C(a);8b 2 Aft ^ bjt 2 Tg 2 C(a ^ b)De�ne C � Idl(A) to be the set of C-ideals of A: they are the lower 
losed subsetsI of A su
h that 8a 2 A;8T 2 C(a) if T � I then a 2 I . If B is some frame then afun
tion f : A! B is said to take 
overs to joins if 8a 2 A;8T 2 C(a),WBff�aj�a 2 Tg = faJohnstone's 
overage result is: the set of C-ideals on a 
overage forms a frame andthe map A < >�! C � Idl(A)whi
h is de�ned to take a 2 A to the ideal generated by fag, is the free semilatti
ehomomorphism from A to a frame whi
h takes 
overs to joins.When Abramsky and Vi
kers were investigating quantales in [AV93℄ they foundit useful to view the 
overage theorem as the statement that 
ertain frame presenta-tion 
ould equally be viewed as SUP-latti
e presentations. Indeed in the `PreframePresentation Presents' paper [JV91℄ the 
ontent of the 
overage result is stated asfollows: given any meet semilatti
e A with a 
overage on it thenFrm< A (qua meet semilatti
e) ja = _T T 2 C(a) >�= SUP < A (qua poset) ja = _T T 2 C(a) >We take Johnstone's 
overage theorem to be this last result and prove that it impliesand is implied by the SUP-latti
e version of the generalized 
overage theorem. Thistheorem then reads as the following 
oequalizer result: ifB f -g - Ais a diagram in Frm and ifB 
A ^(f 
 1)-^(g 
 1)- A e - E (�)
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oequalizer diagram in SUP thenB f -g - A e - Eis a 
oequalizer diagram in Frm.Intuitively the presen
e of ^ in (�) 
orresponds to the meet stability 
ondition thatwe have on 
overages.We now assume Johnstone's 
overage theorem and try to prove this 
oequalizerresult. Say we are given B f -g - Ain Frm. De�ne a 
overage on A as follows:fgb ^ a ^ fbg 2 C(fb ^ a) 8b 2 B;8a 2 Affb ^ a ^ gbg 2 C(gb ^ a) 8b 2 B;8a 2 AT 2 C(WA T ) 8T � A(It is easy to 
he
k that this de�nes a 
overage.)But it is 
lear that with this 
overage the 
oequalizer ofB f -g - A(in Frm) must be the frame presented byFrm< A (qua meet semilatti
e) ja = _T T 2 C(a) >and also that the 
oequalizer ofB 
A ^(f 
 1)-^(g 
 1)- A(in SUP) must be the SUP-latti
e presented bySUP< A (qua poset) ja = _T T 2 C(a) >so an assumption of the Johnstone's 
overage theorem allows us to 
on
lude theSUP-latti
e version of the generalized 
overage theorem.Conversely let us assume the SUP-latti
e version of the generalized 
overagetheorem i.e. the 
oequalizer result of the previous page. Say we are given a 
overageC : A ! PPA on some meetsemilatti
e A. Let DA be the set of lower 
losedsubsets of A. It is 
learly a frame where join is given by union and meet is givenby interse
tion. It is also the free frame on the meet semilatti
e A, this has beenremarked upon already just before Theorem [2.3.2℄. Let B be the least frame
ongruen
e on DA � DA whi
h 
ontains (# T; # a) for all pairs (T; a) su
h thatT 2 C(a). So there are frame homomorphismsB �1-�2- DA:It is easy to see that if their 
oequalizer exists then it is
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e) ja = _T T 2 C(a) >.ButLemma 2.9.1 The free SUP-latti
e on A qua poset and the free frame on A quameet semilatti
e are isomorphi
.Proof: They are both given by DA. 2Be
ause of this fa
t we know that there is a SUP-latti
e morphism e from DA tothe SUP-latti
e E de�ned to beSUP< A (qua poset) ja = _T T 2 C(a) >.It is easy, using the meet stability property of 
overages, to verify thatB 
DA ^(�1 
 1)-^(�2 
 1)- DA e - Eis a 
oequalizer diagram in SUP and so Johnstone's 
overage theorem will followfrom the generalized 
overage theorem.2.9.2 Preframe versionBefore we ta
kle the preframe version of the 
overage theorem we need to make anobservation about the free ^-semilatti
e on a poset.Lemma 2.9.2 Let A be a join semilatti
e. Then the free meet semilatti
e on Aqua poset (i.e. SLat < Aja1 ^ a2 = a1 if a1 �A a2 >) is a distributive latti
e andis the free distributive latti
e on A qua _-semilatti
e(i.e. DLat < Aja1 _ a2 = a1 _A a2 8a1; a2 2 A; 0 = 0A >).Proof: (This proof also gives a 
on
rete des
ription of ^-Slat< A qua poset>.) IfT; S 2 FA (i.e. if T; S are �nite subsets of A) then we writeS -U Tif and only if 8t 2 T there exists s 2 S su
h that s �A t. (-U is the upper or Smythpreorder.) FA= -U (i.e. FA quotiented by this preorder) is the free ^-semilatti
eon A qua poset. A is inje
ted into FA= -U by a 7! [fag℄. If [S℄; [T ℄ are two elementsof FA= -U then [S℄ ^ [T ℄ = [S [ T ℄.This is easily veri�ed using the fa
t that [S℄ � [T ℄ in FA= -U if and only if S -U T .If A is a join semilatti
e then[S℄ _ [T ℄ = [fs _ tj(s; t) 2 S � Tg℄and so FA= -U is a join semilatti
e. As for distributivity noti
e that([S℄ _ [T ℄) ^ [V ℄ = [fs _ tjs 2 S; t 2 Tg [ V ℄and ([S℄ ^ [V ℄) _ ([T ℄ ^ [V ℄) = [f�s _ �tj�s 2 S [ V; �t 2 T [ V g℄



2.9. THE COVERAGE THEOREMS 69It is easy to see,f�s _ �tj�s 2 S [ V; �t 2 T [ V g -U fs _ tjs 2 S; t 2 Tg [ Vfs _ tjs 2 S; t 2 Tg [ V -U f�s _ �tj�s 2 S [ V; �t 2 T [ V g;the latter by observing that (S [ V )� (T [ V ) � (S � T ) [ (A� V ) [ (V �A).That FA= -U is the free distributive latti
e on A qua _-semilatti
e follows a simplemanipulation: say f : A! B is a _-preserving fun
tion to a distributive latti
e B.Then there exists a unique meet preserving �f : FA= -U! B su
h that �f Æ [f g℄ = f .Clearly for any a; b 2 A �f([fag℄ _ [fbg℄) = �f [fa _ bg℄= f(a _ b)= f(a) _ f(b)= �f [fag℄ _ �f [fbg℄and so �f([S℄ _ [T ℄) = �f([S℄) _ �f([T ℄) follows sin
e for any V 2 FA we have[V ℄ = ^v2V [fvg℄: 2The preframe 
overage theorem (5.1 of [JV91℄) is as follows: let A be a joinsemilatti
e and let C be a set of preframe relations of the form^S � W"i2I ^Si(where S; Si are �nite subsets of A and f^Siji 2 Ig �" A) whi
h are join stable.This means that if x 2 A and ^S � W"i ^Si is in C than^fx _ y : y 2 Sg � W"i ^fx _ y : y 2 Sigis also in C. ThenPreFrm < A (qua poset) jC >�= Frm < A (qua _-semilatti
e)jC >the generators 
orresponding under the isomorphism in the obvious way.The preframe version of the generalized 
overage theorem is the following 
oequal-izer result: if B f -g - Ais a diagram in Frm and ifB 
A _(f 
 1)-_(g 
 1)- A e - Eis a 
oequalizer diagram in PreFrm thenB f -g - A e - Eis a 
oequalizer diagram in Frm.Let us assume the preframe 
overage theorem. Say we are givenB f -g - Ain Frm. De�ne C, a set of preframe relations on A, as follows:



70CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMW"A J � W"fjjj 2 Jgfor every dire
ted J �" A anda1 ^ a2 � a1 ^A a2 8a1; a2 2 Aand 8b 2 B;8a 2 A fb _ a � gb _ agb _ a � fb _ aIt is easy to see that C is join stable. It is also easy to see thatPreFrm < A (qua poset) jC >is the 
oequalizer of B 
A _(f 
 1)-_(g 
 1)- Ain PreFrm and that Frm< A (qua _-semilatti
e) jC >is the 
oequalizer of B f -g - Ain Frm. Hen
e the preframe version of the generalized 
overage theorem followsfrom the preframe 
overage theorem.If we look at the 
ase of the preframe 
overage theorem when C is the emptyset, it is then the statement that the free preframe on a poset A is equal to thefree frame on the join semilatti
e A if A is indeed a join semilatti
e. But su
h afree preframe 
an be seen to be the ideal 
ompletion of the free semilatti
e on theposet A, and su
h a free frame 
an be seen to be the ideal 
ompletion of the freedistributive latti
e on the join semilatti
e A. But sin
e Lemma [2.9.2℄ showed usthat the free semilatti
e and the free distributive latti
e just des
ribed are the samewe know that their ideal 
ompletions are isomorphi
. Hen
e we have proven thepreframe 
overage theorem in the 
ase when C is empty. i.e.Lemma 2.9.3 Let A be a join semilatti
e. Then the free preframe on a A qua posetis isomorphi
 to the free frame on A qua join semilatti
e. 2Given a join semilatti
e A we will 
all the free frame on it KA. The fa
t that it isalso a free preframe will help us prove that the preframe version of the generalized
overage theorem implies the preframe 
overage theorem.Say we are given a join semilatti
e A and a join stable 
olle
tion of preframerelations C. Let j : A� KA denote the in
lusion of generators. Let B be the leastframe 
ongruen
e on KA whi
h 
ontains all the pairs(^KAfjs : s 2 Sg; (^KAfjs : s 2 Sg) ^KA (W"i ^KAfjsjs 2 Sig))So there are two frame in
lusionsB �1 -�2 - KA



2.9. THE COVERAGE THEOREMS 71and it is easy to see that their 
oequalizer in Frm isFrm< A (qua _-semilatti
e)jC >.Further more on
e we view KA as the free preframe on A (qua poset) then it 
anbe seen that the 
oequalizer ofB 
KA _(�1 
 1)-_(�2 
 1)- KAis equal to PreFrm< A (qua poset) jC >. Hen
e the preframe 
overage theoremfollows from the generalized 
overage theorem.Of 
ourse it is a matter of opinion as to whether the 
oequalizer results really
apture the 
overage theorems, parti
ularly in view of the need for lemmas [2.9.1℄and [2.9.2℄. However both these lemmas seem to follow a general form; see the
on
luding remarks to this 
hapter.2.9.3 Quantale version and general remarksA quantale is a SUP-latti
e A together with a monoidal stru
turee 2 A� : A�A �! Awith the property that � preserves arbitrary joins in both of its 
oordinates. Inother words a quantale is an obje
t of Mon(C) where C is the symmetri
 monoidal
losed 
ategory of SUP-latti
es. A good referen
e for quantales is [Ros90℄. Theyare investigated in [AV93℄ as models for various pro
ess 
al
uli. In that investiga-tion a 
overage theorem for quantales is developed. For simpli
ity we examine the
ommutative 
ase although, with the obvious modi�
ations, this analysis works forgeneral quantales. Given a 
ommutative monoid A we say that C : A! PPA is a
overage if and only if 8T 2 C(a);8b 2 Aft �A bjt 2 Tg 2 C(a �A b):The 
overage theorem for quantales is then the statement that the presentationQu< S (qua monoid) j _ T � a 8T 2 C(a) >is well de�ned and is isomorphi
 as a poset toSUP< Sj _ T � a 8T 2 C(a) >.The free SUP-latti
e on a set S is the power set of S. But:Lemma 2.9.4 The free quantale on a monoid S (i.e. Qu< S (qua monoid) >) isisomorphi
 as a poset to the free SUP-latti
e on the set S.Proof: Both are given by PS where the monoid operation on PS is given by,(for T1; T2 � S) T1 � T2 = ft1 � t2jt1 2 T1 t2 2 T2g 2We now prove that the quantale 
overage result is implied by the generalized 
ov-erage theorem applied to the 
ategory C=SUP.Given a 
overage C on some 
ommutative monoid S let B be the least quantale
ongruen
e on PS whi
h 
ontains the pair(T; T [ fag)



72CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMfor every T 2 C(a).We then have a pair of quantale mapsB �1 -�2 - PSand it is 
lear that their 
oequalizer in Qu will beQu< S (qua monoid) j _ T � a T 2 C(a) >It is also 
lear that SUP< Sj _ T � a T 2 C(a) >is the 
oequalizer of B 
 PS �(�1 
 1)-�(�2 
 1)- PSin SUP and so the generalized 
overage theorem implies the quantale 
overage re-sult.It might be interesting, for further resear
h, to look at CMon(PreFrm). Weknow that this 
ategory will have 
oequalizers, and indeed one 
an write a 
overagetheorem for it. Aside from these fa
ts not mu
h is known about this 
ategory as faras the author is aware. It might be possible to use it in mu
h the same way thatquantales were used as models for various pro
ess 
al
uli in [AV93℄. Restri
ting tothe 
ategory of idempotent 
ommutative preframe monoids re
aptures the analysisof Se
tion 2.6.We now turn our attention to an appli
ation of the 
onverse of the 
overagetheorem (Theorem [2.5.4℄). We take C=d
po, the 
ategory of dire
ted 
ompletepartial orders. It 
learly has �nite limits and image fa
torisations. The 
ategory Dis taken to be SUP-latti
es, whi
h we know has 
oequalizers. Also it is easy to seethat the forgetful fun
tor from SUP to d
po has a left adjoint F . Simply takeFA = SUP < A (qua d
po) >It follows at on
e that d
po has 
oequalizers. From this we re
over another wellknown fa
t:Theorem 2.9.1 d
po is symmetri
 monoidal 
losedProof: Say A;B are two d
pos. Then de�ne C to be the least 
ongruen
e onIdl(A�B) whi
h 
ontains the pairs:W"t2T # (t; b) =# (W" T; b);8T �" A 8b 2 BW"t2T # (a; t) =# (a;W" T ) 8a 2 A;8T �" BThen there are two d
po homomorphisms:C �1-�2- Idl(A�B)It is easy to see that A
B is the 
oequalizer of these two maps. 2



2.9. THE COVERAGE THEOREMS 73The next step is to investigate CMon(d
po). We know that this 
ategory has
oequalizers, although it is when we restri
t our attention to the idempotent 
om-mutative monoids that we get more interesting results. Provided we insist that theunit of the idempotent 
ommutative monoid is the greatest element with respe
t tothe original order on our d
po A then, just as in the dis
ussion pre
eding Theorem[2.6.1℄, we 
an see that the monoidal operation will be meet. Furthermore it is ameet whi
h 
ommutes with dire
ted joins in both 
oordinates. i.e. A has �nitemeets and these meets distribute over dire
ted joins: we have a preframe.Further, just as in the dis
ussion of Se
tion 2.6, we 
an 
he
k that the 
olimitsof these preframes are found by suitable d
po 
onstru
tions. In short preframeshave 
oequalizers and a preframe tensor 
an be de�ned. i.e. by an appli
ation ofthe opposite of the generalized 
overage theorem we �nd that d
po is symmetri
monoidal 
losed and if we follow this by an appli
ation of the generalized 
overagetheorem to d
po we re
over Theorem [2.4.1℄: PreFrm has a 
oequalizers.This analysis works another way as well: if SUP has 
oequalizers then the
overage theorem tells us Frm has 
oequalizers. An appli
ation of the opposite ofthe 
overage theorem implies that PreFrm has 
oequalizers. Hen
e the existen
eof 
oequalizers 
an be 
hased throughout the square:Frm������ I�����SUP PreFrmI����� ������d
poSimilarly (at a `lower' level) existen
e of 
oequalizers 
an be 
hased around:DLat������ I�����_ � SLat ^ � SLatI����� ������POSUsing the 
onverse of the 
overage theorem we know that 
oequalizers 
an bedropped along ea
h of the following:Frm PreFrm SUP d
poDLatIdl 6 ^ � SLatIdl 6 _ � SLatIdl 6 POSIdl 6



74CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMWe 
an also look at Lemma [2.9.2℄ in another way; it is just the statement thatDLat U- ^ � SLat_ � SLatF 6 U_- POSF^6
ommutes where the F s are free fun
tors and the Us are forgetful fun
tors. Noti
ealso that Lemma [2.9.1℄ follows from the same lemma but with ^ and _ inter-
hanged. To see this last observation note that the free SUP latti
e on A qua posetis given by Idl(F_A) where F_ is the free _-semilatti
e on A qua poset. Also, if Ais a meet semilatti
e then the free frame on A qua ^-semilatti
e is Idl(D) where Dis the free distributive latti
e on A qua meet semilatti
e. So, these lemmas seem tofollow from a sort of Be
k-Chevalley 
ondition.The 
ube Frm � PreFrmI����� I�����SUP � 6 d
poDLat
6
� ^ � SLatI����� I�����_� SLat

6
� POS

6
is a useful visualisation of the algebra underlying lo
ale theory.Finally, by Linton's theorem [Lin69℄, it is interesting to note that `
oequalizersare enough'. On
e (re
exive) 
oequalizers 
an be found in a node C of the above
ube then all 
olimits in C 
an be 
onstru
ted by `lifting' them from any nodebelow C. Also, the existen
e of re
exive 
oequalizers in CMon(C) 
an be foundby the existen
e of re
exive 
oequalizers in C (see Exer
ise 0.1 of [Joh77℄): thegeneralized 
overage theorem, as a statement about the existen
e of 
oequalizers,
an be re
overed through this result.



Chapter 3Open and Proper Maps3.1 Introdu
tionWe now return to our lo
ale theory. De�nitions of proper and open maps are given,and we see that these are just generalisations of 
losed and open sublo
ales. Basi
results about these maps are proved side by side so that the similarities between thetheories of the two 
lasses should be apparent without too mu
h 
omment. Impor-tantly these 
lasses of maps are 
losed under pullba
k. This fa
t had been observedby Joyal and Tierney in [JT84℄ for the 
lass of open maps, and was used in their de-s
ription of the dis
rete lo
ales as those lo
ales whose �nite diagonals are open. Welook at the equivalent result for proper maps and �nd a des
ription for the 
ompa
tregular lo
ales (Vermeulen, [Ver91℄, noti
ed this des
ription): they are those lo
aleswhose �nite diagonals are proper. We 
an now justify the assertion made in theabstra
t that the 
ategory of dis
rete lo
ales and the 
ategory of 
ompa
t regularlo
ales are parallel to ea
h other. It is a trivial fa
t that the dis
rete lo
ales form aregular 
ategory sin
e they are equivalent to Set. We prove the parallel result: the
ompa
t regular lo
ales form a regular 
ategory. Of 
ourse 
lassi
ally this is a wellknown 
onsequen
e of Manes' theorem whi
h states that the 
ategory of 
ompa
tHausdor� spa
es is monadi
 over Set (see 2.4 III of [Joh82℄). Apart from this lasttheorem the results of the 
hapter are in general known ([JT84℄ or [Ver92℄), thenovelty is in the presentation: parallel results are presented with parallel proofsbased on the preframe te
hniques developed in the previous 
hapter.3.2 Basi
 de�nitions and resultsThe importan
e of the next two de�nitions 
annot be over emphasised:De�nition: f : X ! Y is a map between lo
ales. Thenf is open i�(1) 
f has a left adjoint 9f ,(2) 9f is a SUP-latti
e homomorphism,(3) 9f (a ^ 
fb) = b ^ 9fa 8a 2 
X; b 2 
Y . (Frobenius 
ondition.)f is proper i�(1) 
f has a right adjoint 8f ,(2) 8f is a preframe homomorphism,(3) 8f (a _ 
fb) = b _ 8fa 8a 2 
X; b 2 
Y . (
oFrobenius 
ondition.)Clearly 
ondition (2) of the open de�nition and 
ondition (1) of the properde�nition are redundant. See [JT84℄ and [Ver92℄ for some alternative des
riptionsof the open and proper maps respe
tively. The 
lassi
al intuition to apply is the ideaof open and proper 
ontinuous maps between topologi
al spa
es. It is immediate75



76 CHAPTER 3. OPEN AND PROPER MAPSthat these two 
lasses of maps are 
losed under 
omposition. We develop the theoriesof open and proper lo
ale maps side by side noting their similarities. We argue (byexample) that the two theories are parallel to ea
h other.Lemma 3.2.1 If X;Y are stably lo
ally 
ompa
t lo
ales then f : X ! Y is semi-proper if and only if it satis�es (2) in the de�nition of proper.Proof: Re
all from the de�nition of CohLo
 in Se
tion 1.7.3 that f is semi-properif and only if 
f preserves �. If 
f preserves � then to prove that 8f preservesdire
ted joins it is suÆ
ient to show that for every b 2 
X ,8f (b) = W"f
j
f(
)� bgHowever 8f (b) = W"f
j
� 8f (b)g sin
e Y is stably lo
ally 
ompa
t, and 
� 8f (b)implies 
f(
) � b sin
e 
f preserves � and 
f8f (b) � b. Trivially 8f preserves�nite joins sin
e it has a left adjoint.In the other dire
tion say 8f preserves dire
ted joins. Then if a � b, (a; b 2 
X)and 
f(b) � W" S for some S �" 
Y then we have the following impli
ations:b � 8f ( "_S)b � "_f8f (s)js 2 Sga � 8f (s) some s 2 S
f(a) � s some s 2 SHen
e 
f(a)� 
f(b). 2Theorem 3.2.1 A sublo
ale i : X0 ,! X is 
losed if and only if it is proper as alo
ale map.Proof: Say i : X0 ,! X is a 
losed sublo
ale. Then
X �! " 8i(0)a 7�! 8i(0) _ a
orresponds to a sublo
ale of X isomorphi
 (in Sub(X)) to i : X0 ,! X . But8a 2 
X and 8b � 8i(0) we have8i(0) _ a � b , a � band so the in
lusion of " 8i(0) into 
X is a (preframe homomorphism) right adjointto a 7�! 8i(0) _ aAs for the 
oFrobenius 
ondition it amounts to: 8a 2 
X 8b � 8i(0)(b _ (8i(0) _ a) = a _ bin this 
ase.Conversely say i : X0 ,! X is proper. We know i fa
tors asX0 ,! :8i(0) ,! X



3.2. BASIC DEFINITIONS AND RESULTS 77(i.e. X0 2 Sub(X) is 
ontained in its 
losure.) To 
he
k that X0 is a 
losed sublo
aleit is suÆ
ient to 
he
k that :8i(0) �Sub(X) X0 and to see this it is suÆ
ient to provethat 
X0 �! " 8i(0)
i(a) 7�! 8i(0) _ ais a well de�ned frame homomorphism. It is well de�ned sin
e8i(0 _ 
i(a)) = a _ 8i(0)by the 
oFrobenius 
ondition and is easily seen to be a frame homomorphism. 2Theorem 3.2.2 A sublo
ale i : X0 ,! X is open if and only if it is open as a map.Proof: Say i : X0 ,! X is open. (X0 ,! X) �= (a ,! X) in Sub(X) for somea 2 
X . But 
X �! # a�a 7�! a ^ �ahas a left adjoint: the in
lusion of # a into 
X . The Frobenius 
ondition thenreads: 8�a 2 
X; 8b � a b ^ (�a ^ a) = �a ^ bwhi
h is 
learly true.Conversely, say we have some open map i : X0 ,! X whi
h is also a sublo
ale. I
laim it is equal (in Sub(X)) to the open sublo
ale:9i(1) ,! XTo 
he
k 9i(1) �Sub(X) X0 we need to verify
X0 �! # 9i(1)
i(a) 7�! 9i(1) ^ ais well de�ned. But the Frobenius 
ondition on i implies:9i(1 ^ 
i(a)) = a ^ 9i(1)To 
he
k X0 �Sub(X) 9i(1) we need to know that# 9i(1) �! 
X09i(1) ^ a 7�! 
i(a)is well de�ned. It 
learly is sin
e 
i9i(1) = 1. 2.We examine the 
ase of lo
ale maps to the terminal lo
ale 1, i.e. we look at themaps ! : X ! 1. In the 
ase when 
odomain of our map is the terminal obje
t 1the Frobenius 
ondition is automati
 on
e the left adjoint to 
! is found. We 
he
k9!(a ^ 
!(i)) = i ^ 9!(a)(N.B. it is always the 
ase that 9f
fa � a. Hen
e all we ever need to 
he
k isa ^ 9f (b) � 9f (b ^ 
fa).)So we'd like to verify i ^ 9!(a) � 9!(a ^ 
!(i)). As usual when reasoning in 
 wehave only to 
he
k that



78 CHAPTER 3. OPEN AND PROPER MAPSi ^ 9!(a) = 1 ) 9!(a ^ 
!(i)) = 1But if i ^ 9!(a) = 1 then i = 1 and 9!a = 1. Sin
e i = 1 implies 
!i = 1 the resultis seen to be trivial. What we have shown here is that for any lo
ale X the uniquemap ! : X ! 1 is open if and only if 
! has a left adjoint.A lo
ale is said to be open if and only if ! : X ! 1 is an open map. Noti
e that ifwe assume the ex
luded middle then 9! : 
X ! 
, a left adjoint to 
!, 
an alwaysbe de�ned: 9!(a) = 0 if and only if a = 0and so (assuming the ex
luded middle) all lo
ales are open.We 
an apply a similar analysis to the proper maps whose 
odomain is theterminal lo
ale and get a similar result: ! : X ! 1 is proper if and only if 8! is apreframe homomorphism (if and only if X is 
ompa
t). To 
he
k this fa
t we onlyneed to prove the 
oFrobenius 
ondition from the assumption that 8! is a preframehomomorphism. But i � 8!
!(i) for any i and soi _ 8!(a) � 8!(a _ 
!(i))For the opposite dire
tion note that
!(i) = W"(f0g [ f1j1 � ig)and so if 8!(a _ 
!(i)) = 1 then a _ 
!(i) = 1 i.e.1 = a _ "_(f0g [ f1j1 � ig)= "_(fag [ f1j1 � ig)By applying 8! to both sides we see1 = W"(f8!(a)g [ f1j1 � ig)and so 1 � 8!(a) or 1 � i, i.e. 1 � 8!(a) _ i.3.3 Pullba
k stabilityWe have the de�nition: f : X ! Y is a surje
tion if and only if 
f is an inje
tion(if and only if f is an epimorphism). A straightforward appli
ation of the Frobenius
ondition shows that any open f : X ! Y is a surje
tion if and only if 9f (1) = 1,and similarly an appli
ation of the 
oFrobenius 
ondition shows that any properf : X ! Y is a surje
tion if and only if 8f (0) = 0.We will �nd that the theorems:Theorem 3.3.1 For any lo
ale X, X �= 1 , ! : X ! 1 and � : X ! X �Xare open surje
tionsTheorem 3.3.2 For any lo
ale X, X �= 1 , ! : X ! 1 and � : X ! X �Xare proper surje
tionsshare the same proof. In order to �nd this proof we need to 
he
k pullba
k stabil-ity for open and proper maps. We �nd that to prove these fa
ts the SUP-latti
epresentation of the pushout in frame 
orresponding to the pullba
k is used for theopen result and the preframe presentation of the pushout in frame 
orrespondingto the pullba
k is used for the proper result. We have:



3.3. PULLBACK STABILITY 79Theorem 3.3.3 If W p2 - Y
Xp1 ? f - Zg ?is a pullba
k diagram in Lo
 and g is proper then(i) p1 is proper(ii) 8p1
p2(b) = 
f8g(b) 8b 2 
YFrom (ii) we see that 8g(0) = 0 implies 8p1(0) = 0 and so the 
lass of propersurje
tions is pullba
k stable.Proof: We saw in the last 
hapter (Corollary [2.6.1℄) that 
W is isomorphi
 toPreFrm< aOb 2 A
B (qua preframe) j(
f(
) _ a)Ob = aO(
g(
) _ b)8a 2 
X; b 2 
Y; 
 2 
Z >We de�ne 8p1 : 
W �! 
XaOb 7�! a _ 
f8g(b)This 
learly satis�es the `qua preframe' 
onditions in the presentation of 
W sin
e8g is a preframe homomorphism. Given any a 2 
X; b 2 
Y; 
 2 
Z we need to
he
k (
f(
) _ a) _ 
f8g(b) = a _ 
f8g(
g(
) _ b)But this follows from the 
oFrobenius 
ondition whi
h is satis�ed by 
g a 8g.So 8p1 is well de�ned. Is it right adjoint to 
p1?Now 8a 2 
X; b 2 
Y 8p1
p1(a) = 8p1(aO0)= a _
f8g(0)� aand 
p18p1(aOb) = (a _ 
f8g(b))O0= (aO0) _ (
f8g(b)O0)= (aO0) _ (0O
g8gb)� (aO0) _ (0Ob) = aObHen
e 
p1 a 8p1 .We 
he
k the 
oFrobenius 
ondition for this adjun
tion. i.e. for every a; �a 2 
Xand every b 2 
Y we want8p1((aOb) _ 
p1(�a)) = �a _ 8p1(aOb)



80 CHAPTER 3. OPEN AND PROPER MAPSWell, LHS = 8p1((a _ �a)Ob)= (a _ �a) _
f8g(b)= �a _ (a _ 
f8g(b))= �a _ 8p1(aOb):Finally given b 2 
Y 8p1
p2(b) = 8p1(0Ob)= 
f8g(b)and so 
ondition (ii) in the statement of the theorem is satis�ed. 2This proof, via preframe te
hniques, is new. The SUP-latti
e parallel to the lasttheorem is true and follows a similar proof. It is proved in [JT84℄.Theorem 3.3.4 If W p2 - Y
Xp1 ? f - Zg ?is a pullba
k diagram in Lo
 and g is open then(i) p1 is open(ii) 9p1
p2(b) = 
f9g(b) 8b 2 
YFrom (ii) we see that 9g(1) = 1 implies 9p1(1) = 1 and so the 
lass of open surje
-tions is pullba
k stable.Proof: We saw in the last 
hapter (Corollary [2.6.1℄) that 
W is isomorphi
 toSUP< a
 b 2 A
B (qua SUP-latti
e) j(
f(
) ^ a)
 b = a
 (
g(
) ^ b)8a 2 
X; b 2 
Y; 
 2 
Z >We de�ne 9p1 : 
W �! 
Xa
 b 7�! a ^ 
f9g(b)This 
learly satis�es the `qua SUP-latti
e' 
onditions in the presentation of 
Wsin
e 9g is a SUP-latti
e homomorphism. Given any a 2 
X; b 2 
Y; 
 2 
Z weneed to 
he
k (
f(
) ^ a) ^ 
f9g(b) = a ^ 
f9g(
g(
) ^ b)But this follows from the Frobenius 
ondition whi
h is satis�ed by 9g a 
g.So 9p1 is well de�ned. Is it left adjoint to 
p1?Now 8a 2 
X; b 2 
Y 9p1
p1(a) = 9p1(a
 1)= a ^
f9g(1)� a



3.3. PULLBACK STABILITY 81and 
p19p1(a
 b) = (a ^ 
f9g(b))
 1= (a
 1) ^ (
f9g(b)
 1)= (a
 1) ^ (1

g9gb)� (a
 1) ^ (1
 b) = a
 bHen
e 9p1 a 
p1.We 
he
k the Frobenius 
ondition for this adjun
tion. i.e. for every a; �a 2 
X andevery b 2 
Y we need9p1((a
 b) ^ 
p1(�a)) = �a ^ 9p1(a
 b)Well LHS = 9p1((a ^ �a)
 b)= (a ^ �a) ^
f9g(b)= �a ^ (a ^ 
f9g(b))= �a ^ 9p1(a
 b)Finally given b 2 
Y 9p1
p2(b) = 9p1(1
 b)= 
f9g(b)and so 
ondition (ii) in the statement of the theorem is satis�ed. 2We 
an now exploit the pullba
k stability of open surje
tions and the statement(ii) of the last theorem in order to show that open surje
tions are a
tually always
oequalizers. Again the proper parallel follows an identi
al proof. The open resultis in [JT84℄. The proper parallel is proved in [Ver92℄: his approa
h, however, followsa di�erent line.Lemma 3.3.1 If p : X ! Z is an open surje
tion thenX �Z X p1 -p2 - X p- Zis a 
oequalizer diagram in Lo
.Proof: pp1 = pp2 by de�nition of pullba
k, hen
e all we need to do is show thatany f : X !W with fp1 = fp2 fa
tors through p : X ! Z.So 
p1
f = 
p2
f and it is suÆ
ient to prove 9p : 
X ! 
Z satis�es 
p9p
f
 =
f
 for every 
, for then 9p : Im(
f) �! 
Z has an inverse, 
p, whi
h is a framehomomorphism. And then 
 7! 9p
f
 will be a frame homomorphism from 
W to
Z.Hen
e it is suÆ
ient to show 
p9pu = u for any u with 
p1u = 
p2u.
p9pu = 9p1
p2u pullba
k result [3.3.4℄= 9p1
p1u= uThe last line is be
ause 
p1 is a surje
tive open as it is the pullba
k of a surje
tiveopen. 2



82 CHAPTER 3. OPEN AND PROPER MAPSLemma 3.3.2 If p : X ! Z is a proper surje
tion thenX �Z X p1 -p2 - X p - Zis a 
oequalizer digram in Lo
.Proof: pp1 = pp2 by the de�nition of pullba
k. Thus all we need to do is showthat any f : X !W with fp1 = fp2 fa
tors through p : X ! Z.Say 
p1
f = 
p2
f . It is suÆ
ient to prove 8p : 
X ! 
Z has 
p8p
f
 = 
f
for every 
 2 
W . For then 8p : Im(
f)! 
Z has an inverse 
p and so is a framehomomorphism. (Re
all that 8p
p(a) = a 8a sin
e p is a proper surje
tion).Hen
e it is suÆ
ient to 
he
k that 
p8pu = u for any u with 
p1u = 
p2u. Forany su
h u we have
p8pu = 8p1
p2u (pullba
k result [3.3.3℄)= 8p1
p1u = uThe last line is be
ause 
p1 is a proper surje
tion sin
e it is the pullba
k of a propersurje
tion. 2We 
an now prove Theorems [3.3.1℄ and [3.3.2℄ whi
h gave two 
hara
terisations ofthe terminal lo
ale. The proofs are so similar that we give but one,Proof: Say ! : X ! 1 and � : X ! X �X are open surje
tions.X 1 - XX1 ? �- X �X�?is a pullba
k. Hen
e X 1 -1 - X �- X �Xis a 
oequalizer and so ��1 exists.But X �X �2 - XX�1 ? ! - 1!?is a pullba
k. Hen
e X �X �1 -�2 - X ! - 1is a 
oequalizer. �1 = �2 sin
e ��1 exists. Therefore !�1 exists and so X �= 1. 2The pullba
ks of proper/open maps are proper/open; the pullba
k of a regularmonomorphism is well known to be a regular monomorphism. Hen
e:
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k of a 
losed sublo
ale is 
losed. Further, the pullba
kof :a ,! Y along f : X ! Y is the 
losed sublo
ale :
f(a) ,! X.(ii) The pullba
k of an open sublo
ale is open. Further, the pullba
k of a ,! Yalong f : X ! Y is the open sublo
ale 
f(a) ,! X. 23.4 Dis
rete and 
ompa
t regular lo
alesWe will 
onsider two full sub
ategories of lo
ales: those whose �nite diagonals (itsuÆ
es to 
onsider ! : X ! 1 and � : X ! X � X) are open, and those whose�nite diagonals are proper. We prove that these two sub
ategories are in fa
t wellknown: the �rst is the 
ategory of dis
rete lo
ales and the se
ond is the 
ategoryof 
ompa
t regular lo
ales. (So 
lassi
ally the se
ond is the 
ategory of 
ompa
tHausdor� spa
es.) A proof of these two fa
ts will 
learly need to follow di�erentpaths sin
e the de�nitions of dis
rete and 
ompa
t regular are not parallel to ea
hother in any obvious way. We �rst ta
kle the proof ofTheorem 3.4.1 (Joyal and Tierney) X is dis
rete , X �! X �X andX !! 1 are open.An `open' lemma is needed �rst:Lemma 3.4.1 If ! : X ! 1 is open then for any S � 
XWS = Wfs 2 Sj9!s = 1g(\you only have to worry about the elements that exist.")Proof: Say s 2 S we need s � Wf�sj�s 2 S 9!�s = 1gWe know s � 
!9!s i.e. s ^ 
!9!s = s Hen
es � _f�sj9�s = 1g, s ^ 
!9!s � _f�sj9�s = 1g, 
!9!s � s!_f�sj9�s = 1g, 9!s � 8!(s!_f�sj9�s = 1g)To prove the last line we are reasoning in 
 and so must but prove 9!s = 1 )8!(s! Wf�sj9�s = 1g) = 1. But this is trivial. 2There is an alternative des
ription of the statement 9!(s) = 1. Following John-stone we say s 2 
X (for any lo
ale X) is positive if and only if 8T � 
X if s � WTthen 9t 2 T . Clearly (for open X) if 9!(s) = 1 then s is positive. (For if s � WTthen 1 = 9!(s) � 9!(WT ) = Wt2T 9!(t) and so 9t 2 T sin
e 1 = f�g and so � 2 9!(t)for some t 2 T .)Conversely if s is positive (s 2 
X; X open) thens = Wf�sj9!(�s) = 1; �s � sgby the last lemma and so there exists �s � s su
h that 9!(�s) = 1, hen
e 9!(s) = 1.So the last lemma implies that if X is open then any s 2 
X is the join ofpositive opens less than it. This result has a 
onverse:
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ale X if every s 2 
X is the join of positive opens lessthan it then X is open.This lemma is in Johnstone's paper `Open Lo
ales and Exponentiation' ([Joh84℄).Proof: 8s 2 
X the statement(8T )[(s � WT )) (9t 2 T )℄
an be viewed as an element of the subobje
t 
lassi�er (i.e. as a truth value). Sowe have a map 9! : 
X �! 
s 7�! (8T )[(s �_T )) (9t 2 T )℄Clearly 9! preserves order.We need to 
he
k 9! a 
!. To 
he
k 9!
!(i) � i we must verify9!
!(i) = 1 ) i = 1But 9!
!(i) = 1 means 
!(i) is positive. But 
!(i) = Wf1j1 � ig and so 1 � i as
!(i) is positive.To see a � 
!(9!(a)), i.e. thata � Wf1j1 � 9!(a)g,we use our assumption that a is the join of positive element less than it, i.e.a = Wf�aj9!(�a) = 1; �a � agClearly 9!(�a) = 1 and �a � a together imply 9!(a) = 1. 2Proof of Theorem [3.4.1℄: Say X �! X �X and X !! 1 are open.We say for any a 2 
X that a is an atom i� a� a �Sub(X�X) � (i� a
a � 9�(1))and 9!a = 1. (NB a� a is a sublo
ale of X �X ; it is easy to 
he
k that it is openand that the element of 
(X �X) that 
orresponds to it is a
 a.)The 
omposition of two open maps is open. Hen
e 
 
!! 
X ( )^a! # a i.e. !a : a! 1is open. The 
ondition 9!(a) = 1 implies 9!a(1) = 1. Hen
e !a is an open surje
tionfor any atom a.Further a m - Xa� a�a ? m�m- X �X�?is a pullba
k sin
e m�m is a monomorphism in Lo
. Thus �a is an open map.9�a(1) = 9�a
m(1)= 
(m�m)(9�(1)) pullba
k result [3.3.4℄� 
(m�m)(a
 a) = 1
 1 = 1Hen
e �a is an open surje
tion, and so by Theorem [4.3.1℄ a �= 1. Also atomsbehave as atoms should in the following way: if a1; a2 are two atoms with a1 � a2
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et: if a1 � a2 then there is a 
ontinuous map a1 q! a2 inSub(X). But 1 �= a1 and 1 �= a2 hen
e 
q is easily 
he
ked to be a bije
tion as wemust have 
(!a1) = 
q Æ
(!a2) and !a1 ; !a2 are isomorphisms.℄Let A denote the set of atoms.De�ne: � : 
X �! PAu 7�! fa 2 Aja � ug� 
learly preserves �nite meets. As for joins it is suÆ
ient to 
he
k a � Wi2I uiimplies 9i 2 I a � ui for any atom a.Say a � Wi2I uia ^_ui = a ) 9!a(a ^_ui) = 9!a(a)) _ 9!a(a ^ ui) = 1) 9i 9!a(a ^ ui) = 1 = 9!a(a) (reasoning in 
)) a ^ ui = a sin
e 9!a = (
(!a))�1) a � uiIn fa
t � has a left adjoint: � : PA �! 
XI 7�! _faja 2 IgWe 
he
k ��(I) � I .Say �a 2 ��(I) then �a � Wfaja 2 Ig and so as above �a � a for some a 2 I . Butthen �a = a by a property of atoms that we have just demonstrated.Finally we must 
he
k that u = ��(u). i.e. u = Wfaja � ug.First I 
laim that 9�(u) = Wfv 
 vj v 
 v � 9�(u)gCertainly: 9�(u) = Wfv 
 wj v 
 w � 9�(u)gBut v 
 w � 9�(u) ) v 
 w � 9�(1)i.e. v � w � � in Sub(X �X).) v � w = w � v) v 
 w = w 
 vThus 9�(u) = Wfv 
 vj v 
 v � 9�(u)gApply 
� to both sides and re
all u � 
�9�(u) and that if v 
 v � 9�(u) thenv � u. [This is be
ause 9�(u) � u
 u , u � 
�(u
 u) = u .℄We obtain u = Wfvjv 
 v � 9�(u)g= Wfvjv 
 v � 9�(1) v � ugWhi
h is seen by the `open' Lemma [3.4.1℄ to imply
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 v � 9�(1) v � ugi.e. u = Wfaja is an atom, a � ug 2What follows now is a very di�erent type of proof. It shows that just as the
lass of lo
ales whose �nite diagonals are open turns out to be well known (i.e. thedis
rete lo
ales) so does the 
lass of lo
ales whose �nite diagonals are proper: theyare the 
ompa
t regular lo
ales. The proof to follow, via preframe te
hniques, isnew.Theorem 3.4.2 For any lo
ale X, X is 
ompa
t regular if and only if ! : X ! 1and � : X ! X �X are both proper.Proof: It is well known (see Johnstone [Joh82℄ III 1.3) that any regular lo
ale isstrongly Hausdor� i.e. has a 
losed diagonal. So we know that any regular lo
aleX has � : X ! X �X proper.We have established already that ! : X ! 1 is proper if and only if X is 
ompa
t.What needs to be proven is that if � : X ! X �X and ! : X ! 1 are proper then8a 2 
X a � W"f
j
� agSin
e � : X ! X �X is proper we know that for every a; b 2 
X8�
�(aOb) = # _ (aOb)where # is given by# = W"f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite g(Sin
e � : X ! X � X is just the 
losed sublo
ale :# � X � X , see Lemma[2.7.1℄.) Now 8�
�(aOb) = W"fI j
�(I) � a _ bg = 8�
�(bOa)and so we see that for any a in 
X0Oa � # _ aO0; i.e. 0Oa � W"f^i2I((ai _ a)Obi)j ^i (ai _ bi) = 0g - (�)We will use the fa
t that (for �nite I),^i(ai _ bi) = WI�J1[J2((^i2J1ai) ^ (^i2J2bi))where the J1; J2 are subsets of I . This �nite distributivity rule shows us that if^i(ai _ bi) = 0 then for all �nite subsets J1; J2 � I with I � J1 [ J2 we have(^i2J1ai) ^ (^i2J2bi) = 0. We 
an also use the above distributivity and the rulesrelating O to 
, e.g. aOb = a
 1 _ 1
 b, to prove that^i(aiObi) = WI�J1[J2 [(^i2J1ai)
 (^i2J2bi)℄(see Lemma [2.7.1℄). Now 8! is a preframe homomorphism and so we 
an apply the
omposite 
X 

X 8! 
 1- 


X 
!
 1- 
X 

X 
�- 
Xto both sides of (�) to obtaina � "_f
�(^i(
!8!(ai _ a)Obi))j ^i (ai _ bi) = 0g= "_f
�[ _I�J1[J2[^i2J1(
!8!(ai _ a))
 (^i2J2)bi℄℄j ^i2I (ai _ bi) = 0g= "_f _I�J1[J2[(^i2J1 (
!8!(ai _ a))) ^ (^i2J2bi)℄j ^i2I (ai _ bi) = 0gand so to prove that a � W"f
j
� ag all we need do is 
he
k that
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!8!(ai _ a))) ^ (^i2J2bi) � Wf
j
� aggiven any (�nite) 
olle
tion of ais and bis with (^i2J1ai) ^ (^i2J2bi) = 0. Now^i2J1
!8!(ai _ a) = 
!8!((^i2J1ai) _ a)and 
!8!(�) = W
Xf1j1 � �g for any � 2 
Xand so ^i2J1(
!8!(ai _ a)) ^ ^i2J2bi= W
Xf^i2J2bij1 � (^i2J1ai) _ agBut for any 
 2 f^i2J2bij1 � (^i2J1ai) _ ag we have 
� a and so(^i2J1(
!8!(ai _ a)) ^ (^i2J2bi) � Wf
j
� agas required. 2Given this last result we now 
hange our notation slightly and shall refer tothe 
ompa
t regular lo
ales as the 
ompa
t Hausdor� lo
ales. The 
ategory of
ompa
t Hausdor� lo
ales will be written KHausLo
. We have just shown thatthe 
ompa
t Hausdor� lo
ales are parallel to the dis
rete lo
ales. Noti
e that if wewere not working in a 
onstru
tive 
ontext and were assuming the ex
luded middlethen, sin
e all lo
ales would be open, su
h a parallel be
omes invisible. It is onlyby working 
onstru
tively that we 
an appre
iate the full for
e of the parallel.3.5 Histori
ally Important AxiomsThis se
tion 
onsists of an argument whi
h shows that the 
onstru
tive prime idealtheorem is parallel to the ex
luded middle. The se
tion is separate from the rest ofthe work and is the only time that we use the points of a lo
ale in a 
ontext that isnot motivational. This result is new.For any lo
ale X 
onsider the map�X : 
X �! PptXa 7�! fp 2 ptX j
p(a) = 0gIt is order reversing. Consider the results:(i) 8X 
ompa
t Hausdor�, �X is an inje
tion.(ii) 8X dis
rete, �X is an inje
tion.We show that (i) is true if and only if the 
onstru
tive prime ideal theorem(CPIT) is true and that (ii) is true if and only if the ex
luded middle holds. So wehave found a result whi
h is true if and only the ex
luded middle holds and whoseproper parallel is true if and only if CPIT. The grander 
on
lusion is that CPIT is`parallel' to the ex
luded middle; though the reader is asked to bear in mind thefa
t that, so far, no formal de�nition has been given for our parallel.Before proof we note that if �Y is an inje
tion then so is �X for any retra
t Xof Y . To see this say �Y is an inje
tion and there exists q : Y ! X , i : X ! Y su
hthat q Æ i = 1. If a; �a 2 
X satisfyfp 2 ptX j
p(a) = 0g = fp 2 ptX j
p(�a) = 0g
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�p(
q(a)) = 0g = f�p 2 ptY j
�p(
q(�a)) = 0gand so as �Y is an inje
tion we get 
q(a) = 
q(�a) allowing us a = �a sin
e q Æ i = 1.Hen
e �X is inje
tive.Proof that (i) , CPIT: Assume CPIT. By the pre
eding remarks and the fa
tthat all 
ompa
t Hausdor� lo
ales are stably lo
ally 
ompa
t (and the fa
t that thestably lo
ally 
ompa
t lo
ales are the retra
ts of the 
oherent lo
ales) it is 
learlysuÆ
ient to prove �Y is an inje
tion for every 
oherent Y in order to 
on
lude that�X is an inje
tion for all 
ompa
t Hausdor� X .Say Y is 
oherent and I; J 2 Idl(K
Y ) are su
h thatfp 2 ptY j
p(I) = 0g = fp 2 ptY j
p(J) = 0g (�)We prove J � I . Say j 2 J . Clearly, by the assumption of CPIT and by Lemma[1.3.4℄ it is suÆ
ient to prove f [j℄ = 0 for every distributive latti
e homomorphismf : K
Y= �I�! 
in order to 
on
lude j 2 I . But every su
h f 
orresponds to a point, p, of Y with theproperty 
p(I) = 0. Hen
e 
p(# j) = 0 by (�) and so f [j℄ = 0 as required. ThusJ � I . I � J follows symmetri
ally and so �Y is an inje
tion for every 
oherent Yassuming CPIT.Conversely assume �X is an inje
tion for every 
ompa
t Hausdor� X . To 
on
ludeCPIT it is suÆ
ient (by Lemma [1.8.1℄) to show that for every Boolean algebra B ifb 2 B has the property that f(b) = 0 for every distributive latti
e homomorphismf : B ! 
 then b = 0. Say b 2 B enjoys su
h a property. Set X to be the lo
alewhose frame of opens is Idl(B). So X is Stone and so is 
ompa
t Hausdor�. Clearlyfp 2 ptX j
p(# b) = 0g = fp 2 ptX j
p(0) = 0gby assumption about b 2 B. Hen
e, sin
e �X is an inje
tion, we get b = 0. 2Proof that (ii) , ex
luded middle holds: Re
all that all dis
rete lo
alesare 
onstru
tively spatial (Se
tion 1.6) and further that the frame homomorphism
orresponding to the 
ounit:
�X : 
X �! PptXa 7�! fpj
p(a) = 1gis a surje
tion.Assume the ex
luded middle. Say X is a dis
rete lo
ale. Then 
X = PA for someset A. It follows that for every T 2 
Xfp 2 ptX j
p(T ) = 0g = fp 2 ptX j
p(T 
) = 1gby the ex
luded middle (where T 
 is the 
omplement of T ). If �X (T1) = �X (T2)for some opens T1; T2. Thenfpj
p(T 
1 ) = 1g = fpj
p(T 
2 ) = 1gand so by spatiality of X we have that T 
1 = T 
2 . Leading us to T1 = T2. Hen
e �Xis inje
tive. We 
on
lude (using the ex
luded middle) that (ii) is true.Conversely say �X is an inje
tion. We know PptX �= 
X . I 
laim that
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p(a) = 0g = :fpj
p(a) = 1gwhere : is Heyting negation in Ppt(X). It will then follow that (
�X)�1 Æ �X isHeyting negation on 
X . Inje
tivety of �X will then imply inje
tivety of : : 
X !
X . But :::a = :a for any open of any frame and so ::a = a for all a 2 
X if: is inje
tive. So 
X would then be Boolean for every dis
rete lo
ale X , i.e. PAis Boolean for any set A. This implies the ex
luded middle is true in our topos.Verifying the 
laim is straightforward. We needfpj
p(a) = 0g = SfT 2 PptX jT \ fpj
p(a) = 1g = �gThe in
lusion of the left hand side in the right hand side is trivial. Say T 2 PptXis su
h that T \ fpj
p(a) = 1g = �Then T = fpj
p(�a) = 1g for some �a 2 
X sin
e 
�X is a surje
tion to PptX . Thusa ^ �a = 0 by spatiality of 
X (use fpj
p(0) = 1g = �). Thus for all p 2 T
p(a) = 
p(a) ^ 1 = 
p(a) ^ 
p(�a)= 
p(a ^ �a) = 
p(0) = 0Hen
e T � fpj
p(a) = 0g: 23.6 Further results about proper and open mapsWe now turn to the question of regularity of our two parallel 
ategories (the dis
retelo
ales and the 
ompa
t Hausdor� lo
ales). We �nd that a proof that they are reg-ular follows the same route. The fa
t that the 
ategory DisLo
 of dis
rete lo
alesis regular is of 
ourse known already sin
e we know that it is equivalent to Set(where Set is our ba
kground topos). However the observation that the 
ategoryKHausLo
 of 
ompa
t Hausdor� lo
ales is regular will bear mu
h fruit: we knowfrom Freyd and �S�
edrov ([FS90℄) that any regular 
ategory gives rise to an allegoryin the vein of `sets and relations'. Along the way some more te
hni
al results aboutproper and open maps are shown.Theorem 3.6.1 (Vermeulen) If Y f! X is a map between 
ompa
t Hausdor�lo
ales then f is proper.Proof: Y f - XY �X(1; f) ? f � 1- X �X�?is a pullba
k square so (1; f) is proper. But Y � X �2! X is proper as it is thepullba
k of the proper map Y !! 1. Properness is easily seen to be stable under
omposition. Hen
e �2 Æ (1; f) is proper. i.e. f is proper. 2
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e that exa
tly the same proof proves that if Y f! X is a map betweendis
rete lo
ales then f is open.To 
he
k that KHausLo
 is regular we need to 
he
k that any f : X ! Y withX;Y 
ompa
t Hausdor� has a fa
torization as a 
over followed by monomorphism.Certainly it has a fa
torization in Lo
 as an epimorphism followed by a regularmonomorphism: X q! f [X ℄ i! Y (see Se
tion 2.7) We o�er aProof that f [X ℄ is 
ompa
t Hausdor�: [N.B. this result 
an be generalized inthe obvious way i.e. we only really need X 
ompa
t and Y Hausdor�.℄f [X ℄ i - Yf [X ℄� f [X ℄�f [X℄ ? i� i- Y � Y�Y?is a pullba
k square and so �f [X℄ is proper.To prove that ! : f [X ℄ ! 1 is proper we appeal to the following general result: ifX q! Y f! Z in Lo
 are su
h that f 0(= f Æ q) is proper and q is a surje
tion then fis proper. Take the 
ase f =!f [X℄ and f 0 =!X to prove that f [X ℄ is 
ompa
t. Theproof of this general result is straightforward, 
an be found in [Ver92℄ and requiresthe following manipulations: (note that sin
e q is surje
tive 8q
q(d) = d 8d)Say S �" 
Y , 8f "_S = 8f8q
q( "_S)= 8f 0
q( "_S)= 8f 0 "_f
qdjd 2 Sg= "_f8f 0
qdjd 2 Sg= "_f8f8q
qdjd 2 Sg= "_f8fdjd 2 Sgand 8f (a _ 
fb) = 8f8q
q(a _ 
fb)= 8f 0(
qa _ 
f 0b)= 8f 0
qa _ b = 8fa _ b: 2Similarly if X q! f [X ℄ i! Y is the epi/regular mono de
omposition of X f! Y , andX;Y are dis
rete, then so is f [X ℄. As before we see straight away that �f [X℄ isopen sin
e it is a pullba
k of the open Y �! Y � Y . That ! : f [X ℄! 1 is open thenfollows exa
tly as before from:
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ales and X q! Y f! Z is su
h that f 0(= f Æ q) isopen and q is surje
tive (i.e. epi in Lo
, i.e. 
q inje
tive) then f is open.This result 
an be found as Proposition 1.2 VII of [JT84℄.Proof: De�ne 9f : 
Y ! 
Zy 7! 9f 0
qyHen
e 9fy � z , 9f 0
qy � z, 
qy � 
f 0z, 
qy � 
q
fz, y � 
fz (
q inj.)and so 9f a 
f .Also 9f (y ^
fz) = 9f 0(
qy ^ 
f 0z)= 9f 0
qy ^ z = 9fy ^ zand so f is open. 2Heading towards a proof of regularity of KHausLo
 (and DisLo
) we need somete
hni
al lemmas:Lemma 3.6.2 If X f! Y and �X �f! �Y are two open(proper) maps thenX � �X f� �f�! Y � �Yis open(proper).Proof: Take 9f� �f (a
 �a) = 9fa
9 �f�a. (Use SUP-latti
e de�nition of tensor prod-u
t.) Take 8f� �f (aO�a) = 8faO8 �f�a. (Use preframe de�nition of tensor produ
t.) 2Lemma 3.6.3 KHausLo
�Lo
 is 
losed under the formation of �nite limits inLo
. (i.e. the in
lusion fun
tor 
reates �nites limits.)Noti
e that exa
tly the same proof (to follow) demonstrates that DisLo
�Lo
 is
losed under �nite limits.Proof: The terminal lo
ale 1 is 
ompa
t Hausdor�. We �rst 
he
k that if X;Y are
ompa
t Hausdor� then so is X � Y . X � Y �1! Y is proper sin
e it is the pullba
kof the proper map X !! 1. Hen
e 
omposition with the proper Y !! 1 proves that! : X � Y ! 1 is proper.It is straightforward to 
he
k thatX � Y Id - X � Y(X � Y )� (X � Y )� ? i- (X �X)� (Y � Y )�X ��Y?
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k, where i is the obvious twist isomorphism. It follows that � is proper,and so X � Y is 
ompa
t Hausdor�.Say now that we are given an equalizer diagramE e - X f -g - Yin Lo
, where X and Y are 
ompa
t Hausdor�. First note that e is proper sin
eit is the pullba
k of the proper map �Y along (f; g). Thus sin
e E !! 1 
an befa
tored as E e! X !! 1 we know that !E is proper. FurtherE e - XE �E� ? e� e- X �X�?is a pullba
k sin
e e is mono. Hen
e �E is proper and so E is a 
ompa
t Hausdor�lo
ale. 2Theorem 3.6.2 If X m! Y is a monomorphism in KHausLo
 then m is a regularmonomorphism in Lo
.Proof: X m! Y 
an be fa
tored as X q! m[X ℄ i! Y where q is a proper surje
tion.But by a 
orollary to the pullba
k result (Lemma [3.3.2℄) we know that for anyproper surje
tion q X �m[X℄ X p1 -p2 - X q- m[X ℄is a 
oequalizer diagram in Lo
. By the results that we've just proven we knowthat this diagram is in fa
t inside KHausLo
. Hen
e mp1 = mp2 )p1 = p2 ) q is an isomorphism. Thus m is regular sin
e i is. 2This last result is really all we need to 
he
k that KHausLo
 is regular. To provethat a 
ategory is regular one needs to 
he
k that (it has �nite limits and) for anyf : X ! Y there is an image fa
torizationX q! f [X ℄ i,! Yand su
h a fa
torization is pullba
k stable (see [FS90℄ or [BGO71℄). But what wehave shown above is that the usual epi/regular mono de
omposition in Lo
 givesrise to su
h an image fa
torization. It is then easy to see that the 
overs are theproper surje
tions and we know that these are pullba
k stable. We have proven:Theorem 3.6.3 KHausLo
 is regular.2Also, as another 
orollary to [3.6.2℄, noti
e that subobje
ts in KHausLo
 (i.e.monomorphisms inKHausLo
) are exa
tly the 
losed sublo
ales of 
ompa
t Haus-dor� lo
ales. Certainly they are proper; but we need [3.6.2℄ in order to 
on
ludethat these subobje
ts are a
tually sublo
ales. Hen
e they are proper maps and aresublo
ale maps. i.e. they are 
losed (use Theorem [3.2.1℄).



Chapter 4Compa
t Hausdor� Relations
4.1 Introdu
tionWe establish the existen
e, via Freyd and �S�
edrov's de�nitions ([FS90℄), of a 
ate-gory of 
ompa
t Hausdor� relations (parallel to the 
ategory of sets and relations;
omposition is given by relational 
omposition). We then give a mu
h more 
on-
rete des
ription of what this 
ategory is like i.e. we give an expli
it de�nition of afun
tion that de�nes relational 
omposition of 
losed sublo
ales.We �nd that there is a bije
tion between the 
losed sublo
ales of a lo
ale produ
tX � Y (where X and Y are 
ompa
t Hausdor�) and preframe homomorphismsfrom 
Y to 
X . This result is used to establish an equivalen
e between the 
ate-gory of 
ompa
t Hausdor� lo
ales with 
losed relations and another 
ategory whosemorphisms are mu
h more 
on
rete. The 
onne
tion between preframe homomor-phisms and 
losed sublo
ales will be exploited 
onsiderable in the rest of this work,in parti
ular we are able to use the fun
tion that de�nes relational 
ompositionof 
losed sublo
ales to turn our spatial intuitions (about relational 
omposition of
losed subspa
es) into suitable preframe formulas.Although the results presented here are new we do �nd some of the 
orollaries tothem in Vi
kers' paper [Vi
94℄. The thesis is, form now on, entirely 
on
erned withthe proper side of our parallel i.e. preframe te
hniques. However we will not proveresults in isolation, the open parallels of our results (whi
h are all known) are statedfor 
ompleteness.4.2 Relational 
ompositionIf C is a regular 
ategory and P � (p1; p2)- X � YQ � (q1; q2)- Y � Z93



94 CHAPTER 4. COMPACT HAUSDORFF RELATIONSare moni
s in C, then the relational 
omposition of P and Q (Q Æ P ) is given asfollows: form the pullba
k P �Y Q a2 - QPa1 ? p2 - Yq1 ?then Q Æ P is de�ned to be the image ofP �Y Q (p1a1)� (q2a2)- X � YIf C is just Set then the pullba
k P �Y Q would be the setf(x; y; �y; �z)j(x; y) 2 P; (�y; �z) 2 Q; y = �yg:The fun
tion (p1a1)� (q2a2) is given by(x; y; �y; �z) 7�! (x; �z)and so its image is f(x; �z)j9y (x; y) 2 P; (y; �z) 2 Qgwhi
h is the usual de�nition of relational 
omposition of subsets.Given a general (regular) C we 
an now form the 
ategoryREL(C) with C-obje
ts asobje
ts and relations as morphisms. Composition is given by relational 
ompositionand the identity on an obje
t is the diagonal. In fa
t REL(C) is an allegory in thesense of Freyd and �S�
edrov [FS90℄ (although see [BGO71℄ for an earlier des
riptionof REL).We will use the 
ategory REL(KHausLo
) a lot in what follows and shall 
allit KHausRel.The de�nition of relational 
omposition as given above doesn't give us mu
h ofan algebrai
 handle. In order to �nd su
h an algebrai
 handle we 
ontinue withour spatial intuition. Say X;Y; Z are spa
es andR1 � X � Y;R2 � Y �Z are both
losed. So Ri = :Ii where : is set theoreti
 
omplement and the Iis are open. (Weare only looking at the spatial 
ase in order to justify the 
hoi
e of formula to followand so are at liberty to use the ex
luded middle.)We want R2 ÆR1 to be 
losed and so to de�ne Æ all we need de�ne is some fun
tion� : 
(X � Y )�
(Y � Z)! 
(X � Z)su
h that R2 ÆR1 = : � (I1; I2). Given the fa
ts about preframe tensors dis
ussedin Chapter 2 it should be 
lear that we only need be 
on
erned with the 
asesI1 = U1OV1 I2 = V2OW2for some opens U1; V1; V2;W2. We know (x; z) 2 R2 Æ R1 i� 9y xR1y yR2z.Hen
e (x; z) 2 �(I1; I2) i� 8y (x:R1y) _ (y:R2z). Hen
e(x; z) 2 �(I1; I2) , 8y((x; y) 2 I1) _ ((y; z) 2 I2), 8y(x 2 U1 _ y 2 V1 _ y 2 V2 _ z 2 W2), (x 2 U1 _ z 2 W2) _ Y � V1 [ V2, (x; z) 2 U1OW2 _ Y � V1 [ V2Now say R1� X � Y;R2� Y � Z are 
losed sublo
ales. De�ne



4.2. RELATIONAL COMPOSITION 95R2 ÆR1 = : � (aR1 ; aR2)where aRi is the open 
orresponding to the 
losed sublo
ale Ri and� : 
(X � Y )�
(Y � Z)! 
(X � Z) is de�ned on generators as�(a1Ob1; b2O
2) = a1O
2 _ 
!(1 � b1 _ b2)In fa
t we have to fa
tor � through ��:�� : 
X 

Y 

Z ! 
X 

ZaObO
 7! aO
 _ 
!(1 � b)sin
e to make sure that we are de�ning a fun
tion we need to de�ne it on allgenerators of some tensor. We need to 
he
k that �� is well de�ned. i.e. that(a; b; 
) 7! aO
 _ 
!(1 � b)is a preframe trihomomorphism. This follows from the 
ompa
tness of 
Y . Thentake �(I1; I2) = ��(`12 I1 _`23 I2) where the `s are frame 
oproje
tions.Theorem 4.2.1 If X;Y; Z are 
ompa
t Hausdor� lo
ales then the fun
tion
X �
Y �
Z �! 
X 

Z(a; b; 
) 7�! (aO
) _
!(1 � b)is a preframe trihomomorphism and so indu
es a preframe homomorphism�� : 
X 

Y 

Z �! 
X 

ZThere are preframe homomorphisms
(�12) : 
X 

Y �! 
X 

Y 

ZaOb 7�! aObO0
(�23) : 
Y 

Z �! 
X 

Y 
 ZbO
 7�! 0ObO
De�ne � : (
X

Y )�(
Y 

Z) �! 
X

Z by I �J = ��(
�12I_
�23J), thenif :I � X � Y;:J � Y � Z are two moni
s in KHausLo
 then their relational
omposition is given by :(I � J).Before proof we �nd an alternative formula for ��. Note that for a 2 
X; b 2 
Y;
 2 
Z 
�13(��(aObO
)) = 
�13(aO
 _ 
!(1 � b))= aO0O
 __f1j1 � bg� aObO
Thus 
�13(��(I)) � I for all I 2 
X 

Y 

Z. And��
�13(aO
) = ��(aO0O
)= (aO
) _
!(1 � 0)� aO




96 CHAPTER 4. COMPACT HAUSDORFF RELATIONSand so J � ��
�13(J) for all J 2 
X 
 
Z. Hen
e �� is right adjoint to 
�13 i.e.�� = 8�13 .Proof: For I 2 
X 

Y , J 2 
Y 

Z we are trying to prove that:J Æ :I = :8�13(IO0 _ 0OJ).It is easy to see that (1

�)(IO0) = I (� : Y � Y � Y ) and so sin
eIOJ = (IO(0O0) _ (0O0)OJ) we have to prove:J Æ :I = :8�13(1

�
 1)(IOJ)Now set P (p1;p2)� X � Y � :I � X � Y; Q (q1;q2)� Y � Z � :J � Y � Z, and tode�ne Q Æ P we form the pullba
k:P �Y Q a2 - QPa1 ? p2 - Yq1?whi
h is well know to be de�ned equivalently by the pullba
kP �Y Q p2a1 = q1a2- YP �Q(a1; a2) ? p2 � q1- Y � Y� ?\P �Y Q is a 
losed sublo
ale of P �Q (we are working in KHausLo
). The open
orresponding to this 
losed sublo
ale is given by
(p2 � q1)(#)= (
p2)
 (
q1)(#)(see Lemma [3.3.3℄). Now
p2 : 
Y ! 
X 

Y !" Ib 7! 0Ob 7! I _ 0Ob
q1 : 
Y ! 
Y 

Z !" J�b 7! �bO0 7! J _ �bO0Re
alling that # = W"f^i(biO�bi)j ^i2I (bi _ �bi) = 0 I �nite gwe 
an see that the open 
orresponding to the 
losed sublo
ale P �Y Q is(IOJ) _ (0O#O0)The de�nition of Q Æ P is that it is the image of the 
ompositionP �Y Q �(a1 � a2)- P �Q �(p1; p2)� (q1; q2)- X � Y � Y � Z �14- X � ZHowever P �Y Q� X � Y � Y � Z is less than



4.2. RELATIONAL COMPOSITION 97X � Y � Z 1���1� X � Y � Y � Zin the poset Sub(X � Y � Y � Z). (This is just the statement that0O#O0 � (IOJ)_ (0O#O0).) And so P �Y Q is a 
losed sublo
ale of X � Y �Z.The open 
orresponding to it is given by (1

�
 1)((IOJ) _ (0O#O0))= (1

�
 1)(IOJ). So the image of the 
ompositionP �Y Q �(a1 � a2)- P �Q �(p1; p2)� (q1; q2)- X � Y � Y � Z �14- X � Zis given by the image of:(1

�
 1)(IOJ)� X � Y � Z �13�! X � Z(sin
e �14 Æ (1��� 1) = �13) and the open 
orresponding to this image is8�13(1

�
 1)(IOJ).To see this last line re
all that the image of f : X ! Y in KHausLo
 is given by:8f (0) ,! Y . 2Yet another formula for � 
an be found:�(a1Ob1; b2O
2) = (a1O
2) _ 
!(1 � b1 _ b2)= a1O
2 _ "_(f0g [ f1j1 � b1 _ b2g= "_(fa1O
2g [ f1j1 � b1 _ b2g)Theorem 4.2.2 KHausRel is a 
ategory.Proof: The reader may 
onsult the proof that REL(C) is a 
ategory for any regularC (in [FS90℄ for example) in order to dedu
e that KHausRel is a 
ategory. Wein
lude the following dire
t proof for 
ompleteness.The problem is to show asso
iativity of � and that # 
orresponds to the identity.For suitable a1Ob1; b2O
2; 
3Od3 we �nd�(a1Ob1; �(b2O
2; 
3Od3)) = �(a1Ob1; "_(fb2Od3g [ f1j1 � 
2 _ 
2g)= "_(f�(a1Ob1; b2Od3)g [ f1j1 � 
2 _ 
3g)= "_(f "_(fa1Od3g [ f1j1 � b1 _ b2g)g [ f1j1 � 
2 _ 
3g)= "_(fa1Od3g [ f1j1 � b1 _ b2g [ f1j1 � 
2 _ 
3g)A similar manipulation on �(�(a1Ob1; b2O
2); 
3Od3) redu
es it to the same term.# is given by the formula:# = W"f^i(biO�bi)j ^i (bi _ �bi) = 0gWe want �(#; bOa) = bOa for appropriate a; b.



98 CHAPTER 4. COMPACT HAUSDORFF RELATIONS�(#; bOa) = "_f�(^i(biO�bi); bOa)j ^i (bi _ �bi) = 0g= "_f^i[(biOa) _ 
!(1 � �bi _ b)℄j ^i (bi _ �bi) = 0gSay (bi;�bi)i2I is a �nite 
olle
tion of opens su
h that ^i(bi _ �bi) = 0. Using the�nite distributivity law:̂ i(bi _ �bi) = W(^i2J1bi) ^ (^i2J2�bi)(where the join is over all pairs J1; J2 � I su
h that J1; J2 are �nite and I � J1[J2)we see that (^i2J1bi) ^ (^i2J2�bi) = 0 for every su
h pair. By applying the same�nite distributivity law to the meet^i[(biOa) _ 
!(1 � �bi _ b)℄we �nd that to 
on
lude �(#; bOa) � bOa it is suÆ
ient to prove:(^i2J1 (biOa)) ^ (^i2J2
!(1 � �bi _ b)) � bOaBut ^i2J2
!(1 � �bi _ b) = 
!(1 � ^i2J2�bi _ b)� 
!(^i2J1bi � b)by the fa
t that (^i2J1bi) ^ (^i2J2�bi) = 0. However for any opens 
; d
 ^
!(
 � d) � d(to see this formally note 
!(
 � d) = Wf1j
 � dg and joins distribute over �nitemeets). Thus �(#; bOa) � bOa.Proving the opposite inequality requires an appli
ation of Theorem [3.4.2℄: weneed to know that 
ompa
t Hausdor� lo
ales are regular (as a separation axiom of
ourse, rather than as a whole 
ategory!). i.e. we exploit the fa
t that for any openb, b = W"fb0jb0 � bgand so bOa = W"fb0Oajb0 � bgSay b0 � b. Then there exists 
 su
h that b0 ^ 
 = 0 and 1 � b _ 
. Sob0Oa � (0Oa) _ 
!(1 � 
 _ b)b0Oa � (b0Oa) _
!(1 � 0 _ b)i.e. b0Oa � ^i2f1;2g[(biOa) _ 
!(1 � �bi _ b)℄where b1 = 0;�b1 = 
; b2 = b0 and �b2 = 0. But^i2f1;2g(bi _ �bi) = (0 _ 
) ^ (b0 _ 0)= 
 ^ b0 = 0



4.3. AXIOMS ON RELATIONS 99and so b0Oa � �(#; bOa). Hen
e bOa � �(#; bOa). 2We have an important te
hni
al lemma whi
h will help us relate 
losed sublo-
ales of X�Y to preframe homomorphisms 
Y ! 
X . Indeed will see that 
losedsublo
ales of X � Y and preframe homomorphisms 
Y ! 
X are the same thingprovided X;Y are 
ompa
t Hausdor�.Lemma 4.2.1 If f1 : 
X ! 
 �X; f2 : 
Z ! 
 �Z are preframe homomorphismsand X; �X;Y; Z; �Z are 
ompa
t Hausdor� lo
ales and I 2 
X 
 
Y; J 2 
Y 
 
Zthen (f1 
 f2)(I � J) = (f1 
 1)(I) � (1
 f2)(J)Proof: We �rst 
he
k the 
ases I = aOb; J = �bO�
.(f1 
 1)(I) � (1
 f2)(J)= ��((f1aObO0) _ (0O�bOf2�
))= ��(f1aO(b _ �b)Of2�
)= "_(ff1aOf2�
g [ f1j1 � b _ �bg)= (f1 
 f2) "_(faO�
g [ f1j1 � b _ �bg)= (f1 
 f2)(I � J):The result then follows for general I , J sin
e � is a preframe bihomomorphism. 2We 
an interpret this lemma spatially. Re
all that if g : X ! Y is a lo
ale mapbetween 
ompa
t Hausdor� lo
ales then for any 
losed sublo
ale :I � X of X itsimage under g (written g(:I)) is given by :8g(I). So the lemma 
ould have beenstated: given g1 : X ! �X; g2 : Z ! �Z with X; �X;Y; Z; �Z 
ompa
t Hausdor� thenfor any 
losed relations :I � X � Y;:J � Y � Z(g1 � g2)(:J Æ :I) = ((1� g2)(:J)) Æ ((g1 � 1)(:I))(Take f1 = 8g1 and f2 = 8g2 in the lemma.)4.3 Axioms on relationsWe would like to use our relational 
omposition on 
ompa
t Hausdor� lo
ales inorder to 
apture well known spatial ideas about sets and relations. Often whenlooking at the upper 
losure of a subset with respe
t to some relation R we areinterested in the 
ases when R is a preorder, or a partial order, or transitive, orinterpolative et
. These axioms 
an be expressed using relational 
omposition:R re
exive , � � RR transitive , R ÆR � RR interpolative , R � R ÆRR antisymmetri
 , R \ �R � �



100 CHAPTER 4. COMPACT HAUSDORFF RELATIONSwhere � is the diagonal on X and � is the twist isomorphism X �X ! X �X .The lo
ali
 version of the above is 
lear: if X is a 
ompa
t Hausdor� lo
ale and Ris a 
losed sublo
ale of X �X then we sayR re
exive , � � RR transitive , R ÆR � RR interpolative , R � R ÆRR antisymmetri
 , R ^ �R � �:Where � is the in
lusion of 
losed sublo
ales and � : X � X �X is the (
losed)diagonal. It is important to realize how these axioms are going to be used in pra
ti
e.The diagonal is 
losed so, � = :#� X �Xwhere # = W"f^i(aiObi)j ^i2I (ai _ bi) = 0; I �nite g. So if R = aOb then theantisymmetri
 axiom is the statement that for every 
olle
tion (ai; bi)i2I (I �nite)with ^i2I (ai _ bi) = 0 we have^i(aiObi) � (aOb) _ (bOa)The order reverses sin
e :a �Sub(X) :b if and only if b � a for any a; b 2 
X .Say R is some relation on a set X (so R is a subset of X �X), then given anysubset �X of X we often want to look at the `upper 
losure' of �X with respe
t to R.i.e. the set fx 2 X j9y 2 �X yRxg (*)Now X �= 1 �X and so PX �= P (1 �X). It is easy to see that the set (*) is theimage under this last 
orresponden
e of the relational 
omposition of R � X �Xand f(�; x)jx 2 �Xg � 1 � X (1 = f�g). i.e. upper 
losure 
an be expressed viarelational 
omposition.Say R is some 
losed relation on a 
ompa
t Hausdor� lo
ale X , and �X is some
losed sublo
ale of X (so �X � X = :a � X for some a 2 
X) then we 
ande�ne an R-upper 
losure of �X. Similarly to the dis
rete 
ase just des
ribed 
losedsublo
ales of 1�X are in bije
tive 
orresponden
e with 
losed sublo
ales of X . But1� �X is a 
losed sublo
ale of 1�X , and so we take its relational 
omposition withR� X �X and then transform the sublo
ale of 1�X that we get to a sublo
aleof X . This de�nes the R-upper 
losure of �X. Symboli
ally the R-upper 
losure of�X is �2(R Æ (1� �X))(Re
all �2 : 1�X ! X is an isomorphism.)Symmetri
ally we 
an de�ne the lower 
losure of a 
losed sublo
ale with respe
tto a 
losed relation.We 
an also de�ne the R-lower 
losure of a subset �Y of some set Y if R is arelation on X � Y where Y is some other set. We are referring to the setfx 2 X j9y 2 �Y xRygGiven a 
losed relation R� X � Y where X;Y are 
ompa
t Hausdor� lo
ales andgiven �Y a 
losed sublo
ale of Y we de�ne the R-lower 
losure of �Y to be the 
losedsublo
ale given by



4.3. AXIOMS ON RELATIONS 101�Y ÆRThis is, of 
ourse, an abuse of notation. �Y is not a relation and the result of �Y ÆRis not a 
losed sublo
ale, it is a 
losed relation. We are assuming that the relational
omposition Æ is performed on �Y �1� Y �1, and that the result is 
omposed withthe isomorphism �1 in order to obtain a sublo
ale of X .This notion of R-lower 
losure with respe
t to some 
losed relation R on 
ompa
tHausdor� lo
ales X;Y gives rise to a preframe morphism  R : 
Y ! 
X . Thepro
edure for de�ning  R is: take b 2 
Y then de�ne  R by : Rb = the lower
losure of :b. We use the notation R = :aR � X �X in order to talk about theelement of 
(X)
 
(X) 
orresponding to R. We 
an use the � fun
tion to de�ne R:  R : b 7�! aR � bN.B. this is an abuse of notation. � 
annot take b as one of its arguments, so reallywe are looking at the fun
tionb 7�! (
�1)�1(aR � (bO0))Where 
�1 : 
X �! 
X 

is the isomorphism a 7! aO0. It is 
lear from the de�nition of � that  R is a pre-frame homomorphism.Moreover the assignment aR 7!  R from 
X 
 
Y to PreFrm(
Y;
X) is apreframe homomorphism. We aim to show that it is an isomorphism. Say we aregiven a preframe homomorphism  : 
Y ! 
X we 
an de�ne a 
losed sublo
aleR = :a � X � Y by a = ( 
 1)(#)Theorem 4.3.1 If X;Y are 
ompa
t Hausdor� lo
ales thenPreFrm(
Y;
X) �= 
X 

Yas preframes.Before the proof we need a te
hni
al lemma.Lemma 4.3.1 For any I 2 
X 
 
Y (X;Y 
ompa
t Hausdor�) the preframehomomorphism 
Y 

Y �! 
X 

YJ 7�! I � J
an be fa
tored as
Y 

Y 
�1 
 1- 
Y 


 
Y (I � ( ))
 1- 
X 



Y (
�1)�1 
 1- 
X 

YProof: We need to 
he
k for any J 2 
Y 

Y thatI � J = ((
�1)�1 
 1)((I � ( ))
 1)(
�1 
 1)(J)



102 CHAPTER 4. COMPACT HAUSDORFF RELATIONSAs in te
hni
al Lemma [4.2.1℄ it is 
learly suÆ
ient to 
he
k the 
ases J = b1Ob2I = aOb.But then LHS = (aOb) � (b1Ob2)= "_(faOb2g [ f1j1 � b1 _ bg)RHS = ((
�1)�1 
 1)((aOb � ( ))
 1)(b1O0Ob2)= ((
�1)�1 
 1)([(aOb) � (b1O0)℄Ob2)= ((
�1)�1 
 1)( "_(faO0g [ f1j1 � b _ b1g)Ob2)= ((
�1)�1 
 1) "_(faO0Ob2g [ f1j1 � b1 _ b2g)= "_(f((
�1)�1 
 1)(aO0Ob2)g [ f1j1 � b1 _ bg)= "_(faOb2g [ f1j1 � b1 _ bg) 2Proof of Theorem [4.3.1℄ De�ne� : PreFrm(
Y;
X) �! 
X 

Y 7�! ( 
 1)(#)� : 
X 

Y �! PreFrm(
Y;
X)I 7�! (b 7! (
�1)�1(I � (bO0)))We need to 
he
k � Æ � = id and � Æ � = id.But (�(I)
 1) = ((
�1)�1
 1)((I � ( ))
 1)(
�1
 1) by the de�nition of �. Hen
e(�(I) 
 1)(J) = I � J for every J 2 
Y 
 
Y by the last lemma. It follows that(�(I)
1)(#) = I �#. But I �# = I sin
e the diagonal is the identity for relational
omposition. Hen
e � Æ � = id.On the other hand for any a 2 
Y (and any  2 PreFrm(
Y;
X))[(� Æ �)( )℄(a) = [�(( 
 1)(#))℄(a)= (
�1)�1(( 
 1)(#) � (aO0))= (
�1)�1(( 
 1)(#) � (1
 1)(aO0))= (
�1)�1( 
 1)(# � (aO0)) by Lemma [4.2.1℄ with f1 =  ; f2 = 1= (
�1)�1(( 
 1)(aO0))= (
�1)�1( (a)O0)=  (a) 2As an immediate 
orollary noti
e that a relation R ,! X�X is re
exive if and onlyif  R(a) � a 8a 2 
XThe proof of Theorem [4.3.1℄ shows that there is an order reversing bije
tive 
or-responden
e between the 
losed relations on two 
ompa
t Hausdor� lo
ales X;Yand preframe homomorphisms from 
Y to 
X . By looking at the SUP-latti
edes
ription of lo
ales the above 
an be translated into a proof of



4.3. AXIOMS ON RELATIONS 103Theorem 4.3.2 If X;Y are dis
rete lo
ales thenSUP(
Y;
X) �= 
X 

Yas SUP-latti
es.Proof: As stated in the preamble we 
an repeat the above proof (of Theorem[4.3.1℄) with SUP-latti
e tensor in pla
e of preframe tensor. However we know thatthe 
ategory of dis
rete lo
ales is equivalent to the 
ategory of sets (=the ba
k-ground topos) and so we 
an o�er a mu
h more straightforward proof of this result.All we need to do is 
he
k that there is a one to one 
orresponden
e between therelations on two sets X;Y and SUP-latti
e homomorphisms going from PY to PX .This is an elementary exer
ise. 2The last theorem and its proper analogue (Theorem [4.3.1℄) 
an both be writ-ten as 
ategori
al equivalen
es. KHausLo
 is the 
ategory of 
ompa
t Hausdor�lo
ales. We use KHausLo
Uto denote the opposite of the 
ategory whose obje
ts are the frames of opens of
ompa
t Hausdor� lo
ales and whose maps are preframe homomorphisms. Theopen parallel is the 
ategory DisLo
Lwhi
h is the opposite of the 
ategory whose obje
ts are powers sets of sets (i.e. theframes of opens of dis
rete lo
ales) and whose morphisms are SUP-latti
e homo-morphisms.Theorem 4.3.3 KHausLo
U �= KHausRelDisLo
L �= RelProof: We prove the proper parallel only. The problem is to 
he
k that relational
omposition is taken to fun
tion 
omposition of the 
orresponding preframe maps.(For then sin
e � and � are inverse to ea
h other it will follow that � takes fun
tion
omposition to relational 
omposition in an appropriate way.) Clearly it is suÆ
ientto prove that �(I � J) = �(I) Æ �(J)for all I 2 
(X � Y ); J 2 
(Y � Z). But if 
 2 
Z then�(I � J)(
) = (
�1)�1(I � J � (
O0))(re
all that � is asso
iative). But[�(I) Æ �(J)℄(
) = �(I)[(
�1)�1(J � (
O0))℄= (
�1)�1(I � [(
�1)�1(J � (
O0))O0℄)But b 7! bO0 is 
�1 : 
Y ! 
Y 
 
 and so [((
�1)�1K)O0℄ = K for everyK 2 
Y 
 
.Hen
e [�(I) Æ �(J)℄(
) = (
�1)�1(I � J � (
O0)) 2
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)U and (DisLo
)L are both self dual.Proof: This result follows from the fa
t that KHausRel and Rel are both selfdual. Their dualizing fun
tor is e�e
tively given by the twist isomorphism on theprodu
t of lo
ales: �X;Y : X � Y �! Y � X . So a morphism (:I ,! X � Y ) ofKHausRel is mapped to the morphism:I ,! X � Y ��! Y �Xof KHausRelop. 2We now �x some notation that will be used in the �nal three 
hapters. SayR ,! X �X is a 
losed relation on a 
ompa
t Hausdor� lo
ale X .Then R = :aR; aR 2 
X 
 
X . The lower 
losure of 
losed sublo
ales is thefun
tion: +: CSub(X) �! CSub(X):a 7�! :a ÆR(where CSub(X)=the 
losed sublo
ales of X). The upper 
losure is the fun
tion:*: CSub(X) �! CSub(X):a 7�! R Æ :aBut in pra
ti
e (i.e. when it 
omes to algebrai
 manipulations) we are interested inthe 
orresponding preframe homomorphisms.+op: 
X ! 
Xis the unique preframe homomorphism su
h that+ :a = : +op a 8a 2 
Xand *op: 
X ! 
Xis the unique preframe homomorphism su
h that* :a = : *op a 8a 2 
X .We 
hoose the `op' sin
e CSub(X) �= 
Xop and so + is e�e
tively a fun
tion from
Xop to 
Xop. +op is the same fun
tion but a
ting on (and going to) the oppositeposet. So the analogy is with 
ategori
al notation: if F : C ! D is a fun
tor be-tween 
ategories then F op : Cop ! Dop is the same fun
tor but with the arrows ofthe domain and 
odomain formally reversed.We 
an now write out some impli
ations of Theorem [4.3.1℄ applied to the 
aseX = Y : if R is a relation on X then we knowaR = (+op 
1)(#).But be
ause of the duality referred to in the last 
orollary we see thataR = (1
 *op)(#)as well. Of 
ourse the general 
on
lusion is that for any relation R ,! X � Y notonly aR = ( R 
 1)(#) but alsoaR = (1
 �R)(#)
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X ! 
Y is given by �R(a) = (
�2)�1((0Oa) � aR).We 
an also use the fa
t that relational 
omposition 
orresponds to fun
tion 
om-position to make the following 
on
lusions: a relation R ,! X �X istransitive , +op (a) �+op Æ +op (a) 8a 2 
Xinterpolative , +op Æ +op (a) �+op (a) 8a 2 
Xre
exive , +op (a) � a 8a 2 
X:4.4 NotesFor the reader who knows what the upper/lower power lo
ale monad is, note thatthe equivalen
es of Theorem [4.3.3℄ are saying that the allegory is equal to thefull sub
ategory of the Kleisli 
ategory of the monad, 
onsisting of all 
ompa
tHausdor�/dis
rete lo
ales. Also, noti
e that the 
orollariesCorollary 4.4.1 PU (X) �= $X for all 
ompa
t Hausdor� XCorollary 4.4.2 PL(X) �= $X for all dis
rete X(whi
h appear in [Vi
94℄) 
an easily be derived from Theorems [4.3.1℄ and [4.3.2℄respe
tively.Mu
h more 
an be said about these monads (e.g. a dis
ussion of the 
onstru
tivepoints of the power lo
ales). Most interestingly we see in [Vi
95℄ that it might bepossible to use them to formalize what is meant by our expression `parallel'.
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Chapter 5Ordered Lo
ales5.1 Spatial IntuitionsWe begin the 
hapter by repeating some well known fa
ts about ordered topologi
alspa
es, noting that the results we examine do not require the antisymmetry axiomfor the order �. We then prove some new theorems whi
h show that these resultsbe
ome more straightforward lo
ali
ally.The topologi
al exposition is based on the beginning of Chapter VII in [Joh82℄.We are looking at 
lassi
al topologi
al spa
e theory in order to inspire a 
onstru
tivelo
ali
 treatment to follow and so are free to use the ex
luded middle at this point.Lemma 5.1.1 Assume the ex
luded middle. Given a topologi
al spa
e X with apreorder � on it, then � is 
losed i� 8x; y 2 X x 6� y implies9U; V � X s.t. x 2 intU; y 2 intV; U \ V = �; " U = U; # V = VProof: ()) If � is 
losed and x 6� y then 9U1; V1 open su
h that U1�V1\(�) = �.Take U =" U1; V =# V1. The reverse impli
ation is equally straight forward. 2Lemma 5.1.2 Assume the ex
luded middle. If (X;�) is a preordered topologi
alspa
e with � 
losed, and if K � X is 
ompa
t then # K; " K are 
losed.Proof: Say x 2 X� # K then for every k 2 K x 6� k and so by the lemma above9Uk upper 
losed and Vk lower 
losed s.t. (x; k) 2 intUk � intVk and Uk \ Vk = �.Clearly then K � [ni=1Vki for some n and sin
e [Vki is lower 
losed # K � [Vki .Also sin
e Uki \ Vki = � 8i we see that \iUki is a neighbourhood of x disjointfrom # K hen
e # K is 
losed. " K is shown to be 
losed by a similar argument. 2Noti
e that the above shows us that if the preordered topologi
al spa
e is 
ompa
tHausdor� then the upper(lower) 
losure of 
losed subspa
es is 
losed (provided thepreorder is 
losed). The lo
ali
 analogy here is 
lear: if we are assuming X is a
ompa
t Hausdor� lo
ale it is a matter of de�nition that relational 
ompositiontakes 
loseds to 
loseds (provided the relation is 
losed).Corollary 5.1.1 Assume the ex
luded middle. If (X;�) is a 
ompa
t Hausdor�topologi
al spa
e with a 
losed preorder � then whenever x 6� y we 
an �nd disjointopens U and V su
h that U is upper 
losed and V is lower 
losed and (x; y) 2 U�V .107



108 CHAPTER 5. ORDERED LOCALESProof:" x and # y are 
losed (by the lemma sin
e fxg and fyg are 
ompa
t) and" x\ # y = �. Hen
e sin
e 
ompa
t Hausdor� spa
es are normal we know that 9disjoint opens U1; V1 su
h that " x � U1; # y � V1. TakeU = X� # (X � U1) (� U1)V = X� " (X � V1) (� V1) 2This last 
orollary may be written6�� SfU � V j U \ V = � " U = U # V = V U; V opengThe opposite in
lusion is trivial so we have the equation6�= SfU � V j U \ V = � " U = U # V = V U; V opengfor any 
ompa
t Hausdor� topologi
al spa
e X . Re
all that 
lassi
ally a set is upper
losed i� its 
omplement is lower 
losed. So we guess that the 
ondition " U = U
an be safely translated to the lo
ali
 
ondition+ :U =Sub(X) :Uwhere + is the lower 
losure operation 
orresponding to the relation �.The reasoning behind the lo
ali
 form of the above 
orollary should now be 
lear:Theorem 5.1.1 If X is a 
ompa
t Hausdor� lo
ale and � is a 
losed preorder onit (i.e. (�) Æ (�) � (�) and � � (�)) thena� = Wfa
 bj a ^ b = 0 +op a = a *op b = bgwhere �= :(a�).Re
all from the end of the last 
hapter that +op is the preframe homomorphismfrom 
X to 
X whi
h 
orresponds to the 
losed relation �, and *op is the preframehomomorphism from 
X to 
X 
orresponding to the 
losed relation �. We sawthat a� = (+op 
1)(#)and noti
ed that the symmetri
al result is true:a� = (1
 *op)(#).Proof of Theorem:First note that for any open a of our 
ompa
t Hausdor� lo
ale X we have that*op a � a and +op a � aThis is simply a re
e
tion of the fa
t that � is postulated to be re
exive.Now (�) Æ (�) � (�) meansa� � a� � a�= (+op 
1)(#) � (1
 *op)(#)= (+op 
 *op)(# �#) Lemma [4.2.1℄= (+op 
 *op)(#)= (+op 
 *op)(_"f^iaiObij ^i (ai _ bi) = 0g)= (_"f^i(+op aiO *op bi)j ^i (ai _ bi) = 0g= _f+op a
 *op bja ^ b = 0g� _f�a
 �bj�a ^ �b = 0 +op �a = �a *op �b = �bg



5.1. SPATIAL INTUITIONS 109The proof behind the penultimate line is a simple reworking of the proof that_"f^i(aiObi)j ^i (ai _ bi) = 0g = _fa 
 bja ^ b = 0g (see end of Lemma [2.7.1℄)and the last line follows sin
e (i) +op a^ *op b � a ^ b and (ii) *op;+op are bothidempotent sin
e the relation is a preorder.As for the `easier' way round, say we are given a; b with +op a = a;*op b = b anda ^ b = 0. Re
all a� = (+op 
1)(#). (I 
ould have 
hosen a� = (1
 *op)(#) andfollowed an obvious parallel route.) Soa
 b = (+op a)
 b= (+op a)O0 ^ 0Ob� (+op a)O0 ^ (+op 0Ob)= (+op 
1)(aO0) ^ (+op 
1)(0Ob)= (+op 
1)(a
 b) � (+op 
1)(#) = a� 2This last result 
an be stated as a `preframe fa
t' as well: along the way we sawthat a� = W"f^i(+op aiO *op bi)j ^i (ai _ bi) = 0g.In fa
t the lemma 
an be stated and proved more easily as,Lemma 5.1.3 If (X;�) is a 
ompa
t Hausdor� lo
ale with a 
losed preorder then:a� = W"f^i(aiObi)j +op ai = ai;*op bi = bi;^i(ai _ bi) = 0gNoti
e that the proof to follow is a lot simpler than our last proof sin
e we don'thave to worry about translating the 
on
lusion from its preframe form to its SUP-latti
e form.Proof: a� = a� � a�= (+op 
1)(#) � (1
 *op)(#)= (+op 
 *op)(#) from Lemma [4.2.1℄= _"f^i(+op aiO *op bi)j ^i (ai _ bi) = 0g� _"f^i(�aiO�bi)j +op �ai = �ai;*op �bi = bi;^i(�ai _ �bi) = 0gIn the other dire
tion say we have a �nite 
olle
tion (ai; bi)i2I su
h that +op ai = aifor all i, *op bi = bi for all i and ^i(ai _ bi) = 0. Then^i(aiObi) = ^i(+op aiObi)= (+op 
1)(^i(aiObi))� (+op 
1)(#) = a� 2Theorem 5.1.2 (Na
65) Assume the ex
luded middle. Let (X;�) be a 
ompa
tHausdor� topologi
al spa
e with a 
losed partial order. Then the sets of the formU \ V where U is an open upper set and V is an open lower set, form a base forthe topology on X.Proof: Say W � X is an open subset of X . Then 8x 2 W we need to �nd opensets U; V su
h that x 2 U \V �W , " U = U and # V = V . Say y 62W Then x 6= yand so either x 6� y or y 6� x.If x 6� y then there exists opens Uy; Vy su
h that Uy upper, Vy lower, x 2 Uy, y 2 Vy



110 CHAPTER 5. ORDERED LOCALESand Uy \ Vy = �.If y 6� x then there exists opens Uy; Vy su
h that Uy lower, Vy upper, x 2 Uy, y 2 Vyand Uy \ Vy = �.Thus W 
 � Sy2W 
 Vy and so, sin
e W 
 is 
losed and thus 
ompa
t,W 
 � Si2I Vyifor some �nite I . Hen
e Ti2I Uyi �W and x 2 Ti2I Uyi . 2The lo
ali
 version of this theorem is an easy 
orollary to the work that has alreadybeen done. Its proof, unsurprisingly, requires the antisymmetry axiom on the order�.Theorem 5.1.3 (X;�) is su
h that X is a 
ompa
t Hausdor� lo
ale and � is a
losed partial order (i.e. � � (�); (�) Æ (�) � (�); (�) _ (�) � �) then every
 2 
X is the join of elements of the form a ^ b where :a is a lower 
losed 
losedsublo
ale of X and :b is an upper 
losed 
losed sublo
ale of X.Proof: Noti
e that the problem is equivalent to 
he
king that the subframe of 
Xgenerated by the set, faj *op a = ag [ faj +op a = agis the whole of 
X .� is antisymmetri
 and re
exive. So (�)_ (�) = �. i.e. a� _a� = #. But for anya 2 
X , a = # � a and so a = (a� _ a�) � a. Now in the last lemma ([5.1.3℄) wesaw that if � is a 
losed preorder on a 
ompa
t Hausdor� X thena� = W"f^i(+op ai& *op bi)j ^i (ai _ bi) = 0gThus a� = W"f^i(*op bi& +op ai)j ^i (ai _ bi) = 0gHen
e a� _ a� is a dire
ted join of meets of elements of the form(+op a_ *op b)&(*op d_ +op e)and so a = [(a� _ a�) � a℄ is a dire
ted join of meets of elements of the form:(+op a_ *op b) _ 
!(1 �*op d_ +op e _ a)Sin
e 1 
ertainly belongs to faj *op a = ag [ faj +op a = ag and
!(1 �*op d_ +op e_a) = Wf1j1 �*op d_ +op e_ag we 
an now easily see that theframe generated by this set is the whole of 
X . 25.2 Compa
tness resultThere is a te
hni
al lemma whi
h will be needed later on. It bears a similarity tothe result (1
 *op)(#) = (+op 
1)(#) that has proved useful so far.Lemma 5.2.1 Say R ,! X � Y is a 
losed relation on 
ompa
t Hausdor� X;Y .If  R : 
Y ! 
X is the preframe homomorphism 
orresponding to R and �R :
X ! 
Y is the preframe homomorphism 
orresponding to �R then if b 2 
Y anda 2 
X we have



5.3. ORDER PRESERVING LOCALE MAPS 1111 �  R(b) _ a , 1 � b _ �R(a)Proof: If aR = W"j ^iaji&bji then the LHS of the impli
ation is:1 � (W"j ^i[aji _ 
!(1 � b _ bji )℄) _ a, 1 � W"j ^i[a _ aji _ 
!(1 � b _ bji )℄, (9j)(8i)[1 � (a _ aji ) _
!(1 � b _ bji )℄where the last line is by 
ompa
tness and the de�nition of meet.But for any 
ompa
t lo
ale Z with �; � 2 
Z we must have1 � � _ 
!(1 � �) , 1 � � _
!(1 � �)sin
e � _ 
!(1 � �) = W"(f�g [ f1j1 � �g).So we 
on
lude that 1 �  Rb _ a , (9j)(8i)[1 � (b _ bji ) _ 
!(1 � a _ aji )℄But 1 � b _ �R(a) is just the statement:1 � [W"j ^i(bji _ 
!(1 � a _ aji ))℄ _ bwhi
h as above (via 
ompa
tness of X) translates to,(9j)(8i)[1 � (b _ bji ) _ 
!(1 � a _ aji )℄ 2As a 
orollary note that if R is a 
losed relation on some 
ompa
t Hausdor� lo
aleX and b; a 2 
X then 1 �+op b _ a , 1 � b_ *op a.5.3 Order preserving lo
ale mapsWe now turn to the de�nition of morphism between ordered lo
ales. We �nd againthat it is appropriate to de�ne something by analogy to our spatial intuition. A mapf : X ! Y where X;Y are two ordered spa
es is a morphism of the 
ategory ofordered spa
es if and only if it is 
ontinuous and preserves order. An orderedlo
ale is a lo
ale with a sublo
ale of the produ
t of the lo
ale with itself. Soif (X;RX); (Y;RY ) are two ordered lo
ales then a lo
ale map f : X ! Y is amorphism of the 
ategory of ordered lo
ales if and only if there exists a lo
ale mapn : RX ! RY su
h that RX n - RYX �X?\ f � f- Y � Y?\
ommutes.For 
losed RX ; RY it is easy to 
he
k that the above diagram 
an be de�ned and
ommutes if and only if 
(f � f)(aRY ) � aRXOf 
ourse we are not going to investigate things at this level of generality. We areonly interested the 
ase when the lo
ales are 
ompa
t Hausdor� and the relationsare 
losed partial orders. We shall 
all su
h ordered lo
ales 
ompa
t Hausdor�posets. The notation (X;�X) will be used to denote su
h posets. Say f : X ! Yis a lo
ale map and (X;�X); (Y;�Y ) are two 
ompa
t Hausdor� posets. Then f isa map in the 
ategory of ordered lo
ales if and only if
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(f � f)(a�Y ) � a�X (�)We now translate this 
ondition further.Assume (�) holds. Then if we a are given a 2 
Y (and a�Y = W"j (^i(ajiObji )) then
f +op a = 
f(a�Y � (aO0))= "_j ^i(
faji _ 
!(1 � bji _ a))But 
!(1 � bji _ a) � 
!(1 � 
fbji _ 
fa) and so
f +op a � "_j ^i(
faji _ 
!(1 � 
fbji _ 
fa))= [(
f 

f)(a�Y )℄ � (
faO0)� a�X � (
faO0)= +op 
faHen
e 
f +op a �+op 
fa for all a 2 
Y if we assume (�).For the 
onverse assume 
f +op a �+op 
fa 8a 2 
Y , and re
all that sin
e(Y;�Y ) is a 
ompa
t Hausdor� poset we know (Lemma [5.1.3℄) thata�Y = W"f^iaiObij ^i (ai _ bi) = 0;+op ai = ai;*op bi = big.So 
(f � f)a�Y = W"f^i
faiO
fbij ^i (ai _ bi) = 0;+op ai = ai;*op bi = bigBut for any �nite 
olle
tion of ai; bis satisfying ^i(ai _ bi) = 0 and +op ai = ai;*op bi = bi we have 
fai = 
f +op ai �+op 
fai � 
faiby re
exivity of �X and assumption. Similarly 
fbi =+op 
fbi.Clearly ^i(ai _ bi) = 0 ) ^i(
fai _
fbi) = 0, and so
(f � f)(a�Y ) � "_f^iaiObij ^i (ai _ bi) = 0;+op ai = ai;*op bi = big= a�XSo we have translated the 
ondition (�) to
fÆ +op�+op Æ
fNoti
e, in
identally, that exa
tly the same proof shows us that (�) is equivalent to
fÆ *op�*op Æ
fWe 
an now de�ne the 
ategory KHausPos: its obje
ts are 
ompa
t Hausdor�posets and its maps are order preserving lo
ale maps.
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t Regular BiframesThe 
ompa
t regular biframes were introdu
ed by Banas
hewski, Br�ummer andHardie in [BBH83℄. Spatially they are the 
ompa
t regular T0 bispa
es and havebeen related to the stably lo
ally 
ompa
t lo
ales ([BB88℄). We shall investigatethis relation extensively in the last 
hapter. For the moment we prove a new result:the 
ompa
t regular biframes are dually equivalent to the 
ompa
t Hausdor� posets.The obje
ts of KR2Frm (the 
ategory of 
ompa
t regular biframes) are triples(L0; L1; L2) su
h that L0 is a 
ompa
t frame and L1; L2 are two subframes ofL0 whi
h generate the whole of L0 and are required to satisfy two regularity-like
onditions:(i) 8a 2 L1 a = W"f
j
 2 L1 
 �1 ag where
 �1 a , 9d 2 L2 
 ^ d = 0 a _ d = 1(ii) 8a 2 L2 a = W"f
j
 2 L2 
 �2 ag where
 �2 a , 9d 2 L1 
 ^ d = 0 a _ d = 1It follows, sin
e L1; L2 generate the whole of L0, that if (L0; L1; L2) is a 
ompa
tregular biframe then L0 is the frame of opens of a 
ompa
t regular lo
ale. SoL0 = 
X for some 
ompa
t Hausdor� lo
ale X .If (L0; L1; L2); (L00; L10; L20) are two obje
ts ofKR2Frm then morphisms are givenby frame homomorphisms l : L0 ! L00 whi
h satisfy:l(a1) 2 L10 8a1 2 L1l(a2) 2 L20 8a2 2 L2Theorem 5.4.1 KR2Frm �= KHausPosProof: Although the proof is quite straightforward it is not short.We �rst 
onstru
t a 
ontravariant fun
tor from KR2Frm to KHausPos. Let usassume we are given a 
ompa
t regular biframe (L0; L1; L2). We 
an de�ne a 
oupleof preframe endomorphisms on L0: for i = 1; 2 set�i(a) = W"f
j
 2 Li 
 �i agThat �i preserves �nite meets is straightforward. (Re
all that L1; L2 are subframesof L0, so 
ertainly �i(1) = 1 for i = 1; 2.) Compa
tness of L0 shows that �1; �2 arepreframe endomorphisms. The 
onditions (i) and (ii) in the de�nition of 
ompa
tregular biframe given above tell us that the images of �1; �2 are exa
tly L1; L2 re-spe
tively. Noti
e b 2 Li if and only if �i(b) = b. It follows that �i is idempotent.Bearing in mind the 
orresponden
e between preframe endomorphisms and 
losedrelations, as worked out in Theorem [4.3.1℄, we de�ne our 
ompa
t Hausdor� poset(X;�) from (L0; L1; L2) as follows:
X = L0a� = (�1 
 1)(#)Re
exivity and transitivity of � follows immediately sin
e �1(b) � b 8b 2 L0 and�1 is idempotent.In fa
t(�) a� = (1
 �2)(#)(�) a� _ a� � #i.e. (�): we haven't `lost' any information by pi
king �1 over �2 in our de�nition of(X;�) and (�): � is antisymmetri
 and therefore is a partial order.Proof of (�) We want,



114 CHAPTER 5. ORDERED LOCALES(�1 
 1)(#) = (1
 �2)(#).We prove that (�1 
 1)(#) � (1
 �2)(#)and appeal to the symmetry between �1; �2 for the full result.Now :(1 
 �2)(#) is a 
losed sublo
ale of X � X and so gives rise to a uniquepreframe endomorphism of 
X by:a 7�! (1
 �2)(#) � aIt follows that if we 
an prove�1(a) � (1
 �2)(#) � afor every a 2 
X then we 
an 
on
lude(�1 
 1)(#) � (1
 �2)(#)sin
e :(�1 
 1)(#) is the 
losed sublo
ale 
orresponding to the preframe endomor-phism �1.But (1
 �2)(#) � a = W"f^i[ai _ 
!(1 � (�2(bi) _ a))℄j ^i (ai _ bi) = 0gand �1(a) = Wf
j
 �1 a 
 2 L1g.Now if 
 �1 a then 9d 2 L2 su
h that 
 ^ d = 0 and d _ a = 1. So �2(d) = d. If wetake (a1; b1) = (
; 0) and (a2; b2) = (0; d) and I = f1; 2g then ^i2I (ai _ bi) = 0. Butfor these ais and bis we see^i[ai _ 
!(1 � (�2(bi) _ a))℄= [
 _
!(1 � �2(0) _ a)℄ ^ 
![1 � (�2(d) _ a)℄� 
 sin
e �2(d) = d and d _ a = 1:Hen
e �1(a) � (1
 �2)(#) � aand so we may 
on
lude that �2 is the preframe homomorphism 
orresponding toupper 
losure as outlined above. 2Proof of (�) Re
all that L1; L2 are subframes of L0 whi
h generate the whole ofL0 (by the de�nition of 
ompa
t regular biframe). We have observed that:a 2 L1 , �1(a) = aa 2 L2 , �2(a) = a(This is really just a restatement of the regularity-like 
onditions (i), (ii).) So thefa
t that L1; L2 generate L0 lets us write:a = W"fb ^ 
j�1(b) = b; �2(
) = 
; b ^ 
 � agfor any a 2 L0.But a� = (�1
1)(#) (de�nition), and a� = (1
�2)(#) (�). And so by applying thetwist isomorphism on X �X to the se
ond of these we see that: a� = (�2 
 1)(#).Thus



5.4. COMPACT REGULAR BIFRAMES 115�1 =+op and �2 =*op.So �1(b) = b , +op b = b , a� � b = band �2(
) = 
 , *op 
 = 
 , a� � 
 = 
.We want to prove (a� _ a�) � #. We know from our equivalen
e between 
losedsublo
ales on X � X and preframe endomorphisms of 
X that it is suÆ
ient toprove # � a � (a� _ a�) � a 8a 2 L0i.e. a � (a� _ a�) � a 8a 2 L0Now say b satis�es �1(b) = b. Thenb = (a� � b) � (a� _ a�) � band if 
 satis�es �2(
) = 
 then
 = (a� � 
) � (a� _ a�) � 
.Hen
e for any su
h b; 
 with b ^ 
 � a we haveb ^ 
 � ((a� _ a�) � b) ^ ((a� _ a�) � 
)= (a� _ a�) � (b ^ 
) (be
ause � is a bipreframehomomorphism)� (a� _ a�) � a:But a = Wfb ^ 
j�1(b) = b; �2(
) = 
; b ^ 
 � ag sin
e L0 is generated by L1; L2and so a � (a� _ a�) � a as required. 2Re
all that f : (X;�X)! (Y;�Y )is a morphism of KHausPos i� there exists a lo
ale map n :�X�!�Y su
h that�X n - �YX �X?\ f � f- Y � Y?\
ommutes. We saw in the last se
tion that this 
ondition is equivalent to:
f Æ Y +op � X+op Æ
fIf l is a 
ompa
t regular biframe map from (L0; L1; L2) to (L00; L10L20) 
ertainlythere exists f : X ! Ya lo
ale map where 
X = L00; 
Y = L0 and 
f = l. The order on X (as
onstru
ted above) 
orresponds to the preframe homomorphism �X1 : 
X ! 
X .But l�Y1 (a) � �X1 l(a)sin
e 
 �1 a ) l(
) �1 l(a)
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) 2 L10 if 
 2 L1 and l(d) 2 L20 if d 2 L2. So f is a map in the 
ate-gory KHausPos and we have de�ned a 
ontravariant fun
tor from KR2Frm toKHausPos.Now on the other hand say we are given a Hausdor� poset (X;�).We know that a� = (1
 *op)(#)a� = (+op 
1)(#)where +op;*op are the preframe endomorphism whose a
tions are the lower/upper
losure of 
losed sublo
ales. Thus we have preframe endomorphisms of 
X . Sin
e� is re
exive we know that *op a � a 8a 2 
X and +op a � a 8a 2 
X , and sothe sets faj +op a = ag � 
Xfaj *op a = ag � 
Xare not only subpreframes but are subframes of the 
ompa
t frame 
X . Do theygenerate the whole of 
X ? The answer is yes; we saw exa
tly this fa
t in the proofof Theorem [5.1.3℄.So if we set L0 = 
X and L1 = faj +op a = ag; L2 = faj *op a = ag then L0 (is
ompa
t and) is generated by these two subframes.We are now in a position to 
he
k the regularity-like 
ondition (i) for (L0; L1; L2)((ii) will 
learly follow by symmetry from this).(i) states that if a 2 L1 � faj +op a = ag thena = Wf
j
 �1 a +op 
 = 
gwhere 
 �1 a , 9d with *op d = d; d^ 
 = 0 and a_ d = 1. But we know byregularity of X that +op a = a = W"fbjb� ag and by taking +op of both sides wesee a = W"f+op bjb� ag, and so to 
he
k (i) all we need do is 
he
kb� a ) +op b �1 aNow if b� a then there exists d with 1 � a _ d and b ^ d = 0. But a =+op a and so+op a _ d = 1 letting us 
on
lude a_ *op d = 1 by the 
ompa
tness result, Lemma[5.2.1℄.Also *op d � d and +op b � b (re
exivity of � ): thus +op b^ *op d = 0, and sin
e*op d 2 L2 we may 
on
lude +op b �1 a.Thus (
X; faj +op a = ag; faj *op a = ag) is a 
ompa
t regular biframe for any
ompa
t Hausdor� poset (X;�).As for morphisms, say f : (X;�)! (Y;�) is a map of KHausPos then as well asthe 
ondition 
f +op�+op 
fre
all that we noted in the last se
tion that the symmetri
 
ondition
f *op�*op 
fis implied by (and implies) the assumption `f is a KHausPos map'. Hen
e
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f : (
Y; fbj +op b = bg; fbj *op b = bg) �! (
X; faj +op a = ag; faj *op a = ag)is a map of KR2Frm and so we have a 
ontravariant fun
tor (C) from 
ompa
tHausdor� posets to 
ompa
t regular biframes.Now say (L0; L1; L2) � C(X;�). Near the beginning of this proof we de�ned forany 
ompa
t regular biframe a preframe endomorphism �i byb 7! W"faja 2 Li a �i bgI 
laim that sin
e L1 = faj +op a = ag thenW"faja 2 L1 a �1 bg =+op bCertainly �1(b) �+op b for if a �1 b; a 2 L1 then a � b and soa =+op a �+op b:In the other dire
tion: 8b 2 L0 = 
X+op b = W"faja� +op bgand so by applying +op to both sides we get+op b = W"f+op aja� +op bgand we know from above a� +op b implies +op a �1+op b. Thus +op a �1 b sin
e+op b � b.Hen
e �1 =+op, and so mapping (
X; faj +op a = ag; faj *op a = ag) to ( �X;� �X)where 
 �X = 
X and � �X is the 
losed sublo
ale 
orresponding to the preframe en-domorphism �1 returns us to (X;�).Finally to 
he
k that KR2Frm and KHausPos are dually equivalent we needto 
he
k, given a 
ompa
t regular biframe (L0; L1; L2) that(L0; L1; L2) = (L0; faj +op a = ag; faj *op a = ag)where +op 
omes from the 
losed relation � de�ned bya� = (�1 
 1)(#):Thus +op= �1 and so faj +op a = ag = L1 as required. (Re
all that b 2 L1 i��1(b) = b .)But we saw a� = (�2 
 1)(#) � (�)and so *op= �2 and, just as with �1, the �2 �xed elements of L0 are pre
isely theelements of L2. 2The 
lassi
al version of this result was proved in Priestley's paper `Ordered Topo-logi
al Spa
es and the Representation of Distributive Latti
es' [Pri72℄. Proposition10 of that paper is (e�e
tively): `The 
ompa
t order-Hausdor� topologi
al spa
esare equivalent to the 
ompa
t regular T0-bispa
es'. It is shown in [BBH83℄ how toprove that the 
ompa
t regular biframes are equivalent to the 
ompa
t regular T0-bispa
es assuming the prime ideal theorem, and in fa
t it is 
lear that the proof 
anbe repeated assuming the 
onstru
tive prime ideal theorem. So in order to re
overthe 
lassi
al result we need to make sure that our 
ompa
t Hausdor� posets are
lassi
ally equivalent to the 
ompa
t order-Hausdor� topologi
al spa
es. We �nd



118 CHAPTER 5. ORDERED LOCALESthat we only need to assume the 
onstru
tive prime ideal theorem (CPIT). We'veshown that 
ompa
t Hausdor� lo
ales are, given this assumption, spatial and so it iseasy to 
he
k that they are then equivalent to the 
ompa
t Hausdor� spa
es (wherein this 
onstru
tive 
ontext it is easiest to de�ne the 
ompa
t Hausdor� spa
es,KHausSp, as those topologi
al spa
es whose frame of opens are 
ompa
t regular).To avoid the diÆ
ulties that 
ome from 
onstru
tively dis
ussing the 
losed sub-sets of a topologi
al spa
e (su
h as the fa
t that arbitrary interse
tions of 
losedsare not 
losed via the usual proof sin
e we 
annot assume that arbitrary interse
-tions distribute over �nite unions), we use as motivation the 
lassi
al result thatthe subspa
e of a 
ompa
t Hausdor� spa
e is 
losed if and only if it is 
ompa
t.Hen
e we de�ne the order-Hausdor� topologi
al spa
es to be those pairs (X;�)su
h that X is a 
ompa
t Hausdor� spa
e and �� X � X is a 
ompa
t partialorder. Noti
e that if KHausSp �= KHausLo
 then monomorphisms are going to
orrespond to inje
tions of points i.e. to subspa
es. In other words sublo
ales inKHausLo
 
orrespond to 
ompa
t subspa
es in KHausSp assuming CPIT. Butdoes the notion of relational 
omposition of 
ompa
t sets of points 
orrespond torelational 
omposition as we've de�ned it via a preframe homomorphism? To seethat it does we need to 
he
k that pullba
ks and image fa
torisations of 
ompa
tHausdor� topologi
al spa
es are (on points) 
onstru
ted as in Set. We needLemma 5.4.1 Assuming CPIT, the forgetful fun
tor from KHausSp to Set 
re-ates pullba
ks.Proof: If X �Z Y - YX? f - Zg?is a pullba
k diagram in KHausLo
 then pt(X �Z Y ) is isomorphi
 as a set to theset of pairs of points p1 : 1! X , p2 : 1! Y su
h that fp1 = fp2. Hen
ept(X �Z Y ) - pt(Y )pt(X)? pt(f)- pt(Z)pt(g)?is a pullba
k diagram in Set. The result follows sin
e we are assuming CPIT andso KHausSp �=KHausLo
. 2The forgetful fun
tor also 
reates image fa
torisations. The proof of this is 
om-pletely straightforward sin
e if f : X ! Y is a 
ontinuous map between 
ompa
tHausdor� spa
es then ff(x)jx 2 Xg 
an be endowed with a topology (the subspa
etopology from Y ) whi
h makes it into a 
ompa
t Hausdor� topologi
al spa
e.Thus if we re
all the de�nition of relational 
omposition in terms of pullba
k andimage fa
torization (as presented at the beginning of Chapter 4) then provided wehave KHausSp �= KHausLo
, we know that set theoreti
 relational 
ompositionof 
ompa
t subspa
es is given by relational 
omposition of 
losed sublo
ales. Hen
e,assuming CPIT, the order-Hausdor� topologi
al spa
es are equivalent to the 
om-pa
t Hausdor� posets.



Chapter 6Lo
ali
 Priestley Duality6.1 Introdu
tionPriestley duality des
ribes how the 
ategory of 
oherent spa
es is equivalent to the
ategory of ordered Stone spa
es. We de�ne ordered Stone lo
ales (whi
h 
lassi
allyare just the ordered Stone spa
es) and present a new theorem that shows that the
ategory of ordered Stone lo
ales is equivalent to the 
ategory of 
oherent lo
ales.Preframe te
hniques are used to prove this result.6.2 Ordered Stone lo
alesA Stone spa
e is a 
ompa
t Hausdor� topologi
al spa
e whi
h is also 
oherent. If weassume CPIT then we know that the 
ategory of Stone spa
es is equivalent to the
ategory of Stone lo
ales i.e. 
ompa
t Hausdor� lo
ales whi
h are also 
oherent. Theframes of opens of su
h lo
ales were seen (in Theorem [1.7.5℄) to be exa
tly the ideal
ompletions of Boolean algebras. From this we 
on
lude that the 
ategory of Stonespa
es is dual to the 
ategory of Boolean algebras. This is Stone's representationtheorem [Sto 36℄,[Sto37℄.The equivalen
e between Stone lo
ales and Boolean algebras is trivial, it is whenshowing that Stone lo
ales are equivalent to Stone spa
es that we invoke a 
hoi
eaxiom.Working in a 
lassi
al 
ontext Priestley ([Pri70℄) introdu
ed ordered Stone spa
es(also known as Priestley spa
es). These are pairs (X;�) whereX is a 
ompa
t spa
eand � is a partial order on X satisfying the requirement that for every x; y 2 Xwith x 6� y there is a 
lopen upper set U 
ontaining x and not 
ontaining y. Fromthis data it is a 
lassi
al exer
ise to prove that an ordered Stone spa
e is a Stonespa
e. It is immediate that � must be a 
losed subspa
e of X � X , in fa
t the
ondition on � above 
an be rewritten as the equation6�= SfU 
 U
jU 
lopen " U = Ugwhere " U is the upper 
losure of U with respe
t to the order �. Noti
e that we
ould use this 
ondition to prove that � is transitive. Also note that this 
ondition
an be written 6�= SfU 
 U
jU 
lopen # U
 = U
gsin
e 
lassi
ally a subset is upper 
losed i� its 
omplement is lower 
losed. Finallysin
e we know that X is 
ompa
t Hausdor� we may 
lassi
ally 
on
lude that U is
lopen if and only if it is a 
ompa
t open subset of X and so, sin
e X is 
oherent,U 2 
X �= Idl(K
X) is in K
X if and only if it is 
lopen.119
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lassi
al observations it should be 
lear that the following is a reasonablede�nition of an ordered Stone lo
aleDe�nition: An ordered Stone lo
ale is a pair (X;�) where X is a Stone lo
ale (i.e.
X �= IdlBX for some Boolean algebra BX) and �� X � X is a 
losed partialorder satisfying a� = Wfa
:aja 2 BX ;+op a = ag (!)where �= :a� � X � X and +op: 
X ! 
X is the preframe endomorphism of
X 
orresponding to the a
tion of taking the lower 
losure of 
losed sublo
ales.Notation warning: We have a notation 
lash between Boolean algebra negation(:) and `
losed sublo
ale 
orresponding to the open a' (:a ,! X). However 
ontextwill eliminate any ambiguity.The equation (!) is a SUP-latti
e equation. It has a preframe equivalent whi
hwill be useful:a� = W"f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;+op bi = bi; I �nite gProving these two expressions to be the same requires the same manipulation(demonstrated in Lemma [2.7.1℄) that proves that the 
losure of the diagonal ofa lo
ale 
an be expressed both as:Wfa
 bja ^ b = 0gand :W"f^iaiObij ^i (ai _ bi) = 0gWhen it 
omes to the manipulations that follow we will �nd that the prefame versionof the equation (!) will be the one to apply.Our �rst manipulation 
omes with a proof that if we are given a pair (X;R) su
hthat X is a Stone lo
ale and R is a 
losed relation whi
h satis�es (!) then R istransitive. To see this proof note that if a 2 
X then +op a is given by the formulaW"f^i(ai _ 
!(1 � :bi _ a))gwhere the dire
ted join is over sets fai; biji 2 Ig su
h that I is �nite, ais and bisare in the Boolean algebra of 
ompa
t opens of X and +op ai = ai , +op bi = bi ,^i(ai _ :bi) = 0. So +op+op a is equal to+op W" ^i[W"(faig [ f1j1 � :bi _ ag)℄ = W" ^iW"(f+op aig [ f+op 1j1 � :bi _ ag)= W" ^iW"(faig [ f1j1 � :bi _ ag) =+op a.Idempoten
y of +op is equivalent to idempoten
y of R with respe
t to relational
omposition. Idempoten
y of R is enough to prove that R is transitive. Noti
e thatthe 
ondition (!) also implies that R is re
exive.The morphisms between ordered Stone spa
es are taken to be the 
ontinuousorder preserving fun
tions and so the 
ategory OStoneSp is de�ned. We takeOStoneLo
 to be the full sub
ategory ofKHausPos whose obje
ts are the orderedStone lo
ales. Re
all from Se
tion 5.3 that it follows thatf : (X �X) �! (Y;�Y )is a map of OStoneLo
 if and only if f : X ! Y is a lo
ale map and 8a 2 
Y
fÆ +op (a) �+op (a) Æ
f



6.3. PRIESTLEY'S DUALITY 1216.3 Priestley's DualityPriestley's initial result was proved in [Pri70℄ (though see [Pri94℄ for some more re-
ent thinking about the duality). It 
onsisted of the statementDLatop �= OStoneSp;hen
e the term `duality'. However we take the equivalen
e DLatop �= CohSp (i.e.generalization of Stone representation) for granted sin
e we are familiar with thisresult as essentially the assertion that 
oherent lo
ales are spatial. (`Essentially'sin
e we need to fa
tor in the 
ompli
ation that the maps between 
oherent spa
esare those whose inverse images preserve 
ompa
t opens i.e. lo
ali
ally the semi-proper maps.) We view Priestley duality as the equivalen
e CohSp �= OStoneSp.So the reader is warned that the word `duality' is not entirely appropriate. Thisview of the duality is also taken in II 4 of [Joh82℄. There the fun
tor:B : CohSp �! OStoneSp(X;
) 7�! (X; `pat
h';�)is de�ned. � is the spe
ialization order on (X;
) and a base for the pat
h topologyis given by fU \ V 
jU; V 
ompa
t opengIn the other dire
tion we haveC : OStoneSp �! CohSp(X;
;�) 7�! (X; fU jU 2 
; " U = Ug)Lemma 6.3.1 Classi
ally, fU jU 2 
; " U = Ug = IdlfU jU 2 K
; " U = Ug. i.e.C(X;
;�) is 
oherent. 2Priestley proved in [Pri70℄ that, provided we are free to use the prime idealtheorem (PIT), these fun
tors de�ne an equivalen
e. We now use the remarks inthe notes to Se
tion II 4.9 of Stone Spa
es [Joh82℄ to see how an assumption thatBC de�nes an equivalen
e allows us to 
on
lude the PIT:Let us assume that B; C de�ne an equivalen
e. We see straight away that if a
oherent spa
e is T1 (i.e. if the spe
ialization order � is equality) then it is Stone.But T1ness 
an equivalently be de�ned as saying that all points are 
losed. Forany distributive latti
e A the points of the asso
iated 
oherent spa
e are the primeideals and the 
losed points are the maximal ideals. Hen
e the statement of T1nessis equivalent to the statement that the maximal and prime ideals 
oin
ide. Soassuming B; C de�ne an equivalen
e we know that a 
oherent spa
e is T1 if and onlyif it is Stone. Hen
e:Lemma 6.3.2 (Na
49) A distributive latti
e is Boolean if and only if all its primeideals are maximal. 2It is not immediately obvious that this lemma implies PIT. It 
ertainly provesthat any non-Boolean distributive latti
e has a prime ideal. But any non-trivialBoolean 
an be embedded into a non-trivial non-Boolean distributive latti
e and sowe have PIT. To see how to 
onstru
t su
h an embedding 
onsult Exer
ise I 4.8 ofStone Spa
es ([Joh82℄).Of 
ourse it is unfortunate that the above proof relies on the ex
luded middle.The reason why we repeat this 
hara
terization of PIT is to make it 
lear that we
annot hope to prove Priestley's duality without some 
hoi
e axioms. i.e. we haveto move to something like lo
ales if we want to have a 
onstru
tive theory of spa
esthat admits a Priestley duality.
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ali
 VersionWe de�ne an equivalen
e of 
ategories via the fun
tors B; C:CohLo
 B-�C OStoneLo
The idea behind the 
onstru
tion of B 
omes from the following 
lassi
al reasoning:if x 6� y where x; y are points of a 
oherent spa
e X and � is the spe
ializationorder then there exists a 
ompa
t open U su
h that x 2 U and y 62 U . Thus(x; y) 2 U 
 U
 and, as always, (U 
 U
) \� = �. Now when one is de�ning thefun
tors of the original Priestley duality we take a 
oherent spa
e X and give it anew pat
h topology. A base for the pat
h topology is given byfU \ V 
jU; V 
ompa
t opengand so we see that the spe
ialization order, �, is 
losed as a subset of X �X whenX is given the pat
h topology. Thus there is eviden
e to suggest that we 
an �nd a
losed sublo
ale of the lo
ale obtained when we move from a 
oherent lo
ale to its`pat
h topology' lo
ale. This 
losed sublo
ale will 
ome from (via pullba
k it turnsout) the spe
ialization order on the original 
oherent lo
ale.We stay with our spatial intuitions for one more 
lassi
al lemma:Lemma 6.4.1 The set of 
ompa
t opens of the pat
h topology on a 
oherent spa
eX is the free Boolean algebra on the distributive latti
e of 
ompa
t opens of X.Proof: Certainly if U is a 
ompa
t open of X it is a 
ompa
t open of the pat
htopology.If W is in the pat
h topology then W = Si2I Ui \ V 
i for some indexing set I . Butif W is 
ompa
t in the pat
h topology then I 
an be taken to be �nite. The set� � fSi2I Ui \ V 
i jUi; Vi 
ompa
t open, I �niteg � PXis a Boolean algebra. The 
omplement ofSi2I Ui \ V 
iis given by the subset S[(\i2J1U 
i ) \ (\i2J2Vi)℄where the union if taken over all pairs J1; J2 � I su
h that J1; J2 are �nite andI � J1 [ J2. Clearly any element of � is 
ompa
t open in the pat
h topology. 2Thus the de�nition of this `pat
h topology' lo
ale, (whi
h will be the de�nition ofthe lo
ali
 part of B) is 
lear: given a 
oherent lo
ale X we know 
X = Idl(K
X)for some distributive latti
e K
X . De�ne BX by 
BX = Idl(BX) where BX isthe free Boolean algebra on K
X .The distributive latti
e inje
tion K
X � BX gives rise to a frame homomor-phism from Idl(K
X) to Idl(BX) and hen
e to a lo
ale map BX ! X whi
h weshall 
all lX . lX is a surje
tion. In fa
tLemma 6.4.2 lX is moni
.



6.4. LOCALIC VERSION 123Proof: Say Y f1 -f2 - BX lX - Xis a diagram in Lo
 su
h that lXf1 = lXf2. Then for all I 2 BXI = W"f# bjb 2 Igsin
e I is an ideal of BX . So to prove f1 = f2 it is suÆ
ient to prove
f1(# b) = 
f2(# b) 8b 2 BXBut for all b 2 BX b = ^i2I (
lXai _ :
lXbi)for some �nite I with ai; bi 2 K
X . And so the result follows sin
e any framehomomorphism 
learly preserves 
omplements. 2One way to �nd a sublo
ale of BX � BX is to look at the pullba
k of thespe
ialization order on X �X (viewed as a sublo
ale) along the map lX � lX . i.e.look at the pullba
k diagram �BX - vBX �BX?? lX � lX- X �X??where 
(v) � Fr < 
X

X qua frame j aO0 � 0Oa 8a 2 
X > (see Lemma[2.7.2℄) and hope that �BX is 
losed.Lemma 6.4.3 Given the data above:I l - v
BX �BX?? lX � lX- X �Xq??is a pullba
k diagram where I = Wfa
:aja 2 K
Xg. (We view K
X � BX .)The reason for the 
hoi
e of I should be apparent from the spatial reasoning pre-sented above.Proof: We 
an translate I to a preframe equivalent:I = W"f^i(aiO:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
XgUse the method of Lemma [2.7.1℄ to see this.De�ne 
l : 
(v) �! " IaOb 7�! I _ (
lXaO
lXb)This is seen to satisfy the `qua frame' part of the de�nition of 
(v). To 
on
ludethat 
l is well de�ned we need:
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lXaO0) � I _ (0O
lXa)for all a 2 K
X . Noti
e that for any a 2 K
X sin
e (a_0)^ (0_:a) = 0 we havethat I = I _ [(aO0) ^ (0O:a)℄. ButI _ (aO0) = I _ [(aO0) ^ (0O1)℄= I _ [(aO0) ^ (0O(:a _ a))℄= I _ [(aO0) ^ [(0O:a) _ (0Oa)℄℄= I _ [(aO0) ^ (0O:a)℄ _ [(aO0) ^ (0Oa)℄= I _ [(aO0) ^ (0Oa)℄� I _ (0Oa)Hen
e l is well de�ned, and the diagram in the statement of the lemma 
learly
ommutes. Now say we are given Q;m; t su
h thatQ t - vBX �BXm ? lX � lX- X �Xq??
ommutes. Then the fun
tion 
z :" I �! 
QJ 7�! 
(m)Jwill (i) be well de�ned, (ii) make the appropriate triangles 
ommutes and (iii) be aframe homomorphism, provided we 
an 
he
k that 
(m)I = 0.But 
m(I) = W"f
m ^i (aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg and so it issuÆ
ient to prove 
m ^i (aiO:bi) = 0whenever ^i(ai _ :bi) = 0 for ai; bi 2 K
X . With su
h 
onditions we see that(
lX 
 
lX)(aiO0) = aiO0, and so
m(^i(aiO:bi)) = ^i
m((aiO0) _ (0O:bi))= ^i[
m((
lX 

lX)(aiO0)) _
m(0O:bi)℄= ^i[
t
q(aiO0) _ 
m(0O:bi)℄� ^i[
t
q(0Oai) _ 
m(0O:bi)℄= ^i[
m(0Oai) _ 
m(0O:bi)℄= 
m[^i(0O(ai _ :bi))℄= 
m(0O ^i (ai _ :bi))= 
m(0O0) = 0: 2Now I � # so �BX is 
ertainly re
exive. It is shown in Lemma [2.7.3℄ that the spe-
ialization order is antisymmetri
 (v ^ w= �) and so �BX will be antisymmetri
sin
e (i) the diagonal is preserved by pullba
k along a moni
 and (ii) pullba
k pre-serves �nite meets of subobje
ts (as pullba
k is right adjoint to image fa
torization).It is ni
e to know that the order on our ordered Stone lo
ale 
an be found bypulling ba
k the spe
ialization order sin
e then antisymmetry and re
exivity of theorder follows from the fa
t that these two axioms hold for the spe
ialization order.However we 
an prove that �BX is antisymmetri
 dire
tly:



6.4. LOCALIC VERSION 125Lemma 6.4.4 �BX is antisymmetri
, where �BX is given bya�BX = W"f^i(aiO:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
Xg.Proof: We need to prove that (�BX)^ (�BX ) (p1;p2)� BX�BX is the diagonal. Wemay 
on
lude this provided we 
he
k that its right hand proje
tion is equal to itsleft hand proje
tion. i.e. p1 = p2. As a statement about frames this reads
(�1)(I) _ a� _ a� = 
(�2)(I) _ a� _ a� 8I 2 IdlBXNote that we may restri
t to the 
ase that I 2 Idl(K
X). This is be
ause lX is amonomorphism. In fa
t we only need worry about 
ompa
t Is. i.e. we may assumeI = a 2 K
X . In su
h a 
ase 
�1I = aO0; 
�2I = 0Oa. Hen
e we needaO0 _ a� _ a� = 0Oa _ a� _ a� 8a 2 K
X:Before proof note that for any a 2 K
X sin
e (a _ 0) ^ (0 _ :a) = 0 we have thata� = a� _ [(aO0) ^ (0O:a)℄ (I)a� = a� _ [(:aO0) ^ (0Oa)℄ (II)Hen
e for any a 2 K
XaO0 _ a� _ a� = a� _ [[a� _ (:aO0) _ (aO0)℄ ^ [a� _ (aOa)℄℄ by (II)= a� _ a� _ (aOa)0Oa _ a� _ a� = a� _ [[a� _ (aOa)℄ ^ [a� _ (0O:a) _ (0Oa)℄℄ by (I)= a� _ a� _ (aOa): 2So to be sure that B a
tually gives us an ordered Stone lo
ale we need but 
he
kthat a� = W"f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;+op bi = bi; I �nite g:This will follow on
e we've shown thatLemma 6.4.5 If X is a 
oherent lo
ale and +op is the preframe endomorphism of
X that 
orresponds to the relation �BX then for all a 2 BX ,a 2 K
X , a =+op aProof: It is always the 
ase that +op a � a sin
e �BX is re
exive. Hen
e we needbut prove a 2 K
X , a �+op a:We know thata�BX = _"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg.Assume we are given a 2 K
X . So+op a = _"f^i[ai _ 
!(1 � :bi _ a)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
XgSimply take I = f1; 2g a1 = a b1 = 0a2 = 0 b2 = :ato see that a �+op a.Conversely say a 2 BX and a �+op a. Sin
e `a 2 BX ' means a is 
ompa
t we seefrom our expression above for +op a that
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!(1 � :bi _ a)℄for some ai; bis in K
X with ^i(ai _ :bi) = 0. Hen
ea � ^i(ai _ 
!(bi � a))= _I=J1[J2(^i2J1ai) ^ (^i2J2
!(bi � a))= _I=J1[J2(^i2J1ai) ^ (
!(_i2J2bi � a))= _I=J1[J2(_f^i2J1aij _i2J2 bi � ag)= "_( [I=J1[J2f^i2J1aij _i2J2 bi � ag)The union is over all pairs J1; J2 � I su
h that J1; J2 are �nite and I � J1 [ J2.The fa
t that this union is dire
ted follows sin
e if (J1; J2); ( �J1; �J2) are two pairs ofthe indexing set then (J1 \ �J1; J2 [ �J2) is in the indexing set. Hen
ea � W"(Sf^i2J1aij _i2J2 bi � ag)So, by 
ompa
tness of a, it is possible to �nd J1; J2 subsets of I su
h thatI � J1[J2 with the property that a � ^i2J1ai and _i2J2bi � a. But the statement^i(ai _ :bi) = 0 implies _I�J1[J2 [(^i2J1ai) ^ (^i2J2:bi)℄ = 0) (^i2J1ai) ^ (^i2J2:bi) = 0) ^i2J1ai � :(^i2J2:bi) = _i2J2biHen
e a = ^i2J1ai and sin
e ai 2 K
X 8i we see that a 2 K
X . 2It is unfortunate that we have to rely on a distributivity law in the middle ofthe above proof. A more natural way to pro
eed would be to say: for every i 2 Ia � ai _
!(bi � a)= "_(faig [ f1jbi � ag)and so if we de�ne: J1 � fija � aigJ2 � fijbi � agthen 
ompa
tness of a implies that I � J1 [ J2. This is all very well but we nowdon't know for sure whether J1; J2 are �nite.As for the e�e
t of B on morphisms, say we are given a semi-proper lo
ale mapf : X ! Y . So 
f restri
ts to a distributive latti
e homomorphism from K
Y toK
X , and hen
e extends naturally to a distributive latti
e homomorphism on therespe
tive free Boolean algebras BY ; BX . This indu
es a lo
ale map Bf from BXto BY . We must 
he
k that this map is an ordered Stone lo
ale map. i.e. that
BfÆ +op a �+op Æ
Bf(a)
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BXButLHS = 
Bf(_"f^i[ai _
!(1 � :bi _ a)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg)= _"f^i[
Bf(ai) _ 
!(1 � :bi _ a)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg� _"f^i[
Bf(ai) _ 
!(1 � :
Bfbi _ 
Bfa)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg� +op Æ
Bf(a)To 
omprehend the last two lines we need to remind ourselves that 
Bf(a) =
f(a) 2 K
X if a 2 K
Y , and that if �
f is the extension of 
f : K
Y ! K
Xto the Boolean 
ompletions then �
f(:b) = :(
fb) for every b 2 K
Y . Thus Bde�nes a fun
tor from CohLo
 to OStoneLo
.Fortunately the 
onstru
tion of a fun
tor C in the opposite dire
tion is less in-volved than our 
onstru
tion of B. De�ne C as followsC : OStoneLo
 �! CohLo
(X;�) 7�! Idl(fa 2 K
X j +op a = ag)N.B. fa 2 K
X j +op a = ag is a subdistributive latti
e ofK
X . The only tri
ky bitin proving this is 
losure under �nite joins. But +op a � a 8a, so (i) 0 �+op 0 � 0and (ii) if a =+op a; b =+op b then a _ b =+op a_ +op b �+op (a _ b) � a _ b.The de�nition of C on morphisms is also 
lear: if f : (X;�X) ! (Y;�Y ) is anordered Stone lo
ale map then it is proper and so is semi-proper; 
f preserves
ompa
t opens. The fa
t that 
f(+op (a)) �+op 
f(a) 8a 2 
Y means that 
frestri
ts to a distributive latti
e homomorphism from fa 2 K
Y j +op a = ag tofa 2 K
X j +op a = ag. So f indu
es a semi-proper map C(f) from C(X;�X) toC(Y;�Y ).It is now 
lear that 
he
king thatCB(X) �= X 8X 2 Ob(CohLo
)amount to showing that 8a 2 BXa 2 K
X , a =+op a(where BX is the free Boolean algebra over the distributive latti
e K
X). But wehave shown this already in Lemma [6.4.5℄.So all we need to do is ask: is BC(Y ) �= Y for all Y 2 OStoneLo
 ?Well we know that there is a distributive latti
e in
lusion,fa 2 K
Y j +op a = ag ,! K
Ybut is it universal? If it is then the fa
t that we requirea�Y = W"f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;+op bi = bi; I �nite gfor Y to be an ordered Stone lo
ale means that�Y=�BC(Y ) :



128 CHAPTER 6. LOCALIC PRIESTLEY DUALITYThus we will be �nished provided we 
an 
he
k that the above in
lusion is universal.Assume a diagram KC(Y ) � - K
Y�����f R B�?.................where f is a distributive latti
e homomorphism and B is a Boolean algebra.Say a 2 K
Y and we have found two �nite sets of elements fai; biji 2 Ig;f�a�i;�b�ij�i 2 �Ig su
h that ^i(ai _:bi) = a = �̂i(�a�i _:�b�i). (Where the ai; bi; �a�i;�b�is arein fa 2 K
Y j +op a = ag.) We want to 
he
k,Lemma 6.4.6 ^i(fai _ :fbi) = �̂i(f�a�i _ :f�b�i)(For then it will be `safe' to de�ne �(a) = ^i(fai _ :fbi) for anyfai; biji 2 Ig � KC(Y ) su
h that a = ^i(ai _ :bi).)Proof: We have done this already really in Lemma [1.3.3℄. To 
on
lude that^i(fai_:fbi) � �̂i(f�a�i_:f�b�i) we need to prove that for every �i and for every pairJ1; J2 � I with I � J1 [ J2 we have(^i2J1fai) ^ (^i2J2:fbi) � (f�a�i _ :f�b�i)This relies on the by now well known �nite distributivity law being applied to themeet ^i(fai _ :fbi). But the last inequality 
an be manipulated tof((^i2J1ai ^ �b�i) _ _i2J2bi) � f((�a�i ^ �b�i) _ (_i2J2bi))and the fa
t that (^i2J1ai ^�b�i)__i2J2bi � (�a�i ^�b�i)_ (_i2J2bi) follows from exa
tlythe same manipulations applied to the assumption^i(ai _ :bi) � �̂i(�a�i _ :�b�i). 2Assumption: 8a 2 K
Y 9fai; biji 2 Ig � KCY s.t. ^i(ai _ :bi) = a.If this assumption is true then � will be a (ne
essarily unique) Boolean homomor-phism extending f . [For if a = ^i2I (ai_:bi) and �a = ^i2�I (ai _:bi) ) a^ �a =^I[�I(ai _ :bi). So�(a ^ �a) = ^I[�I(fai _ :fbi)= [^i2I (fai _ :fbi)℄ ^ [^i2�I (fai _ :fbi)℄= �(a) ^ �(�a)Similarly for _.℄We also have the following Boolean algebra lemma:Lemma 6.4.7 If I; �I are �nite sets and fai; biji 2 Ig and f�a�i;�b�ij�i 2 �Ig are sets ofelements of some Boolean algebra B, and ^i(ai _ :bi) = 0; �̂i(�a�i _ :�b�i) = 0. Thenfor any J1; J2 � I � �I, �nite subsets, su
h that I � �I � J1 [ J2 we have^(i;�i)2J1(ai _ :�b�i) � _(i;�i)2J2(:�a�i ^ bi)
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onditions imply:[^(ai _ :bi)℄ _ [^(�a�i _ :�b�i)℄ = 0) ^(i;�i)2I��I [ai _ :bi _ �a�i _ :�b�i℄ = 0) _I��I�J1[J2 [(^(i;�i)2J1(ai _ :�b�i)) ^ (^(i;�i)2J2(�a�i _ :bi))℄ = 0) (^(i;�i)2J1(ai _ :�b�i)) ^ (^(i;�i)2J2(�a�i _ :bi)) = 0The result follows sin
e :(^(�a�i _ :bi)) = _(:�a�i ^ bi). 2We 
an now prove our assumption:Theorem 6.4.1 If (Y;�) is an ordered Stone lo
ale and a 2 K
Y thena = ^i2I(ai _:bi) for some �nite I with ai; bi 2 K
Y and +op ai = ai;+op bi = bi.Proof: Clearly the antisymmetry axiom must now 
ome into play. This axiomstates that (�) ^ (�) �Sub(X�X) �whi
h as a statement about the opens of 
(X �X) reads:a� _ a� � #But a = # � a sin
e # 
orresponds to the identity of relational 
omposition. Thusa � (a� _ a�) � a (I)From our axioms used to de�ne `ordered Stone lo
ale' we know,a� = _"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Y +op ai = ai +op bi = bigsymmetri
allya� = _"f �̂i(:�b�iO�a�i)j �̂i (�a�i _ :�b�i) = 0 �a�i;�b�i 2 K
Y +op �a�i = �a�i +op �b�i = �b�ig.Thus a� _ a� is a dire
ted union of elements of the form[^i(aiO:bi)℄ _ [ �̂i(:�b�iO�a�i)℄= ^(i;�i)2I��I [(aiO:bi) _ (:�b�iO�a�i)℄= ^(i;�i)2I��I [(ai _ :�b�i)O(:bi _ �a�i)℄Sin
e a is 
ompa
t and ( ) � a preserves dire
ted joins and �nite meets we see from(I) that a � ^(i;�i)2I��I([(ai _ :�b�i)O(:bi _ �a�i)℄ � a)for some fai; biji 2 Ig; f�a�i;�b�ij�i 2 �Ig su
h that ^i(ai _:bi) = 0; �̂i(:�b�i _ �a�i) = 0 and+op ai = ai;+op bi = bi;+op �a�i = �a�i;+op �b�i = �b�i. Now[(ai _ :�b�i)O(:bi _ �a�i)℄ � a= (ai _ :�b�i) _ 
!(1 � :bi _ �a�i _ a)= _"[fai _ :�b�ig [ f1jbi ^ :�a�i � ag℄



130 CHAPTER 6. LOCALIC PRIESTLEY DUALITYAnd so, similarly to Lemma [6.4.5℄, via 
ompa
tness of a we 
an �nd �nite subsetsJ1; J2 � I � I with the properties:a � ai _ :�b�i 8(i;�i) 2 J1bi ^ :�a�i � a 8(i;�i) 2 J2I � �I � J1 [ J2Clearly (by de�nition of J1; J2) a � ^(i;�i)2J1(ai _ :�b�i)and _(i;�i)2J2(:�a�i ^ bi) � a:But by the last lemmâ (i;�i)2J1(ai _ :�b�i) � _(i;�i)2J2(:�a�i ^ bi)and so a = ^(i;�i)2J1(ai _ :�b�i): 26.5 NotesIn his thesis `The Stru
ture of (free) Heyting Algebras' ([Pre93℄) Pretorius proves a
onstru
tive version of Priestley's duality. He shows that the the 
oherent lo
ales aredual to a parti
ular sub
ategory of the 
ategory of pairs of frames (where the se
ondelement of the pair is a subframe of the �rst and morphisms of this 
ategory areframe homomorphisms that preserve the subframe). This parti
ular sub
ategory isseen, assuming PIT, to be equivalent to the ordered Stone spa
es and so Priestley'soriginal duality is re
overed. It is not 
lear how, from its de�nition, to view thisparti
ular sub
ategory lo
ali
ally; although given the results of this 
hapter we nowknow that it is 
onstru
tively equivalent to the ordered Stone lo
ales.The methods of Pretorius' proof are very di�erent from ours. He makes mu
h useof the frame of 
ongruen
es on a distributive latti
e. His observation that `the setof 
ompa
t 
ongruen
es on a distributive latti
e is the free Boolean algebra on thatlatti
e' has helped us in two important ways. Firstly it shows us how to 
onstru
tthe free Boolean algebra on a distributive latti
e (see Se
tion 1.3). This is not atrivial problem as the usual method, via �nitary universal algebra, is not allowedin our 
ontext sin
e it depends on the natural numbers. Se
ondly the fa
t thatthe 
ompa
t 
ongruen
es form the free Boolean algebra means that we have a mu
hsimpler proof of Banas
hewski and Br�ummer's result that the stably lo
ally 
ompa
tlo
ales 
orrespond to the 
ompa
t regular biframes [BB88℄. The 
onsequen
es ofthis 
orresponden
e forms the 
ontent of our last 
hapter.



Chapter 7Hausdor� Systems7.1 Introdu
tionGiven a poset (X;�) we 
an 
onstru
t Idl(X), its ideal 
ompletion. Idl(X) isan algebrai
 d
po. For any algebrai
 d
po, A, we 
an 
onstru
t KA, the set of
ompa
t elements of A. These 
onstru
tions are inverse to ea
h other. Howeverwe 
annot 
on
lude that the 
ategory of posets is equivalent to the 
ategory ofalgebrai
 d
pos. This is be
ause not all d
po maps preserve 
ompa
t opens. But ifwe extend the morphisms between posets to relations (satisfying suitable 
onditions)then a 
ategori
al equivalen
e 
an be established. This is the idea behind S
ott'sinformation systems (see [S
o82℄). One of the reasons for presenting algebrai
 d
posas posets (=information systems) is that it be
omes possible to use the presentationto solve domain equations. Domains are spe
ial types of algebrai
 d
pos and theproblem of solving domain equations is important in theoreti
al 
omputer s
ien
e.See [Vi
89℄ for ba
kground on domains and [LW84℄ for details about how domainequations 
an be solved using information systems. The problem of extending thisequivalen
e to the retra
ts of the algebrai
 d
pos (i.e. the 
ontinuous posets) isdealt with in [Vi
93℄. In [Vi
93℄ Vi
kers introdu
es the 
ategory of 
ontinuousinformation systems (InfoSys). These are pairs (X;R) where X is a set and R isa relation on X whi
h is idempotent with respe
t to relational 
omposition. Thereare many morphisms possible between 
ontinuous information systems. The mostgeneral are relations: R : (X;RX)! (Y;RY )R � X � Y su
h that R = RY Æ R Æ RX where Æ is relational 
omposition. Theseare 
alled the lower approximable semimappings.We de�ne Hausdor� systems to be the proper parallel to 
ontinuous informationsystems. So a Hausdor� system is a pair (X;R) where X is a 
ompa
t Haus-dor� lo
ale and R is a 
losed relation su
h that R Æ R = R. Upper approximablesemimappings between Hausdor� systems are 
losed relations R ,! X � Y ,R : (X;RX)! (Y;RY ),su
h that R = RY Æ R Æ RX where Æ is 
ompa
t Hausdor� relational 
omposition.We have de�ned the 
ategory HausSysUIf (X;R) is an infosys then we know (Chapter 4) that there is a SUP-latti
e homo-morphism #R: PX ! PX 
orresponding to R. #R is idempotent sin
e R is. Theset 131



132 CHAPTER 7. HAUSDORFF SYSTEMSfT jT 2 PX #R T = Tg
an then easily be seen to be a 
onstru
tively 
ompletely distributive latti
e. Theessen
e of [Vi
93℄ is a proof that all 
onstru
tively 
ompletely distributive latti
esarise in this way.Given a Hausdor� system (X;R) we know that there is a preframe morphism+op: 
X ! 
X 
orresponding to R (Chapter 4). Hen
efaja 2 
X +op a = agis a subpreframe of 
X . It also has �nite joins: +op 0 is least and the join of a; b isgiven by +op (a _ b). Further,Lemma 7.1.1 
 �X � faja 2 
X +op a = ag is the frame of opens of a stablylo
ally 
ompa
t lo
ale.Proof: First we 
he
k that the frame is 
ontinuous, i.e. that 8a 2 
 �Xa = W"fbjb�
 �X ag (�)Sin
e 
X is 
ompa
t regular we know that (8a; b 2 
X)a� b , a� bHen
e to 
on
lude (�) all we need do is 
he
k thatb� a ) +op b�
 �X aif a 2 
 �X . Say b� a and a � W" S S �" 
 �X then 9s 2 S b � s )+op b �+op s = s.As for stability we need to 
he
k that 1�
 �X 1 (trivial by 
ompa
tness of 
X) anda �
 �X b1; b2 implies a �
 �X b1 ^ b2. Sin
e bi 2 
 �X, 
X is regular and +op is apreframe homomorphism we know thatbi = W"f+op 
j
� bigHen
e a �+op 
i for some 
1; 
2 with 
i � bi. Hen
e a �+op (
1 ^ 
2). But
1 ^ 
2 � b1 ^ b2 and so 
1 ^ 
2 � b1 ^ b2. Hen
e a�
 �X b1 ^ b2. 2The next se
tion is devoted to proving that every stably lo
ally 
ompa
t lo
alearises in this way. From then our program is to 
he
k that this equivalen
e 
an bemade 
ategori
al by restri
ting the 
lass of relations that are allowed to be Hausdor�system maps. The program is the proper parallel to the 
ontents of [Vi
93℄.7.2 Stably lo
ally 
ompa
t lo
alesLet StLo
KLo
U be the 
ategory whose obje
ts are stably lo
ally 
ompa
t lo
alesand whose morphisms are formally reversed preframe maps. Bearing in mind the
orresponden
e between preframe homomorphisms on the frame of opens of 
ompa
tHausdor� lo
ales and 
losed relations on these lo
ales (as 
aptured by Theorem[4.3.1℄) it should be 
lear that there is a fun
tor:CU : HausSysU ! StLo
KLo
U(X;R) 7! �Xwhere 
 �X = fa 2 
X j +op a = ag.If R : (X;RX) ! (Y;RY ) is an upper approximable semimapping (i.e. if RY Æ R ÆRX = R) then it is 
lear that  R (the preframe homomorphism from 
Y to 
X
orresponding to R) is going to satisfy:



7.2. STABLY LOCALLY COMPACT LOCALES 133 R = X+op Æ R Æ Y +opFrom this it follows that  R will restri
t to a preframe homomorphism from 
�Y to
 �X. CU is fun
torial.Lemma 7.2.1 The mapHausSysU ((X;RX); (Y;RY )) �! PreFrm(
�Y ;
 �X)R 7�! ( R)j
 �Xis a bije
tion. i.e. CU is full and faithful.Proof: Send a preframe map � : 
 �Y ! 
 �X to the relation 
orresponding to thepreframe homomorphismX+op Æ � Æ Y +op : 
Y �! 
X 2We want to de�ne BU : StLo
KLo
U ! HausSysUFix, for the rest of the se
tion, X , a stably lo
ally 
ompa
t lo
ale. De�ne �
X tobe the set of S
ott open �lters of 
X . So F 2 �
X i�(i) F is upper(ii) a; b 2 F ) a ^ b 2 F(iii) 1 2 F(iv) a 2 F ) 9b 2 F b� a:The following lemma is in [BB88℄,Lemma 7.2.2 �
X is the frame of opens of a stably lo
ally 
ompa
t lo
ale.Proof: If F1; F2 are two S
ott open �lters thenF1 _ F2 =" fa1 ^ a2ja1 2 F1; a2 2 F2gDire
ted joins are given by union. F1 ^F2 = F1 \F2, �nite distributivity is an easymanipulation. If G is a S
ott open �lter thenG = S"f""bjb 2 GgHen
e F � G if and only if there is a b 2 
X su
h that F �" b � G. 2Sin
e X is stably lo
ally 
ompa
t we know that there is a frame inje
tion## : 
X ! Idl
X . Now de�ne B
X to be the free Boolean algebra on 
X quadistributive latti
e. There is a frame inje
tion of Idl
X into IdlB
X whi
h wewill denote by 
l. So if we 
ompose this inje
tion with ## we �nd that 
X 
an beembedded in IdlB
X . Noti
e that if �a� a then # �a � 
l##a.Lemma 7.2.3 �
X 
an be embedded into IdlB
X .Proof: Send F to W"b2F # :b. It is routine to 
he
k that this is a frameinje
tion. 2De�ne: 
Y=the subframe of IdlB
X generated by the image of the above twoembeddings.
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ompa
t Hausdor� lo
ale.Proof: Compa
tness is immediate sin
e 
Y is a subframe of the 
ompa
t frameIdlB
X . As for regularity it is 
learly suÆ
ient to 
he
k that
l##a = W"fI jI �
l##agfor every a 2 
X and W"b2F # :b = W"fI jI �W"b2F # :bg8F 2 �
X .However a = W"fxjx � ag and F = W"fGjG � Fg sin
e both 
X and �
X are
ontinuous posets. So it is suÆ
ient to prove thatx� a ) 
l##x�
l##a (I)G� F ) "_b2G # :b� "_b2F # :b (II).(I): Say x � a. Set F = ""x (a S
ott open �lter). Then W"b2F # :b 2 
Y . But
learly 
l##x ^W"b2F # :b = 0Further x� a ) 9�a x� �a� a. Hen
e
l##a _ "_b2F # :b � 
l##a_ # :�a� # �a_ # :�a = 1Hen
e 
l##x�
l##a.(II): Say G� F . So 9x 2 F G � ""x � F (sin
e F = W"f""xjx 2 Fg). ThenW"b2G # :b ^ 
l##x = 0Now x 2 F ) 9�x 2 F �x� x and so
l##x _W"b2F # :b �# �x_ # :�x = 1 2We want a 
losed idempotent relation on Y and so we need to �nd a preframeendomorphism +op: 
Y ! 
Y su
h that (+op)2 = +op. If I; J 2 
Y we writeI �1 J if and only if 9F 2 �
X su
h thatI ^W"b2F # :b = 0J _W"b2F # :b = 1Clearly �1� � and the last proof has shown us that x � a implies 
l##x �1 
l##a.De�ne +op: 
Y �! 
YJ 7�! "_fI jI = 
l##a for some a; I �1 Jg:Fa
ts about +op:? 8J; +op (J) = 
l##a for some a 2 
X? +op (
l##a) = 
l##a 8a? (+op)2 =+op



7.2. STABLY LOCALLY COMPACT LOCALES 135? +op is a preframe homomorphism.Hen
e de�ne BU : StLo
KLo
U ! HausSysU by B(X) = (Y;R), where R is the
losed relation 
orresponding to +op.The above de�nition did not simply jump out of a hat. Although presentedin a very di�erent way it is essentially just a restru
turing of Banas
hewski andBr�ummer's 
onstru
tion of a 
ompa
t regular biframe from a stably lo
ally 
ompa
tlo
ale. In their paper [BB88℄ they embedded 
X and �
X into the frame offrame 
ongruen
es via exa
tly the same fun
tions; regularity of the frame generatedfollows the same path. Compa
tness in their proof is not immediate. They embedthe frame generated into the frame of frame 
ongruen
es of the ideal 
ompletion of
X , pointing out that this embedding will be 
ontained within the frame generatedby 
ongruen
es of the form (# a ,! Z) ^ (: # b ,! Z)where 
Z = Idl
X , a; b 2 
X . Another lemma veri�es that the frame generatedby these 
ongruen
es is 
ompa
t. But it 
an be seen that the frame generated bythese 
ongruen
es is just the ideal 
ompletion of the 
ompa
t distributive latti
e
ongruen
es on 
X . Pretorius [Pre93℄ tells us that the set of su
h 
ompa
t 
ongru-en
es is the Boolean 
ompletion of the distributive latti
e 
X and so we see that we
an embed into the ideal 
ompletion of the Boolean 
ompletion of 
X ; see Se
tion1.3. This is exa
tly what is done above.How is BU de�ned on morphisms? Say f : X1 ! X2 is a morphism ofStLo
KLo
U (so 
f : 
X2 ! 
X1 is a preframe homomorphism). From thestarred `fa
ts about +op' above we see that the set of +op-�xed opens of BU (X) isjust the image of the in
lusion 
l## : 
X ! 
BU (X). Hen
e 
X is isomorphi
 to
CUBU (X). So we 
an �nd a unique �f su
h thatCUBUX1 �f- CUBUX2X1�= ? f - X2�=6
ommutes. But CU is full and faithful. So there is a unique BUf : BUX1 ! BUX2su
h that �f = CUBUf .Lemma 7.2.4 (X;R) �= (Y; S) in HausSysU if and only if 
 �X �= 
�Y as posets.Proof: Say (X;R) �= (Y; S) in HausSysU . It follows that there are upper approx-imable mappings T : (X;R) �! (Y; S)Q : (Y; S) �! (X;R)su
h that T Æ Q = S and Q Æ T = R, where Æ is relational 
omposition. Tosee this noti
e that R : (X;R) ! (X;R) is the identity on the Hausdor� system(X;R). If  T ;  Q are the preframe homomorphisms 
orresponding to T;Q then T Æ  Q = R+op and  Q Æ  T = S+op. From whi
h it follows T j
�Y : 
 �Y �! 
 �X Qj
 �X : 
 �X �! 
�Y
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tions. Conversely , say
 �X � -� �� 
�Yare order preserving bije
tions. Then � and �� are preframe homomorphisms. So if� is de�ned so as to make 
Y � - 
X
�YY +op ? �� - 
 �X[6
ommute and  is de�ned to make
X  - 
Y
 �XX+op ? � - 
�Y[6
ommute we see that �;  are preframe homomorphisms. If T;Q are the rela-tions 
orresponding to  ; � respe
tively then 
learly T;Q are upper approximablesemimappings whi
h are inverse to ea
h other in HausSysU . 2Theorem 7.2.2 HausSysU �= StLo
KLo
UProof: We need to 
he
k BUCU (X;R) �= (X;R) in HausSysU , for every Haus-dor� system (X;R). This is immediate from the pre
eding lemma sin
e we knowCUBUCU (X;R) �= 
 �X = CU (X;R). 27.3 Approximable MappingsIn the paper [Vi
93℄ various di�erent types of morphisms between 
ontinuous infor-mation systems are introdu
ed. So far we have only examined the proper parallelto InfoSysL. i.e. to the 
ase where the morphisms are relationsR : (X;RX) ! (Y;RY ) su
h that RY Æ R Æ RX = R. On the `open' side we see(Theorem 3.7 of [Vi
93℄) thatInfoSysL �= CCDLo
Lwhere CCDLo
L is the 
ategory whose obje
ts are 
onstru
tively 
ompletely dis-tributive lo
ales and whose morphisms are formally reversed SUP-latti
e homomor-phisms. On the proper side:HausSysU �= StLo
KLo
UIn [Vi
93℄ we see that the equivalen
e 
an be re�ned:InfoSys �= CCDLo




7.3. APPROXIMABLE MAPPINGS 137CCDLo
 has been introdu
ed in Se
tion 1.6. InfoSys has as obje
ts all 
ontinu-ous information systems just as before. The morphisms are now the approximablemappings. Say R : (X;RX)! (Y;RY ) is a lower approximable semimapping. Thenit is an approximable mapping provided it also satis�es:(i) s0RXs ) 9t0 2 Y s0Rt0(ii) s0RXs sRt1 sRt2 ) 9t0 2 Y s0Rt0 t0RY t1 t0RY t2For a justi�
ation of these axioms noti
e that if RX ; RY are partial orders then(i); (ii) are saying that for every s 2 X , ftjsRtg is an ideal of Y .It is quite easy to see that these two 
onditions 
an be expressed as:(i) #X (X) � Y ÆR(ii) #X (A1 ÆR \A2 ÆR) � (#Y A1\ #Y A2) ÆRwhere A1; A2 range over all subsets of Y . i.e. they range over all open sublo
ales ofY (viewed as a a dis
rete lo
ale). Hen
e it should be 
lear what an approximablemapping between Hausdor� systems should be:R : (X;RX)! (Y;RY )is an approximable mapping of Hausdor� systems if and only if R = RX Æ R ÆRYand (i) +X (X) �Sub(X) Y ÆR(ii) +X (F ÆR ^G ÆR) �Sub(X) (+Y F^ +Y G) ÆRfor all 
losed sublo
ales F;G of Y . Say  R : 
Y ! 
X is the preframe homomor-phism 
orresponding to R. Then these equations are equivalent to the requirements:(i)  R(0) � X+op(0)(ii)  R(Y +op a _ Y +op b) � X+op( R(a) _  R(b)):It is easy, from these de�nitions, to 
he
k that R : (X;R) ! (X;R) is alwaysan approximable mapping and that approximable mappings are 
losed under 
om-position. Let HausSys be the 
ategory of Hausdor� systems with approximablemappings. It should now be 
lear that we have a fun
tor:C : HausSys! StLo
KLo
where StLo
KLo
 is the full sub
ategory of Lo
 
onsisting of the stably lo
ally
ompa
t lo
ales. The only diÆ
ulty is 
he
king that the approximable mappingsgive rise to frame homomorphisms. Say R : (X;RX)! (Y;RY ) is an approximablemapping. Then, as in the HausSysU 
ase, we know that  R restri
ts to a preframehomomorphism from 
�Y (� fa 2 
Y j +op a = ag) to 
 �X. For every a and b in
�Y  R(a _
�Y b) =  R(Y +op(a _ b))=  R(a _ b) ( R =  R Æ Y +op)� X+op( R(a) _  R(b)) (a; b 2 
�Y )=  R(a) _
 �X  R(b):And  R(0
�Y ) =  R(+op 0)=  R(0) � X+op 0= 0
 �X :
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ts to a frame homomorphism from 
�Y to 
 �X. On the other hand it iseasy to follow the de�nitions and prove that every frame homomorphism from 
�Yto 
 �X gives rise to an approximable mapping from (X;RX) to (Y;RY ) just as inLemma [7.2.1℄. In fa
t the 
on
lusion of that lemma is easily seen to hold here: Cis full and faithful.The next task is to 
he
k that the 
onstru
tion BU gives rise to a well de�nedfun
tor: B : StLo
KLo
! HausSysThis amounts to 
he
king that if f : X1 ! X2 is a lo
ale map between two stablylo
ally 
ompa
t lo
ales then BUf : BU (X1) ! BU (X2) is an approximable map-ping. By reexamining the 
onstru
tion of BUf we see that this fa
t follows fromour observation that C is full and faithful.Noti
e that Lemma [7.2.4℄ 
an now be repeated withHausSys in pla
e ofHausSysUand we may 
on
lude:Theorem 7.3.1 HausSys �= StLo
KLo
. 27.4 Ho�mann-Lawson DualityWe use the blanket term Ho�mann-Lawson duality to 
over dualities indu
ed bythe a
tion of taking S
ott open �lters. Ho�mann and Lawson initially proved su
h aduality for 
ontinuous posets in [Hof79℄,[Hof81℄ and [Law79℄. In [Vi
93℄ we see howto make the duality 
onstru
tive: the Ho�mann-Lawson dual of a 
ontinuous posetis found by taking the opposite of the 
orresponding 
ontinuous information system.By analogy, for a Hausdor� system (X;R) there is a duality (on obje
ts) whi
htakes (X;R) to (X; �R) where �R is the 
ompositeR ,! X �X ��! X �X(� is the twist isomorphism). It is not immediately 
lear how to make this dualityfun
torial. i.e. how to de�ne a fun
tor� : HausSys �! HausSysopNoti
e that if we reexamine (HausSys)U then� : HausSysU �! HausSysopU
learly is well de�ned. This is be
auseRY ÆR ÆRX = R , �RX Æ �R Æ �RY = �Rand so we get our �rst duality:(HausSys)U �= (HausSys)opUWe have also (by impli
ation) just 
he
ked that(StLo
KLo
)U �= (StLo
KLo
)opUOn the open side there is the resultCCDLo
U �= CCDLo
opU
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ates that the morphisms are formally reversed SUP-latti
e homo-morphisms. Noti
e that in our 
onstru
tive 
ontext we 
annot just take the oppositeof a 
onstru
tively 
ompletely distributive latti
e in order to get its dual; if we 
ouldthen the opposite of a 
onstru
tively 
ompletely distributive latti
e would be 
on-stru
tively 
ompletely distributive and, following our dis
ussion in 1.6, this wouldimply that the ex
luded middle is true. The easiest 
onstru
tive way of des
ribingthis duality is by looking at the points. We know that a CCD lo
ale is uniquelydetermined by its 
ontinuous poset of points. [Vi
93℄ shows how the above duality
orresponds to taking the S
ott open �lters of these points in order to get the pointsof the dual. i.e. we are looking at a Ho�mann-Lawson duality.What is the dual of a stably lo
ally 
ompa
t lo
ale? Given that we are looking for aHo�mann-Lawson duality and we have observed already that �
 �X is the frame ofopens of a stably lo
ally 
ompa
t lo
ale if �X is stably lo
ally 
ompa
t, it is 
learlydesirable to prove,Theorem 7.4.1 If (X;R) is a Hausdor� system thenfa 2 
X j *op a = ag �= �fb 2 
X j +op b = bg.Proof: Re
all from Chapter 5 that if (X;R) is a Hausdor� system (i.e. R2 = R)then aR = W"f^i(+op aiO *op bi)j ^i2I (ai _ bi) = 0 I �niteg.(We see this result 
ontained within the �rst few lines of the proof of Lemma [5.1.3℄.)It follows that*op a = W"f^i(*op ai _ 
!(1 � a_ +op bi))j ^i (ai _ bi) = 0g (�)De�ne a fun
tion:� : fa 2 
X j *op a = ag �! �fb 2 
X j +op b = bga 7�! f+op bj1 � a_ +op bgClearly �(a) is a �lter on fbj +op b = bg � 
 �X. Say +op b 2 �(a). We know+op b = W"f+op �bj�b�
X+op bgsin
e +op b = W"f�bj�b �
X+op bg. Thus by 
ompa
tness of 
X sin
e 1 � a_ +op bwe know 9�b�
X+op b with 1 � a_ +op �b. Hen
e +op �b 2 �(a). But�b�
X+op b ) +op �b�
 �X+op b [7.1.1℄and so �(a) is a S
ott open �lter. i.e. � is well de�ned.Further note that � re
e
ts order: say we are given a; �a 2 faj *op a = ag withf+op bj1 � a_ +op bg � f+op bj1 � �a_ +op bg then 8b1 � �a_ +op b ) 1 � a_ +op band so the fa
t that *op �a �*op a 
an be read o� from (�).In the other dire
tion de�ne : �
 �X �! faja 2 
X *op a = agF 7�! "_f*op aja 2 
X su
h that 9b 2 
X with a ^ b = 0 +op b 2 FgWe need to show that 8F 2 �
 �X



140 CHAPTER 7. HAUSDORFF SYSTEMSF = f+op bj1 �  (F )_ +op bgProof of this: Say b 2 F then b =+op b. Sin
e F is a S
ott open �lter we knowthat 9�b 2 F su
h that �b�
 �X b:The dual of (�) is+op 
 = W"f^i(+op bi _ 
!(1 � 
_ *op ai))j ^i (ai _ bi) = 0g.But every (+op bi _ 
!(1 � 
_ *op ai)) is in 
 �X sin
e it 
an be expressed as adire
ted join of elements of 
 �X. Hen
eb =+op b = W"
 �Xf^i(+op bi _
!(1 � b_ *op ai))j ^i (ai _ bi) = 0g�b�
 �X b ) 9��b 2 
 �X �b�
 �X ��b�
 �X b.Hen
e there exists a �nite 
olle
tion (ai; bi)i2I with ^i(ai _ bi) = 0 su
h that��b � ^i(+op bi _ 
!(1 � b_ *op ai))Hen
e (see Lemma [6.4.5℄) there exists J1; J2 � I �nite su
h that I = J1 [ J2 and�b � ^i2J1(+op bi) 1 � b _ ^i2J2 *op aiHen
e �b �+op (^i2J1bi) and so +op (^i2J1bi) is in F . Now by the familiar �nitedistributivity law we know that^i2I (ai _ bi) = WI=J1[J2((^i2J1ai) ^ (^i2J2bi))and so sin
e (^i2J1bi) ^ (^i2J2ai) = 0 we get that *op (^i2J2ai) �  (F ). So1 �  (F ) _ b.On the other hand say 1 �  (F )_ b for some b with +op b = b. By the 
ompa
tnessof 
X (and the de�nition of  ) we know that1 �*op a _ bfor some a 2 
X su
h that 9�b 2 
X with the properties that a ^ �b = 0 and+op �b 2 F . However re
all Lemma [5.2.1℄. This stated that for any a; b 2 
X wehave that 1 �*op a _ b , 1 � a_ +op b:Hen
e �b �+op b. This implies +op �b �+op b = b. It follows that b 2 F sin
e+op �b 2 F . 2There is no natural way of �nding a 
ontravariant fun
tor from HausSys toHausSys sin
e if R is an approximable mapping then we 
annot hope that �Ris also an approximable mapping. Just as in the open parallel we symmetrizethe de�nition of approximable mapping in order to de�ne a new 
lass of fun
tionsbetween Hausdor� systems whi
h will give rise to a 
ontravariant fun
tor. Clearlythe parts of the de�nition whi
h need to be symmetrized are the 
onditions:(i) +X (X) �Sub(X) Y ÆR(ii) +X (F ÆR ^G ÆR) �Sub(X) (+Y F^ +Y G) ÆRDe�ne a Lawson approximable mapping to be an approximable mapping whi
h alsosatis�es (i) *Y (Y ) �Sub(Y ) X Æ �R(ii) *Y (F Æ �R ^G Æ �R) �Sub(Y ) (*X F^ *X G) Æ �Rwhere F;G are arbitrary 
losed sublo
ales of X . Hen
e de�ne the 
ategory



7.4. HOFFMANN-LAWSON DUALITY 141(HausSys)�whose morphisms are the Lawson approximable mappings. It should be 
lear thatif R : (X;RX) ! (Y;RY ) is a Lawson approximable mapping then there are twoframe homomorphisms: R : fb 2 
Y j Y +op b = bg ! fa 2 
X jX+op a = ag �R : fa 2 
X jX*op a = ag ! fb 2 
Y j Y *op b = bg.We would like to de�ne the 
lass of Lawson maps between stably lo
ally 
ompa
tlo
ales and so de�ne a 
ategory (StLo
KLo
)� with the property(HausSys)� �= (StLo
KLo
)�The nature of the duality indu
ed by � should then be 
lear. We will say thatf : �X ! �Y (a lo
ale map) between stably lo
ally 
ompa
t lo
ales is Lawson i�(
f)�1 : �
 �X �! �
�Ypreserves �nite joins. That this is a sensible guess 
an be seen straightaway bynoting that  �R is a frame homomorphism from �
 �X to �
�Y for any Lawsonapproximable mapping R. This follows from the last theorem.Theorem 7.4.2 (HausSys)� �= (StLo
KLo
)�Proof: Although the proof is slightly tri
kier it is still essentially a variation of theproof of HausSysU �= StLo
KLo
U . As a �rst step we 
he
k the fa
t that the setof Lawson approximable maps from (X;RX) to (Y;RY ) 
orresponds to the set ofLawson maps from �X to �Y via the usual transformation (i.e. R 7!  Rj
�Y ). Say weare given a Lawson approximable map R : (X;RX)! (Y;RY ). Then we will knowthat  Rj
�Y is the frame homomorphism 
orresponding to a Lawson map form �Xto �Y provided we 
an 
he
k my 
laim that the 
omposite�
 �X �=�! fajX*op a = ag  �R�! fbj Y *op b = bg �=�! �
�Yis given by ( R)�1. (For then we know ( R)�1 preserves �nite joins sin
e  �Rdoes.) Re
alling the proof of the last theorem we see that the above 
ompositetakes F (2 �
 �X) toG � f+op bj1 � W"f*op  �R(a)j9�a a ^ �a = 0 +op a 2 Fg_ +op bgWe want +op b 2 G ,  R(+op b) 2 FNow F = f+op aj1 � W"f*op a0j9�a a0 ^ �a = 0 +op �a 2 Fg_ +op ag.So +op b 2 G if and only if 9�a; a0 a0 ^ �a = 0 +op �a 2 F su
h that1 �*op  �R(a0)_ +op b, 1 �  �R(*op a0)_ +op band  R(+op b) 2 F , 9�a; a0 a0 ^ �a = 0 +op �a 2 F ,1 �*op a0 _  R(+op b)But we have seen that for every a 2 
X; b 2 
Y(1 �  �R(a) _ b) , (1 � a _  R(b))
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omposition gives ( R)�1 as required.On the other hand say we are given f : X1 ! X2 a Lawson map between stablylo
ally 
ompa
t lo
ales. Set (X;RX) = B(X1); (Y;RY ) = B(X2) and R = Bf . SoR : (X;RX) �! (Y;RY )is an approximable mapping. We 
he
k that it is Lawson. As usual  R : 
Y ! 
Xis the preframe homomorphism 
orresponding to R. Clearly
�Y  Rj
�Y- 
 �X
X2�= ? 
f- 
X1�=6
ommutes (where �= is as in the veri�
ation that CB(Xi) �= Xi), and so( R)�1 : �
 �X ! �
�Y preserves joins sin
e (
f)�1 : �
X1 ! �
X2 does. Butwe have just shown that ( R)�1 : �
 �X ! �
�Y is given by the 
omposite�
 �X �=�! fajX*op a = ag  �R�! fbj Y *op b = bg �=�! �
�Yand so  �RjfajX*op a=ag preserves joins whi
h is suÆ
ient to prove that�R : (Y; �RY )! (X; �RX )is an approximable mapping. i.e. R is Lawson. 27.5 Produ
tsLemma 7.5.1 (1; 1) is the terminal obje
t of HausSys. If (X;R); (Y; S) are twoHausdor� systems then(X;R)� (Y; S) = (X � Y; i(R� S))where i : (X �X)� (Y � Y )! (X � Y )� (X � Y ) is the twist isomorphism.Proof: Clearly (1; 1) is terminal. This follows sin
e for any Hausdor� system(X;R) we know that approximable mappings from (X;R) to (1; 1) 
orrespond tolo
ale maps from �X to 1.If R+op; S+op are the preframe homomorphisms 
orresponding to R;S thenR+op
 S+op : 
X 

Y �! 
X 

Yis the preframe homomorphism 
orresponding to i(R � S). We need proje
tionrelations: P1 : (X � Y; i(R� S)) ! (X;R)P2 : (X � Y; i(R� S)) ! (Y; S)De�ne P1 to be the pullba
k of R alongX � Y �X �13�! X �Xand P2 to be the pullba
k of S alongX � Y � Y �23�! Y � Y
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e the opens 
orresponding to P1; P2 areaP1 = 
�13(aR)aP2 = 
�23(aS)and the preframe homomorphisms 
orresponding to P1; P2 are
�1 Æ R+op
�2 Æ S+opwhere �1 : X � Y ! X , �2 : X � Y ! Y are the usual proje
tions. The best wayof demonstrating this last 
laim is to look at the 
ases aR = a1Oa2; aS = b1Ob2.From this it is 
lear that P1; P2 are approximable mappings.We need to 
he
k that if Q1 : (Z; T ) ! (X;R) and Q2 : (Z; T ) ! (Y; S) are twoapproximable mappings, then there exists a unique approximable mapL : (Z; T ) �! (X � Y; i(R� S))su
h that PiL = Qi for i = 1; 2.Assume su
h an L exists. Say  Pi ;  L;  Qi are the 
orresponding preframe maps.Then sin
e  L is an approximable mapping it must satisfy  LÆ(R+op
 S+op) =  L.Hen
e for every aOb 2 
X 

Y we must have L(aOb) =  L(R+op aO S+op b)=  L( P1(a) _  P2(b))=  L((R+op
 S+op)( P1 (a)) _ (R+op
 S+op)( P2(b)))= T+op( L P1(a) _  L P2(b))= T+op( Q1 (a) _  Q2(b))The penultimate line is by the fa
t that  L is an approximable map. Thus L isuniquely determined and it is 
lear from the above what formula should be assignedto  L in order to de�ne L su
h that PiL = Qi. 27.6 Semi-Proper MapsIn Banas
hewski and Br�ummer's paper \Stably Continuous Frames" ([BB88℄) thereis a proof that the 
ategory of stably 
ontinuous frames and `proper' maps is equiv-alent to the 
ategory of 
ompa
t regular biframes. Their `proper' maps are `�'preserving frame homomorphisms. We refer (see Se
tion 1.7.3) to `�' preservingmaps between stably lo
ally 
ompa
t lo
ales as semi-proper maps. This is a goodexpression sin
e it was shown (Lemma [3.2.1℄) that a lo
ale map f : X ! Y betweenstably lo
ally 
ompa
t lo
ales is semi-proper if and only if 
f has a right adjointthat is a preframe homomorphism.(StLo
KLo
)SPis the 
ategory whose obje
ts are stably lo
ally 
ompa
t lo
ales and whose mor-phisms are semi-proper lo
ale maps. Banas
hewski and Br�ummer's result is(KR2Frm)op �= (StLo
KLo
)SPBut we saw in Se
tion 5.4 that(KR2Frm)op �=KHausPosSo
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KLo
)SPThe main purpose of this se
tion is to outline a proof of this fa
t and to showhow this equivalen
e 
an be viewed as an extension of lo
ali
 Priestley duality.Interestingly, on obje
ts, the proof uses exa
tly the same 
onstru
tions as the proofthat Hausdor� systems 
orrespond to stably lo
ally 
ompa
t lo
ales. For:Lemma 7.6.1 If X is a stably lo
ally 
ompa
t lo
ales and (Y;R) is the Hausdor�system given by BX (as in the fun
tor B : StLo
KLo
 ! HausSys of Se
tion7.2) then (Y;R) is a 
ompa
t Hausdor� poset. i.e. R is a partial order.Proof: Re
all the 
onstru
tion of BX . +op (J) � J 8J so R is re
exive and the+op-�xed ideals form a subframe of 
Y whi
h is isomorphi
 to 
X .Further de�ne �2 : 
Y ! 
Y by mapping any ideal J toW"fI jI = W"b2F # :b some S
ott open �lter F; I �2 Jgwhere I �2 J , 9a 2 
X I ^ 
l##a = 0J _ 
l##a = 1:Again �2 is a preframe homomorphism and �2(J) � J 8J and so the �2-�xedelements form a subframe isomorphi
 to �
X . 
Y is generated by these subframesand from the de�nitions it is easy to 
he
k the regularity-like 
onditions for(
Y;+op ��xed ideals; �2 � �xed ideals)Consequently this last obje
t is a 
ompa
t regular biframe and so 
orresponds toan obje
t of KHausPos. 2We have a lemma whi
h 
an be read as a justi�
ation for our 
hoi
e of examiningthe semi-proper maps:Lemma 7.6.2 Say f : X1 ! X2 is a map between stably lo
ally 
ompa
t lo
ales.Then f is semi-proper i� the mapping(
f)# : P
X2 �! P
X1F 7�! " f
f(a)ja 2 Fgtakes S
ott open �lters to S
ott open �lters.Proof: Say (
f)# maps S
ott open �lters to S
ott open �lters and a � b wherea; b 2 
X2. Then the set F �" f
f(�b)ja� �bgis a S
ott open �lter. If 
f(b) � W" S for some S �" 
X1 then W" S 2 F . But Fis a S
ott open �lter and so there exists s 2 S su
h that s 2 F . Thus 
f(a) � s.The 
onverse is trivial. 2From this (and the fa
t that 
B(X) is generated by an image of 
X unionedwith an image of �
X) it should be 
lear how to de�ne a fun
tor:BSP : (StLo
KLo
)SP �! (KR2Frm)op �= KHausPosIn the other dire
tion we want:
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KLo
)SPThis is given on obje
ts by taking the se
ond member of the triple ( (L0; L1; L2) 7!L1) and is given on morphisms by restri
tion. The easiest way to see that thisrestri
tion 
orresponds to a semi-proper lo
ale map is by noting that for a; b 2 L1we have a�L1 b , a �1 band that �1 is preserved by any 
ompa
t regular biframe map.Clearly CSPBSP (X) �= X .In the other dire
tion say (L0; L1; L2) is a 
ompa
t regular biframe. We know(Theorem [7.4.1℄) that L2 �= �L1 and so if IdlBL1 is the ideal 
ompletion of thefree Boolean algebra qua distributive latti
e on L1 then there is an embedding ofL0 into IdlBL1 .L0 (viewed as a subframe of IdlBL1) is the frame generated by the union of theimages of the embeddings of L1 and �L1. So(L0; L1; L2) �= BSPCSP (L0; L1; L2)and we have re
aptured Banas
hewski and Br�ummer's result that(KR2Frm)op �= (StLo
KLo
)SPConsequently: KHausPos �= (StLo
KLo
)SP (a)It was pointed out at the end of Chapter 5 that the 
lassi
al 
orresponden
ebetween 
ompa
t regular biframes and 
ompa
t Hausdor� posets was shown inPriestley's paper [Pri72℄. As for the 
lassi
al equivalen
e between stably lo
ally
ompa
t spa
es and 
ompa
t regular T0 bispa
es we �nd that this appears in [Sal84℄.Oswald Wyler's paper `Compa
t ordered spa
es and prime Wallman 
ompa
ti�
a-tions' ([Wyl84℄) 
lassi
ally 
overs both equivalen
es: the stably lo
ally 
ompa
tlo
ales 
orrespond to the algebras of the prime Wallman 
ompa
ti�
ation fun
tor,a fa
t that is also in [Sim82℄.We now make a set of observations whi
h will allow us to 
on
lude that result(a) above is an extension of lo
ali
 Priestley duality. The 
ategory of 
oherent lo-
ales has as morphisms the semi-proper maps between 
oherent lo
ales, CohLo
 isa full sub
ategory of (StLo
KLo
)SP . It is 
ertainly 
lear from the de�nition ofthe 
ategory of ordered Stone lo
ales that it is a full sub
ategory of the 
ompa
tHausdor� posets. So it is natural to 
he
k whether the equivalen
e just 
he
ked (i.e.(a)) is an extension of the equivalen
e between ordered Stone lo
ales and 
oherentlo
ales as outlined in the previous 
hapter.Re
all that we de�ned C : OStoneLo
 �! CohLo
by 
C(X;�) = Idl(fa 2 K
X j +op a = ag). If we 
an show that:Idl(fa 2 K
X j +op a = ag) �= faj +op a = agthen it will be 
lear that the equivalen
e KHausPos �=�! StLo
KLo
 is an exten-sion of C : StoneLo
! CohLo
. Certainly we 
an de�ne a frame homomorphism:
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X j +op a = ag �! faj +op a = agas the unique extension of the distributive latti
e in
lusionfa 2 K
X j +op a = ag ,! faj +op a = agand inje
tivety of this map 
learly lifts to �.So is � surje
tive? Re
all that the de�nition of an ordered Stone lo
ale (X;�)required:a� = W"f^i(ai&:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
X; +op ai = ai; +op bi = bigSay a =+op a, then a is a dire
ted join of elements of the form^i(ai _ 
!(1 � :bi _ a))where ai; bi 2 K
X and +op ai = ai;+op bi = bi. These elements are all interse
-tions of the dire
ted joins: W"(faig [ f1j1 � :bi _ ag)But ai; 1 2 fa 2 K
X j +op a = ag and so � is surje
tive.This tells us that if KHausPos �=�! StLo
KLo
 is applied to an ordered Stonelo
ale then the result is a 
oherent lo
ale whi
h is isomorphi
 to the 
oherent lo
alegiven by the Priestley duality fun
tor C.Similarly to our work on Priestley's duality we �ndLemma 7.6.3 If (Y;R) is B(X) for some stably lo
ally 
ompa
t lo
ale X then thereis a pullba
k diagram: R - v
Y � Y?\ k � k- X �X?\where v is the spe
ialization sublo
ale and 
k = 
l##.Compare this lemma with Lemma [6.4.3℄.Proof: It will be useful to have a formula for the open 
orresponding to R. I 
laimthat aR = W"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 
Xg(where we are taking 
X � 
Y sin
e 
k is an inje
tion). Noti
e that if this 
laimis true then the result follows by a proof identi
al to the proof of Lemma [6.4.3℄.We translate the 
laim into its SUP-latti
e form. This readsaR = Wfa
:aja 2 
XgDe�ne � = Wfa
:aja 2 
Xg.Now aR = (+op 
1)(#) and soaR = W"f^i(+op NiOMi)j ^i2I (Ni _Mi) = 0 Ni;Mi 2 
Y I �nitegSay ^i(Ni _Mi) = 0. Then^i(+op NiOMi) = WI=J1[J2(^i2J1 +op Ni)
 (^i2J2Mi)
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on
lude aR � � by noting that for every pair J1; J2(1) +op (^i2J1Ni) 2 
X(2) ^i2J2Mi � : +op (^i2J1Ni)where the latter is by the fa
t that (^i2J1Ni) ^ (^i2J2Mi) = 0 and +op� Id.Conversely noti
e that if a 2 
X , taking N1 = a;M1 = 0; N2 = 0;M2 = :a provesa
:a � aR. 2So the antisymmetry of R 
an be re
aptured by noting that k is a monomorphism.Thus we don't have to use biframes in order to prove Lemma [7.6.1℄.How does Priestley duality �t into out parallel? We 
ould de�ne `PriestleySystems' as the images under B of the 
oherent lo
ales. It is not quite 
lear whetherthese are the proper parallel to the simplest information systems (namely posetswith 
ertain relations as morphisms). Surely the proper parallel to a poset is a
ompa
t Hausdor� poset? But the posets 
orrespond to the algebrai
 d
pos and the
ompa
t Hausdor� posets, we have seen, 
orrespond to the stably lo
ally 
ompa
tlo
ales. However the open parallel to the stably lo
ally 
ompa
t lo
ales are the
ontinuous posets (or CCD lo
ales) rather than the algebrai
 d
pos (or Alexandrovlo
ales). Perhaps the 
ompa
t Hausdor� posets treated as Hausdor� systems (i.e.maps are approximable mappings) 
orrespond to the 
oherent lo
ales? Priestleyduality would then show us that every 
ompa
t Hausdor� poset is isomorphi
 (asa Hausdor� system) to an ordered Stone lo
ale. This is qui
kly seen to be falsesin
e the equivalen
es of this 
hapter 
learly prove that HausSys is equivalent tothe full sub
ategory of 
ompa
t Hausdor� posets and so a hypothesis of this kindwould lead to the 
ontradi
tion that the 
oherent lo
ales are equivalent to the stablylo
ally 
ompa
t lo
ales. The author's 
on
lusion is that we are not looking at a leftright symmetry. Re
all the 
ube drawn at the end of Chapter 2. Algebrai
 d
posare 
ontained within the d
po node and 
oherent lo
ales are in the Frm node; thesymmetry for these nodes is perpendi
ular to the preframe/SUP-latti
e symmetrythat has been the subje
t of this thesis.
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