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AbstratOur work is entirely onstrutive; none of the mathematis developed uses theexluded middle or any hoie axioms. No use is made of a natural numbers objet.We get a glimpse of the parallel between the preframe approah and the SUP-lattie approah to loale theory by developing the preframe overage theorem andthe SUP-lattie overage theorem side by side and as examples of a generalizedoverage theorem.Proper loale maps and open loale maps are de�ned and seen to be parallel.We argue that the ompat regular loales are parallel to the disrete loales. It isan examination of this parallel that is the driving fore behind the thesis.We proeed with examples: relational omposition in Set an be expressed asa statement about disrete loales; we then appeal to our parallel and examinerelational omposition of losed relations of ompat regular loales. A tehnialahievement of the thesis is the disovery of a preframe formula for this relationalomposition.We use this formula to investigate ordered ompat regular loales (where theorder is required to be losed). We �nd that Banashewski and Br�ummer's ompatregular biframes (Stably ontinuous frames [Math. Pro. Camb. Phil. So. (1988)104 7-19℄) are equivalent to the ompat regular posets with losed partial order.We also �nd that the ordered Stone loales are equivalent to the oherent loales.This is a loali, and so onstrutive, version of Priestley's duality.Further, using this relational omposition, we an de�ne the Hausdor� systemsas the proper parallel to Vikers' ontinuous information systems (Information sys-tems for ontinuous posets [Theoretial Computer Siene 114 (1993) 201-229℄) Theategory of ontinuous information systems is shown by Vikers to be equivalent tothe (onstrutively) ompletely distributive latties; we prove the proper parallelto this result whih is that the Hausdor� systems are equivalent to the stably lo-ally ompat loales. This last result an be viewed as an extension of Priestley'sduality.
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IntrodutionSay we are given a topologial spae X and are required to desribe the set ofopens of the produt spae X �X . The obvious answer is to look at the followingsubsets of X �X : U � V = f(u; v)ju 2 U; v 2 V gwhere U; V are arbitary opens of X . We note that the olletion of all suh sets i.e.� � fU � V jU; V are open subsets of Xgis losed under �nite intersetions. (Sine (U1�V1)\(U2�V2) = (U1\U2)�(V1\V2).)So � forms a basis for a topology. We form the whole topology by taking all unionsof sets of the form U � V , i.e. by taking the least sub(SUP-lattie) of P (X �X)generated by �. (Reall that a SUP-lattie is a poset with arbitary joins, and sothe union operation tells as that P (A) is a SUP-lattie for any set A.)There is, however, a parallel solution to this problem. Look at the followingsubsets of X �X : UOV � f(u; v)ju 2 U or v 2 V gwhere again U; V are open subsets of X . It is easy to hek that (U1OV1) [(U2OV2) = (U1 [ U2)O(V1 [ V2), and so we onlude that the olletion � fUOV jU; V are open subsets of Xgis losed under �nite unions. We want to generate a topology from , and so weneed a olletion of subsets (of X � X) that is losed under arbitary unions and�nite intersetions. It is a well known (lattie theoreti) fat that an arbitary unionan always be expressed as a direted union of �nite unions. For if (Bi)i2I is aolletion of subsets of some set A, then[i2IBi = S"f�Ij�I�I;�I �nite g([i2�IBi)The " on [ indiates that the union is a union of a direted set. i.e. the set isnon-empty and if a; b are in the set then there exists  in the set suh that a; b � .Now  is losed under �nite unions, so all we need to do is lose it with respetto direted unions and �nite intersetions in order to reate a topology. De�ne �to be the olletion of all direted unions of �nites intersetions of elements of .It an be seen that � is losed under direted unions and �nite intersetions. i.e.it is a subpreframe of P (X �X). Clearly it is the least subprefame of P (X �X),ontaining  and �nally (by distributivety of P (X � X) ) � is losed under �nite7



unions. So � forms a topology.We have now de�ned two topologies for X � X ; one is the least sub(SUP-lattie)of P (X �X) ontaining all the sets U �V for U; V open in X , and the other is theleast subpreframe of P (X � X) ontaining all the sets of the form UOV for U; Vopen in X .But UOV = (U �X) [ (X � U)U � V = (UO�) \ (�OV )and so a short proof allows us to onlude that these two toplogies are the same.We ould hase used either approah in order to de�ne the produt topology.The example just given is the most straightforward way of desribing the par-allel whih forms the bakbone to this thesis: there are two ways of looking at anytopology, as a free SUP-lattie or as a free preframe.However it must be emphasised that the work presented here is not about topologi-al spaes. The example above is ouhed in topologial language in order to makeit more aessible: this is a thesis about loale theory.Loale TheoryThe �rst thing to say about loales is that they are like topologial spaes. Lo-ale theory is de�ned so that we an treat loales as if they are topologial spaes:we talk of subloales (f subspaes), speial ases being dense, losed and opensubloales (f dense, losed and open subspaes). We talk of ontinuous maps be-tween loales (f ontinuous maps between topologial spaes), speial ases beingproper maps and open maps (f proper and open ontinuous funtions betweenspaes). We talk of ompat loales (f ompat topologial spaes), and similarlymost of the usual separation axioms on topologial spaes have their loali trans-lations: e.g. we talk of ompat Hausdor� loales and disrete loales (f ompatHausdor� spaes and disrete spaes).This analogy between loale theory and topologial spae theory is not exat: ifit were loale theory and topologial spae theory would be indistinguishable andso loale theory would be redundant.What exists is a translating devie between the two theories: whenever we aregiven a loale X there is a topologial spae ptX naturally assoiated with it. Andwhenever we are given a topologial spae Y there is a loale 
Y naturally assoi-ated with it. Categorially what this means is that there is a pair of funtors goinginbetween the ategory Lo of loales and the ategory Sp of topologial spaes.pt :Lo�!Sp
 : Sp �!LoNow say we are given a loale X and we translate it into a spae (ptX) and thentranslate it bak into a loale (
ptX): do we ome bak to the same loale? Simi-larly, if we are given a spae Y , is pt
Y the same thing (up to isomorphism) as Y ?The answer is no, in general, sine if we did get the same thing then the translationwould be exat.However the olletion of all topologial spaes Y suh that pt
Y is the same thingas Y is important: we shall all these the sober spaes. Similarly the olletion of8



loales X suh that 
ptX is X is important: these are the spatial loales. Whatis important about these olletions is that if we restrit our attention to the soberspaes and to the spatial loales then the restrited translations are exat i.e. thetheory of sober spaes and the theory of spatial loales are the same. Categoriallythis means that there is an equivaleneSLo�=Sobwhere Slo is the ategory of spatial loales and Sob is the ategory of sober spaes.So the next question is: how many spaes are sober? i.e. is the olletion of soberspaes large enough to inlude most of the examples of topologial spaes that areatually used in pratie? The answer to this question, fortunately for loale theory,is yes. \... in e�et, one sari�es a small amount of pathology (non-soberspaes) in order to ahieve a ategory that is more smoothly and purely`topologial' than the ategory of spaes itself. " [Joh85℄This is a good reason to take a serious look at loale theory: in pratie when westudy topologial spaes we are almost always looking at sober spaes and so wemight as well be working within the ategory of loales.There are, however, muh more ompelling reasons why the ategory of loalesshould be onsidered the orret framework within whih to do topology: the studyof loales is, in a sense, logially purer than the study of topologial spaes. Provingresults in loale theory requires less axioms of our mathematis than the orrespond-ing proofs in topologial spae theory.A disussion of these axioms and how the need for them is removed by looking atloale theory will lead us to a point where the results of this thesis start.AxiomsThe law of exluded middle has a long history in mathematis. It is widely aeptedas being true. Our intuitions about the real world indiate that statements are eithertrue or false and so it understandable that the statment(8p)(p _ :p)has been allowed as an axiom of our mathematis. In the work that follows weprove results and develop some theory that does not require this axiom to be true.Mathematis without this axiom (the intuitionisti approah) has a long historyaswell. Earlier this entury Brouwer and Heyting both tried to develop an intuitis-tionisti version of mathematis (for a good introdution look at [TD88℄). It is therelatively new idea of a topos however that gives us some more impetus for takingthe intuitionisti approah seriously.Toposes are mathematial universes. Some toposes are Boolean (satisfy the lawof exluded middle) but there are enough non-Boolean naturally ouring toposesto make it lear that there are important mathematial universes where the law ofexluded middle fails. So if we want to be sure that our mathematis an be arriedout in any topos (=mathematial universe) then we must make sure that it is notdependent on the law of exluded middle.Very often the dependene of a topologial proof on the law of exluded middlevanishes when we translate it into a proof about loales. This is one of the pay-o�sof loale theory. We ahieve a proof that is logially purer: it an be arried out9



in any topos. Interestingly enough the fat that dependene on exluded middlevanishes is really only the iing on the ake: historially the reason why mathe-matiians looked at loales was to avoid dependene on an axiom that has an evenmore tenuous onnetion with reality: the axiom of hoie.The axiom of hoie states that if Xi is a olletion of non-empty sets (where iranges over some indexing set I) then the produt QiXi is non-empty. One may ormay not �nd this axiom in agreement with ones intuitions of how in�nite produtsof sets should behave. Certainly this axiom aused many more logial `waves' whenits importane to mathematis was disovered than did the law of exluded middle.But it was found that a lot of mathematial results used it: one of the most famousexamples being the proof that the produt of ompat topologial spaes is alwaysompat (this is Tyhhono�'s theorem; reall that a topologial spae X is ompatif for any direted olletion of opens (Ui)i2I we have that X � ["iUi implies thatX � Ui for some i 2 I). Indeed it was shown that some of these results not onlyused the axiom of hoie but they needed it, i.e. an assumption of the result leadsto a proof of the axiom of hoie. Given this fat and the general usefulness ofthe axiom it is understandable that ertain pathologies that ould be derived fromit (e.g. the Tarski-Banah paradox, see pp. 3-6 of [Je73℄) were ignored . Indeedthe task of developing a `hoie free' mathematis would seem impossible given thedependeny results just referred to: if we want the Tyhono� theorem (and for anyuseful topology we most ertainly do) then we need the axiom of hoie.Unless we hange the de�nition of topology.This is exatly what we do when we move to loales. By tampering slightly withthe de�nition of a topologial spae we ahieve a new ategory in whih to arry outour topologial results. Cruially we �nd that the Tyhono� theorem an now beproved without the axiom of hoie. The mathematis of loale theory is `hoie free'.Of ourse the question remains as to whether loale theory is really topology.One of the main problems of loale theory is to translate the ideas, onepts and�nally results of topologial spae theory. The translating devie referred to earlierdoes not ompletely solve this problem. An aim of loale theory and of this thesisis to arry out this translation further.If we take another look at the Tyhono� theorem, and in partiular the de�-nition of ompatness we see that it is a `preframe' result; it is saying somethingabout direted unions. Also, it is dependent on the de�nition of produt spaes. Aswe have shown, (in the �rst part of this introdution) there are two equivalent waysof de�ning suh produts. This fat has a loali analogue: a produt loale (indeedany loale) an be treated as a free SUP-lattie or as a free preframe. As with top-logial spaes it was the SUP-lattie de�nition that was originally aepted as thede�nition of a produt loale and when Johnstone originally proved the Tyhono�theorem for loales (in [Joh81℄) he used the SUP-lattie de�nition of the produt.But the Tyhono� theorem is a `preframe' result and so it is pleasing to note thatone the equivalent preframe de�nition of a produt loale had been worked out([JV91℄), the proof of the Tyhono� theorem was greatly simpli�ed. This exempli-�es a lot of the work that will take plae in this thesis: if we are dealing with aresult about ompatness we need to look at the loales onerned as free preframesrather than as free SUP-latties. One the preframe de�nition is taken the algebraimanipulations beome a lot easier.The parallel between the SUP-lattie approah and the preframe approah leadsnaturally to the onsideration of two lasses of loales: the ompat Hausdor� lo-10



ales and the disrete loales. These turn out to be parallel to eah other in muhthe same way that the SUP-lattie and the preframe de�nitions are parallel. Thedetails of how these two approahes �t together, appliations of them (suh as aonstrutive proof that the ategory of ompat Hausdor� loales is regular), andhow knowledge about theorems on one side of the parallel an help us prove parallelresults on the other side forms the ore of this thesis.
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Tehnial IntrodutionChapter 1 is devoted to the basis of loale theory. The �rst setion is devotedto mathematial ground rules. All results are onstrutive: we are working in anarbitary topos. Or, more suintly, no use is made of any of the hoie axioms or theexluded middle. It is sometimes not ompletely lear what the word `�nite' meansin an arbitary topos and so some e�ort is taken to larify that we mean Kuratowski�nite.We do not assume a natural number objet in our topos. So are is neededto make that we an de�ne the free Boolean algebra on a distributive lattie; weadapt Vikers' ongruene preorders ([6.2.3℄ of [Vi89℄) in order to prove that suha free Boolean algebra exists. Later on in the hapter are is also needed to makesure that the Prime Ideal Theorem an be disused without assuming the exludedmiddle (sine usual statments of the theorem ontain a negation). We introduethe onstrutive prime ideal theorem.In Chapter 2 there are two new o�erings. Firstly there is the realization thatK�r�i�z's preongruenes [K�r�i�z86℄ an also be used on preframes. It is easy to see whata preongruene on a preframe should be, and we have a preframe universal resultwhih is just a restating of K�r�i�z's frame universal result. This preframe universalresult essentially tells us that preframe presentations present; and it is this fatthat enables us to view frames as preframes. i.e. to onstrut frame oprodut frompreframe tensor and to prove a preframe version of the overage theorem.The next o�ering is a generalized overage theorem. This theorem is a statementabout any symmetri monoidal losed ategory C: it shows us how oequalizers anbe onstruted in the ategory of monoids over C from oequalizers in C. Givenfurther assumptions on C (for instane that a free ommutative monoid an be on-struted on any C objet and C has image fatorizations) we prove a result whihan be viewed as a onverse to the overage theorem: oequalizers in C an be al-ulated as images of ertain oequalizers in the ategory of ommutative monoidsover C. Standing alone both these results are straightforward to prove. They areinteresting in this ontext beause from them we an disover a plethora of otherresults. The main results are the overage theorems: not only do we get the SUP-lattie and the preframe versions of the overage theorem we also get a overagetheorem for quantales and rings. Beause of the onverse of the overage theoremwe are able, from the onstrution of oequalizers in the ategory of SUP-latties,to onstrut oequalizers in the ategory of direted omplete partial orders (=d-pos). The overage theorem applied to dpos then implies that oequalizers existsin the ategory of preframes. i.e. we have with these results reproved that preframepresentations present.What is being o�ered here doesn't add any new mathematial results. One12



the `Preframe Presentations Present' paper [JV91℄ is understood we know that theategory of preframes has oequalizers, and this fat for dpos is of ourse wellknown. What we now have is an ability to see that all these theorems stem fromthe same results that an be proved when you onsider the ategory of ommutativemonoids over any symmetri monoidal losed ategory C. i.e. they are all variationson the same theme, the theme being that there are ways of lifting and droping o-equalizers between the ategory C and the ategory of ommutative monoids over C.Chapter 3 introdues proper and open maps between loales. We prove somebasi (well knwon) results about them. The investigation is muh as in Joyal andTierney's paper An extension of the Galois theory of Grothendiek [JT84℄ the onlynew aspet being that we develop the theory of open and proper maps side by side.So it is quite lear, for instane, that the proof that proper maps are pullbak stableis really just a repetition of the proof that open maps are pullbak stable but with`has a left adjoint whih is a SUP-lattie homomorphism' being replaed with `hasa right adjoint whih is a preframe homomorphism'. The proper results are provedin [Ver92℄; the novelty is with our program of `parallel proofs for parallel results'.Towards the end of the Chapter we prove that the disrete loales are those whose�nite diagonals are open and the ompat regular loales are those whose �nitediagonals are proper. The former result is in [JT84℄ and the latter result is in Ver-meulen's paper `Some Construtive Results Related to Compatness' [Ver91℄. Ourproof doesn't follow his: we use the preframe tehniques that have been developedin Chapter 2. Given this last result it should be understandable why, for the restof the text, we refer to the ompat regular loales as the ompat Hausdor� loales.Another reason to state and prove these results side by side is to �x in thereader's mind the idea that the ompat Hausdor� loales are parallel to the dis-rete loales in muh the same way that the proper maps are parallel to the openmaps. As an aside we present an argument whih shows that the onstrutive primeideal theorem is parallel to the exluded middle. We then hek that the ompatHausdor� loales form a regular ategory. Classially this fat follows from theregularity of the ategory of ompat Hausdor� spaes.One it is known that the ompat Hausdor� loales form a regular ategorywe an immediately dedue that there is an allegory whose objets are ompatHausdor� loales and whose morphisms are losed relations. Composition is givenby relational omposition. We are of ourse assuming familiarity with the work ex-plained in Chapter 1.5 of Freyd and Sedrov's book `Categories Allegories'; thereinis an explanation of how to onstrut an allegory of objets and relations from anyregular ategory. This leads us neatly to the main tehnial insight of the the-sis whih is that we an �nd a formula for relational ompostion between losedsubloales of ompat Hausdor� loales. Chapter 4 starts with a desription of thisformula.Further there is the realization that just as spatially (when we are dealing withrelations on sets) we an talk about `lower losure of a subset with respet to a re-lation', `a relation is transitive/symmetri/interpolative' et we an state the samenotions for our allegory of ompat Hausdor� loales and relations. In this aselower losure (with respet to some losed relation) will orrespond to an endo-morphism on the set of losed subloales (a losed subloale is taken to its lowerlosure). The formula for relational ompostion allows us to express this endomor-phism as a partiular preframe endomorphism on the frame of opens of the ompatHausdor� loale. In fat, just as in the spatial ase where there is a well knownorrespondene between arbitary relations on a set and SUP-lattie endomorphismson the power set we are able to �nd a bijetion between preframe endomorphismsand losed relations. This fat, expressed in generality, an be viewed as a ategor-13



ial equivalene: the ategory of ompat Hausdor� loales and formally reversedpreframe maps between them is equivalent to the allegory of ompat Hausdor�relations. Stated as an equivalene this result is new, however it should be notedthat the essene (i.e. the orrepondene between preframe homomorphisms on theframe of opens of ompat Hausdor� loales and losed relations) an be found ina result of Vikers' ([Vi94℄) whih states that if X is a ompat Hausdor� loalethen, PU (X) �= $Xwhere PU is the upper power loale onstrution and $ is the Sierpinsksi loale (i.e.the loale whose frame of opens is the free frame on the terminal objet of our bak-ground topos). This orrespondene between preframe homomorphisms and losedrelations is used again and again. Essentially it is used to turn spatial intuitionsabout what is going on into formulas about opens.In Chapter 5 we look at ordered loales. Just as in ordered topologial spaetheory we �nd that the loales of interest are the ompat Hausdor� ones. Theformulas that we have developed allow us to neatly reprove some basi results fromordered toplogial spae theory in a loali ontext. In partiular we show thatthere is a loali analogue to the result: if X is a ompat order-Hausdor� posetthen the sets of the form U \ V , where U is an open upper set and V is an openlower set, form a base for the topology on X . This leads us to the new onlusionthat Banashewski and Br�ummer's ategory of ompat regular biframes is dual tothe ategory of ompat order-Hausdor� loali posets with order preserving loalemaps. This fat will be reused in Chapter 8 when we are looking at stably loallyompat loales.Chapter 6 is alled `Loali Priestley Duality'. It ontains a proof that theategory of oherent loales is equivalent to the ategory ordered Stone loales.Classially the ordered Stone loales are just the ordered Stone spaes whih are,by Priestley's original result, equivalent to the spetral spaes. This is one of themain results of the thesis: we have taken a well known lassial topologial resultand proved it in a loali ontext. Some work has already been done in this dire-tion: in Jean Pretorius' thesis [Pre93℄ there is a onstrutive proof that the oherentloales are equivalent to a partiular ategory whih is lassially equivalent to theordered Stone spaes. So what is new is the realization that this `partiular ate-gory' is equivalent to the ordered Stone loales i.e. it is the loali analog to theordered Stone spaes. We prove loali Priestley duality diretly rather than go viaPretorius' result.Chapter 7 an roughly be understood as `extending Priestley's duality'. Infat,the problem of extending from a ategorial point of view an be solved with afew remarks: Banashewksi and Br�ummer [BB88℄ prove that the ompat regularbiframes are dual to the stably loally ompat loales with semi-proper maps andwe have seen (Chapter 5) that the ompat regular biframes are dual to the om-pat order-Hausdor� posets; so the ompat order-Hausdor� posets are equivalentto the stably loally ompat loales with semi-proper maps. But ordered Stoneloales form a full subategory of ompat order-Hausdor� posets, and oherentloales form a full subategory of stably loally ompat loales with semi-propermaps: we have extended Priestley's duality.This extension relies on onstruting a ompat order-Hausdor� poset from a stablyloally ompat loale. Instead of going via Banashewski and Br�ummer's onstru-tion [BB88℄ (whih relies on the exluded middle in Lemma 3), we give a new on-strution whih redues the amount of algebra required. However the main thrust of14



the hapter is about a set of ategorial equivalenes whih are between ategoriesthat have similar objets to ompat order-Hausdor� posets and stably loally om-pat loales, but whih have very di�erent morphims. Here motivation is important:we are trying to disover the proper parallel to Vikers' results about ontinuousinformation systems [Vi93℄. Given that these results an be viewed as statementsabout the allegory of sets and relations then it is lear what the proper parallelsshould be. We disover a new proof whih is easily seen to be the proper parallel tothe result that the ategory of ontinuous information systems and approximablemappings is dually equivalent to the ategory of ompletely distributive latties andframe homomorphisms. It is also shown that variations of this equivalene (hang-ing approximable maps to lower aprroximable semi-mappings and Lawson maps)have proper parallels. We derive the proper parallel to Ho�man-Lawson duality onontinuous posets.
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Chapter 1Loale Theory1.1 IntrodutionIn this hapter we give an introdution to loale theory. Our main purpose isto set notation and to reemphasise the onstrutivety of our results. The reader isassumed to know what meets and joins on posets are, and what a distributive lattieand a Boolean algebra is. We de�ne the ategory of loales and remind the readerhow the pt and 
 funtors relate loales to the ategory of topologial spaes. Wedisuss how the algebrai dpos and the ontinuous posets an be viewed as loalesthat are onstrutively spatial. We develop the loale theory and introdue theonstrutive prime ideal theorem whih is lassially equivalent to the ordinaryprime ideal theorem. We hek that some well known lasses of loales (e.g. theStone loales) are spatial if and only if the onstrutive prime ideal theorem is true.Apart from the use of ongruene preorders and the introdution of the onstrutiveprime ideal theorem all the results of this hapter are well known.1.2 Mathematial Ground RulesEssentially we work in an arbitrary topos. Rather than go into the details of thiswe simply assume that we have sets, funtions and subsets and manipulate themin the usual way that is taught to �rst year undergraduates exept we do not allowuse of the law of exluded middle or any of the hoie axioms.For motivation we will oasionally want to work lassially i.e. we might wantto assume that the exluded middle and/or some hoie axiom is true. Wheneverwe are working lassially a lear referene to this fat is made in the text.The other piee of mathematial furniture that is to be removed is the natu-ral numbers objet. We remove it beause we don't need it. All the proofs o�eredare free of any need to enumerate things or to rely on the naturals in some other way.A onsequene of working in an arbitrary topos is that we are fored to thinkmore arefully about what it means for a set to be �nite. We an no longer rely onjust `ounting' the elements of it. In fat the de�nition of �nite that we hoose hasthe property that it is not the ase that subsets of �nite sets are neessarily �nite.(For the details of this ounter example see Exerise 9.2 of [Joh77℄.)We use Kuratowski �nite for our de�nition of �nite. (As introdued by Ku-ratowski in [Kur20℄; however see [KLM75℄ whih examines the de�nition in the17



18 CHAPTER 1. LOCALE THEORYontext of an arbitrary topos.) We say that �A � A is a �nite subset of A if andonly if it belongs to the free _-semilattie generated by A (viewed as a subset ofPA). We an onstrut this free _-semilattie as the least subset X of PA suhthat (i) � 2 X , (ii) if A1,A2 is in X then A1 [ A2 is in X and (iii) the image ofthe singleton inlusion fg : A ! PA is in X . We give this onstrution expliitlysine the usual proof of a `presentations of �nite algebrai theories present' resultrequires the natural numbers.It is not immediately apparent that the onstrution just given is the free join semi-lattie on X . To see that it is note that for any given funtion f : X ! A where Ais a join semilattie the setf�I � X j _ ff(i)ji 2 �Ig existsgontains all the singletons, the empty set and is losed under �nite unions. Soit ontains FX and we an therefore de�ne a funtion �f : FX ! A suh that�f Æ fg = f .To hek that �f is the unique suh join preserving map from FX to A, say g :FX ! A is a join preserving map suh that g Æ fg = f , then the setfI � X jI 2 FX; g(I) = �f(I)gontains singletons, the empty set and is losed under �nite union. Hene it is thewhole of FX . The proof that the the free semi-lattie on a set an be onstrutedin a topos without a natural numbers objet is originally due to Mikkelsen.Reassuringly we have now desribed all the mahinery that is needed. i.e. sets,funtions, subsets and the above de�nition of Kuratowski �nite is enough of a math-ematial foundation to prove the rest of the thesis.We go through some basi onsequenes of these assumptions.Lemma 1.2.1 1, the terminal objet in our bakground topos, is �nite.Proof: 1 is the one element set, 1 = f�g. We need to show that 1 2 F1 whereF1 is the free _-semilattie on 1. F1 is the intersetion of all X � P1 whih arelosed under �nite unions and whih ontain the image of fg : 1 ! P1. Any suhX ontains f�g = 1 and so 1 2 F1 as required. 2Lemma 1.2.2 (Indution on �nite sets) Say p is a proposition about �nite subsetsof some set X (i.e. p � FX) suh that p is satis�ed by the empty set and by all thesingletons fxg; x 2 X. If p also has the property that whenever p is satis�ed by Iand J then it is satis�ed by I [ J , then p is satis�ed by all �nite sets.Proof: The statement of the lemma tells us that FX � p sine FX is the leastsubset of PX satisfying onditions that are satis�ed by p. 2Lemma 1.2.3 The produt of two �nite sets is �nite. i.e. if I 2 FX and J 2 FYfor two sets X;Y then I � J 2 F (X � Y )Proof: Double indution. Consider the set:� � fI � J jI 2 FX; J 2 FY gWe need to show that if � � P (X � Y ) is a set with the properties that(i)f(x; y)g 2 � for every x 2 X and every y 2 Y(ii) � 2 �(iii) A;B 2 � then A [ B 2 �



1.2. MATHEMATICAL GROUND RULES 19then � � �. First notie that ertainly ��; �fyg � � where�� � fI � �jI 2 FXg �fyg � fI � fygjI 2 FXgThe latter is by indution on FX . Finally for any J 2 FY de�ne �J = fI � J jI 2FXg. To prove that � � � learly it is suÆient to verify that �J � � for every�nite J . But we an onlude `for every �nite J ' by using using indution on FY .We have started this indution with the statement ��; �fyg � � and shall nowomplete it by heking that �J1 ; �J2 � � implies �J1[J2 � �. This follows fromthe fat that � satis�es ondition (iii) above. 2Lemma 1.2.4 Say f : A! B is a funtion between sets A and B. Then the imageof any �nite subset of A is a �nite subset of B.Proof: FA is the free join semilattie on the set A and so there exists a uniquejoin preserving map Ff making the diagramA fg - FABf? fg- FBFf ?ommute. But when we proved that FA is the free join semilattie on A we wereable to give an expliit formula for Ff and from that formula it is lear that Ff isjust the usual set theoreti image map. 2Lemma 1.2.5 A join semilattie (A;_; 0) has all �nite joins.Proof: The set fI 2 FAjW I exists gontains the singletons and is losed under �nite unions. Hene it is the whole ofFA. 2It is an easy appliation of the indution lemma given above to prove for anydistributive lattie A that8I � A; I �nite, (W I) ^ b = Wfa ^ bja 2 Ig(we know fa^ bja 2 Ig is �nite sine the image of any �nite set is �nite). Also notethat (FA)op is the free meet semilattie on A, and so we see that meet semilattie(A;^; 1) has all �nite meets in muh the same way that we saw that any join semi-lattie has all �nite joins. We now look at a slightly more ompliated distributivitylaw:Lemma 1.2.6 If A is a distributive lattie and (ai)i2I , (bi)i2I are �nite olletionsof elements of A. (I �nite, or more preisely we assume I 2 FA.) Then^i2I (ai _ bi) = W[(^i2J1ai) ^ (^i2J2bi)℄where the join is taken over all pairs J1; J2 � I suh that I = J1[J2; J1; J2 �nite.Proof: We have assumed I 2 FA and so it is natural to go by the indutiontheorem already proven. The ase when I = � is trivial. Say I = f�g. We need toprove that



20 CHAPTER 1. LOCALE THEORYa� _ b� = W[(^i2J1ai) ^ (^i2J2)℄where the join is over pairs of subsets J1; J2 � I suh that I � J1 [ J2. Buta�; b� � W[(^i2J1a1) ^ (^i2J2bi)℄(take J1 = I J2 = � and then J1 = � J2 = I). Say we are given J1; J2 � I;I � J1 [ J2 then we will be done with the ase I = f�g if we an show(^i2J1ai) ^ (^i2J2bi) � a� _ b�Sine I � J1 [ J2 then either � 2 J1 or � 2 J2. In the former ase we have(^i2J1ai) ^ (^i2J2bi) � a�and in the latter we have, (^i2J1ai) ^ (^i2J2bi) � b�And so (^i2J1ai) ^ (^i2J2bi) � a� _ b�as required.Now say we are given two �nite sets I�; I� (in FA) suh that^i2I�(ai _ bi) = W[(^i2J1ai) ^ (^i2J2bi)℄^i2I� (ai _ bi) = W[(^i2J1ai) ^ (^i2J2bi)℄Then^i2I�[I� (ai _ bi) = (^i2I� (ai _ bi)) ^ (^i2I� (ai _ bi))= (_[(^i2J�1 ai) ^ (^i2J�2 bi)℄ ^ (_[(^i2J�1 ai) ^ (^i2J�2 bi)℄)= _[(^i2J�1 [J�1 ai) ^ (^i2J�2 [J�2 bi)℄where the last join is over quadruples J�1 ; J�2 (� I�); J�1 ; J�2 (� I�) suh thatI� = J�1 [ J�2 and I� = J�1 [ J�2 . We want this last line to be equal toWI�[I�=J1[J2 [(^i2J1ai) ^ (^i2J2bi)℄However for any J1; J2 in this last join set J�i = Ji \ I� and set J�i = Ji \ I�(i = 1; 2). So J�i ; J�i enjoy the propertyI� = J�1 [ J�2I� = J�1 [ J�2We see Ji = J�i [ J�i for i = 1; 2 and so we see thatW[(^i2J1ai) ^ (^i2J2bi)℄ � W[(^i2J�1 [J�1 ai) ^ (^i2J�2 [J�2 bi)℄The reverse inequality is easy. 2



1.3. THE FREE BOOLEAN ALGEBRA 211.3 The free Boolean algebraWe now address the question of onstruting the free Boolean algebra on a dis-tributive lattie. It is not possible in our ontext to use the usual �nitary universalalgebrai proof (e.g. Chapter 1 of [Joh87℄) sine this requires the natural numbers.We use a onstrution via ongruene preorders whih is equivalent to the more wellknown (e.g. [Pre93℄) onstrution via ongruenes.If D is a distributive lattie then -� D�D is a ongruene preorder if and only ifit satis�es a � a0 - b0 � b ) a - b(8S � D �nite) a - b 8a 2 S ) _S - b(8S � D �nite) a - b 8b 2 S ) a -^Sa - b; b -  ) a - a - aThese were suggested to the author by Vikers and are an adaptation of his frameongruene preorders ([6.2.3℄ of [Vi89℄).Lemma 1.3.1 There is an order preserving bijetion between the poset of ongru-enes on a distributive lattie and the poset of ongruene preorders.Proof: Take a ongruene � to the ongruene preorder - where a - b, a^b � band take a ongruene preorder - to the ongruene - ^ &. 2Notie that the poset of ongruene preorders on D (written ConP (D)) has a leastelement (�) and a greatest element (D �D).Also notie that ongruene preorders are losed under arbitrary intersetion. Itfollows that the poset of ongruene preorders has all joins. In partiular it has�nite joins. We prove that it is a distributive lattie:Lemma 1.3.2 ConP (D) is a distributive lattie.Proof: First note that it is suÆient to prove that for any -2 ConP (D) the orderpreserving map - \( ) : ConP (D) �! ConP (D)has a right adjoint. For then - \( ) preserves arbitrary joins and so it ertainlypreserves �nite joins. i.e. ConP (D) is distributive.The right adjoint is given by -0 7�!- = -0where - = -0� f(z; �z)j(z ^ y) - (�z _ �y) whenever y -0 �yg. 2We onstrut the free Boolean algebra on a distributive lattie as a partiular sub-lattie of ConP (D).



22 CHAPTER 1. LOCALE THEORYFor all a 2 D de�ne a pair of ongruene preorders -[a;0℄;-[1;b℄ byx -[a;0℄ y , x � y _ ax -[1;b℄ y , x ^ b � yNotie that -[a;0℄ \ -[1;a℄=�= 0ConP (D)and -[a;0℄ _ -[1;a℄= D �D = 1ConP (D)To see the latter note that a -[a;0℄ 0 and 1 -[1;a℄ aand so (a; 0); (1; a) 2-[a;0℄ _ -[1;a℄. But then (1; 0) 2-[a;0℄ _ -[1;a℄ by transitivityof ongruene preorders.Thus -[a;0℄ and -[1;b℄ are omplemented elements of ConP (D) for every a; b. Itis easy to hek, in any distributive lattie, that �nite joins and �nite meets ofomplemented elements are omplemented. De�ne-[a;b℄�-[a;0℄ _ -[1;b℄So the setB � f^i2I -[ai;bi℄ j(ai; bi)i2I a �nite olletion of elements of Dgis a Boolean algebra. Any element of B an be expressed as^i2I (-[ai;0℄ _: -[bi;0℄)for some �nite olletion (ai; bi)i2I , where : is the Boolean algebra negation.There is a distributive lattie inlusion: i : D ,! B given by i(a) =-[a;0℄.Say f : D ! �B is a distributive lattie homomorphism to some Boolean algebra �B.If we have found two �nite sets of elements fai; biji 2 Ig; f�a�i;�b�ij�i 2 �Ig suh that^i(-[ai;0℄ _: -[bi;0℄) = �̂i(-[�a�i;0℄ _: -[�b�i;0℄), we would like to hek,Lemma 1.3.3 ^i(fai _ :fbi) = �̂i(f�a�i _ :f�b�i)(For then it will be `safe' to de�ne � : B ! �B by �(-) = ^i(fai _ :fbi) for anyolletion fai; biji 2 Ig suh that -= ^i[-[ai;0℄ _: -[bi;0℄℄.)Proof: To onlude that ^I (fai _ :fbi) � ^�I (f�a�i _ :f�b�i) we need to prove thatfor every �i and for every pair J1; J2 � I with I � J1 [ J2 we have(^i2J1fai) ^ (^i2J2:fbi) � (f�a�i _ :f�b�i)This relies on the �nite distributivity law of Lemma [1.2.6℄ being applied to themeet ^i(fai _ :fbi). But the last inequality an be manipulated tof((^i2J1ai ^ �b�i) _ _i2J2bi) � f((�a�i ^ �b�i) _ (_i2J2bi))and so we want to hek:(^i2J1ai ^ �b�i) _ _i2J2bi � (�a�i ^ �b�i) _ (_i2J2bi) � (�)But the assumption



1.3. THE FREE BOOLEAN ALGEBRA 23^i(-[ai;0℄ _: -[bi;0℄) � �̂i(-[�a�i;0℄ _: -[�b�i;0℄)an via the same manipulations be shown to imply:(^i2J1 -[ai;0℄ ^ -[�b�i;0℄) _ _i2J2 -[bi;0℄� (-[�a�i;0℄ ^ -[�b�i;0℄) _ (_i2J2 -[bi;0℄):(�) follows sine i is a distributive lattie inlusion. 2We hek that �, so de�ned, preserves �nite meets. For if-1= ^i2I (-[ai;0℄ _: -[bi;0℄) and -2= ^i2�I (-[ai;0℄ _: -[bi;0℄) )-1 ^ -2= ^I[�I(-[ai;0℄ _: -[bi;0℄). So�(-1 ^ -2) = ^I[�I(fai _ :fbi)= [^i2I (fai _ :fbi)℄ ^ [^i2�I (fai _ :fbi)℄= �(-1) ^ �(-2)Similarly for _s.Hene � is the unique Boolean algebra homomorphism from B to �B that satis�esthe ondition that � Æ i = f . i.e. B is the free Boolean algebra on the distributivelattie D.We have one �nal use for our ongruene preorders whih is to show how theyan be used to form the quotient of a distributive lattie by an ideal. An ideal I ofa distributive lattie D is a subset of D whih satis�es:(i) I is lower losed. i.e. # I = I;(ii) 0 2 I(iii) a; b 2 I implies a _ b 2 IIt follows immediately that for any ideal I the set-I� f(x; y)j9i 2 I x � y _ igis a ongruene preorder. We now quotient by the orresponding ongruene, i.e.we de�ne an equivalene relation �I on D by a �I b if and only if a -I b andb -I a. Then the set of equivalene lasses, D=�I , is a distributive lattie. Theequivalene lass of an element a in D is denoted by [a℄. So there is a distributivelattie surjetion [ ℄ : D ! D= �I . Given this onstrution we haveLemma 1.3.4 (i) [a℄ = [0℄ if and only if a 2 I(ii) For any seond distributive lattie �D there is a bijetion between the distributivelattie homomorphisms f : D= �! �D and the distributive lattie homomorphisms�f : D ! �D with the property that �f(a) = 0 8a 2 I. The bijetion is given byf 7�! f Æ [ ℄Proof: (i) Say a 2 I . Then a � 0 _ i for some i 2 I and 0 � a _ i for some i 2 I .i.e. a -I 0 and 0 -I a and so a �I 0. i.e. [a℄ = [0℄ .Conversely if [a℄ = [0℄ then a �I 0. So a -I 0. Hene a � 0 _ i for some i 2 I .Therefore a 2 I as I is lower losed.(ii) Say f : D= �I! �D is given. Then for all i 2 I (f Æ [ ℄)(i) = f([i℄) = f([0℄) =0. Say �f : D ! �D has property �f(i) = 0 for every i 2 I . De�ne f : D= �I! �D byf [a℄ = �f(a). This is well de�ned for if [a1℄ = [a2℄ then a1 -I a2 and so there existsi 2 I suh that a1 � a2 _ i.



24 CHAPTER 1. LOCALE THEORY�f(a1) � �f(a2 _ i) = �f(a2) _ �f(i) = �f(a2) _ 0 = �f(a2)Similarly �f(a2) � �f(a1). It is also easy to see that f so de�ned is a distributivelattie homomorphism. Hene f 7�! f Æ [ ℄is a surjetion. Finally say f1 Æ [ ℄ = f2 Æ [ ℄Then f1 = f2 sine [ ℄ is a surjetion (surjetions are epimorphisms). Henef 7! f Æ [ ℄ is a bijetion. 21.4 Direted subsetsAlongside the �nite subsets we have another important lass of subsets, the diretedsubsets. These are partiular subsets of posets.De�nition: A subset �A of a poset A is said to be direted if and only if (i) 9a 2 �A(ii) 8b;  2 �A 9d 2 �A suh that b � d and  � d.We use the up-arrow " in �A �" A to denote the fat that �A is a direted subset ofA. Notie that a lower losed subset of a distributive lattie is an ideal if and onlyif it is a direted subset. We use the notation W" to denote the join of a set that isdireted. A omplete lattie is a poset with all joins.Lemma 1.4.1 Any join _ �A de�ned on a omplete lattie A an be expressed as adireted join of �nite joins of elements of �A.Proof: The set � �= f_BjB � �A; B 2 FAg is a direted subset of A. ClearlyW" � = _ �A. 2A poset is alled a dpo (direted omplete partial order) if and only if alldireted subsets have joins. A funtion between posets is a dpo homomorphismi� it preserves direted joins. We have de�ned the ategory dpo. If x; y 2 A forsome dpo A then we say that x is way below y and write x� y i� for all diretedS �" A if y � W" S then x � s for some s 2 S. An element x 2 A that is waybelow itself (x � x) is said to be ompat. The set of direted lower subsets ofa poset A is alled the ideal ompletion of A and it is denoted Idl(A). Idl(A) isalways a dpo and there is a poset inlusion #: A! Idl(A) whih takes an elementof A to the set of elements lower than it in the order. IdlA is the free dpo onthe poset A. The set of all dpos of the form IdlA for some poset A is important.They are alled the algebrai dpos. Given an algebrai dpo an isomorphi opyof the poset of whih it is an ideal ompletion an be found as the poset of ompatelements. i.e. for every algebrai dpo A if KA is the poset of ompat elementsthen A �= Idl(KA) (where �= of ourse denotes the existene of an order preservingisomorphism between the two posets). Further if IdlK1 �= IdlK2 then K1 �= K2.We use alg-dpo to denote the full subategory of dpo whose objets are thealgebrai dpos. Another haraterization of the algebrai dpos is the following: adpo A is algebrai i� 8a 2 A(i) fbjb� b; b � ag is direted(ii) W"fbjb� b; b � ag = a



1.4. DIRECTED SUBSETS 25A lass larger than the lass of algebrai dpos is the lass of ontinuous posets. Adpo A is a ontinuous poset (or sometimes `is ontinuous') if and only if(i) fbjb� ag is direted for every a 2 A.(ii) W"fbjb� ag = a 8a 2 AReall that if A;B are two objets of a ategory C then we say that A is a retrat ofB if and only if there are two maps i : A! B, p : B ! A in C suh that p Æ i = Id.The following result is impliit in [So72℄:Lemma 1.4.2 (Sott) A dpo A is a ontinuous poset if and only if there existsan algebrai dpo B suh that A is a retrat of B in dpo.Proof: Say A is a ontinuous poset. Then ## : A! IdlA given by##(a) = fbjb� agis a dpo map to an algebrai dpo. But W" : IdlA ! A is also a dpo map (it isleft adjoint to # and so preserves all joins) and W" Æ## = Id by the de�nition of aontinuous poset. Hene A is the retrat of an algebrai dpo.Conversely say A is a retrat of B, an algebrai dpo. Certainly B is a ontinuousposet. So there exists dpo maps i : A ! B and p : B ! A with the propertyp Æ i = Id. I laim thata�A �a , 9�b 2 B a � p(�b) �b�B i(�a)Say a �A �a then sine i(�a) = W"f�bj�b �B i(�a)g, we an apply p to both sides and�nd that �a = pi(�a) = p( "_f�bj�b�B i(�a)g= "_fp(�b)j�b�B i(�a)gand so a � p(�b) for some �b�B i(�a).Conversely say there exists �b 2 B suh that a � p(�b) and �b �B i(�a), and say�a � W" S for some S �" A. Theni(�a) � i( "_S)= "_fi(s)js 2 SgHene �b � i(s) for some s 2 S. We �nd that a � s by applying p to both sides ofthis last onlusion. So I have veri�ed my laim.Notie that this laim in partiular shows that if �a 2 A and b 2 B then b �B i(�a)implies p(b)�A �a. And so for any �a 2 A�a = pi(�a) = p( "_fbjb�B i(�a)g= "_fp(b)jb�B i(�a)g= _faja�A �ag



26 CHAPTER 1. LOCALE THEORYFinally we need to hek that the set faja�A �ag is direted for every �a 2 A. Thisfollows as an appliation of the laim from the fat that fbjb�B �bg is direted forevery �b 2 B. 2For tehnial use later we haveLemma 1.4.3 In a ontinuous lattie A the way below relation � is interpolative.i.e. if a� b then there exists  suh that a� � b.Proof: De�ne S = fd 2 Aj(9 2 A)(d� � b)g. It follows that S is direted andb � W" S 2For more bakground on ontinuous posets onsult 2.1 VII of [Joh82℄.1.5 The Category LoA frame is a poset with all joins and �nite meets suh that the arbitrary joinsdistribute over �nite meets. i.e. for any subset S of the frame and for any elementa we have WS ^ a = Wfs ^ ajs 2 SgAn example of a frame is the set of opens of a topologial spae. Frame homo-morphisms are required to preserve �nite meets and arbitrary joins. Given anyontinuous funtion f : X ! Y for topologial spaes X and Y it is lear that theinverse image of f is a frame homomorphism from the opens of Y to the opens ofX . i.e. f�1 : 
X ! 
Yis a frame homomorphism where 
X is the frames of opens of X and 
Y is theframe of opens of Y . We de�ne Lo, the ategory of loales, to be the opposite ofthe ategory frames (=Frm). What has just been desribed is a funtor from theategory of topologial spaes (Sp) to the ategory of loales:
:Sp�!LoHaving just given the impression that we shall talk about the loale 
X wenow onfuse the reader by �xing a di�erent notation for loales whih will seemperverse to the newomer: we shall talk about the loale X , but whenever we doany manipulations on it we shall talk about the orresponding frame of opens 
X .The reason for doing this is to make sure that the disussions of loales and the dis-ussions of frames are kept separate. Clearly the distintion is only mathematiallyimportant when we are dealing with the morphisms, but having a di�erent notationfor the objets will make it learer whih ategory we are working in. It will betremendously helpful to talk about pullbaks and produts of loales sine thesean be visualised as topologial pullbaks and produts and so having a distintnotation will help reinfore the spatial intuitions that are behind the loali results.Of ourse all this will seem like an irritating syntati distration for the newomer.If f : X ! Y is a loale map between loales X and Y then we write 
f forthe orresponding frame homomorphism from 
Y to 
X . Notie that sine 
fpreserves arbitrary joins it has a right adjoint. This right adjoint is denoted 8f andis given by the formula: 8f : 
X �! 
Ya 7�! "_fbj
f(b) � ag



1.5. THE CATEGORY LOC 27If 
f has a left adjoint it is denoted by 9f .The subobjet lassi�er is a frame. If we assume the exluded middle it isthe frame of two elements: true and false. In an arbitrary topos it is well knownthat the subobjet lassi�er is the power set of the terminal objet (i.e. P1 where1 = f�g) and learly any power set is a frame with the order given by ordinarysubset inlusion. In fatLemma 1.5.1 
, the subobjet lassi�er, is initial in the ategory of frames.Before proof let us make a seemingly innouous observation: if T 2 P1 thenT = Sff�gj� 2 Tg.(Certainly [ff�gj� 2 Tg � T . Conversely for any x 2 T we have x = �. Hene� 2 T and so x 2 [ff�gj� 2 Tg.) Expressed as a fat about the frame of opens ofthe loale it reads 8i 2 
 i = Wf1j1 � igThis will be used a lot when reasoning about 
. It orresponds to the idea ofonluding that two propositions are equal whenever they logially imply eah other.Proof that 
 is initial: Say X is a loale. De�ne ! : X ! 1 by
! : 
 �! 
XT 7�! _f1
X j� 2 Tg(Reall 
 = Pf�g.) Clearly 
! preserves �nite meets and arbitrary joins. Say
f : Pf�g �! 
X is some frame homomorphism. Then 8T � f�g,
f(T ) = 
f[ff�gj� 2 Tg= _f
ff�gj� 2 Tg= _f
f1
j� 2 Tg= _f1
X j� 2 Tg = 
!(T ) 2We use 1 to denote the loale orresponding to the frame 
.Given a loale X we an onstrut a topologial spae ptX (`point' X). The under-lying set of ptX is given byfpjp : 1! X p a loale map gThese ps are alled the points of the loale X . (Not to be onfused with the elementsa 2 
X ; they are the opens of the loale X .) The points of X orrespond to framehomomorphisms from 
X to 
.Notie that if p1 : 1 ! X , p2 : 1 ! X are two points of some loale X thensine i = Wf1j1 � ig for any i 2 
 we have that for any a 2 
X
p1(a) = Wf1j1 � 
p1(a)gIt follows that if we know that for all a 2 
X 
p1(a) = 1 , 
p2(a) = 1 thenp1 = p2. It follows that a point is uniquely determined by the true kernel of itsorresponding frame homomorphism.The topology on this set of points is given by all sets of the form:fpj
p(a) = 1g



28 CHAPTER 1. LOCALE THEORYwhere a ranges over all elements of the frame 
X and where 1 is the top elementof the subobjet lassi�er 
. That this set forms a topology follows easily enoughfrom the fat that 
p is a frame homomorphism for any point p.If f : X ! Y is a loale map then omposition of arrows in Lo learly de�nes afuntion from the underlying set of ptX to the underlying set of ptY ; it is easy tosee that this funtion is ontinuous and so we an view pt as a funtor:pt:Lo�!SpTheorem 1.5.1 pt is right adjoint to 
.Proof: De�ne a natural transformation � : Id :! pt
 by�X : X �! pt
Xx 7�! fxWhere fx(U) = Sff�gjx 2 Ug. So fx(U) = 1 , x 2 U , and from now on wewill de�ne points by simply giving the true kernel of the orresponding frame ho-momorphism. The reader an hek that (i) fx is a frame homomorphism for everyx, (ii) �X is ontinuous for every spae X and (iii) � is a natural transformation.To de�ne a natural transformation � : 
pt :! Id we need to de�ne a map�Y : 
ptY �! Yin Lo for every loale Y . We de�ne a lass of frame homomorphisms by
�Y : 
Y �! 
ptYa 7�! fpj
p(a) = 1gWarning: notation does lash here. When the funtor 
 is applied to the spae Xwe get a loale 
X . However the frame of opens of this loale is denoted by 
Xrather than 

X .The reader an hek that 
�Y is a frame homomorphism for every Y and that �,so de�ned, is a natural transformation.So to verify that 
 a pt we just need to hek the triangular equalities for � and �.We �rst examine 
X 
�X- 
pt
X�����id R 
X�
X?This amounts to heking that��1
�
X(U) = U 8U 2 
Xi.e. that ��1fpj
p(U) = 1g = U . Butx 2 ��1fpj
p(U) = 1g , fx 2 fpj
p(U) = 1g, fx(U) = 1 , x 2 U



1.5. THE CATEGORY LOC 29The other triangular equality isptY �ptY- pt
ptY�����id R ptYpt�Y?Say �p 2 ptY . So �p : 1! Y is a loale map. Then �ptY (�p) is a loale map from 1 to
ptY . It is given by the funtion p�p : 
ptY ! 
 wherep�p(U) = 1 , �p 2 Upt�Y takes p�p to the omposition
Y 
�Y�! 
ptY p�p�! 
But 8a 2 
Y p�p
�Y (a) = 1 , p�pfpj
p(a) = 1g = 1, �p 2 fpj
p(a) = 1g, 
�p(a) = 1Thus pt�Y Æ �ptY (�p) = �p. 2A short note is appropriate at this point to the e�et that `ategory theory isonstrutive'; to onlude that the triangular equalities are enough to imply an ad-juntion we are of ourse assuming the well known ategorial proof whih veri�esthis fat. This ategorial proof (see [Ma71℄ p81 theorem 2(v)) is easily seen tobe onstrutive (it does not rely on the exluded middle) and so our overall proofthat 
 a pt is onstrutive. At a ouple of other points in the thesis we will say`by a well known ategorial result...', and in all ases the proof being referred to isonstrutive.We say that a loale X is spatial if and only if 
ptX is isomorphi (via theunit of the adjuntion) to X and that a spae Y is sober if and only if pt
Y isisomorphi to Y via the ounit. Cruially: `most' spaes are sober and so wean view the ategory of loales as a sensible (almost) generalisation of topologialspaes. Further, in pratie, most loales are spatial and so the ategory of loalesis (in pratie) not a massive generalization of the ategory of spaes.Theorem 1.5.2 The retrats of spatial loales are spatial.Proof: This is really just a piee of ategory theory. Say Y is spatial; i.e. �Y isan isomorphism in the ategory Lo. Let X be a retrat of Y ; say there existsi : X ,! Y and p : Y ! X with the property that p Æ i = 1. I laim that��1X = 
pt(p) Æ ��1Y Æ iFor �X Æ
pt(p) Æ ��1Y Æ i = p Æ �Y Æ ��1Y Æ i= p Æ i = 1;
pt(p) Æ ��1Y Æ i Æ �X = 
pt(p) Æ ��1Y Æ �Y Æ
pt(i)= 
pt(p) Æ
pt(i)= 
pt(p Æ i) = 
pt(1) = 1 2



30 CHAPTER 1. LOCALE THEORY1.6 Some Construtively Spatial LoalesWe now look at an example of the 
 a pt adjuntion being applied to ertainsublasses of loales and spaes. It will be useful to reall that for any topologialspae X we an de�ne a speialization order between the points of the spae:x1 v x2 if and only if 8U 2 
X x1 2 U ) x2 2 UNotie that a simple argument proves that any ontinuous funtion between spaespreserves the speialization order.Given an algebrai dpo X we say that U � X is Sott open i� " U = U (i.e. 8x 2 Uif y � x then y 2 U ; U is upper losed) and for every direted subset S �" X ifW" S 2 U then 9s 2 S suh that s 2 U . The set of Sott open subsets of a dpo Xis denoted �X . It is a frame with the order given by subset inlusion.Theorem 1.6.1 If X is an algebrai dpo then �X is isomorphi as a poset toA(KX) where KX is the poset of ompat elements of X and A(KX) is the set ofall upper losed subsets of KX .Proof: Clearly the maps � : �X �! A(KX)U 7�! fk 2 KX jk 2 Ug : A(KX) �! �XV 7�! [k2V " kpreserve order. Trivially � (V ) = V for all V � KX with " V = V .We show  �(U) = U for every Sott open U . Now �(U) � Usine U is upper. In the other diretion reall that for every x 2 Ux = W"fkjk 2 KX k � xgsine X is algebrai. But U is Sott open and so there exists k � x suh thatk 2 KX \ U . i.e. k 2  (U). Henex 2 Sk2 (U) " k =  �(U) 2We all a topologial spae (X;
X) Sott if and only if X has a partial orderon it whih makes it into an algebrai dpo and 
X = �X . Let SottSp be thefull subategory of Sp whose objets are all the Sott spaes.Lemma 1.6.1 If X is a Sott spae then the order of the dpo is the speializationorder.Proof: Say x1 � x2 in the dpo order and x1 2 U for some Sott open U . Thenx2 2 U sine Sott opens are upper losed. Hene x1 v x2 in the speializationorder.Conversely say x1 v x2 in the speialization order. Then if k � x1 for some ompatk we see that x1 2" k. But " k is a Sott open sine k is ompat, and we �nd thatx2 2" k by the de�nition of speialization order. i.e. k � x2 for every ompat kless than x1. But x1 is the join of all ompat elements less than it, and so x1 � x2in the dpo order. 2



1.6. SOME CONSTRUCTIVELY SPATIAL LOCALES 31Lemma 1.6.2 alg-dpo�=SottSpProof: Clearly, by de�nition, both these ategories essentially share the same ob-jets. All that remains is to hek that direted join preserving funtions betweendpos orrespond to ontinuous funtion between Sott spaes.Say f : X ! Y is a direted join preserving funtion between dpos X and Y . SayU � Y is Sott open. Certainly f�1U is upper (N.B. it is easy to hek that if fpreserves direted joins then it preserves order, for if x � y then fx; yg is direted).Now say S �" X and W" S 2 f�1U . Then f(W" S) 2 U ) W"ffsjs 2 Sg 2 Uand so there exists an s in S suh that fs 2 U . Hene there exists an s in f�1Uand we see that f�1U is Sott open. So f : X ! Y is a ontinuous funtion.Conversely say f : X �! Y is a ontinuous funtion between Sott spaes. So weknow that it preserves the speialization order by an earlier remark, and sine wehave a lemma to the e�et that the speialization order and the dpo order oinidein this ase we know that f preserves the dpo order. Hene if S �" X is a diretedsubset of X we have that(i) ffsjs 2 Sg is a direted subset of Y(ii) W"ffsjs 2 Sg � f(W" S).Say k � f(W" S) (k ompat). Then " k is open in Y as it is Sott open. Thusf�1(" k) 2 
X . But W" S 2 f�1(" k) and so 9s 2 S suh that s 2 f�1(" k) )k � fs � W"ffsjs 2 Sg. Hene f(W" S) � W"ffsjs 2 Sg sine every element of Yis the join of ompat elements less than it. 2Thus SottSp is just the full subategory of dpos given by the algebrai dpos.But what are the loales that are going to orrespond to the Sott spaes? Theyare the Alexandrov loales. A loale X is said to be Alexandrov if and only if
X = A(K) for some poset K. Let AlexLo be the full subategory of Loonsisting of those loales whih are Alexandrov.Theorem 1.6.2 pt;
 de�ne an equivalene SottSp �= AlexLo.Some work has been done already in the proof of Lemma [1.6.1℄. This allowed us toonlude �Idl(K) �= A(K) for any poset K. All we need to do is prove that Sottspaes are sober and Alexandrov loales are spatial.Sott spaes are sober. We need to hek that �X : X ! pt
X (x 7! px) isa homeomorphism between topologial spaes for any Sott spae X . Reall that
px(U) = 1 , x 2 U .Say 
p : 
X ! 
 is the frame homomorphism orresponding to some point p ofX . We know 
X �= A(KX) where KX is the set of ompat elements of X . De�neIp � KX by Ip � fkj
p(" k) = 1gNow ertainly 
p(KX) = 1. But KX = Sf" kjk 2 KXg. And so the following areequivalent, f�g = 1
 = [f
p(" k)jk 2 KXg� 2 
p(" k) for some k 2 KX1 = 
p(" k) for some k 2 KXk 2 Ip for some k 2 KX:



32 CHAPTER 1. LOCALE THEORYi.e. Ip is nonempty.Say k1; k2 2 Ip ) 
p(" k1) = 1;
p(" k2) = 1. Then 1 � 
p(" k1) \ 
p(" k2).i.e. 1 � 
p(" k1\ " k2). But" k1\ " k2 = Sf" kjk1; k2 � k; k 2 KXgand so by a similar argument (i.e. using the fats that 1
 = f�g and join is givenby union in 
) we get that 
p(" k) = 1 for some k 2 KX with k1; k2 � k. i.e.k 2 Ip and Ip is seen to be direted. i.e. Ip 2 IdlKX �= X .Thus f : p 7! Ip is a funtion from the spae pt
X to the spae X . Is it ontinuous?Say U � X is an open subset of X . Then for any p 2 f�1U we have Ip 2 U . ButIp = W"fkjk 2 Ipgand U is Sott open, so there exists k in Ip suh that k 2 U . Therefore1 = 
p(" k) � 
p(U). Hene 
p(U) = 1.Conversely say 
p(U) = 1. U = Sf" kjk 2 UgHene (again using the fat that 1
 = f�g) there exists k 2 U with 
p(" k) = 1.So k 2 Ip and hene Ip 2 U sine U is upper losed. This last implies p 2 f�1U . Itfollows that p 2 f�1U , 
p(U) = 1i.e. f�1U = fpj
p(U) = 1g, and so f�1 is open implying that f is ontinuous.Notie we have also veri�ed that Ip 2 U ,� 
p(U) = 1.We hek that f Æ �X (x) = x 8x 2 X and �X Æ f(p) = p 8p 2 pt
X and soonlude that any Sott spae is sober.f Æ �X (x) = f(px) = Ipx= fkj
px(" k) = 1g= fkjx 2" kg= fkjk � xgBut the ideal of the last line orresponds to x under the isomorphism IdlKX �= X .(�X Æ f(p))(U) = 1 , pIp(U) = 1, Ip 2 U, 
p(U) = 1The last equivalene is by the observation (�) above. Hene �X Æ f = Id andf Æ �X = Id.Alexandrov loales are spatial: The frame homomorphism orresponding to�Y : 
ptY ! Y is given by 
�Y (a) = fpj
p(a) = 1g. Clearly 
�Y is a surje-tive frame homomorphism. We would like to prove that it is injetive whenever
Y = A(K) for some poset K.Say we have a; b 2 
Y with the property that 8p : 1 ! Y (i.e. for all points p ofY ) we have 
p(a) = 1 , 
p(b) = 1. Does this imply a = b?Well a = T for some T � K " T = T and b = S for some S � K " S = S sine
Y = A(K) for some poset K.Say k 2 K. De�ne 
pk : 
Y ! 
 by 
pk( �T ) = 1 , k 2 �T for all �T in 
Y .Now say k 2 T . Then 
pk(T ) = 1. Thus 
pk(S) = 1. Thus k 2 S. Hene T � S.Symmetrially we get S � T . So S = T and 
�Y is injetive. Alexandrov loales



1.6. SOME CONSTRUCTIVELY SPATIAL LOCALES 33are spatial. 2To a ertain extent this example is fored. There is no real reason to investi-gate the Sott spaes, other than that by looking at them it is lear that we anuse the pt;
 adjuntion in order to prove the result of interest, namely that thealgebrai dpos as a full subategory of all dpos is equivalent to the Alexandrovloales. (And even this is not the most straightforward way of looking at the re-sult: we an't justify looking at loales unless we are trying to model a partiularlass of spaes and we have just said that we are not really looking spaes, we arelooking at dpos. The result, most simply stated, is a statement to the e�et thatthe ategory whose objets are A(K) for posets K and whose morphisms are framehomomorphisms between them is dual to the full subategory of dpos onsistingof the algebrai dpos.) However there are reasons to examine this partiular ex-ample of the pt;
 adjuntion in ation over others: it is onstrutive. Thus, in oururrent onstrutive framework, we are permitted to make statements like `...if Xis an Alexandrov loale and x 2 X then...' sine we know that we onstrutivelyhave points.However most proofs that partiular lasses of loales are spatial (and hene anbe thought of as spaes) are lassial: they require some hoie axioms. We will seethese proofs in the �nal setion of this hapter.A speial ase of the Alexandrov loales is important: the disrete loales. Theseare de�ned as those loales whose frame of opens are the upper ompletions (A)of disrete posets. A poset is disrete i� x � y implies x = y. We use DisLo todenote the full subategory of Lo onsisting of the disrete loales. All disreteloales are spatial sine the Alexandrov loales are spatial.Clearly the disrete loales are exatly those loalesX suh that 
X = PA for someset A, and spatially we are thinking of the disrete spaes. A restrition of the equiv-alene alg-dpo�=AlexLo to the disrete loales shows us that Set �= DisLowhere Set is the underlying topos. To see this last onlusion note thatK �= Idl(K)if K is a disrete poset.We now turn to the retrats of the Alexandrov loales. These are spatial byTheorem [1.5.2℄, and we might hope that they orrespond to the ontinuous posetsgiven that we know that the ontinuous posets are the retrats of the algebrai dposand the algebrai dpos orrespond to the Alexandrov loales. Indeed this fat anbe veri�ed (we point the reader to [Vi93℄ for a formal proof however). The rest ofthis setion ontains a disussion of another haraterization of the lass of loaliretrats of the Alexandrov loales. They are the ompletely distributive loales. i.e.those loales whose frame of opens is a ompletely distributive lattie. The usualde�nition of a ompletely distributive lattie is roughly `arbitrary joins distributeover arbitrary meets'. Tehnially this amounts to the statement: if fJiji 2 Ig isan indexed family of sets thenVfW Jiji 2 Ig = Wf^ff(i)ji 2 Igjf 2 Fgwhere F = ff : I !`i2I Jijf(i) 2 Ji 8ig.However showing results about ompletely distributive latties with this de�-nition an often require the axiom of hoie: e.g. showing that the opposite ofa ompletely distributive lattie is ompletely distributive requires the axiom ofhoie (e.g. lemma VII (1.10) of [Joh82℄). Fawett, Roseburgh and Wood addressthe problem of trying to �nd a onstrutive version of the omplete distributivityaxiom. They say that a omplete lattie A is onstrutively ompletely distributive



34 CHAPTER 1. LOCALE THEORYif and only if the join map W : D(A) ! A (where D denotes the ation of taking alllower losed subsets) has a left adjoint. We see ([FW90℄,[RW91℄) that the notions ofonstrutive omplete distributivity and ordinary omplete distributivity oinideif and only if we assume the axiom of hoie.It might appear that a de�nition in terms of the existene of an adjoint is out ofstep with some of our other de�nitions; however note that a dpo A is ontinuousif and only if W" : IdlA! A has a left adjoint.As an aside it is worth mentioning that the opposite of a onstrutively om-pletely distributive lattie an be proven to be onstrutively ompletely distributiveif and only if we assume the exluded middle. Thus we an translate the exludedmiddle into a statement about onstrutively ompletely distributive latties. See[RW91℄.We say that a loale X is CCD (onstrutively ompletely distributive) if andonly if 
X is a onstrutively ompletely distributive lattie. Let CCDLo denotethe full subategory of Lo whose objets are CCD.Theorem 1.6.3 A loale X is CCD if and only if it is the retrat of some Alexan-drov loale.Proof: Consult [Vi93℄. 21.7 Loale TheoryThe preeding disussion about the 
 a pt adjuntion is just a piee of history. Itserves to onvine the doubtful reader that the ategory of loales is a plausibleenvironment in whih to do topologial spae theory. From now on we shall takethis motivation for granted, forget that spaes ever existed and develop loale theoryas if it was topologial spae theory. Oasionally the topologial intuitions behindwhat we do are expliitly referred to but mostly this is done impliitly throughthe hoies we make of topologial adjetives used to desribe loali onepts. Formore motivation onsult [Joh82℄, [Isb72℄ and [Joh91℄.1.7.1 SubloalesIf X0 � X is a subspae inlusion, then its inverse image (going to the subspaetopology) is a surjetion. We take this as our de�nition of a subloale: a loale mapX0 ! X is a subloale if and only if the orresponding frame homomorphism is asurjetion. The subloales form a poset whih is denoted by Sub(X).There are two important lasses of subloales: the losed subloales and the opensubloales. The spatial intuition behind these lasses of subloales is the idea oflosed and open subspaes.Given a loale X and an element a of 
X we an de�ne two surjetions away from
X .Open: 
X �! # ab 7�! a ^ b



1.7. LOCALE THEORY 35and losed: 
X �! " ab �! a _ bWithin the ategory of loales we use the expressionsa� X:a� Xto refer to the loale maps orresponding to these two frame surjetions. Spatiallywhen we write :a ,! X we are thinking of the losed subspae orresponding tothe set theoreti omplement of the open a.Notie that we an take the losure of any subloale. The losure of X0 ,! X is:8i(0) ,! XLemma 1.7.1 For any subloale i : X0 ,! X and losed subloale :a ,! XX0 �Sub(X) :a , :8i(0) �Sub(X) :aProof: First note that X0 �Sub(X) :8i(0), for we an de�ne a frame homomor-phism, 
n :" 8i(0) ! 
X08i(0) _ a 7! 
i(a):(This is well de�ned sine 
i8i(0) = 0 .) Also note that the diagramXo n - :8i(0)R�����i R 	�����	Xommutes in Lo proving X0 �Sub(X) :8i(0).Further note :8i(0) � :a if and only if a � 8i(0). (Essentially beause
na :" a �! 8i(0)a _ b 7�! 8i(0) _ bis a well de�ned frame homomorphism if and only if a � 8i(0).)But a � 8i(0) if and only if 
p :" a �! 
X0a _ b 7�! 
i(a)is a well de�ned frame homomorphism and soX0 � :a , :8i(0) � :aas required. 2



36 CHAPTER 1. LOCALE THEORY1.7.2 DensenessA loale map f : X ! Y is dense if and only if 8a 2 
Y (
f(a) = 0 ) a = 0). Itis lear from the formula for the right adjoint to 
f that density of f is just theassertion that 8f (0) = 0.If f : X0� X is some subloale of X then it is a dense subloale of its losure.If a; b 2 
X for some loale X then a! b 2 
X is given by the formulaa! b = W"fja ^  � bg! is the well known Heyting arrow (see I 1.10 of [Joh82℄); it enjoys the propertythat for any a; b;  2 
X a ^ b �  , a � b! We introdue it here sine it is needed in the following example of a dense subloale:given any loale X de�ne a new loale X:: by 
(X::) = fa 2 
X j::a = ag where: is the Heyting negation, i.e. :a = a! 0. Notie that the map
X �! 
X::a 7�! ::ais a surjetive frame homomorphism and so we have a subloale X:: ,! X . Thefat that (::a = 0 ) a = 0) means that this inlusion is dense. Indeed it is theleast dense subloale of X . It is not the ase that all topologial spaes have leastdense subspaes.1.7.3 Separation axiomsA loale X is said to be ompat if whenever we have a direted subset S of 
Xsuh that the join of S is the top element of X then the top element of X is in S.Clearly this is the loali analogy to the spatial idea of ompatness.Given two elements a; b of a frame 
X we say a� b (a well inside b) if and only if9  2 
X suh that a ^  = 0b _  = 1Lemma 1.7.2 a� b , :a _ b = 1 where :a is the Heyting negation of a. i.e.:a = W"f�aj�a ^ a = 0g.Proof If a� b then there exists  with a^  = 0 and b_  =. But a^  = 0 impliesthat  � :a sine :a = W"f�j� ^ a = 0g. Hene :a _ b = 1.If :a _ b = 1 then ertainly a� b sine a ^ :a is always equal to 0. 2We say that a loale X is regular if and only if 8a 2 
Xa = W"fbjb� agReall that a topologial spae X is regular if and only if for every losed F andevery x 62 F there are disjoint opens U; V suh the F � U and x 2 V . This onditionimplies and is implied by the ondition: for every open WW = S"fV jV �Wg



1.7. LOCALE THEORY 37i.e. a topologial spae is regular if and only if the loale whose frame of opens arethe opens of the spae is regular.Theorem 1.7.1 (a): A subloale of a regular loale is regular.(b): A losed subloale of a ompat loale is ompat.(): A ompat subloale of a regular loale is losed.Proof: (a) Say i : X0 ,! X is a subloale suh that X is regular. Clearlya� b ) 
i(a)�
i(b). If a 2 
X0 then a = 
i(a0) for some a0 in 
X . Buta0 = W"fbjb� a0gHene a = 
i(a0) = "_f
i(b)jb� a0g� "_fj�
i(a0)g� 
(a0) = a(b) Say :a ,! x is a losed subloale of X and X ompat. So 
(:a) =" a. SayS �"" a and W" S = 1"a = 1
X . Then S �" 
X and W" S = 1
X . Hene 9s 2 Ssuh that s = 1
X = 1"a i.e. " a is the frame of opens of a ompat loale. i.e. :ais ompat.() Say i : X0 ,! X is a subloale suh that X0 is ompat and X is regular. Weknow that i an be fatored as X0 ,! :8i(0) ,! Xwhere the �rst part of the omposition is dense. By (a) we know that :8i(0) isregular, and so we an onlude our result provided we show that if i : X0 ,! X isalso dense then it is an isomorphism.First we hek that 8a 2 
X if 
i(a) = 1 then a = 1. Certainly a = W"fbjb� agsine X is regular. So 1 = 
i(a) = W"f
i(b)jb� agHene 9b�a suh that 
i(b) = 1 (as X0 is ompat). Thus 9 b^ = 0 a_ = 1.Thus 
i() = 
i(b)^
i() = 
i(b^) = 0. But this implies 8i
i() = 0 as 8i(0) = 0sine i is assumed to be dense. And so  = 0 beause  � 8i
i(). We onludea = 1 as a = a _ 0 = a _  = 1.We want to prove that 
i is an injetion for then we an onlude that i is a loaleisomorphism. Say 
i(b1) = 
i(b2). It is suÆient to prove for all a 2 
X thata� b1 , a� b2in order to onlude b1 = b2 sine X is regular.But a� b1 , :a _ b1 = 1, 
i(:a _ b1) = 1, 
i(:a) _ 
i(b1) = 1, 
i(:a) _ 
i(b2) = 1, 
i(:a _ b2) = 1, :a _ b2 = 1, a� b2 2



38 CHAPTER 1. LOCALE THEORYWe say a loale X is loally ompat if and only if for every a 2 
X we havethat a = Wfbjb� agSo a loale X is loally ompat if and only if 
X is a ontinuous poset. Spatiallywe are thinking of the loally ompat spaes.X is said to be stably loally ompat if and only if (it is loally ompat and) the� relation satis�es (i) 1� 1 i.e. X is ompat(ii) a� b1; a� b2 ) a� b1 ^ b2where a; b1; b2 are arbitrary elements of 
X .Banashewski and Br�ummer ([BB88℄) desribe these loales as orresponding to themost reasonable not neessarily Hausdor� ompat spaes.Theorem 1.7.2 Any ompat regular loale is stably loally ompat.Proof: It is suÆient to prove that for any ompat regular X if a; b 2 X thena� b , a� b(For from the de�nition of � it is easy to see that 1� 1 and a� b1; b2 )a� b1 ^ b2.) Say a� b and b � W" S. Then :a _ b � 1 and so1 � :a _W" S = W"f:a _ sjs 2 SgThus 1 � :a _ s for some s by ompatness. Hene a � s for some s 2 S and weonlude a� b.Conversely say a � b. b = W"fb1jb1 � bg sine X is regular. Therefore a � b1 forsome b1 � b. Hene a� b. 2Another example of a stably loally ompat loale is a oherent loale; spatially weare thinking of the oherent (or spetral) spaes. A loale X is said to be oherenti� (i) 1� 1(ii) 8k1; k2 2 
X if k1 � k1 and k2 � k2 then k1 ^ k2 � k1 ^ k2:(iii) 8a 2 
X a = "_fkjk � k; k � agWe use K
X to denote the subset of ompat opens of a loale X . i.e. K
X �fk 2 
X jk � kg. So (i) and (ii) are saying that ompat opens are losed underthe formation of meets and (iii) is saying that every open is the join of ompatopens less than it.From the above de�nition of a oherent loale it is immediate that oherent loalesare stably loally ompat.Just as algebrai dpos an also be de�ned as those dpos whih are ideal omple-tions of posets we �nd thatTheorem 1.7.3 A loale X is oherent if and only if 
X �= Idl(D) for somedistributive lattie D.Proof: What is needed is a repetition of the proof that a dpo is algebrai if andonly if it is the ideal ompletion of its ompat elements. We only need to furtherhek that the ompat elements form a distributive lattie. It is trivial to hek



1.7. LOCALE THEORY 39that the least element is ompat and that if a1; a2 are ompat then so is a1 _ a2.Further, losure of ompat opens under �nite intersetion is part of the de�nitionof X being oherent; so the ompat elements form a subdistributive lattie of 
X .2 Just as the ontinuous posets are the retrats of the algebrai dpos, we �nd asimilar result applies to the stably loally ompat loales:Theorem 1.7.4 A loale X is stably loally ompat if and only if it is the retratin Lo of some oherent loale Y .Proof: Say X is stably loally ompat. Then 
X is a ontinuous poset. Butthe fat that any suh poset is the retrat of its ideal ompletion is seen in theproof [1.4.2℄ (whih showed us that the ontinuous posets are exatly the retratsof the algebrai dpos). The dpo maps that prove that this retrat exists are## : 
X ! Idl
X and W" : Idl
X ! 
X .However W" is left adjoint to #: 
X ! Idl
X and so preserves joins. ## is leftadjoint to W" and so W" preserves meets. Hene W" is a frame homomorphism.But ##, as a left adjoint, preserves all joins and the fat that it preserves �nite meetsfollows from the onditions (i) and (ii) in the de�nition of stably loally ompatabove. Hene 
X is the retrat in Frm of the frame of opens of some oherentloale. Hene X is the retrat in Lo of some oherent loale.In the other diretion say X is the retrat of some oherent loale Y . Then thereis a retrat diagram 
X - 
X�����
i �
Y
p ?\in Frm. 
Y is an algebrai dpo and so 
X is a ontinuous poset by [1.4.2℄. Weonly have to hek the stability onditions (i),(ii) in order to verify that X is stablyloally ompat.But reall the laim of the proof of [1.4.2℄ whih showed us:a�
X �a if and only if 9�b 2 
Y a � 
i(�b) �b�
Y 
p(�a)The stability onditions for X follow from the fat that they hold for Y . 2Finally, just as the ideal ompletion of a poset is the free dpo over that posetwe �nd that the ideal ompletion of a distributive lattie is the free frame over thatdistributive lattie. The proof follows the same route: if f : D ! 
X is a dis-tributive lattie homomorphism to some frame 
X then the frame homomorphismorresponding to it is given by: 
p : IdlD ! 
X where 
p(I) = W"ff(k)jk 2 Ig.In the other diretion a frame homomorphism from IdlD to 
X is taken to itsrestrition to ompat opens.A map f : X ! Y between stably loally ompat loales is said to be semi-proper if and only if 
f preserves the way below relation �. De�ne CohLo, theategory of oherent loales, to have oherent loales as objets and semi-propermaps as morphisms. Clearly the maps between oherent loales that we are looking



40 CHAPTER 1. LOCALE THEORYat here are those whih preserve the ompat opens; they are de�ned in [Joh82℄ asthe oherent maps.What is the lass of loales whih are both ompat regular and oherent? Theseare alled the Stone loales. Before we o�er some alternative haraterisations ofthem we need to de�ne what it means for a loale to be zero-dimensional. A loaleX is zero-dimensional if and only if for every a in 
X we have thata = W"f�aj9 �a ^  = 0 �a _  = 1 �a � agOf ourse we refer to elements �a 2 
X as omplemented if and only if there existssome  2 
X suh that �a ^  = 0 and �a _  = 1. Notie that an open �a is omple-mented i� �a � �a. Further notie that the set of all omplemented opens (denoted(
X)) forms a Boolean algebra. So the zero-dimensionality ondition ould equallywell have been written: every open is the join of omplemented opens less than it.Theorem 1.7.5 The following are equivalent for any loale X.(i) X is Stone:(ii) X is ompat and zero-dimensional.(iii) 
X is the ideal ompletion of some Boolean algebra:Proof:(i))(ii). 8a; b 2 
X we know a� b, a� b sine 
X is ompat regular. But Xis oherent so 8a 2 
X a = W"f�aj�a� �a �a � ag) a = W"f�aj�a� �a �a � agHowever `�a� �a' is just the same as saying `a is omplemented'.(ii))(iii). As X is ompat we know that whenever �a is omplemented (i.e. when-ever �a � �a) we have that �a � �a. i.e. �a is ompat. So in the presene of om-patness the zero-dimensionality ondition implies that every open is the join ofompat elements lower than it. But in the other diretion if �a � �a then beause�a = W"fa0ja0 � a0 a0 � �ag we have that �a � a0 � a0 � �a for some a0. Henea0 = �a and the omplemented opens oinide with the ompat opens. The omple-mented opens are ertainly losed under meet and so we know that X is oherent:it is the ideal ompletion of its ompat opens. i.e. it is the ideal ompletion of itsomplemented opens. But these form a Boolean algebra.(iii))(i). 8a 2 
X we know a = W"fkjk � k k � ag. We also know that the setfkjk � kg is a Boolean algebra. So if k � k then there exists  suh that k ^  = 0and k _  = 1. It follows that if k is less than a then k ^  = 0 and a _  = 1. i.e.k � a. Hene a = W"fbjb� ag 8a 2 
Xi.e. 
X is regular. Certainly X is (ompat and) oherent sine Boolean algebrasare distributive latties.1.8 The Construtive Prime Ideal TheoremThe Prime Ideal Theorem (PIT) is the statement: for every distributive lattie D,provided D is not trivial (i.e. provided D 6= f�g) then there exists an ideal I � D



1.8. THE CONSTRUCTIVE PRIME IDEAL THEOREM 41with the property that if a ^ b 2 I then either a 2 I or b 2 I and 1 62 I . i.e. I is aprime ideal.The prime ideal theorem is well known, lassially, to be a weak form of the axiomof hoie (see e.g. Chapter 7 of [Joh87℄). Assuming the exluded middle (so thesubobjet lassi�er is f0; 1g) if f : D ! 
 is a distributive lattie homomorphismthen the set fajf(a) = 0g is a prime ideal. Certainly it is an ideal. If f(a ^ b) = 0and we �nd that both f(a) 6= 0 and f(b) 6= 0 then we an from these onludethat f(a ^ b) 6= 0. But we are assuming the exluded middle so we an use thisontradition to onlude that either f(a) = 0 or f(b) = 0. Thus fajf(a) = 0g is aprime ideal for any distributive lattie homomorphism f : D ! 
. This argumentworks in the other diretion: any prime ideal I � D gives rise to a distributivelattie homomorphism f : D ! 
 with the property that f(a) = 0 if and only ifa 2 I .Hene, if we are in a Boolean topos and so an use the exluded middle, we an �ndan equivalent form of the PIT: for every distributive lattieD providedD 6= f�g thenthere exists a distributive lattie homomorphism f : D ! 
. However we are letdown by the onditionD 6= f�g whih (although possible to de�ne in a general toposvia Heyting negation) is learly undesirable in our onstrutive ontext. Howeverthe above observations help us home in on the following statement whih will makesense in any topos:Construtive Prime Ideal Theorem (CPIT): For every distributive lattie Dif a 2 D has the property that f(a) = 0 for every distributive lattie homomorphismf : D ! 
 then a = 0.(I'd like to thank Till Plewe for helping me towards this de�nition.)Theorem 1.8.1 CPIT , PIT in a Boolean topos. i.e. if we are allowed the ex-luded middle then the prime ideal theorem and the onstrutive prime ideal theoremare logially equivalent.Proof: Assume CPIT and say we are given some distributive lattie D whih isnot trivial. Then 1 6= 0 in D and so by CPIT there exists f : D ! 
. i.e. we haveveri�ed PIT.Conversely say we are given a distributive lattie D and a 2 D has the property that8f : D ! 
, f(a) = 0. Say a 6= 0. Then the distributive lattie # a is non-trivialand so there exists a distributive lattie homomorphism ( �f say) from it to 
. Setf = �f Æ  where  is the distributive lattie homomorphism from D to # a given by(b) = a ^ b. Clearly f(a) = �f(1#a) = 1 6= 0 ontraditing our assumption about a.Hene a = 0. 2We now note that just as the prime ideal theorem is well known to be equiv-alent to the statement `every non-trivial Boolean algebra has a prime ideal' thereis a similar onstrutively equivalent way of stating the onstrutive prime idealtheorem:Lemma 1.8.1 CPIT is equivalent to the statement: for every Boolean algebra B ifb 2 B is an element that satis�es f(b) = 0 for every Boolean lattie homomorphismf : B ! 
 then b = 0.Proof: Clearly CPIT implies this statement. Conversely assume the statementholds for every Boolean algebra B. Say we are given a distributive lattie D andsome a 2 D with the property that f(a) = 0 for every f : D ! 
. Then leti : D ,! B be the inlusion of D into the free Boolean algebra over it. It followsthat �f(ia) = 0 for every Boolean homomorphism �f from B to 
. Hene i(a) = 0by the assumption of the statement. Hene a is zero as i is an injetion. 2



42 CHAPTER 1. LOCALE THEORYWe an now forget about the exluded middle and Boolean toposes. They wereonly introdued in order to verify that our hoie for the onstrutive prime idealtheorem was reasonable.Theorem 1.8.2 In any topos if CPIT holds then all oherent loales are spatial.Proof: Say X is a oherent loale. Notie that the frame homomorphism orre-sponding to the ounit of the adjuntion is a surjetion. It is given by
�X : 
X ! 
ptXI 7! fpj
p(I) = 1gWe want to show that this surjetion is an injetion for every oherent X . Sayfpj
p(I) = 1g = fpj
p(J) = 1gfor some I; J 2 
X �= Idl(K
X). This implies that for every point p, 
p(I) and
p(J) are the same element of the subobjet lassi�er 
 (reall that i = Wf1j1 � igfor every i 2 
). It follows that 
p(I) � 
p(J) and in partiular that if 
p(J) = 0then 
p(I) = 0.Reall that any distributive lattie an be quotiented by an ideal (Lemma [1.3.4℄).We quotient K
X by J . So [b℄ = 0 , b 2 J 8b 2 K
X and there is a one toone orrespondene between distributive lattie homomorphisms f : K
X ! 
whih satisfy f(b) = 0 for all b 2 J and all distributive lattie homomorphisms�f : K
X= �J! 
. It follows, from the fat that 
X �= Idl(K
X) is the free frameover the distributive lattieK
X that there is a one to one orrespondene betweenpoints, p, of X satisfying 
p(J) = 0 and distributive lattie homomorphisms fromK
X= �J to 
.Now to verify I � J it is suÆient to hek that 8a 2 I and 8 �f : K
X= �J! 
�f [a℄ = 0for then by CPIT [a℄ = 0 i.e. a 2 J .However �f [a℄ = 0 , 
p(# a) = 0 where p is the point orresponding to �f (whihmust satisfy 
p(J) = 0). But 
p(# a) � 
p(I) � 
p(J) = 0. 2Reall from Theorem [1.5.2℄ that the retrats of all spatial loales are spatial. Itfollows immediately that provided CPIT holds (a) all stably loally ompat loalesand (b) all ompat regular loales are spatial. It is also worth saying that thereforethe Stone loales are spatial (if we assume CPIT) for we haveTheorem 1.8.3 In any topos if the Stone loales are spatial then the onstrutiveprime ideal theorem is true.Proof: Say B is a Boolean algebra and b 2 B has the property that for everyBoolean map f : B ! 
, f(b) = 0. It follows that for every suh f , f(:b) = 1.There is a one to one orrespondene between these funtions f and points of theStone loale whose frame of opens is given IdlB sine IdlB is the free frame overthe Boolean algebra B. It follows that for every point p of this loale 
p(# :b) = 1Thus fpj
p(# :b) = 1g = fpj
p(# 1) = 1g.But we are assuming that the Stone loales are spatial and so this ondition impliesthat # :b =# 1. Hene :b = 1, hene b = 0 and so by Lemma [1.8.1℄ the onstru-tive prime ideal theorem is veri�ed.2



Chapter 2Preframes and theGeneralized CoverageTheorem
2.1 IntrodutionThis hapter is more lattie theoreti than loali. We give a desription of pre-frames (as introdued by Banashewski [Ban88℄), and show how they form a sym-metri monoidal losed ategory. We prove this by adapting K�r�i�z's preongruenesto the ontext of preframes. We reall [JT84℄ that the ategory of SUP-lattiesis symmetri monoidal losed. Further analogies between SUP-latties and pre-frames beome lear: frames an be viewed both as speial types of monoids inthe symmetri monoidal ategory of preframes and as speial types of monoids inthe symmetri monoidal ategory of SUP-latties. The latter fat is shown in Joyaland Tierney [JT84℄, the former in Johnstone and Vikers [JV91℄. Moreover frameoprodut (=loale produt) an be viewed as either tensor within the ategory ofpreframes or as tensor in the ategory of SUP-latties. This is the loali versionof the motivating example whih is desribed in the introdution to the thesis. Theusefulness of this result is seen immediately with a proof of the loali Tyhono�theorem.Not only an we view loale produts in these di�erent ways, the same applies toall loale limits: in partiular frame oequalizers (=loale equalizers) an be viewedas partiular SUP-lattie oequalizers and as partiular preframe oequalizers. Boththese fats stem from a general ategorial result about any symmetri monoidallosed ategory. We all this result the generalized overage theorem and note thatit has an `opposite'. The end of the hapter is about appliations of the generalizedoverage theorem (and its opposite). In partiular the name of the theorem is jus-ti�ed: it overs both the preframe version and Johnstone's original (SUP-lattie)version of the overage theorem. With the help of its `opposite' we are able todedue the fat that preframes have oequalizers from the fat that SUP-lattieshave oequalizers. 43



44CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREM2.2 PreframesJohnstone's overage theorem [Joh82℄ gives us a onrete desription of the frameorresponding to a set of generators and frame relations. The fat that suh a frameexists an be veri�ed easily enough by onstruting the free frame on the generatorsand then quotienting by the least ongruene ontaining the relations. Howeverthe advantage of the overage theorem is that it gives us a onrete desriptionof the frame being presented. Hene we have a onrete desription of arbitraryframe oprodut, and this an then be used to prove that the oprodut of ompatframes is ompat. In other words the produt of ompat loales is ompat (i.e.loali Tyhono� theorem). It was observed in Abramsky and Vikers' work onquantales ([AV93℄) that the real ontent of the overage theorem is the fat thatthe frame being presented is isomorphi to the free SUP-lattie on another set ofgenerators and relations. This ability to desribe frames as partiular quotientsof free SUP-latties is useful in the ontext of quantales sine there one is oftentrying to �nd SUP-lattie homomorphisms away from a partiular frame. In fatthe overage theorem extends very naturally to beome a statement about how topresent quantales as partiular SUP-latties.The proof of the loali Tyhono� theorem using Johnstone's original desriptionof the oprodut frame (see III 1.7 of [Joh82℄) is far from straightforward. Manyattempts were made to simplify e.g.[Ban88℄, [JV91℄. In [JV91℄ the authors developthe theory of preframes, and hek that given a set of generators and preframerelations then the preframe being presented is well de�ned. It is then possible to�nd a preframe version of the overage theorem: it states that given a set of gen-erators and frame relations then the frame being presented is isomorphi to thepreframe being presented by some other set of generators and relations. Just aswas done with the original overage theorem this preframe version an be used togive an expliit desription of the oprodut of frames. Only now the oprodut ispresented as a preframe and sine we know that a frame is ompat if and only if apartiular preframe homomorphism exists with the frame as its domain, the proofof the loali Tyhono� theorem beomes muh simpler. This is what motivates usto look at preframes.A preframe is a poset with direted joins and �nite meets suh that the diretedjoins distribute over the �nite meets. A preframe homomorphism preserves diretedjoins and �nite meets. The name `preframe' was introdued by Banashewski inhis paper \Another look at the loali Tyhono� theorem" [Ban88℄, although theseobjets had already been looked at by Gierz et al as meet ontinuous semilatties[GHKLM80℄.We aim to show that the ategory PreFrm of preframes is symmetri monoidallosed. Instead of just onstruting a tensor produt in PreFrm we address themore general question of whether preframe presentations present. i.e. if we aregiven a set G of generators and a set R of preframe equations of elements of G isthe preframe PreFrm< GjR >well de�ned?It is true that suh a general presentation presents [JV91℄ though for our purposeswe only need to show that a smaller lass of presentations present. We aim to hekthat for any meet semilattie S,PreFrm < S(qua meet semilattie)j _" X = _"Y (X;Y ) 2 R >



2.3. PRECONGRUENCES 45is well de�ned; where R is a set of pairs (X;Y ) with X and Y direted subsets ofS. A note on notation is appropriate: the expression `qua meet semilattie' is short-hand for saying that the equationsa ^ b = a ^S b 8a; b 2 S1 = 1Smust be added to the presentation. This is saying that what is true in the semi-lattie must be inherited by the preframe being presented. The meaning of theexpressions `qua preframe', `qua frame' et should now be lear.It is an easy exerise in the de�nition of what it means for a presentation topresent to hek that we an further assume that the X and Y s in R are lowerlosed and that R satis�es the following meet stability ondition:(8a 2 S)[(X;Y ) 2 R ) (fx ^ ajx 2 Xg; fy ^ ajy 2 Y g) 2 R℄2.3 PreongruenesThese were introdued by K�r�i�z [K�r�i�z86℄ in his study of the ompletion of a uniformloale. Given a frame 
X a preongruene, R, on it is a subsetR � 
X �
Xsuh that whenever aRb we have that the setfuj(a ^ u)R(b ^ u)gis a join basis for 
X . i.e. 8 2 
X  = WU where U � fuj(a ^ u)R(b ^ u)g. Ofourse this does not imply that a preongruene satis�es any of the axioms of beingan equivalene relation.We say that u 2 
X is R-oherent if and only if whenever aRb then(a � u) , (b � u)The set of R-oherent elements is learly losed under all meets. Further we havethat if u is R-oherent and  2 
X then  ! u is R-oherent. For if aRb then9Q � fvj(v ^ a)R(v ^ b)g suh that WQ = . Thena � ! u , a ^  � u, a ^ q � u 8q 2 Q, b ^ q � u 8q 2 Q, b ^  � u, b � ! uIt is a well known fat (see e.g. [6.2.8℄ of [Vi89℄) that a subset A0 of a frame(
X) is a surjetive image (via the map a 7! ^fb 2 A0ja � bg) of that frame ifit is losed under all meets and is losed under the Heyting arrow in the mannerdesribed above. i.e. (8u 2 A0)(8 2 
X)( ! u 2 A0). So if we de�ne 
X(R)to be the set of R-oherent elements of 
X then we see that there is a framesurjetion �R : 
X ! 
X(R). �R(a) is given by ^fuja � u u R-oherent g andso a � �R(a) 8a. Also, joins on 
X(R) are alulated as follows:



46CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMW
X(R) T = �R(WT )for all T � 
X(R)The map �R is universal in the following sense:Theorem 2.3.1 (K�r�i�z) Given a frame 
X with a preongruene R on it any framehomomorphism 
f : 
X ! 
Y satisfying (aRb ) 
fa = 
fb) fators (uniquely)through �R.Proof: Clearly it is enough to prove that8a 2 
X 
f�R(a) = 
f(a) (�)Set s(a) = Wfb 2 
X j
f(b) � 
f(a)g. Then if �aR�b we see that�a � s(a), 
f(�a) � 
f(a), 
f(�b) � 
f(a), �b � s(a)i.e. s(a) is R-oherent, and so �R(s(a)) = s(a). Hene the fat that a � s(a) implies�R(a) � s(a). Clearly, by the fat that 
f preserves joins, we have
fs(a) � 
f(a).And so 
f(�R(a)) � 
f(a) from whih (�) follows as �R is inationary. 2The idea of prenulei was introdued by Banashewski ([Ban88℄) to help withhis proof of a loali version of Tyhono�'s theorem. �0 : 
X ! 
X is a prenuleusif(1) it is monotone(2) a � �0(a) 8a 2 
X(3) �0(a) ^ b � �0(a ^ b) 8a; b 2 
X .Condition (2) implies that the set of �0-�xed elements of 
X is losed underarbitrary meets. Say �0(u) = u and  2 
X , then �0( ! u) �  ! u i� ^ �0( ! u) � u. But  ^ �0( ! u) � �0( ^ ( ! u)) � �0(u) � u and sothe set of �0-�xed elements is the frame of opens of a subloale by the same reason-ing that allowed us to onlude that 
X(R) is the frame of opens of a subloale.Given a prenuleus �0 : 
X ! 
X de�ne R�0 � 
X �
X byaR�0b , (8u 2 
X)[(�0u = u)) (a � u, b � u)℄Notie from this de�nition that �0(u)R�0u 8u.Lemma 2.3.1 R�0 is a preongruene.Proof: Assume aR�0b.I laim that fvj(a^ v)R�0(b^ v)g is the whole of 
X and so ertainly is a join basisfor 
X .So I need to prove, given an arbitrary v 2 
X , that if u 2 
X satis�es �0(u) = uthen (a ^ v) � u , (b ^ v) � u



2.3. PRECONGRUENCES 47But (a ^ v � u , a � v ! u) and u �0-�xed ) (v ! u) �0-�xed (seeabove).So (a � v ! u , b � v ! u , b ^ v � u) as required. 2Cruially we �nd that the set of R�0 -oherent elements is the same as the set of�0-�xed elements. One way round of this impliation is obvious from the de�nitionof R�0 : if u is �0-�xed then it is R�0-oherent. Conversely say u is R�0 -oherent.We know that �0(u)R�0u, and so �0(u) � u , u � u. Hene �0(u) = u.I am not sure of the extent to whih preongruenes and prenulei are the samething. Certainly they are used in the same way: K�r�i�z's universal theorem abovehaving an idential form to Banashewski's lemma 1 in [Ban88℄.Given a preongruene R the mappingu 7�! u _Wfa ^ bj9; Ra;  ^ b � ugis a prenuleus, although (the trivial) proof of this fat doesn't require R to be apreongruene: it ould be any subset of 
X �
X .Also the preongruenes R�0 that we get from prenulei annot over all possibleongruenes. We saw that �0(u)R�0u for every u 2 
X , but the de�nition of preon-gruenes allows for the empty preongruene. We leave these theoretial disussionsaside and use preongruenes only in what follows.For any meet semilattie A let �A be the set of lower losed subsets of A. It iswell known that �A is the free frame over the semilattie A.Theorem 2.3.2 Given a preframe A the setRA � f(X; # _"X)jX a direted lower subset of Agis a preongruene on �A. Moreover �A(RA) is the free frame over the preframe A.Remark: It is easy to see that the RA-oherent elements of �A are exatly theSott losed subsets of A. i.e. the lassial omplements of the Sott opens.Proof: That RA is a preongruene is quite straight forward: it is well known thatthe set of sets of the form # a is a join basis for �A and sine# a \X = fx ^ ajx 2 Xg# a\ # "_X = # "_fx ^ ajx 2 Xgfor any lower losed direted X we have that(# a \X)RA(# a\ # W"X)for every a.We now note that the omposite A #�! �A �RA�! �A(RA) is a preframe homomor-phism. To see this say we are given X �" A whih is lower losed and direted. Weneed to prove that �RA # W"X = W"�A(RA)f�RA # xjx 2 XgBut �RA is a frame homomorphism and so"_�A(RA)f�RA # xjx 2 Xg = �RA "[f# xjx 2 Xg= �RAX



48CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMBut we know that �RA # W"X = �RAX from K�r�i�z's universal theorem. Hene�RAÆ # is a preframe homomorphism.Now say we are given some preframe homomorphism f : A ! B where B is someframe. Sine f is a meet semilattie homomorphism we know that it will fator(uniquely) through #. i.e. 9! �f : �A! B (a frame hom.) suh that �fÆ #= f .�f is given by �f(Y ) = WBff(y)jy 2 Y g. All we need to do (to hek that �A(RA)is the free frame on A) is verify that �f satis�es the preondition of K�r�i�z's universaltheorem; for then �f will fator through �RA . i.e. we need that if URV then�fU = �fV . But this amounts to showing for any (lower) direted X that�fX = �f # W"Xi.e. that W"ffxjx 2 Xg = f W"X , whih follows at one sine f is a preframehomomorphism. 2We an also de�ne preongruenes on preframes; and this will give rise to auniversal theorem idential to K�r�i�z's exept that the word `frame' is replaed withthe word `preframe'. From this new universal theorem the fat that preframe pre-sentations present will follow as an easy orollary. Proof of this new theorem relieson applying K�r�i�z's universal theorem.Given a preframe A a preongruene on A is a subset R � A�A suh that if aRbthen fuj(a ^ u)R(b ^ u)g is a direted join basis for A. i.e. 8a 2 A there existsU �" fuj(a ^ u)R(b ^ u)g suh that a = W" U .Say we are given a preframe A with a preongruene R on it. Then this preon-gruene gives rise to a preongruene on the free frame on A in the following way:�R � �A(RA) � �A(RA) is de�ned to be f(# a; # b)jaRbg. We must hek that �R isa preongruene. Say # a �R # b. Now 8U 2 �A(RA) we have U = Su2U # u and soby applying �RA : �A ! �A(RA) we see that U = W�A(RA)f# uju 2 Ug. Hene toonlude that �R is a preongruene we must but hek that # u is a �A(RA)-join ofelements V 2 �A(RA) suh that (# a \ V ) �R(# b \ V ) for any u 2 A.Sine u 2 A and aRb we know (by de�nition of preongruene on a preframe)that u = W"Q for some Q suh that (a ^ q)R(b ^ q) 8q 2 Q. We know that#: A �! �A(RA) is a preframe homomorphism and so# u = W"�A(RA)f# qjq 2 QgBut (a^q)R(b^q) implies # (a^q) �R # (b^q) and so (# a)^(# q) �R(# b)^(# q). Thus# a is a join of elements V 2 �A(RA) suh that (# a \ V ) �R(# b \ V ) as required.Hene �R is a preongruene on �A(RA). This onstrution (of �R from R ) will beused inTheorem 2.3.3 If R is a preongruene on a preframe A then there exists an arrow : A! C in the ategory of preframes whih is universal amongst arrows with theproperty aRb ) (a) = (b).Proof: We know (see above) that �R � f(# a; # b)jaRbg is a preongruene on thefree frame on A, �A(RA) and so there is a frame homomorphism� �R : �A(RA) �! �A(RA)( �R)The map #: A �! �A(RA) is a preframe injetion. De�ne C to be the leastsubpreframe of �A(RA)( �R) generated by the image of f# aja 2 Ag under � �R. Clearlythe map  : A! C de�ned by a 7! � �R # a is a preframe homomorphism. In fat itis easy to see that  is a preframe epimorphism. Also note that if aRb then # a �R # band so � �R(# a) = � �R(# b) by K�r�i�z's universal theorem, and so (a) = (b).Now say we are given f : A ! B, an arrow in PreFrm whih satis�es aRb )



2.4. PRESENTATIONS 49fa = fb.The inlusion #: B ! �B(RB) of B into its free frame is a preframe homomorphismand so the omposite # Æf must fator through the inlusion of A into its free frame.i.e. there exists �f : �A(RA)! �B(RB) a frame homomorphism makingA � #- �A(RA)Bf?� #- �B(RB)�f?ommute.Say # a �R # b. Then aRb and so fa = fb. So ertainly # fa =# fb i.e. �f # a = �f # b.It follows from K�r�i�z's universal theorem that there exists �g : �A(RA)( �R)! �B(RB)a frame homomorphism suh that �g Æ � �R = �f . It follows at one that�g Æ � �R # a = �f # a =# faand so the set �g�1f# bjb 2 Bg is a subpreframe of �A(RA)( �R) whih ontains theset f� �R # aja 2 Ag. Hene it ontains C. It follows that �g restrits to a funtionfrom C to f# bjb 2 Bg �= B. So there is a preframe g : C ! B with g Æ  = f asrequired. The uniqueness of suh a g is immediate from our remark earlier that is a preframe epimorphism. 2Notation: By analogy to K�r�i�z's result we all the C above A(R) and we use �R todenote the preframe map  : A! C.2.4 PresentationsFor a meet semilattie S reall that IdlS is the set of lower direted subsets of S.It an be heked that IdlS is the free preframe on the meet semilattie S. We arenow in a position to prove:Theorem 2.4.1 If S is a meet semilattie and R is a set of pairs (X;Y ) where X;Yare direted lower losed subsets of S and R satis�es the following meet stabilityondition:(8a 2 S)[(X;Y ) 2 R ) (fx ^ ajx 2 Xg; fy ^ ajy 2 Y g) 2 R℄then PreFrm< S (qua meet semilattie) jW"X = W" Y (X;Y ) 2 R >is well de�ned.Proof: The set f# sjs 2 Sg is a direted join basis for Idl(S) and so the onditionson R given in the statement of the theorem imply that R is a preongruene on thepreframe Idl(S). We hek thatIdl(S)(R) �=PreFrm< S (qua meet-semilattie) jW"X = W" Y (X;Y ) 2 R >IdlS is the free preframe on S and so given any meet semilattie homomorphisms : S ! B to some preframe B whih satis�es W"Bfs(x)jx 2 Xg = W"Bfs(y)jy 2 Y gfor every (X;Y ) 2 R we know that s fators uniquely through #: S ! Idl(S). i.e.there exists �s : Idl(S)! B suh that �sÆ #= s. But XRY implies �s(X) = �s(Y ) and



50CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMso �s fators through �R : Idl(S)! Idl(S)(R). 2The rest of this setion and Setion 2.6 to follow spell out the onsequenesof the fat that preframe presentations present and as suh are repetitions of theresults of [JV91℄.Now that Theorem [2.4.1℄ is proven we try out some examples. As with anypresentable algebrai theory we have a tensor produt. Given A and B there is apreframe A
B with a preframe bihomomorphismO : A�B ! A
 B whih is universal amongst all suh bihomomorphisms. So setS � ^ � SLat < aOb; a 2 A; b 2 Bj(aOb1) ^ (aOb2) = aO(b1 ^ b2) a 2 A; b1; b2 2 B(a1Ob) ^ (a2Ob) = (a1 ^ a2)Ob a1; a2 2 A; b 2 B1 = 1Ob 8b 2 B1 = aO1 8a 2 A >and de�ne the tensor by:A
B � PreFrm < S qua meet-semilattiej "_i (aiOb) = "_i aiOb 8(ai) �" A;8b 2 B"_i (aObi) = aO "_i bi 8a 2 A; (bi) �" B >ClearlyA
( ) is left adjoint to the funtion spae funtor [A! ℄ :PreFrm!PreFrm.In fatTheorem 2.4.2 PreFrm is a symmetri monoidal losed ategory.Proof: The fat that presentations are well de�ned is the real `work' of this theorem.We use this proof to hek that the subobjet lassi�er (i.e. the power set of 1) isthe unit of the tensor. We de�ne two funtionsp : A ! A

a 7! aO0q : A

 ! Aby (aOi) 7! "_(fag [ f1Aj1 � ig)Clearly p is a preframe homomorphism. Assume for the moment that (a; i) 7!W"(fag [ f1Aj1 � ig) is a preframe bihomomorphism.qp(a) = q(aO0)= "_(fag [ f1Aj1 � 0g)= a



2.4. PRESENTATIONS 51We also want that pq(aOi) = aOi.pq(aOi) = p "_(fag [ f1Aj1 � ig)= ( "_(fag [ f1Aj1 � ig))O0= "_(faO0g [ f1j1 � ig)= "_(faO0g [ faO1j1 � ig)= aO "_(f0g [ f1j1 � ig)= aOiTo prove i � W"(f0g [ f1j1 � ig) reall from Chapter 1 that it is suÆient tohek that i = 1 implies 1 = W"(f0g [ f1j1 � ig). We now hek that (a; i) 7!W"(fag [ f1Aj1 � ig) is a preframe bihomomorphism in order to be sure that q iswell de�ned. Fix i 2 
. Clearly W"f1g [ f1Aj1 � ig = 1. Say a; b 2 A."_(fag [ f1Aj1 � ig) ^ "_(fbg [ f1Aj1 � ig)= "_(fa ^ bg [ fbj1 � ig [ faj1 � ig [ f1j1 � ig)= "_(fa ^ bg [ f1j1 � ig)So (( ); i) 7! W"(f g [ f1j1 � ig) preserves �nite meets.Say T �" A then 8t 2 T ertainlyt � W"(ftg [ f1j1 � ig)hene W" T � W"t (W"(ftg [ f1j1 � ig)) and so an examination of ases tells usW"(fW" Tg [ f1j1 � ig) � W"t (W"ftg [ f1j1 � ig).N.B. non-emptiness of T is needed. Hene (( ); i) 7! W"(f g [ f1j1 � ig) preservesdireted joins.The fat that for any i; j 2 
; a 2 A we haveW"(fag [ f1j1 � i ^ jg)= W"(fag [ f1j1 � ig) ^W"(fag [ f1j1 � jg)is easy enough to see: use distributivity of direted joins over �nite meets and notethat the sets fag and fag [ faj1 � ig [ faj1 � jg are the same. Finally for anya the funtion i 7! W"(fag [ f1j1 � ig preserves direted joins. This follows fromompatness of 
. 2We will need to onstrut some in�nite oproduts of preframes when we provethe loali Tyhono� theorem in Setion 2.8. We haveTheorem 2.4.3 PreFrm is oomplete.



52CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMProof: Again the `work' has been done with the presentation result. SayD : J !PreFrm is a diagram of preframes. De�neS � ^ � SLat < ai2ObJD(i)j 1 = 1D(i) 8ia ^ b = a ^D(i) b 8a; b 2 D(i) 8ia = D(f)(a) 8a 2 D(i) 8f : i! j 2M(J) >Then the preframe olimit is given by:A � PreFrm < S qua meet semilattie jW" T = W"D(i) T 8T �" D(i) 8i > 22.5 The Generalized Coverage TheoremWe have a symmetri monoidal ategory PreFrm. Over any symmetri monoidalategory C we an onstrut CMon(C), the ategory of ommutative monoids onthe tensor of C. We will �nd that frames an be haraterised as speial types ofobjets in CMon(PreFrm). In the next setion we will then be able to use thefollowing results to give us fats about frames. We need the following well known(see e.g. lemma 4.1 of [JV91℄) general result about symmetri monoidal ategories,Theorem 2.5.1 CMon(C) has �nite oproduts. They are given by tensor (andunit).Proof: Say (A; �A; eA); (B; �B ; eB) are two objets of CMon(C), de�ne� : (A
B)
 (A
B)! (A
B) to be the omposite(A
B)
 (A
B) �=! (A
A)
 (B 
B) �A
�B�! A
Band e : 
! A
B to be 
 �=! 


 eA
eB�! A
B.From these de�nitions it is easily established that 
 an be viewed as a funtorCMon(C)�CMon(C)�!CMon(C). If 
 is left adjoint to the diagonal funtor� :CMon(C)�!CMon(C) � CMon(C)then 
 is a oprodut operation.Given a ommutative monoid (A; �A; eA) the map �A : A
A! A an be viewed asa natural transformation from 
� to Id and given a pair of ommutative monoids(A; �A; eA) and (B; �B ; eB) the mapsA �=! A

 1
eB�! A
BB �=! 

B eA
1�! A
Bde�ne a natural transformation from Id to �
.That these natural transformations satisfy the triangle equalities for 
 being leftadjoint to � follows from the fat that e is a unit. So 
 a � as required.That (
;�=; Id) is initial in CMon(C) requires a similar manipulation. 2It is not the ase that we an extend the above theorem to non-ommutativemonoids. i.e. oprodut in Mon (C), the ategory of monoids over C, is not givenby tensor. The above proof breaks down sine �A : A 
 A ! A is not a monoidhomomorphism from A
A to A unless A is a ommutative monoid.As for a onrete ounter example we look at the ase where C=Ab, Abelian groups.Then CMon(Ab) is the ategory CRng of ommutative rings and Mon(Ab) is



2.5. THE GENERALIZED COVERAGE THEOREM 53the ategory Rng of rings. Say R is a ring and x; y 2 R have the property thatxy 6= yx. There is a unique ring homomorphism (f) from the ommutative ringZ[x℄ of polynomials over x to R that maps the polynomial x to x, and similarlythere is a ring homomorphism (g) from Z[y℄ to R that maps y to y. NowZ[x℄
 Z[y℄ = Z[x; y℄where Z[x; y℄ is the ommutative ring of polynomials over the set fx; yg. So if thistensor gave oprodut in the ategory of rings we would �nd that there is a ringhomomorphism from Z[x; y℄ to R orresponding to f; g. The image of this ring ho-momorphism would be a ommutative subring of R. This ontradits the fat thatxy 6= yx. In the ontext of a ounter example it is appropriate to use the exludedmiddle: if a theorem is not true lassially it ertainly won't be true onstrutively.However, more subtly, the reader should be aware that whenever we make the as-sertion `Ab is monoidal losed', we are assuming a natural numbers objet. Thisis beause we need a natural numbers objet in order to prove that Abelian grouppresentations present.If we may assume further that C is symmetri monoidal losed (i.e. that 8A 2 Ob(C)A
 ( ) a [A! ℄) then we have another result about the reation of olimits:Theorem 2.5.2 The forgetful funtor F :CMon(C) ! C reates all �ltered olim-its.Proof: Say D : J �! CMon(C) is a �ltered diagram in CMon(C). Sine 
preserves olimits in eah of its oordinates we an do the following manipulations:olimiFD(i)
 olimjFD(j) �= olimi(FD(i)
 olimjFD(j))�= olimi(olimj(FD(i)
 FD(j)))�= olim(i;j)FD(i)
 FD(j)But from a piee of well known `abstrat nonsense' we know thatolim(i;j)(FD(i)
 FD(j)) �= olimi(FD(i)
 FD(i))sine J is a �ltered ategory and so the monoid operation �D(i) on the D(i)s induea funtion �D : olimiFD(i)
 olimiFD(i)! olimiFD(i)As for a unit on olimiFD(i) note that the omposite
 eD(i)- FD(i) `FD(i)- olimiFD(i)(where the `FD(i) is an edge of the olimit oone on FD) is the same for every i(use �lteredness of J) and so de�ne a unit (eD) for olimiFD(i). It is then easy tohek that (olimiFD(i); �D; eD) is the olimit of D in CMon(C). 2So to omplete our disussion about the existene of olimits in the ategoryCMon(C)all we need to do is �nd out whether oequalizers exists or not. It turns out that thewe have a more general theorem relating the existene of oequalizers in C to theexistene of oequalizers inMon(C), the ategory of monoids over C. Compare thisto our examination of �nite oproduts above; there we saw that the desription ofoproduts in terms of tensor did not extend to the non-ommutative ase.



54CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMTheorem 2.5.3 (The generalized overage theorem) If C is a symmetri monoidallosed ategory and (A; �A; eA) f-g- (B; �B ; eB)is a diagram in Mon(C) then if  : B ! C is the oequalizer ofB 
A
B �(1
 f 
 1)-�(1
 g 
 1)- B(where � is ternary multipliation indued by �B) then C an be given a monoidstruture (C; �C ; eC) suh that(A; �A; eA) f-g- (B; �B ; eB) - (C; �C ; eC)is a oequalizer diagram in Mon(C).Proof: The de�nition of eC is just the omposite  Æ eB . De�ning �C is a littlemore involved. Sine C is losed we know that the endofuntor ( ) 
 B preservesoequalizers, hene the diagramB 
A
B 
B �(1
 f 
 1)
 1-�(1
 g 
 1)
 1- B 
B 
 1- C 
Bis a oequalizer diagram in C. But by assoiativity of the ommutative monoid Bthe morphisms �(1
 f 
 1)
 1 and �(1
 g
 1)
 1 are equalized by the morphismB 
B �B! B ! Cand so there exists a (unique) map R : C 
B ! C suh that R(
 1) = �B.But we have two ommutative squares:B 
B 
A
B 1
 �(1
 f 
 1)-1
 �(1
 g 
 1)- B 
BC 
B 
A
B
 1
 1
 1 ? 1
 �(1
 f 
 1)-1
 �(1
 g 
 1)- C 
B
 1?R( 
 1) equalizes the top row and so sine  
 1 
 1 
 1 is an epimorphism (as is) we know that R will equalize the bottom row. Hene it will fator through theoequalizer of the bottom row. But the oequalizer of the bottom row is 1 
  :C 
B ! C 
C sine C 
 ( ) preserves oequalizers. Hene 9�C : C 
C ! C suhthat R = �C Æ (1 
 ). It is now a routine exerise to hek that (C; �C ; eC) is amonoid, that  is a ommutative monoid homomorphism and that(A; �A; eA) f-g- (B; �B ; eB) - (C; �C ; eC)is a oequalizer diagram in Mon(C) as required. For instane sine R = �C(1
 )we have that �C( 
 ) = �C(1 
 )( 
 1) = R( 
 1) = �B . i.e.  is a monoidhomomorphism. Also ( 
  
 ) is epi and so assoiativity for �C follows from



2.5. THE GENERALIZED COVERAGE THEOREM 55assoiativity of �B. 2As an immediate example we an use the above to onstrut oequalizers in theategory Rng of rings. If A f -g - Bis a digram in Rng, then it is well known that its oequalizer is given by taking thequotient of B by the two sided ideal generated by ff(a) � g(a)ja 2 Ag. Howeverthis two sided ideal is given byI = f�bi(f � g)(ai)ijai 2 A; bi; i 2 BgBut the ring B=I is found by taking the quotient in Ab, and it is lear from theabove expression for I that the Abelian group B=I is the oequalizer in Ab ofB 
A
B �(1
 f 
 1)-�(1
 g 
 1)- BAs another appliation we have restrition to the ommutative ase. In the proof ofthe theorem it is a triviality to hek that if B is a ommutative monoid then so isthe monoid struture onstruted on C. Hene we are able to lift oequalizers fromC to CMon(C). In fat most of our examples will be ommutative, and in theseases the following simpli�ation of the generalized overage theorem is appropriate:Theorem 2.5.4 If C is a symmetri monoidal losed ategory and(A; �A; eA) f-g- (B; �B ; eB)is a diagram in CMon(C) then if  : B ! C is the oequalizer ofA
B �B(f 
 1)-�B(g 
 1)- Bthen C an be given a ommutative monoid struture (C; �C ; eC) suh that(A; �A; eA) f-g- (B; �B ; eB) - (C; �C ; eC)is a oequalizer diagram in CMon(C). 2A detailed disussion of why [2.5.3℄ is alled the generalized overage theorem isomitted until Setion 2.9. There we will need a theorem that goes in the oppositediretion; a theorem whih shows how to �nd oequalizers in C given oequalizersin some ategory that behaves like CMon(C). The forgetful funtor going fromCMon(C) to C has a left adjoint if and only if free ommutative monoids an befound on C objets. We �nd, opposite to the overage theorem, that if there issome ategory D and a faithful funtor U from D to C whih has a left adjoint thenoequalizers in C an be onstruted from partiular oequalizers in D providedwe also know that C has �nite limits and image fatorisations (see e.g. 1.51 of[FS90℄ for a de�nition of image fatorization). We know from Theorem [2.3.2℄how to onstrut the free frame on a preframe and so we know that the forgetfulfuntor from Frm to PreFrm has a left adjoint. It is easy to onstrut �nite limits



56CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMand image fatorisations in the ategory PreFrm of preframes (for the latter justtake the subpreframe generated by the set theoreti image of the funtion to befatorized) so the next theorem will prove that PreFrm has oequalizers from anassumption that Frm has oequalizers. Indeed the proof to follow is really just arepetition of the preframe version of K�r�i�z's universal Theorem [2.3.3℄ (whih itselfis just a manipulation of the proof in [JV91℄ that preframe presentations present).Theorem 2.5.5 If C has �nite limits and image fatorisations, and there is someategory D with a faithful funtor U : D ! C whih has a left adjoint F then forany diagram A f -g - Bin C its oequalizer is given by the image fatorization of B �B� UFB Ue! UE whereFB e! E is the oequalizer in D ofFA Ff-Fg- FBProof: Let the image fatorization desribed in the statement be writtenq : B ! e[B℄. Say there is a morphism B �e! �E in C suh that �ef = �eg. So ertainlyF �eFf = F �eFg and so there is a morphism d of Dd : E �! F �Esuh that de = F �e. Pull the monomorphism � �E bak along Ud to �nd a monomor-phism i : J � UE. But from the pullbak diagram we see that the mapB �B� UFB Ue! UE fators through i sine:Ud Æ Ue Æ � �B = U(d Æ e) Æ � �B= UF �e Æ � �B= � �E Æ �eand hene the subobjet J ontains the subobjet e[B℄. So there is a map �d frome[B℄ to �E suh that �dq = �e. Uniqueness of �d follows if q is an epimorphism; but wehave equalizers in C and so the over q is an epimorphism. 22.6 Frames as ommutative monoidsWe �rst introdue the more well known way of looking at frames as ommutativemonoids i.e. as SUP-latties with a monoid struture given by meet. Of ourse aSUP-lattie is a omplete poset, i.e. a poset with all joins. SUP-lattie homomor-phisms preserve all joins. We have de�ned the ategory SUP.The fat that SUP has oequalizers is shown in [JT84℄. In Proposition 4.3 ofChapter 1 they show that if R is any subset of M �M where M is a SUP-lattiethen the quotient of M by the ongruene generated by R is given by the setQ = fx 2M j8(z1; z2) 2 R; z1 � x , z2 � xg



2.6. FRAMES AS COMMUTATIVE MONOIDS 57(f R-oherent elements). So if B f -g - Ais a pair of arrows in SUP then use the relation f(fb; gb)jb 2 Bg to de�ne theoequalizer of f and g. Clearly we an also use this general onstrut to desribetensor produt of SUP-latties and so we see that SUP is a symmetri monoidallosed ategory with oequalizers.Now say we are given a ommutative monoid (A; �; eA) over a SUP-lattie Awhih is also a semilattie. i.e. � is idempotent. We an then give A a seond orderwith whih the � operation beomes meet. This seond order will not neessarilyoinide with �A. However the two orders will oinide if (and only if) a �A eA forevery a 2 A. For if we assume a �A eA for every a 2 A then sine � is monotone inboth its oordinates we know�A(a
 b) �A �A(a
 eA)= a�A(a
 b) �A �A(eA 
 b)= bfor every a; b. Further if  �A a; b then  = �( 
 ) �A �(a
 b) and so � is meetwith respet to the order �A. Clearly suh a ommutative monoid will be a frame.So frames are partiular types of ommutative monoids over SUP. A (ommu-tative) monoid (A; �A; eA) is a frame if and only if (1) a � eA 8a 2 A and (2)�A(a
 a) = a 8a 2 A. The �rst equation tells us that eA is the top element of A.We �nd ([JV91℄) that this result has a `preframe parallel':Theorem 2.6.1 The ategory of frames is isomorphi to the full subategory ofCMon(PreFrm) onsisting of all objets (A; �; e) satisfying(1) e(0) � a 8A(2) �(aOa) = aProof: Say A is a frame. Then _ : A�A! Ais learly a preframe bihomomorphism. It is easy to hek thate : 
 �! Ai 7�! "_(f0g [ f1j1 � ig)is a preframe homomorphism (
 is ompat) and that this makes (A;_; e) into aommutative monoid whih satis�es (1) and (2).Conversely say (A; �; e) is a ommutative monoid whih satis�es (1) and (2). Cer-tainly e(0) is 0A and so A has a least element. We hek that �(aOb) is the least up-per bound of a and b in A. The fat that e is a unit tells us that a = �(aOe(0)) (8a).But aOe(0) � aOb 8b and so a; b � �(aOb).



58CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMNow say a; b �  then aOb � O and so �(aOb) � �(O) = . 2Frames an thus be viewed as SUP-latties with a partiular monoid struture(orresponding to meet) or they an be viewed as preframes with a monoid struturegiving a �nitary join operation.Say (A; �A; eA); (B; �B ; eB) are two ommutative monoids in PreFrm. We knowthat their oprodut in CMon(PreFrm) is given by(A
B; �; e)where � : (A
B)
 (A
B) �=! (A
A)
 (B 
B) �A
�B�! A
B ande : 
 �=! 


 eA
eB�! A
BNow 8a 2 A; b 2 B we havee(0) = (eA 
 eB)(0O0)= eA(0)OeB(0) � aObif eA(0) � a 8a and eB(0) � b 8b So if A;B are frames then the setfu 2 A
 BjeA(0)OeB(0) � ugis a subpreframe of A 
 B that ontains all the generators of A 
 B and so is thewhole of A
B. Hene, if A;B are frames then A
B has a least element: 0AO0B.�((aOb)O(aOb)) = (�A 
 �B)((aOa)O(bOb))= (�A(aOa))O(�B(bOb))= aObif �A(aOa) = a 8a and �B(bOb) = b 8b.Notie that the equation �((aOb)O(aOb)) = aOb is enough to tell us that �(uOu) =u for any u 2 A
B. This is beause the setfu 2 A
Bj � (uOu) = ugis a subpreframe of A
B and ontains all the generators of A
B.Proof that it is a subpreframe: Certainly �(1O1) = 1. Say u; v satisfy �(uOu) =u and �(vOv) = v. Then�((u ^ v)O(u ^ v)) = �((uOu) ^ (vOv) ^ (uOv) ^ (vOu))� �((uOu) ^ (vOv))= �(uOu) ^ �(vOv) = u ^ vIn the other diretionu ^ v = �((u ^ v)O0) � �((u ^ v)O(u ^ v))Say T �" A
B is suh that �(tOt) = t for all t 2 T . Then for all t 2 T :t = �(tOt) � �( "_TOt)� �( "_TO "_T )



2.6. FRAMES AS COMMUTATIVE MONOIDS 59Hene W" T � �(W" TOW" T ). Conversely�( "_TO "_T ) = "_t �(tO "_T )= "_(t;�t)2T�T �(tO�t)� "_t2T �(tOt) = "_Twhere the penultimate impliation is by diretedness of T . 2So the above shows us that if (A; �A; eA); (B; �B ; eB) are both frames then theiroprodut in CMon(PreFrm) is also a frame. i.e. frame oprodut is given bypreframe tensor.Theorem 2.6.2 Lo has �nite produts. If X;Y are two loales then the frame ofopens of their produt is given by:
(X � Y ) �= 
X 

Ywhere the tensor 
 is either preframe tensor or SUP-lattie tensor.Proof: We have shown the result for the preframe tensor. The result for theSUP-lattie tensor (is well known and) follows exatly the same path. It relies onthe haraterization of frames as those members A of CMon(SUP) whih satisfya � eA(1) 8a 2 A and �A(a
 a) = a for all a 2 A. Note that the proof that the setfuj � (u
 u) = ug is a subSUP-lattie is less intriate. 2The `reation of olimits' results of the previous setion also preserves the framestruture:Theorem 2.6.3 F :Frm!PreFrm reates �ltered olimitsProof: Say D : J !CMon(PreFrm) is suh that its image is ontained withinFrm and J is �ltered. So D(i) = (FD(i); �i; ei) is a frame for every objet i of J .We saw in the last setion that olimD = (olimFD; �; e) where� : olimFD
 olimFD! olimFD is suh thatFD(i)
 FD(i) �i- FD(i)olimFD
 olimFD�i 
 �i ? �- olimFD�i?ommutes for every i,and e : 
! olimFD is suh that
 ei- FD(i)�����e RolimFD�i?



60CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMommutes for every i.Now reall that olimFD =PreFrm<`i FD(i)jR >for suitable R (see Theorem [2.4.3℄) and �i : FD(i)! olimFD is given by a 7! a.So to prove e(0) � u 8u 2 olimFD all we need to do is hek thate(0) � a 8a 2`i FD(i)Say a 2 FD(i) then e(0) = �iei(0) = ei(0) � aand so e(0) � u 8u 2 olimFD.Similarly to see that �(uOu) = u 8u 2 olimFD simply note that �i(aOa) = awhenever a 2 FD(i). 2Again the SUP-lattie parallel an be heked by an idential method and wean write up both results as fats about loales:Theorem 2.6.4 Lo has o�ltered limits. If D : J �! Lo is a o�ltered diagramof loales then 
limJD �= PreFrm <ai FD(i)jRPreFrm >�= SUP <ai FD(i)jRSUP >for suitable Rs. 2Theorem 2.6.5 If A f -g - Bis a diagram in Frm then the preframe oequalizer ofA
B �B(f 
 1)-�B(g 
 1)- Bis a frame, and is the oequalizer of f and g in Frm.Proof: As in the last proof the onrete onstrution of the oequalizer enablesus to hek the ommutative monoid struture de�ned on it via Theorem [2.5.4℄satis�es the onditions (1) and (2).Say  : B ! C is the preframe oequalizer of �B(f 
 1); �B(g 
 1). Thenfa 2 CjeC(0) � agfa 2 Cj �C (aOa) = agare both subpreframes of C and  fators through both of them sine B is a frame.Hene they are both the whole of C. 2It should be apparent that this last result ould also have been written withSUP-latties in plae of preframes. The loali onlusion is:



2.7. APPLICATIONS IN LOC 61Theorem 2.6.6 Lo has equalizers. IfX f -g - Yis a diagram in Lo then the equalizer, E, is given by
E �= PreFrm < 
X (qua preframe)j
f(b) _ a = 
g(b) _ a 8a 2 
X; b 2 
Y >�= SUP < 
X (qua SUP-lattie)j
f(b) ^ a = 
g(b) ^ a 8a 2 
X; b 2 
Y > 2We will disuss how this last theorem is just the preframe version and the SUP-lattie version of the overage theorem in Setion 2.9.When it omes to disuss the pullbak stability of proper and open loale mapsin the next hapter it will be useful to have the orollary:Corollary 2.6.1 Lo has pullbaks. IfW p2 - Y
Xp1 ? f - Zg?is a pullbak diagram in Lo then
W �=PreFrm< 
X 

Y (qua preframe) j(
f() _ a)Ob = aO(
g() _ b)8a 2 
X; b 2 
Y;  2 
Z >and
W �=SUP< 
X 

Y (qua SUP-lattie) j(
f() ^ a)
 b = a
 (
g() ^ b)8a 2 
X; b 2 
Y;  2 
Z >(where the tensor is SUP-lattie tensor in the seond equation and prefame tensorin the �rst).Proof: A pushout is just a partiular kind of oequalizer. The orollary is an ap-pliation of the last result. 22.7 Appliations in LoThe following lemma shows us how the two desriptions of loale produt given inthe last setion lead to two very di�erent formulas for the losure of the diagonalof a loale. The new preframe version of this formula will be used extensively lateron.Lemma 2.7.1 If X is any loale then the losure of the diagonal � : X ,! X �Xis given by the losed subloale :# ,! X �Xwhere # 2 
(X �X) is given by



62CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREM# = W"f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite gand equivalently by # = Wfa
 bja ^ b = 0g.This preframe formula for # an be found in [Vi94℄.Proof: From Setion 1.7.1 we know that if i : Y ,! X is a subloale then its losureis given by :8i(0) ,! Xand so all that we are doing is heking that 8�(0) = #We prove the �rst laim of the theorem by looking at the ase where
� : 
X

X ! 
X is given by the unique preframe homomorphism whih sendsaOb to a _ b. It follows that8�(0) = W"fJ j
�(J) = 0gThe result then follows quite learly from the fat that for every J in 
X 

XJ = W"j ^i2Ij (ajiObji )for some suitable olletion of aji ; bji s (where all the Ijs are �nite). This is beausethe set of all elements of this form forms a subpreframe of 
X

X whih ontainsall the generators of the tensor.As for the SUP-lattie presentation of the losure of the diagonal we use thesame argument. Suess of this argument hinges on the fat that the set of allelements of 
X 

X (=SUP-lattie tensor) of the formWi2I ai 
 bifor some set I forms a subSUP-lattie of 
X

X whih ontains all the generatorsof the tensor and so is the whole of 
X 

X . 
� sends a
 b to a ^ b.Notie also that these two parallel results are inter-provable; use the fat thata
 b = (aO0) ^ (0Ob). For then (a _ 0) ^ (0 _ b) = 0 if a ^ b = 0 and so ertainlyWfa
 bja ^ b = 0g � W"f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite gIn the other diretion say ^i2I(ai_bi) = 0. Then (^i2J1ai)^(^i2J2bi) = 0 for everyJ1; J2 �nite with J1; J2 � I; I � J1 [ J2 by the �nite distributivity law of [1.2.6℄.But by the same �nite distributivety law (and the equation aOb = (a
 1)_ (1
 b))we have ^i(aiObi) = ^i((ai 
 1) _ (1
 bi))= _[^i2J1(ai 
 1) ^ ^i2J2(1
 bi)℄= _[((^i2J1ai)
 1) ^ (1
 (^i2J2bi))℄= _(^i2J1ai)
 (^i2J2bi)� _fa
 bja ^ b = 0g 2Reall in Chapter 1 that we de�ned the speialization order on a spae. Theloali analogue is the speialization subloale. It is lear that if, for any loale X ,we de�ne v,! X �X by



2.7. APPLICATIONS IN LOC 63
(v) � Fr < 
X 

X qua frameja
 1 � 1
 a 8a 2 
X >then we will have aptured the de�ning spatial harateristi of the speializationorder (namely that x v y if and only if for every open a if x 2 a then y 2 a). Thetensor in the above is the SUP-lattie tensor. On the preframe side we have:Lemma 2.7.2 
(v) �= Fr < 
X

X qua framejaO0 � 0Oa 8a 2 
X >, where
 is preframe tensor.Proof: Take aOb to (a
 1)_ (1
 b) and a
 b to (aO0)^ (0Ob). The relations arepreserved and so these assignments de�ne frame homomorphisms between the twopresentations of 
(v). 2Lemma 2.7.3 v ^ w= �, where ^ is meet in the poset Sub(X�X), and w� �Æ v(� is the twist isomorphism X �X ! X �X).Proof: (We prove this fat using preframe tehniques though SUP-lattie teh-niques ould equally well have been used.)Certainly � �Sub(X�X)v, sine
l : 
(v) �! 
XaOb 7�! a _ bis learly well de�ned and soX l - vR������ R 	�����	X �Xommutes.Symmetrially � � (w).Say z : Z ,! X �X is some subloale with the property thatZ �Sub(X�X) (v); Z �Sub(X�X) (w)So there exists 
m : 
(v)! 
Z and 
m� : 
(w)! 
Z with
m(aOb) = 
z(aOb); 
m� (aOb) = 
z(aOb)It follows that for all b 2 
X
z(bO0) = 
m(bO0)� 
m(0Ob) = 
z(0Ob)and by the existene of m� we �nd
z(0Ob) = 
m� (0Ob)� 
m� (bO0) = 
z(bO0)i.e. 
z(bO0) = 
z(0Ob) and so �1 Æ z = �2 Æ z



64CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMHene Z �Sub(X�X) �. 2Of ourse this result is true spatially if (and only if) the topologial spae is T0.Our next omment is that we an now show that a loale map f : X ! Y is asubloale if and only if it is a regular monomorphism. This is a well known basifat about loales and is equivalent to the statement that a frame homomorphism isa regular epimorphism if and only if it is a surjetion. But sine we have shown thatFrm is suitably algebrai this follows at one. [For a proof notie that if q : A! Cis a frame surjetion then it is the oequalizer ofB �1 -�2 - Awhere B is the ongruene on A given by f(a1; a2)jq(a1) = q(a2)g. In the otherdiretion we an use the overage theorem with C=SUP to show that oequalizersin Frm are surjetions sine oequalizers in SUP are surjetions.℄Inside Frm we then �nd that a homomorphism h : A! B an be fatored asA [ ℄�! (A= �h) i,! Bwhere [ ℄ is a surjetion and �h is the frame ongruene a1 �h a2 if and only ifh(a1) = h(a2). This fatorization enjoys the property that if h an also be fatoredas A q�! C l�! Bfor some surjetion q then there is a frame homomorphism k : C ! A= �h suhthat k Æ q = [ ℄ i Æ k = lTranslated to a fat about loales this means that if f : X ! Y is a loale mapthen it an be fatored as X q! f [X ℄ i,! Ywhere q is an epimorphism and i is a regular monomorphism, and if f an also befatored as X �q! Z �i,! Ywhere �i is a regular monomorphism then there is a loale map p : f [X ℄ ! Z suhthat p Æ q = �q �i Æ p = iThis result implies that any loale map fators uniquely (up to isomorphism) asan epimorphism followed by a regular monomorphism. This is a well known resultof loale theory.2.8 Tyhono�'s theoremThe following proof is what appears in Johnstone and Vikers' paper [JV91℄.Theorem 2.8.1 The produt of ompat loales is ompat



2.8. TYCHONOFF'S THEOREM 65Proof: We need to show, given a set (Ai)i2I of ompat frames, that their oprod-ut `i Ai is ompat.It is well known that just as arbitrary joins an be written as direted joins of �nitejoins, arbitrary oproduts an be written as �ltered olimits of �nite oproduts.We �rst hek that �nite oproduts of ompat frames are ompat. Sine 
 isompat we know that nullary frame oproduts are ompat. Say A;B are twoompat frames. Then the funtionsA ! 
a 7! (1 � a)B ! 
b 7! (1 � b)are both preframe homomorphisms and so(a; b) 7�! (1 � b) _ (1 � a)is a preframe bihomomorphism from A � B to 
 and hene indues a preframehomomorphism h : A
B ! 
. I laim thatfu 2 A
Bjh(u) = 1 ) u = 1gis a subpreframe of A
B and ontains all the generators aOb of A
B. That it isa subpreframe is easy enough (
 is ompat!), and so we hek thath(aOb) = 1 ) aOb = 1.But h(aOb) = 1 ) (1 � a) _ (1 � b) and so 1 � aOb follows.Hene 8u 2 A 
 B h(u) = 1 ) u = 1. Now say S �" A 
 B has W" S = 1.Then h(W" S) = 1 ) W"s2S h(s) = 1 ) 9s 2 S h(s) ) s = 1, andso A
B is ompat.Now, as we said above, (`iAi) = olim�I(`i2�I Ai)where �I ranges over the �nite subsets of I , and we've just heked that `i2�I Ai isompat for every suh �I .Sine all suh `i2�I Ai are ompat we know that there are preframe homomor-phisms h�I :ai2�I Ai �! 
u 7�! (1 � u)and so (sine as we saw above olim�I(`i2�I Ai) is reated from the preframe olimit)there exists h :`i Ai ! 
a preframe homomorphism suh thatai2�I Ai�����h�IRai Ai��I ? h - 




66CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMommutes for every �I .As before all we need to do (to onlude that `iAi is ompat) is hek that theset fu 2 `iAijh(u) = 1 ) u = 1gis a subpreframe of `iAi whih ontains all the generators. It is ertainly a sub-preframe.That it ontains all the generators is easy enough sine the set of generators is justthe disjoint union of the `i2�I Ai. 22.9 The Coverage Theorems2.9.1 SUP-lattie versionWe desribe Johnstone's overage theorem as stated in II 2.11 of [Joh82℄. Given ameet semilattie A a funtion C : A! PPA is alled a overage if(i) T �# a 8a 2 A 8T 2 C(a) and(ii) C is meet stable, i.e. 8a 2 A;8T 2 C(a);8b 2 Aft ^ bjt 2 Tg 2 C(a ^ b)De�ne C � Idl(A) to be the set of C-ideals of A: they are the lower losed subsetsI of A suh that 8a 2 A;8T 2 C(a) if T � I then a 2 I . If B is some frame then afuntion f : A! B is said to take overs to joins if 8a 2 A;8T 2 C(a),WBff�aj�a 2 Tg = faJohnstone's overage result is: the set of C-ideals on a overage forms a frame andthe map A < >�! C � Idl(A)whih is de�ned to take a 2 A to the ideal generated by fag, is the free semilattiehomomorphism from A to a frame whih takes overs to joins.When Abramsky and Vikers were investigating quantales in [AV93℄ they foundit useful to view the overage theorem as the statement that ertain frame presenta-tion ould equally be viewed as SUP-lattie presentations. Indeed in the `PreframePresentation Presents' paper [JV91℄ the ontent of the overage result is stated asfollows: given any meet semilattie A with a overage on it thenFrm< A (qua meet semilattie) ja = _T T 2 C(a) >�= SUP < A (qua poset) ja = _T T 2 C(a) >We take Johnstone's overage theorem to be this last result and prove that it impliesand is implied by the SUP-lattie version of the generalized overage theorem. Thistheorem then reads as the following oequalizer result: ifB f -g - Ais a diagram in Frm and ifB 
A ^(f 
 1)-^(g 
 1)- A e - E (�)



2.9. THE COVERAGE THEOREMS 67is a oequalizer diagram in SUP thenB f -g - A e - Eis a oequalizer diagram in Frm.Intuitively the presene of ^ in (�) orresponds to the meet stability ondition thatwe have on overages.We now assume Johnstone's overage theorem and try to prove this oequalizerresult. Say we are given B f -g - Ain Frm. De�ne a overage on A as follows:fgb ^ a ^ fbg 2 C(fb ^ a) 8b 2 B;8a 2 Affb ^ a ^ gbg 2 C(gb ^ a) 8b 2 B;8a 2 AT 2 C(WA T ) 8T � A(It is easy to hek that this de�nes a overage.)But it is lear that with this overage the oequalizer ofB f -g - A(in Frm) must be the frame presented byFrm< A (qua meet semilattie) ja = _T T 2 C(a) >and also that the oequalizer ofB 
A ^(f 
 1)-^(g 
 1)- A(in SUP) must be the SUP-lattie presented bySUP< A (qua poset) ja = _T T 2 C(a) >so an assumption of the Johnstone's overage theorem allows us to onlude theSUP-lattie version of the generalized overage theorem.Conversely let us assume the SUP-lattie version of the generalized overagetheorem i.e. the oequalizer result of the previous page. Say we are given a overageC : A ! PPA on some meetsemilattie A. Let DA be the set of lower losedsubsets of A. It is learly a frame where join is given by union and meet is givenby intersetion. It is also the free frame on the meet semilattie A, this has beenremarked upon already just before Theorem [2.3.2℄. Let B be the least frameongruene on DA � DA whih ontains (# T; # a) for all pairs (T; a) suh thatT 2 C(a). So there are frame homomorphismsB �1-�2- DA:It is easy to see that if their oequalizer exists then it is



68CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMFrm< A (qua meet semilattie) ja = _T T 2 C(a) >.ButLemma 2.9.1 The free SUP-lattie on A qua poset and the free frame on A quameet semilattie are isomorphi.Proof: They are both given by DA. 2Beause of this fat we know that there is a SUP-lattie morphism e from DA tothe SUP-lattie E de�ned to beSUP< A (qua poset) ja = _T T 2 C(a) >.It is easy, using the meet stability property of overages, to verify thatB 
DA ^(�1 
 1)-^(�2 
 1)- DA e - Eis a oequalizer diagram in SUP and so Johnstone's overage theorem will followfrom the generalized overage theorem.2.9.2 Preframe versionBefore we takle the preframe version of the overage theorem we need to make anobservation about the free ^-semilattie on a poset.Lemma 2.9.2 Let A be a join semilattie. Then the free meet semilattie on Aqua poset (i.e. SLat < Aja1 ^ a2 = a1 if a1 �A a2 >) is a distributive lattie andis the free distributive lattie on A qua _-semilattie(i.e. DLat < Aja1 _ a2 = a1 _A a2 8a1; a2 2 A; 0 = 0A >).Proof: (This proof also gives a onrete desription of ^-Slat< A qua poset>.) IfT; S 2 FA (i.e. if T; S are �nite subsets of A) then we writeS -U Tif and only if 8t 2 T there exists s 2 S suh that s �A t. (-U is the upper or Smythpreorder.) FA= -U (i.e. FA quotiented by this preorder) is the free ^-semilattieon A qua poset. A is injeted into FA= -U by a 7! [fag℄. If [S℄; [T ℄ are two elementsof FA= -U then [S℄ ^ [T ℄ = [S [ T ℄.This is easily veri�ed using the fat that [S℄ � [T ℄ in FA= -U if and only if S -U T .If A is a join semilattie then[S℄ _ [T ℄ = [fs _ tj(s; t) 2 S � Tg℄and so FA= -U is a join semilattie. As for distributivity notie that([S℄ _ [T ℄) ^ [V ℄ = [fs _ tjs 2 S; t 2 Tg [ V ℄and ([S℄ ^ [V ℄) _ ([T ℄ ^ [V ℄) = [f�s _ �tj�s 2 S [ V; �t 2 T [ V g℄



2.9. THE COVERAGE THEOREMS 69It is easy to see,f�s _ �tj�s 2 S [ V; �t 2 T [ V g -U fs _ tjs 2 S; t 2 Tg [ Vfs _ tjs 2 S; t 2 Tg [ V -U f�s _ �tj�s 2 S [ V; �t 2 T [ V g;the latter by observing that (S [ V )� (T [ V ) � (S � T ) [ (A� V ) [ (V �A).That FA= -U is the free distributive lattie on A qua _-semilattie follows a simplemanipulation: say f : A! B is a _-preserving funtion to a distributive lattie B.Then there exists a unique meet preserving �f : FA= -U! B suh that �f Æ [f g℄ = f .Clearly for any a; b 2 A �f([fag℄ _ [fbg℄) = �f [fa _ bg℄= f(a _ b)= f(a) _ f(b)= �f [fag℄ _ �f [fbg℄and so �f([S℄ _ [T ℄) = �f([S℄) _ �f([T ℄) follows sine for any V 2 FA we have[V ℄ = ^v2V [fvg℄: 2The preframe overage theorem (5.1 of [JV91℄) is as follows: let A be a joinsemilattie and let C be a set of preframe relations of the form^S � W"i2I ^Si(where S; Si are �nite subsets of A and f^Siji 2 Ig �" A) whih are join stable.This means that if x 2 A and ^S � W"i ^Si is in C than^fx _ y : y 2 Sg � W"i ^fx _ y : y 2 Sigis also in C. ThenPreFrm < A (qua poset) jC >�= Frm < A (qua _-semilattie)jC >the generators orresponding under the isomorphism in the obvious way.The preframe version of the generalized overage theorem is the following oequal-izer result: if B f -g - Ais a diagram in Frm and ifB 
A _(f 
 1)-_(g 
 1)- A e - Eis a oequalizer diagram in PreFrm thenB f -g - A e - Eis a oequalizer diagram in Frm.Let us assume the preframe overage theorem. Say we are givenB f -g - Ain Frm. De�ne C, a set of preframe relations on A, as follows:



70CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMW"A J � W"fjjj 2 Jgfor every direted J �" A anda1 ^ a2 � a1 ^A a2 8a1; a2 2 Aand 8b 2 B;8a 2 A fb _ a � gb _ agb _ a � fb _ aIt is easy to see that C is join stable. It is also easy to see thatPreFrm < A (qua poset) jC >is the oequalizer of B 
A _(f 
 1)-_(g 
 1)- Ain PreFrm and that Frm< A (qua _-semilattie) jC >is the oequalizer of B f -g - Ain Frm. Hene the preframe version of the generalized overage theorem followsfrom the preframe overage theorem.If we look at the ase of the preframe overage theorem when C is the emptyset, it is then the statement that the free preframe on a poset A is equal to thefree frame on the join semilattie A if A is indeed a join semilattie. But suh afree preframe an be seen to be the ideal ompletion of the free semilattie on theposet A, and suh a free frame an be seen to be the ideal ompletion of the freedistributive lattie on the join semilattie A. But sine Lemma [2.9.2℄ showed usthat the free semilattie and the free distributive lattie just desribed are the samewe know that their ideal ompletions are isomorphi. Hene we have proven thepreframe overage theorem in the ase when C is empty. i.e.Lemma 2.9.3 Let A be a join semilattie. Then the free preframe on a A qua posetis isomorphi to the free frame on A qua join semilattie. 2Given a join semilattie A we will all the free frame on it KA. The fat that it isalso a free preframe will help us prove that the preframe version of the generalizedoverage theorem implies the preframe overage theorem.Say we are given a join semilattie A and a join stable olletion of preframerelations C. Let j : A� KA denote the inlusion of generators. Let B be the leastframe ongruene on KA whih ontains all the pairs(^KAfjs : s 2 Sg; (^KAfjs : s 2 Sg) ^KA (W"i ^KAfjsjs 2 Sig))So there are two frame inlusionsB �1 -�2 - KA



2.9. THE COVERAGE THEOREMS 71and it is easy to see that their oequalizer in Frm isFrm< A (qua _-semilattie)jC >.Further more one we view KA as the free preframe on A (qua poset) then it anbe seen that the oequalizer ofB 
KA _(�1 
 1)-_(�2 
 1)- KAis equal to PreFrm< A (qua poset) jC >. Hene the preframe overage theoremfollows from the generalized overage theorem.Of ourse it is a matter of opinion as to whether the oequalizer results reallyapture the overage theorems, partiularly in view of the need for lemmas [2.9.1℄and [2.9.2℄. However both these lemmas seem to follow a general form; see theonluding remarks to this hapter.2.9.3 Quantale version and general remarksA quantale is a SUP-lattie A together with a monoidal struturee 2 A� : A�A �! Awith the property that � preserves arbitrary joins in both of its oordinates. Inother words a quantale is an objet of Mon(C) where C is the symmetri monoidallosed ategory of SUP-latties. A good referene for quantales is [Ros90℄. Theyare investigated in [AV93℄ as models for various proess aluli. In that investiga-tion a overage theorem for quantales is developed. For simpliity we examine theommutative ase although, with the obvious modi�ations, this analysis works forgeneral quantales. Given a ommutative monoid A we say that C : A! PPA is aoverage if and only if 8T 2 C(a);8b 2 Aft �A bjt 2 Tg 2 C(a �A b):The overage theorem for quantales is then the statement that the presentationQu< S (qua monoid) j _ T � a 8T 2 C(a) >is well de�ned and is isomorphi as a poset toSUP< Sj _ T � a 8T 2 C(a) >.The free SUP-lattie on a set S is the power set of S. But:Lemma 2.9.4 The free quantale on a monoid S (i.e. Qu< S (qua monoid) >) isisomorphi as a poset to the free SUP-lattie on the set S.Proof: Both are given by PS where the monoid operation on PS is given by,(for T1; T2 � S) T1 � T2 = ft1 � t2jt1 2 T1 t2 2 T2g 2We now prove that the quantale overage result is implied by the generalized ov-erage theorem applied to the ategory C=SUP.Given a overage C on some ommutative monoid S let B be the least quantaleongruene on PS whih ontains the pair(T; T [ fag)



72CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMfor every T 2 C(a).We then have a pair of quantale mapsB �1 -�2 - PSand it is lear that their oequalizer in Qu will beQu< S (qua monoid) j _ T � a T 2 C(a) >It is also lear that SUP< Sj _ T � a T 2 C(a) >is the oequalizer of B 
 PS �(�1 
 1)-�(�2 
 1)- PSin SUP and so the generalized overage theorem implies the quantale overage re-sult.It might be interesting, for further researh, to look at CMon(PreFrm). Weknow that this ategory will have oequalizers, and indeed one an write a overagetheorem for it. Aside from these fats not muh is known about this ategory as faras the author is aware. It might be possible to use it in muh the same way thatquantales were used as models for various proess aluli in [AV93℄. Restriting tothe ategory of idempotent ommutative preframe monoids reaptures the analysisof Setion 2.6.We now turn our attention to an appliation of the onverse of the overagetheorem (Theorem [2.5.4℄). We take C=dpo, the ategory of direted ompletepartial orders. It learly has �nite limits and image fatorisations. The ategory Dis taken to be SUP-latties, whih we know has oequalizers. Also it is easy to seethat the forgetful funtor from SUP to dpo has a left adjoint F . Simply takeFA = SUP < A (qua dpo) >It follows at one that dpo has oequalizers. From this we reover another wellknown fat:Theorem 2.9.1 dpo is symmetri monoidal losedProof: Say A;B are two dpos. Then de�ne C to be the least ongruene onIdl(A�B) whih ontains the pairs:W"t2T # (t; b) =# (W" T; b);8T �" A 8b 2 BW"t2T # (a; t) =# (a;W" T ) 8a 2 A;8T �" BThen there are two dpo homomorphisms:C �1-�2- Idl(A�B)It is easy to see that A
B is the oequalizer of these two maps. 2



2.9. THE COVERAGE THEOREMS 73The next step is to investigate CMon(dpo). We know that this ategory hasoequalizers, although it is when we restrit our attention to the idempotent om-mutative monoids that we get more interesting results. Provided we insist that theunit of the idempotent ommutative monoid is the greatest element with respet tothe original order on our dpo A then, just as in the disussion preeding Theorem[2.6.1℄, we an see that the monoidal operation will be meet. Furthermore it is ameet whih ommutes with direted joins in both oordinates. i.e. A has �nitemeets and these meets distribute over direted joins: we have a preframe.Further, just as in the disussion of Setion 2.6, we an hek that the olimitsof these preframes are found by suitable dpo onstrutions. In short preframeshave oequalizers and a preframe tensor an be de�ned. i.e. by an appliation ofthe opposite of the generalized overage theorem we �nd that dpo is symmetrimonoidal losed and if we follow this by an appliation of the generalized overagetheorem to dpo we reover Theorem [2.4.1℄: PreFrm has a oequalizers.This analysis works another way as well: if SUP has oequalizers then theoverage theorem tells us Frm has oequalizers. An appliation of the opposite ofthe overage theorem implies that PreFrm has oequalizers. Hene the existeneof oequalizers an be hased throughout the square:Frm������ I�����SUP PreFrmI����� ������dpoSimilarly (at a `lower' level) existene of oequalizers an be hased around:DLat������ I�����_ � SLat ^ � SLatI����� ������POSUsing the onverse of the overage theorem we know that oequalizers an bedropped along eah of the following:Frm PreFrm SUP dpoDLatIdl 6 ^ � SLatIdl 6 _ � SLatIdl 6 POSIdl 6



74CHAPTER 2. PREFRAMES AND THEGENERALIZED COVERAGETHEOREMWe an also look at Lemma [2.9.2℄ in another way; it is just the statement thatDLat U- ^ � SLat_ � SLatF 6 U_- POSF^6ommutes where the F s are free funtors and the Us are forgetful funtors. Notiealso that Lemma [2.9.1℄ follows from the same lemma but with ^ and _ inter-hanged. To see this last observation note that the free SUP lattie on A qua posetis given by Idl(F_A) where F_ is the free _-semilattie on A qua poset. Also, if Ais a meet semilattie then the free frame on A qua ^-semilattie is Idl(D) where Dis the free distributive lattie on A qua meet semilattie. So, these lemmas seem tofollow from a sort of Bek-Chevalley ondition.The ube Frm � PreFrmI����� I�����SUP � 6 dpoDLat
6
� ^ � SLatI����� I�����_� SLat

6
� POS

6
is a useful visualisation of the algebra underlying loale theory.Finally, by Linton's theorem [Lin69℄, it is interesting to note that `oequalizersare enough'. One (reexive) oequalizers an be found in a node C of the aboveube then all olimits in C an be onstruted by `lifting' them from any nodebelow C. Also, the existene of reexive oequalizers in CMon(C) an be foundby the existene of reexive oequalizers in C (see Exerise 0.1 of [Joh77℄): thegeneralized overage theorem, as a statement about the existene of oequalizers,an be reovered through this result.



Chapter 3Open and Proper Maps3.1 IntrodutionWe now return to our loale theory. De�nitions of proper and open maps are given,and we see that these are just generalisations of losed and open subloales. Basiresults about these maps are proved side by side so that the similarities between thetheories of the two lasses should be apparent without too muh omment. Impor-tantly these lasses of maps are losed under pullbak. This fat had been observedby Joyal and Tierney in [JT84℄ for the lass of open maps, and was used in their de-sription of the disrete loales as those loales whose �nite diagonals are open. Welook at the equivalent result for proper maps and �nd a desription for the ompatregular loales (Vermeulen, [Ver91℄, notied this desription): they are those loaleswhose �nite diagonals are proper. We an now justify the assertion made in theabstrat that the ategory of disrete loales and the ategory of ompat regularloales are parallel to eah other. It is a trivial fat that the disrete loales form aregular ategory sine they are equivalent to Set. We prove the parallel result: theompat regular loales form a regular ategory. Of ourse lassially this is a wellknown onsequene of Manes' theorem whih states that the ategory of ompatHausdor� spaes is monadi over Set (see 2.4 III of [Joh82℄). Apart from this lasttheorem the results of the hapter are in general known ([JT84℄ or [Ver92℄), thenovelty is in the presentation: parallel results are presented with parallel proofsbased on the preframe tehniques developed in the previous hapter.3.2 Basi de�nitions and resultsThe importane of the next two de�nitions annot be over emphasised:De�nition: f : X ! Y is a map between loales. Thenf is open i�(1) 
f has a left adjoint 9f ,(2) 9f is a SUP-lattie homomorphism,(3) 9f (a ^ 
fb) = b ^ 9fa 8a 2 
X; b 2 
Y . (Frobenius ondition.)f is proper i�(1) 
f has a right adjoint 8f ,(2) 8f is a preframe homomorphism,(3) 8f (a _ 
fb) = b _ 8fa 8a 2 
X; b 2 
Y . (oFrobenius ondition.)Clearly ondition (2) of the open de�nition and ondition (1) of the properde�nition are redundant. See [JT84℄ and [Ver92℄ for some alternative desriptionsof the open and proper maps respetively. The lassial intuition to apply is the ideaof open and proper ontinuous maps between topologial spaes. It is immediate75



76 CHAPTER 3. OPEN AND PROPER MAPSthat these two lasses of maps are losed under omposition. We develop the theoriesof open and proper loale maps side by side noting their similarities. We argue (byexample) that the two theories are parallel to eah other.Lemma 3.2.1 If X;Y are stably loally ompat loales then f : X ! Y is semi-proper if and only if it satis�es (2) in the de�nition of proper.Proof: Reall from the de�nition of CohLo in Setion 1.7.3 that f is semi-properif and only if 
f preserves �. If 
f preserves � then to prove that 8f preservesdireted joins it is suÆient to show that for every b 2 
X ,8f (b) = W"fj
f()� bgHowever 8f (b) = W"fj� 8f (b)g sine Y is stably loally ompat, and � 8f (b)implies 
f() � b sine 
f preserves � and 
f8f (b) � b. Trivially 8f preserves�nite joins sine it has a left adjoint.In the other diretion say 8f preserves direted joins. Then if a � b, (a; b 2 
X)and 
f(b) � W" S for some S �" 
Y then we have the following impliations:b � 8f ( "_S)b � "_f8f (s)js 2 Sga � 8f (s) some s 2 S
f(a) � s some s 2 SHene 
f(a)� 
f(b). 2Theorem 3.2.1 A subloale i : X0 ,! X is losed if and only if it is proper as aloale map.Proof: Say i : X0 ,! X is a losed subloale. Then
X �! " 8i(0)a 7�! 8i(0) _ aorresponds to a subloale of X isomorphi (in Sub(X)) to i : X0 ,! X . But8a 2 
X and 8b � 8i(0) we have8i(0) _ a � b , a � band so the inlusion of " 8i(0) into 
X is a (preframe homomorphism) right adjointto a 7�! 8i(0) _ aAs for the oFrobenius ondition it amounts to: 8a 2 
X 8b � 8i(0)(b _ (8i(0) _ a) = a _ bin this ase.Conversely say i : X0 ,! X is proper. We know i fators asX0 ,! :8i(0) ,! X



3.2. BASIC DEFINITIONS AND RESULTS 77(i.e. X0 2 Sub(X) is ontained in its losure.) To hek that X0 is a losed subloaleit is suÆient to hek that :8i(0) �Sub(X) X0 and to see this it is suÆient to provethat 
X0 �! " 8i(0)
i(a) 7�! 8i(0) _ ais a well de�ned frame homomorphism. It is well de�ned sine8i(0 _ 
i(a)) = a _ 8i(0)by the oFrobenius ondition and is easily seen to be a frame homomorphism. 2Theorem 3.2.2 A subloale i : X0 ,! X is open if and only if it is open as a map.Proof: Say i : X0 ,! X is open. (X0 ,! X) �= (a ,! X) in Sub(X) for somea 2 
X . But 
X �! # a�a 7�! a ^ �ahas a left adjoint: the inlusion of # a into 
X . The Frobenius ondition thenreads: 8�a 2 
X; 8b � a b ^ (�a ^ a) = �a ^ bwhih is learly true.Conversely, say we have some open map i : X0 ,! X whih is also a subloale. Ilaim it is equal (in Sub(X)) to the open subloale:9i(1) ,! XTo hek 9i(1) �Sub(X) X0 we need to verify
X0 �! # 9i(1)
i(a) 7�! 9i(1) ^ ais well de�ned. But the Frobenius ondition on i implies:9i(1 ^ 
i(a)) = a ^ 9i(1)To hek X0 �Sub(X) 9i(1) we need to know that# 9i(1) �! 
X09i(1) ^ a 7�! 
i(a)is well de�ned. It learly is sine 
i9i(1) = 1. 2.We examine the ase of loale maps to the terminal loale 1, i.e. we look at themaps ! : X ! 1. In the ase when odomain of our map is the terminal objet 1the Frobenius ondition is automati one the left adjoint to 
! is found. We hek9!(a ^ 
!(i)) = i ^ 9!(a)(N.B. it is always the ase that 9f
fa � a. Hene all we ever need to hek isa ^ 9f (b) � 9f (b ^ 
fa).)So we'd like to verify i ^ 9!(a) � 9!(a ^ 
!(i)). As usual when reasoning in 
 wehave only to hek that



78 CHAPTER 3. OPEN AND PROPER MAPSi ^ 9!(a) = 1 ) 9!(a ^ 
!(i)) = 1But if i ^ 9!(a) = 1 then i = 1 and 9!a = 1. Sine i = 1 implies 
!i = 1 the resultis seen to be trivial. What we have shown here is that for any loale X the uniquemap ! : X ! 1 is open if and only if 
! has a left adjoint.A loale is said to be open if and only if ! : X ! 1 is an open map. Notie that ifwe assume the exluded middle then 9! : 
X ! 
, a left adjoint to 
!, an alwaysbe de�ned: 9!(a) = 0 if and only if a = 0and so (assuming the exluded middle) all loales are open.We an apply a similar analysis to the proper maps whose odomain is theterminal loale and get a similar result: ! : X ! 1 is proper if and only if 8! is apreframe homomorphism (if and only if X is ompat). To hek this fat we onlyneed to prove the oFrobenius ondition from the assumption that 8! is a preframehomomorphism. But i � 8!
!(i) for any i and soi _ 8!(a) � 8!(a _ 
!(i))For the opposite diretion note that
!(i) = W"(f0g [ f1j1 � ig)and so if 8!(a _ 
!(i)) = 1 then a _ 
!(i) = 1 i.e.1 = a _ "_(f0g [ f1j1 � ig)= "_(fag [ f1j1 � ig)By applying 8! to both sides we see1 = W"(f8!(a)g [ f1j1 � ig)and so 1 � 8!(a) or 1 � i, i.e. 1 � 8!(a) _ i.3.3 Pullbak stabilityWe have the de�nition: f : X ! Y is a surjetion if and only if 
f is an injetion(if and only if f is an epimorphism). A straightforward appliation of the Frobeniusondition shows that any open f : X ! Y is a surjetion if and only if 9f (1) = 1,and similarly an appliation of the oFrobenius ondition shows that any properf : X ! Y is a surjetion if and only if 8f (0) = 0.We will �nd that the theorems:Theorem 3.3.1 For any loale X, X �= 1 , ! : X ! 1 and � : X ! X �Xare open surjetionsTheorem 3.3.2 For any loale X, X �= 1 , ! : X ! 1 and � : X ! X �Xare proper surjetionsshare the same proof. In order to �nd this proof we need to hek pullbak stabil-ity for open and proper maps. We �nd that to prove these fats the SUP-lattiepresentation of the pushout in frame orresponding to the pullbak is used for theopen result and the preframe presentation of the pushout in frame orrespondingto the pullbak is used for the proper result. We have:



3.3. PULLBACK STABILITY 79Theorem 3.3.3 If W p2 - Y
Xp1 ? f - Zg ?is a pullbak diagram in Lo and g is proper then(i) p1 is proper(ii) 8p1
p2(b) = 
f8g(b) 8b 2 
YFrom (ii) we see that 8g(0) = 0 implies 8p1(0) = 0 and so the lass of propersurjetions is pullbak stable.Proof: We saw in the last hapter (Corollary [2.6.1℄) that 
W is isomorphi toPreFrm< aOb 2 A
B (qua preframe) j(
f() _ a)Ob = aO(
g() _ b)8a 2 
X; b 2 
Y;  2 
Z >We de�ne 8p1 : 
W �! 
XaOb 7�! a _ 
f8g(b)This learly satis�es the `qua preframe' onditions in the presentation of 
W sine8g is a preframe homomorphism. Given any a 2 
X; b 2 
Y;  2 
Z we need tohek (
f() _ a) _ 
f8g(b) = a _ 
f8g(
g() _ b)But this follows from the oFrobenius ondition whih is satis�ed by 
g a 8g.So 8p1 is well de�ned. Is it right adjoint to 
p1?Now 8a 2 
X; b 2 
Y 8p1
p1(a) = 8p1(aO0)= a _
f8g(0)� aand 
p18p1(aOb) = (a _ 
f8g(b))O0= (aO0) _ (
f8g(b)O0)= (aO0) _ (0O
g8gb)� (aO0) _ (0Ob) = aObHene 
p1 a 8p1 .We hek the oFrobenius ondition for this adjuntion. i.e. for every a; �a 2 
Xand every b 2 
Y we want8p1((aOb) _ 
p1(�a)) = �a _ 8p1(aOb)



80 CHAPTER 3. OPEN AND PROPER MAPSWell, LHS = 8p1((a _ �a)Ob)= (a _ �a) _
f8g(b)= �a _ (a _ 
f8g(b))= �a _ 8p1(aOb):Finally given b 2 
Y 8p1
p2(b) = 8p1(0Ob)= 
f8g(b)and so ondition (ii) in the statement of the theorem is satis�ed. 2This proof, via preframe tehniques, is new. The SUP-lattie parallel to the lasttheorem is true and follows a similar proof. It is proved in [JT84℄.Theorem 3.3.4 If W p2 - Y
Xp1 ? f - Zg ?is a pullbak diagram in Lo and g is open then(i) p1 is open(ii) 9p1
p2(b) = 
f9g(b) 8b 2 
YFrom (ii) we see that 9g(1) = 1 implies 9p1(1) = 1 and so the lass of open surje-tions is pullbak stable.Proof: We saw in the last hapter (Corollary [2.6.1℄) that 
W is isomorphi toSUP< a
 b 2 A
B (qua SUP-lattie) j(
f() ^ a)
 b = a
 (
g() ^ b)8a 2 
X; b 2 
Y;  2 
Z >We de�ne 9p1 : 
W �! 
Xa
 b 7�! a ^ 
f9g(b)This learly satis�es the `qua SUP-lattie' onditions in the presentation of 
Wsine 9g is a SUP-lattie homomorphism. Given any a 2 
X; b 2 
Y;  2 
Z weneed to hek (
f() ^ a) ^ 
f9g(b) = a ^ 
f9g(
g() ^ b)But this follows from the Frobenius ondition whih is satis�ed by 9g a 
g.So 9p1 is well de�ned. Is it left adjoint to 
p1?Now 8a 2 
X; b 2 
Y 9p1
p1(a) = 9p1(a
 1)= a ^
f9g(1)� a



3.3. PULLBACK STABILITY 81and 
p19p1(a
 b) = (a ^ 
f9g(b))
 1= (a
 1) ^ (
f9g(b)
 1)= (a
 1) ^ (1

g9gb)� (a
 1) ^ (1
 b) = a
 bHene 9p1 a 
p1.We hek the Frobenius ondition for this adjuntion. i.e. for every a; �a 2 
X andevery b 2 
Y we need9p1((a
 b) ^ 
p1(�a)) = �a ^ 9p1(a
 b)Well LHS = 9p1((a ^ �a)
 b)= (a ^ �a) ^
f9g(b)= �a ^ (a ^ 
f9g(b))= �a ^ 9p1(a
 b)Finally given b 2 
Y 9p1
p2(b) = 9p1(1
 b)= 
f9g(b)and so ondition (ii) in the statement of the theorem is satis�ed. 2We an now exploit the pullbak stability of open surjetions and the statement(ii) of the last theorem in order to show that open surjetions are atually alwaysoequalizers. Again the proper parallel follows an idential proof. The open resultis in [JT84℄. The proper parallel is proved in [Ver92℄: his approah, however, followsa di�erent line.Lemma 3.3.1 If p : X ! Z is an open surjetion thenX �Z X p1 -p2 - X p- Zis a oequalizer diagram in Lo.Proof: pp1 = pp2 by de�nition of pullbak, hene all we need to do is show thatany f : X !W with fp1 = fp2 fators through p : X ! Z.So 
p1
f = 
p2
f and it is suÆient to prove 9p : 
X ! 
Z satis�es 
p9p
f =
f for every , for then 9p : Im(
f) �! 
Z has an inverse, 
p, whih is a framehomomorphism. And then  7! 9p
f will be a frame homomorphism from 
W to
Z.Hene it is suÆient to show 
p9pu = u for any u with 
p1u = 
p2u.
p9pu = 9p1
p2u pullbak result [3.3.4℄= 9p1
p1u= uThe last line is beause 
p1 is a surjetive open as it is the pullbak of a surjetiveopen. 2



82 CHAPTER 3. OPEN AND PROPER MAPSLemma 3.3.2 If p : X ! Z is a proper surjetion thenX �Z X p1 -p2 - X p - Zis a oequalizer digram in Lo.Proof: pp1 = pp2 by the de�nition of pullbak. Thus all we need to do is showthat any f : X !W with fp1 = fp2 fators through p : X ! Z.Say 
p1
f = 
p2
f . It is suÆient to prove 8p : 
X ! 
Z has 
p8p
f = 
ffor every  2 
W . For then 8p : Im(
f)! 
Z has an inverse 
p and so is a framehomomorphism. (Reall that 8p
p(a) = a 8a sine p is a proper surjetion).Hene it is suÆient to hek that 
p8pu = u for any u with 
p1u = 
p2u. Forany suh u we have
p8pu = 8p1
p2u (pullbak result [3.3.3℄)= 8p1
p1u = uThe last line is beause 
p1 is a proper surjetion sine it is the pullbak of a propersurjetion. 2We an now prove Theorems [3.3.1℄ and [3.3.2℄ whih gave two haraterisations ofthe terminal loale. The proofs are so similar that we give but one,Proof: Say ! : X ! 1 and � : X ! X �X are open surjetions.X 1 - XX1 ? �- X �X�?is a pullbak. Hene X 1 -1 - X �- X �Xis a oequalizer and so ��1 exists.But X �X �2 - XX�1 ? ! - 1!?is a pullbak. Hene X �X �1 -�2 - X ! - 1is a oequalizer. �1 = �2 sine ��1 exists. Therefore !�1 exists and so X �= 1. 2The pullbaks of proper/open maps are proper/open; the pullbak of a regularmonomorphism is well known to be a regular monomorphism. Hene:



3.4. DISCRETE AND COMPACT REGULAR LOCALES 83Lemma 3.3.3 (i) The pullbak of a losed subloale is losed. Further, the pullbakof :a ,! Y along f : X ! Y is the losed subloale :
f(a) ,! X.(ii) The pullbak of an open subloale is open. Further, the pullbak of a ,! Yalong f : X ! Y is the open subloale 
f(a) ,! X. 23.4 Disrete and ompat regular loalesWe will onsider two full subategories of loales: those whose �nite diagonals (itsuÆes to onsider ! : X ! 1 and � : X ! X � X) are open, and those whose�nite diagonals are proper. We prove that these two subategories are in fat wellknown: the �rst is the ategory of disrete loales and the seond is the ategoryof ompat regular loales. (So lassially the seond is the ategory of ompatHausdor� spaes.) A proof of these two fats will learly need to follow di�erentpaths sine the de�nitions of disrete and ompat regular are not parallel to eahother in any obvious way. We �rst takle the proof ofTheorem 3.4.1 (Joyal and Tierney) X is disrete , X �! X �X andX !! 1 are open.An `open' lemma is needed �rst:Lemma 3.4.1 If ! : X ! 1 is open then for any S � 
XWS = Wfs 2 Sj9!s = 1g(\you only have to worry about the elements that exist.")Proof: Say s 2 S we need s � Wf�sj�s 2 S 9!�s = 1gWe know s � 
!9!s i.e. s ^ 
!9!s = s Henes � _f�sj9�s = 1g, s ^ 
!9!s � _f�sj9�s = 1g, 
!9!s � s!_f�sj9�s = 1g, 9!s � 8!(s!_f�sj9�s = 1g)To prove the last line we are reasoning in 
 and so must but prove 9!s = 1 )8!(s! Wf�sj9�s = 1g) = 1. But this is trivial. 2There is an alternative desription of the statement 9!(s) = 1. Following John-stone we say s 2 
X (for any loale X) is positive if and only if 8T � 
X if s � WTthen 9t 2 T . Clearly (for open X) if 9!(s) = 1 then s is positive. (For if s � WTthen 1 = 9!(s) � 9!(WT ) = Wt2T 9!(t) and so 9t 2 T sine 1 = f�g and so � 2 9!(t)for some t 2 T .)Conversely if s is positive (s 2 
X; X open) thens = Wf�sj9!(�s) = 1; �s � sgby the last lemma and so there exists �s � s suh that 9!(�s) = 1, hene 9!(s) = 1.So the last lemma implies that if X is open then any s 2 
X is the join ofpositive opens less than it. This result has a onverse:



84 CHAPTER 3. OPEN AND PROPER MAPSLemma 3.4.2 For any loale X if every s 2 
X is the join of positive opens lessthan it then X is open.This lemma is in Johnstone's paper `Open Loales and Exponentiation' ([Joh84℄).Proof: 8s 2 
X the statement(8T )[(s � WT )) (9t 2 T )℄an be viewed as an element of the subobjet lassi�er (i.e. as a truth value). Sowe have a map 9! : 
X �! 
s 7�! (8T )[(s �_T )) (9t 2 T )℄Clearly 9! preserves order.We need to hek 9! a 
!. To hek 9!
!(i) � i we must verify9!
!(i) = 1 ) i = 1But 9!
!(i) = 1 means 
!(i) is positive. But 
!(i) = Wf1j1 � ig and so 1 � i as
!(i) is positive.To see a � 
!(9!(a)), i.e. thata � Wf1j1 � 9!(a)g,we use our assumption that a is the join of positive element less than it, i.e.a = Wf�aj9!(�a) = 1; �a � agClearly 9!(�a) = 1 and �a � a together imply 9!(a) = 1. 2Proof of Theorem [3.4.1℄: Say X �! X �X and X !! 1 are open.We say for any a 2 
X that a is an atom i� a� a �Sub(X�X) � (i� a
a � 9�(1))and 9!a = 1. (NB a� a is a subloale of X �X ; it is easy to hek that it is openand that the element of 
(X �X) that orresponds to it is a
 a.)The omposition of two open maps is open. Hene 
 
!! 
X ( )^a! # a i.e. !a : a! 1is open. The ondition 9!(a) = 1 implies 9!a(1) = 1. Hene !a is an open surjetionfor any atom a.Further a m - Xa� a�a ? m�m- X �X�?is a pullbak sine m�m is a monomorphism in Lo. Thus �a is an open map.9�a(1) = 9�a
m(1)= 
(m�m)(9�(1)) pullbak result [3.3.4℄� 
(m�m)(a
 a) = 1
 1 = 1Hene �a is an open surjetion, and so by Theorem [4.3.1℄ a �= 1. Also atomsbehave as atoms should in the following way: if a1; a2 are two atoms with a1 � a2



3.4. DISCRETE AND COMPACT REGULAR LOCALES 85then a1 = a2. [Prooet: if a1 � a2 then there is a ontinuous map a1 q! a2 inSub(X). But 1 �= a1 and 1 �= a2 hene 
q is easily heked to be a bijetion as wemust have 
(!a1) = 
q Æ
(!a2) and !a1 ; !a2 are isomorphisms.℄Let A denote the set of atoms.De�ne: � : 
X �! PAu 7�! fa 2 Aja � ug� learly preserves �nite meets. As for joins it is suÆient to hek a � Wi2I uiimplies 9i 2 I a � ui for any atom a.Say a � Wi2I uia ^_ui = a ) 9!a(a ^_ui) = 9!a(a)) _ 9!a(a ^ ui) = 1) 9i 9!a(a ^ ui) = 1 = 9!a(a) (reasoning in 
)) a ^ ui = a sine 9!a = (
(!a))�1) a � uiIn fat � has a left adjoint: � : PA �! 
XI 7�! _faja 2 IgWe hek ��(I) � I .Say �a 2 ��(I) then �a � Wfaja 2 Ig and so as above �a � a for some a 2 I . Butthen �a = a by a property of atoms that we have just demonstrated.Finally we must hek that u = ��(u). i.e. u = Wfaja � ug.First I laim that 9�(u) = Wfv 
 vj v 
 v � 9�(u)gCertainly: 9�(u) = Wfv 
 wj v 
 w � 9�(u)gBut v 
 w � 9�(u) ) v 
 w � 9�(1)i.e. v � w � � in Sub(X �X).) v � w = w � v) v 
 w = w 
 vThus 9�(u) = Wfv 
 vj v 
 v � 9�(u)gApply 
� to both sides and reall u � 
�9�(u) and that if v 
 v � 9�(u) thenv � u. [This is beause 9�(u) � u
 u , u � 
�(u
 u) = u .℄We obtain u = Wfvjv 
 v � 9�(u)g= Wfvjv 
 v � 9�(1) v � ugWhih is seen by the `open' Lemma [3.4.1℄ to imply



86 CHAPTER 3. OPEN AND PROPER MAPSu = Wfvj 9!v = 1 v 
 v � 9�(1) v � ugi.e. u = Wfaja is an atom, a � ug 2What follows now is a very di�erent type of proof. It shows that just as thelass of loales whose �nite diagonals are open turns out to be well known (i.e. thedisrete loales) so does the lass of loales whose �nite diagonals are proper: theyare the ompat regular loales. The proof to follow, via preframe tehniques, isnew.Theorem 3.4.2 For any loale X, X is ompat regular if and only if ! : X ! 1and � : X ! X �X are both proper.Proof: It is well known (see Johnstone [Joh82℄ III 1.3) that any regular loale isstrongly Hausdor� i.e. has a losed diagonal. So we know that any regular loaleX has � : X ! X �X proper.We have established already that ! : X ! 1 is proper if and only if X is ompat.What needs to be proven is that if � : X ! X �X and ! : X ! 1 are proper then8a 2 
X a � W"fj� agSine � : X ! X �X is proper we know that for every a; b 2 
X8�
�(aOb) = # _ (aOb)where # is given by# = W"f^i(aiObi)j ^i2I (ai _ bi) = 0 I �nite g(Sine � : X ! X � X is just the losed subloale :# � X � X , see Lemma[2.7.1℄.) Now 8�
�(aOb) = W"fI j
�(I) � a _ bg = 8�
�(bOa)and so we see that for any a in 
X0Oa � # _ aO0; i.e. 0Oa � W"f^i2I((ai _ a)Obi)j ^i (ai _ bi) = 0g - (�)We will use the fat that (for �nite I),^i(ai _ bi) = WI�J1[J2((^i2J1ai) ^ (^i2J2bi))where the J1; J2 are subsets of I . This �nite distributivity rule shows us that if^i(ai _ bi) = 0 then for all �nite subsets J1; J2 � I with I � J1 [ J2 we have(^i2J1ai) ^ (^i2J2bi) = 0. We an also use the above distributivity and the rulesrelating O to 
, e.g. aOb = a
 1 _ 1
 b, to prove that^i(aiObi) = WI�J1[J2 [(^i2J1ai)
 (^i2J2bi)℄(see Lemma [2.7.1℄). Now 8! is a preframe homomorphism and so we an apply theomposite 
X 

X 8! 
 1- 


X 
!
 1- 
X 

X 
�- 
Xto both sides of (�) to obtaina � "_f
�(^i(
!8!(ai _ a)Obi))j ^i (ai _ bi) = 0g= "_f
�[ _I�J1[J2[^i2J1(
!8!(ai _ a))
 (^i2J2)bi℄℄j ^i2I (ai _ bi) = 0g= "_f _I�J1[J2[(^i2J1 (
!8!(ai _ a))) ^ (^i2J2bi)℄j ^i2I (ai _ bi) = 0gand so to prove that a � W"fj� ag all we need do is hek that



3.5. HISTORICALLY IMPORTANT AXIOMS 87(^i2J1(
!8!(ai _ a))) ^ (^i2J2bi) � Wfj� aggiven any (�nite) olletion of ais and bis with (^i2J1ai) ^ (^i2J2bi) = 0. Now^i2J1
!8!(ai _ a) = 
!8!((^i2J1ai) _ a)and 
!8!(�) = W
Xf1j1 � �g for any � 2 
Xand so ^i2J1(
!8!(ai _ a)) ^ ^i2J2bi= W
Xf^i2J2bij1 � (^i2J1ai) _ agBut for any  2 f^i2J2bij1 � (^i2J1ai) _ ag we have � a and so(^i2J1(
!8!(ai _ a)) ^ (^i2J2bi) � Wfj� agas required. 2Given this last result we now hange our notation slightly and shall refer tothe ompat regular loales as the ompat Hausdor� loales. The ategory ofompat Hausdor� loales will be written KHausLo. We have just shown thatthe ompat Hausdor� loales are parallel to the disrete loales. Notie that if wewere not working in a onstrutive ontext and were assuming the exluded middlethen, sine all loales would be open, suh a parallel beomes invisible. It is onlyby working onstrutively that we an appreiate the full fore of the parallel.3.5 Historially Important AxiomsThis setion onsists of an argument whih shows that the onstrutive prime idealtheorem is parallel to the exluded middle. The setion is separate from the rest ofthe work and is the only time that we use the points of a loale in a ontext that isnot motivational. This result is new.For any loale X onsider the map�X : 
X �! PptXa 7�! fp 2 ptX j
p(a) = 0gIt is order reversing. Consider the results:(i) 8X ompat Hausdor�, �X is an injetion.(ii) 8X disrete, �X is an injetion.We show that (i) is true if and only if the onstrutive prime ideal theorem(CPIT) is true and that (ii) is true if and only if the exluded middle holds. So wehave found a result whih is true if and only the exluded middle holds and whoseproper parallel is true if and only if CPIT. The grander onlusion is that CPIT is`parallel' to the exluded middle; though the reader is asked to bear in mind thefat that, so far, no formal de�nition has been given for our parallel.Before proof we note that if �Y is an injetion then so is �X for any retrat Xof Y . To see this say �Y is an injetion and there exists q : Y ! X , i : X ! Y suhthat q Æ i = 1. If a; �a 2 
X satisfyfp 2 ptX j
p(a) = 0g = fp 2 ptX j
p(�a) = 0g



88 CHAPTER 3. OPEN AND PROPER MAPSthen f�p 2 ptY j
�p(
q(a)) = 0g = f�p 2 ptY j
�p(
q(�a)) = 0gand so as �Y is an injetion we get 
q(a) = 
q(�a) allowing us a = �a sine q Æ i = 1.Hene �X is injetive.Proof that (i) , CPIT: Assume CPIT. By the preeding remarks and the fatthat all ompat Hausdor� loales are stably loally ompat (and the fat that thestably loally ompat loales are the retrats of the oherent loales) it is learlysuÆient to prove �Y is an injetion for every oherent Y in order to onlude that�X is an injetion for all ompat Hausdor� X .Say Y is oherent and I; J 2 Idl(K
Y ) are suh thatfp 2 ptY j
p(I) = 0g = fp 2 ptY j
p(J) = 0g (�)We prove J � I . Say j 2 J . Clearly, by the assumption of CPIT and by Lemma[1.3.4℄ it is suÆient to prove f [j℄ = 0 for every distributive lattie homomorphismf : K
Y= �I�! 
in order to onlude j 2 I . But every suh f orresponds to a point, p, of Y with theproperty 
p(I) = 0. Hene 
p(# j) = 0 by (�) and so f [j℄ = 0 as required. ThusJ � I . I � J follows symmetrially and so �Y is an injetion for every oherent Yassuming CPIT.Conversely assume �X is an injetion for every ompat Hausdor� X . To onludeCPIT it is suÆient (by Lemma [1.8.1℄) to show that for every Boolean algebra B ifb 2 B has the property that f(b) = 0 for every distributive lattie homomorphismf : B ! 
 then b = 0. Say b 2 B enjoys suh a property. Set X to be the loalewhose frame of opens is Idl(B). So X is Stone and so is ompat Hausdor�. Clearlyfp 2 ptX j
p(# b) = 0g = fp 2 ptX j
p(0) = 0gby assumption about b 2 B. Hene, sine �X is an injetion, we get b = 0. 2Proof that (ii) , exluded middle holds: Reall that all disrete loalesare onstrutively spatial (Setion 1.6) and further that the frame homomorphismorresponding to the ounit:
�X : 
X �! PptXa 7�! fpj
p(a) = 1gis a surjetion.Assume the exluded middle. Say X is a disrete loale. Then 
X = PA for someset A. It follows that for every T 2 
Xfp 2 ptX j
p(T ) = 0g = fp 2 ptX j
p(T ) = 1gby the exluded middle (where T  is the omplement of T ). If �X (T1) = �X (T2)for some opens T1; T2. Thenfpj
p(T 1 ) = 1g = fpj
p(T 2 ) = 1gand so by spatiality of X we have that T 1 = T 2 . Leading us to T1 = T2. Hene �Xis injetive. We onlude (using the exluded middle) that (ii) is true.Conversely say �X is an injetion. We know PptX �= 
X . I laim that



3.6. FURTHER RESULTS ABOUT PROPER AND OPEN MAPS 89fpj
p(a) = 0g = :fpj
p(a) = 1gwhere : is Heyting negation in Ppt(X). It will then follow that (
�X)�1 Æ �X isHeyting negation on 
X . Injetivety of �X will then imply injetivety of : : 
X !
X . But :::a = :a for any open of any frame and so ::a = a for all a 2 
X if: is injetive. So 
X would then be Boolean for every disrete loale X , i.e. PAis Boolean for any set A. This implies the exluded middle is true in our topos.Verifying the laim is straightforward. We needfpj
p(a) = 0g = SfT 2 PptX jT \ fpj
p(a) = 1g = �gThe inlusion of the left hand side in the right hand side is trivial. Say T 2 PptXis suh that T \ fpj
p(a) = 1g = �Then T = fpj
p(�a) = 1g for some �a 2 
X sine 
�X is a surjetion to PptX . Thusa ^ �a = 0 by spatiality of 
X (use fpj
p(0) = 1g = �). Thus for all p 2 T
p(a) = 
p(a) ^ 1 = 
p(a) ^ 
p(�a)= 
p(a ^ �a) = 
p(0) = 0Hene T � fpj
p(a) = 0g: 23.6 Further results about proper and open mapsWe now turn to the question of regularity of our two parallel ategories (the disreteloales and the ompat Hausdor� loales). We �nd that a proof that they are reg-ular follows the same route. The fat that the ategory DisLo of disrete loalesis regular is of ourse known already sine we know that it is equivalent to Set(where Set is our bakground topos). However the observation that the ategoryKHausLo of ompat Hausdor� loales is regular will bear muh fruit: we knowfrom Freyd and �S�edrov ([FS90℄) that any regular ategory gives rise to an allegoryin the vein of `sets and relations'. Along the way some more tehnial results aboutproper and open maps are shown.Theorem 3.6.1 (Vermeulen) If Y f! X is a map between ompat Hausdor�loales then f is proper.Proof: Y f - XY �X(1; f) ? f � 1- X �X�?is a pullbak square so (1; f) is proper. But Y � X �2! X is proper as it is thepullbak of the proper map Y !! 1. Properness is easily seen to be stable underomposition. Hene �2 Æ (1; f) is proper. i.e. f is proper. 2



90 CHAPTER 3. OPEN AND PROPER MAPSNotie that exatly the same proof proves that if Y f! X is a map betweendisrete loales then f is open.To hek that KHausLo is regular we need to hek that any f : X ! Y withX;Y ompat Hausdor� has a fatorization as a over followed by monomorphism.Certainly it has a fatorization in Lo as an epimorphism followed by a regularmonomorphism: X q! f [X ℄ i! Y (see Setion 2.7) We o�er aProof that f [X ℄ is ompat Hausdor�: [N.B. this result an be generalized inthe obvious way i.e. we only really need X ompat and Y Hausdor�.℄f [X ℄ i - Yf [X ℄� f [X ℄�f [X℄ ? i� i- Y � Y�Y?is a pullbak square and so �f [X℄ is proper.To prove that ! : f [X ℄ ! 1 is proper we appeal to the following general result: ifX q! Y f! Z in Lo are suh that f 0(= f Æ q) is proper and q is a surjetion then fis proper. Take the ase f =!f [X℄ and f 0 =!X to prove that f [X ℄ is ompat. Theproof of this general result is straightforward, an be found in [Ver92℄ and requiresthe following manipulations: (note that sine q is surjetive 8q
q(d) = d 8d)Say S �" 
Y , 8f "_S = 8f8q
q( "_S)= 8f 0
q( "_S)= 8f 0 "_f
qdjd 2 Sg= "_f8f 0
qdjd 2 Sg= "_f8f8q
qdjd 2 Sg= "_f8fdjd 2 Sgand 8f (a _ 
fb) = 8f8q
q(a _ 
fb)= 8f 0(
qa _ 
f 0b)= 8f 0
qa _ b = 8fa _ b: 2Similarly if X q! f [X ℄ i! Y is the epi/regular mono deomposition of X f! Y , andX;Y are disrete, then so is f [X ℄. As before we see straight away that �f [X℄ isopen sine it is a pullbak of the open Y �! Y � Y . That ! : f [X ℄! 1 is open thenfollows exatly as before from:



3.6. FURTHER RESULTS ABOUT PROPER AND OPEN MAPS 91Lemma 3.6.1 If X;Y; Z are loales and X q! Y f! Z is suh that f 0(= f Æ q) isopen and q is surjetive (i.e. epi in Lo, i.e. 
q injetive) then f is open.This result an be found as Proposition 1.2 VII of [JT84℄.Proof: De�ne 9f : 
Y ! 
Zy 7! 9f 0
qyHene 9fy � z , 9f 0
qy � z, 
qy � 
f 0z, 
qy � 
q
fz, y � 
fz (
q inj.)and so 9f a 
f .Also 9f (y ^
fz) = 9f 0(
qy ^ 
f 0z)= 9f 0
qy ^ z = 9fy ^ zand so f is open. 2Heading towards a proof of regularity of KHausLo (and DisLo) we need sometehnial lemmas:Lemma 3.6.2 If X f! Y and �X �f! �Y are two open(proper) maps thenX � �X f� �f�! Y � �Yis open(proper).Proof: Take 9f� �f (a
 �a) = 9fa
9 �f�a. (Use SUP-lattie de�nition of tensor prod-ut.) Take 8f� �f (aO�a) = 8faO8 �f�a. (Use preframe de�nition of tensor produt.) 2Lemma 3.6.3 KHausLo�Lo is losed under the formation of �nite limits inLo. (i.e. the inlusion funtor reates �nites limits.)Notie that exatly the same proof (to follow) demonstrates that DisLo�Lo islosed under �nite limits.Proof: The terminal loale 1 is ompat Hausdor�. We �rst hek that if X;Y areompat Hausdor� then so is X � Y . X � Y �1! Y is proper sine it is the pullbakof the proper map X !! 1. Hene omposition with the proper Y !! 1 proves that! : X � Y ! 1 is proper.It is straightforward to hek thatX � Y Id - X � Y(X � Y )� (X � Y )� ? i- (X �X)� (Y � Y )�X ��Y?



92 CHAPTER 3. OPEN AND PROPER MAPSis a pullbak, where i is the obvious twist isomorphism. It follows that � is proper,and so X � Y is ompat Hausdor�.Say now that we are given an equalizer diagramE e - X f -g - Yin Lo, where X and Y are ompat Hausdor�. First note that e is proper sineit is the pullbak of the proper map �Y along (f; g). Thus sine E !! 1 an befatored as E e! X !! 1 we know that !E is proper. FurtherE e - XE �E� ? e� e- X �X�?is a pullbak sine e is mono. Hene �E is proper and so E is a ompat Hausdor�loale. 2Theorem 3.6.2 If X m! Y is a monomorphism in KHausLo then m is a regularmonomorphism in Lo.Proof: X m! Y an be fatored as X q! m[X ℄ i! Y where q is a proper surjetion.But by a orollary to the pullbak result (Lemma [3.3.2℄) we know that for anyproper surjetion q X �m[X℄ X p1 -p2 - X q- m[X ℄is a oequalizer diagram in Lo. By the results that we've just proven we knowthat this diagram is in fat inside KHausLo. Hene mp1 = mp2 )p1 = p2 ) q is an isomorphism. Thus m is regular sine i is. 2This last result is really all we need to hek that KHausLo is regular. To provethat a ategory is regular one needs to hek that (it has �nite limits and) for anyf : X ! Y there is an image fatorizationX q! f [X ℄ i,! Yand suh a fatorization is pullbak stable (see [FS90℄ or [BGO71℄). But what wehave shown above is that the usual epi/regular mono deomposition in Lo givesrise to suh an image fatorization. It is then easy to see that the overs are theproper surjetions and we know that these are pullbak stable. We have proven:Theorem 3.6.3 KHausLo is regular.2Also, as another orollary to [3.6.2℄, notie that subobjets in KHausLo (i.e.monomorphisms inKHausLo) are exatly the losed subloales of ompat Haus-dor� loales. Certainly they are proper; but we need [3.6.2℄ in order to onludethat these subobjets are atually subloales. Hene they are proper maps and aresubloale maps. i.e. they are losed (use Theorem [3.2.1℄).



Chapter 4Compat Hausdor� Relations
4.1 IntrodutionWe establish the existene, via Freyd and �S�edrov's de�nitions ([FS90℄), of a ate-gory of ompat Hausdor� relations (parallel to the ategory of sets and relations;omposition is given by relational omposition). We then give a muh more on-rete desription of what this ategory is like i.e. we give an expliit de�nition of afuntion that de�nes relational omposition of losed subloales.We �nd that there is a bijetion between the losed subloales of a loale produtX � Y (where X and Y are ompat Hausdor�) and preframe homomorphismsfrom 
Y to 
X . This result is used to establish an equivalene between the ate-gory of ompat Hausdor� loales with losed relations and another ategory whosemorphisms are muh more onrete. The onnetion between preframe homomor-phisms and losed subloales will be exploited onsiderable in the rest of this work,in partiular we are able to use the funtion that de�nes relational ompositionof losed subloales to turn our spatial intuitions (about relational omposition oflosed subspaes) into suitable preframe formulas.Although the results presented here are new we do �nd some of the orollaries tothem in Vikers' paper [Vi94℄. The thesis is, form now on, entirely onerned withthe proper side of our parallel i.e. preframe tehniques. However we will not proveresults in isolation, the open parallels of our results (whih are all known) are statedfor ompleteness.4.2 Relational ompositionIf C is a regular ategory and P � (p1; p2)- X � YQ � (q1; q2)- Y � Z93



94 CHAPTER 4. COMPACT HAUSDORFF RELATIONSare monis in C, then the relational omposition of P and Q (Q Æ P ) is given asfollows: form the pullbak P �Y Q a2 - QPa1 ? p2 - Yq1 ?then Q Æ P is de�ned to be the image ofP �Y Q (p1a1)� (q2a2)- X � YIf C is just Set then the pullbak P �Y Q would be the setf(x; y; �y; �z)j(x; y) 2 P; (�y; �z) 2 Q; y = �yg:The funtion (p1a1)� (q2a2) is given by(x; y; �y; �z) 7�! (x; �z)and so its image is f(x; �z)j9y (x; y) 2 P; (y; �z) 2 Qgwhih is the usual de�nition of relational omposition of subsets.Given a general (regular) C we an now form the ategoryREL(C) with C-objets asobjets and relations as morphisms. Composition is given by relational ompositionand the identity on an objet is the diagonal. In fat REL(C) is an allegory in thesense of Freyd and �S�edrov [FS90℄ (although see [BGO71℄ for an earlier desriptionof REL).We will use the ategory REL(KHausLo) a lot in what follows and shall allit KHausRel.The de�nition of relational omposition as given above doesn't give us muh ofan algebrai handle. In order to �nd suh an algebrai handle we ontinue withour spatial intuition. Say X;Y; Z are spaes andR1 � X � Y;R2 � Y �Z are bothlosed. So Ri = :Ii where : is set theoreti omplement and the Iis are open. (Weare only looking at the spatial ase in order to justify the hoie of formula to followand so are at liberty to use the exluded middle.)We want R2 ÆR1 to be losed and so to de�ne Æ all we need de�ne is some funtion� : 
(X � Y )�
(Y � Z)! 
(X � Z)suh that R2 ÆR1 = : � (I1; I2). Given the fats about preframe tensors disussedin Chapter 2 it should be lear that we only need be onerned with the asesI1 = U1OV1 I2 = V2OW2for some opens U1; V1; V2;W2. We know (x; z) 2 R2 Æ R1 i� 9y xR1y yR2z.Hene (x; z) 2 �(I1; I2) i� 8y (x:R1y) _ (y:R2z). Hene(x; z) 2 �(I1; I2) , 8y((x; y) 2 I1) _ ((y; z) 2 I2), 8y(x 2 U1 _ y 2 V1 _ y 2 V2 _ z 2 W2), (x 2 U1 _ z 2 W2) _ Y � V1 [ V2, (x; z) 2 U1OW2 _ Y � V1 [ V2Now say R1� X � Y;R2� Y � Z are losed subloales. De�ne



4.2. RELATIONAL COMPOSITION 95R2 ÆR1 = : � (aR1 ; aR2)where aRi is the open orresponding to the losed subloale Ri and� : 
(X � Y )�
(Y � Z)! 
(X � Z) is de�ned on generators as�(a1Ob1; b2O2) = a1O2 _ 
!(1 � b1 _ b2)In fat we have to fator � through ��:�� : 
X 

Y 

Z ! 
X 

ZaObO 7! aO _ 
!(1 � b)sine to make sure that we are de�ning a funtion we need to de�ne it on allgenerators of some tensor. We need to hek that �� is well de�ned. i.e. that(a; b; ) 7! aO _ 
!(1 � b)is a preframe trihomomorphism. This follows from the ompatness of 
Y . Thentake �(I1; I2) = ��(`12 I1 _`23 I2) where the `s are frame oprojetions.Theorem 4.2.1 If X;Y; Z are ompat Hausdor� loales then the funtion
X �
Y �
Z �! 
X 

Z(a; b; ) 7�! (aO) _
!(1 � b)is a preframe trihomomorphism and so indues a preframe homomorphism�� : 
X 

Y 

Z �! 
X 

ZThere are preframe homomorphisms
(�12) : 
X 

Y �! 
X 

Y 

ZaOb 7�! aObO0
(�23) : 
Y 

Z �! 
X 

Y 
 ZbO 7�! 0ObODe�ne � : (
X

Y )�(
Y 

Z) �! 
X

Z by I �J = ��(
�12I_
�23J), thenif :I � X � Y;:J � Y � Z are two monis in KHausLo then their relationalomposition is given by :(I � J).Before proof we �nd an alternative formula for ��. Note that for a 2 
X; b 2 
Y; 2 
Z 
�13(��(aObO)) = 
�13(aO _ 
!(1 � b))= aO0O __f1j1 � bg� aObOThus 
�13(��(I)) � I for all I 2 
X 

Y 

Z. And��
�13(aO) = ��(aO0O)= (aO) _
!(1 � 0)� aO



96 CHAPTER 4. COMPACT HAUSDORFF RELATIONSand so J � ��
�13(J) for all J 2 
X 
 
Z. Hene �� is right adjoint to 
�13 i.e.�� = 8�13 .Proof: For I 2 
X 

Y , J 2 
Y 

Z we are trying to prove that:J Æ :I = :8�13(IO0 _ 0OJ).It is easy to see that (1

�)(IO0) = I (� : Y � Y � Y ) and so sineIOJ = (IO(0O0) _ (0O0)OJ) we have to prove:J Æ :I = :8�13(1

�
 1)(IOJ)Now set P (p1;p2)� X � Y � :I � X � Y; Q (q1;q2)� Y � Z � :J � Y � Z, and tode�ne Q Æ P we form the pullbak:P �Y Q a2 - QPa1 ? p2 - Yq1?whih is well know to be de�ned equivalently by the pullbakP �Y Q p2a1 = q1a2- YP �Q(a1; a2) ? p2 � q1- Y � Y� ?\P �Y Q is a losed subloale of P �Q (we are working in KHausLo). The openorresponding to this losed subloale is given by
(p2 � q1)(#)= (
p2)
 (
q1)(#)(see Lemma [3.3.3℄). Now
p2 : 
Y ! 
X 

Y !" Ib 7! 0Ob 7! I _ 0Ob
q1 : 
Y ! 
Y 

Z !" J�b 7! �bO0 7! J _ �bO0Realling that # = W"f^i(biO�bi)j ^i2I (bi _ �bi) = 0 I �nite gwe an see that the open orresponding to the losed subloale P �Y Q is(IOJ) _ (0O#O0)The de�nition of Q Æ P is that it is the image of the ompositionP �Y Q �(a1 � a2)- P �Q �(p1; p2)� (q1; q2)- X � Y � Y � Z �14- X � ZHowever P �Y Q� X � Y � Y � Z is less than



4.2. RELATIONAL COMPOSITION 97X � Y � Z 1���1� X � Y � Y � Zin the poset Sub(X � Y � Y � Z). (This is just the statement that0O#O0 � (IOJ)_ (0O#O0).) And so P �Y Q is a losed subloale of X � Y �Z.The open orresponding to it is given by (1

�
 1)((IOJ) _ (0O#O0))= (1

�
 1)(IOJ). So the image of the ompositionP �Y Q �(a1 � a2)- P �Q �(p1; p2)� (q1; q2)- X � Y � Y � Z �14- X � Zis given by the image of:(1

�
 1)(IOJ)� X � Y � Z �13�! X � Z(sine �14 Æ (1��� 1) = �13) and the open orresponding to this image is8�13(1

�
 1)(IOJ).To see this last line reall that the image of f : X ! Y in KHausLo is given by:8f (0) ,! Y . 2Yet another formula for � an be found:�(a1Ob1; b2O2) = (a1O2) _ 
!(1 � b1 _ b2)= a1O2 _ "_(f0g [ f1j1 � b1 _ b2g= "_(fa1O2g [ f1j1 � b1 _ b2g)Theorem 4.2.2 KHausRel is a ategory.Proof: The reader may onsult the proof that REL(C) is a ategory for any regularC (in [FS90℄ for example) in order to dedue that KHausRel is a ategory. Weinlude the following diret proof for ompleteness.The problem is to show assoiativity of � and that # orresponds to the identity.For suitable a1Ob1; b2O2; 3Od3 we �nd�(a1Ob1; �(b2O2; 3Od3)) = �(a1Ob1; "_(fb2Od3g [ f1j1 � 2 _ 2g)= "_(f�(a1Ob1; b2Od3)g [ f1j1 � 2 _ 3g)= "_(f "_(fa1Od3g [ f1j1 � b1 _ b2g)g [ f1j1 � 2 _ 3g)= "_(fa1Od3g [ f1j1 � b1 _ b2g [ f1j1 � 2 _ 3g)A similar manipulation on �(�(a1Ob1; b2O2); 3Od3) redues it to the same term.# is given by the formula:# = W"f^i(biO�bi)j ^i (bi _ �bi) = 0gWe want �(#; bOa) = bOa for appropriate a; b.



98 CHAPTER 4. COMPACT HAUSDORFF RELATIONS�(#; bOa) = "_f�(^i(biO�bi); bOa)j ^i (bi _ �bi) = 0g= "_f^i[(biOa) _ 
!(1 � �bi _ b)℄j ^i (bi _ �bi) = 0gSay (bi;�bi)i2I is a �nite olletion of opens suh that ^i(bi _ �bi) = 0. Using the�nite distributivity law:̂ i(bi _ �bi) = W(^i2J1bi) ^ (^i2J2�bi)(where the join is over all pairs J1; J2 � I suh that J1; J2 are �nite and I � J1[J2)we see that (^i2J1bi) ^ (^i2J2�bi) = 0 for every suh pair. By applying the same�nite distributivity law to the meet^i[(biOa) _ 
!(1 � �bi _ b)℄we �nd that to onlude �(#; bOa) � bOa it is suÆient to prove:(^i2J1 (biOa)) ^ (^i2J2
!(1 � �bi _ b)) � bOaBut ^i2J2
!(1 � �bi _ b) = 
!(1 � ^i2J2�bi _ b)� 
!(^i2J1bi � b)by the fat that (^i2J1bi) ^ (^i2J2�bi) = 0. However for any opens ; d ^
!( � d) � d(to see this formally note 
!( � d) = Wf1j � dg and joins distribute over �nitemeets). Thus �(#; bOa) � bOa.Proving the opposite inequality requires an appliation of Theorem [3.4.2℄: weneed to know that ompat Hausdor� loales are regular (as a separation axiom ofourse, rather than as a whole ategory!). i.e. we exploit the fat that for any openb, b = W"fb0jb0 � bgand so bOa = W"fb0Oajb0 � bgSay b0 � b. Then there exists  suh that b0 ^  = 0 and 1 � b _ . Sob0Oa � (0Oa) _ 
!(1 �  _ b)b0Oa � (b0Oa) _
!(1 � 0 _ b)i.e. b0Oa � ^i2f1;2g[(biOa) _ 
!(1 � �bi _ b)℄where b1 = 0;�b1 = ; b2 = b0 and �b2 = 0. But^i2f1;2g(bi _ �bi) = (0 _ ) ^ (b0 _ 0)=  ^ b0 = 0



4.3. AXIOMS ON RELATIONS 99and so b0Oa � �(#; bOa). Hene bOa � �(#; bOa). 2We have an important tehnial lemma whih will help us relate losed sublo-ales of X�Y to preframe homomorphisms 
Y ! 
X . Indeed will see that losedsubloales of X � Y and preframe homomorphisms 
Y ! 
X are the same thingprovided X;Y are ompat Hausdor�.Lemma 4.2.1 If f1 : 
X ! 
 �X; f2 : 
Z ! 
 �Z are preframe homomorphismsand X; �X;Y; Z; �Z are ompat Hausdor� loales and I 2 
X 
 
Y; J 2 
Y 
 
Zthen (f1 
 f2)(I � J) = (f1 
 1)(I) � (1
 f2)(J)Proof: We �rst hek the ases I = aOb; J = �bO�.(f1 
 1)(I) � (1
 f2)(J)= ��((f1aObO0) _ (0O�bOf2�))= ��(f1aO(b _ �b)Of2�)= "_(ff1aOf2�g [ f1j1 � b _ �bg)= (f1 
 f2) "_(faO�g [ f1j1 � b _ �bg)= (f1 
 f2)(I � J):The result then follows for general I , J sine � is a preframe bihomomorphism. 2We an interpret this lemma spatially. Reall that if g : X ! Y is a loale mapbetween ompat Hausdor� loales then for any losed subloale :I � X of X itsimage under g (written g(:I)) is given by :8g(I). So the lemma ould have beenstated: given g1 : X ! �X; g2 : Z ! �Z with X; �X;Y; Z; �Z ompat Hausdor� thenfor any losed relations :I � X � Y;:J � Y � Z(g1 � g2)(:J Æ :I) = ((1� g2)(:J)) Æ ((g1 � 1)(:I))(Take f1 = 8g1 and f2 = 8g2 in the lemma.)4.3 Axioms on relationsWe would like to use our relational omposition on ompat Hausdor� loales inorder to apture well known spatial ideas about sets and relations. Often whenlooking at the upper losure of a subset with respet to some relation R we areinterested in the ases when R is a preorder, or a partial order, or transitive, orinterpolative et. These axioms an be expressed using relational omposition:R reexive , � � RR transitive , R ÆR � RR interpolative , R � R ÆRR antisymmetri , R \ �R � �



100 CHAPTER 4. COMPACT HAUSDORFF RELATIONSwhere � is the diagonal on X and � is the twist isomorphism X �X ! X �X .The loali version of the above is lear: if X is a ompat Hausdor� loale and Ris a losed subloale of X �X then we sayR reexive , � � RR transitive , R ÆR � RR interpolative , R � R ÆRR antisymmetri , R ^ �R � �:Where � is the inlusion of losed subloales and � : X � X �X is the (losed)diagonal. It is important to realize how these axioms are going to be used in pratie.The diagonal is losed so, � = :#� X �Xwhere # = W"f^i(aiObi)j ^i2I (ai _ bi) = 0; I �nite g. So if R = aOb then theantisymmetri axiom is the statement that for every olletion (ai; bi)i2I (I �nite)with ^i2I (ai _ bi) = 0 we have^i(aiObi) � (aOb) _ (bOa)The order reverses sine :a �Sub(X) :b if and only if b � a for any a; b 2 
X .Say R is some relation on a set X (so R is a subset of X �X), then given anysubset �X of X we often want to look at the `upper losure' of �X with respet to R.i.e. the set fx 2 X j9y 2 �X yRxg (*)Now X �= 1 �X and so PX �= P (1 �X). It is easy to see that the set (*) is theimage under this last orrespondene of the relational omposition of R � X �Xand f(�; x)jx 2 �Xg � 1 � X (1 = f�g). i.e. upper losure an be expressed viarelational omposition.Say R is some losed relation on a ompat Hausdor� loale X , and �X is somelosed subloale of X (so �X � X = :a � X for some a 2 
X) then we ande�ne an R-upper losure of �X. Similarly to the disrete ase just desribed losedsubloales of 1�X are in bijetive orrespondene with losed subloales of X . But1� �X is a losed subloale of 1�X , and so we take its relational omposition withR� X �X and then transform the subloale of 1�X that we get to a subloaleof X . This de�nes the R-upper losure of �X. Symbolially the R-upper losure of�X is �2(R Æ (1� �X))(Reall �2 : 1�X ! X is an isomorphism.)Symmetrially we an de�ne the lower losure of a losed subloale with respetto a losed relation.We an also de�ne the R-lower losure of a subset �Y of some set Y if R is arelation on X � Y where Y is some other set. We are referring to the setfx 2 X j9y 2 �Y xRygGiven a losed relation R� X � Y where X;Y are ompat Hausdor� loales andgiven �Y a losed subloale of Y we de�ne the R-lower losure of �Y to be the losedsubloale given by



4.3. AXIOMS ON RELATIONS 101�Y ÆRThis is, of ourse, an abuse of notation. �Y is not a relation and the result of �Y ÆRis not a losed subloale, it is a losed relation. We are assuming that the relationalomposition Æ is performed on �Y �1� Y �1, and that the result is omposed withthe isomorphism �1 in order to obtain a subloale of X .This notion of R-lower losure with respet to some losed relation R on ompatHausdor� loales X;Y gives rise to a preframe morphism  R : 
Y ! 
X . Theproedure for de�ning  R is: take b 2 
Y then de�ne  R by : Rb = the lowerlosure of :b. We use the notation R = :aR � X �X in order to talk about theelement of 
(X)
 
(X) orresponding to R. We an use the � funtion to de�ne R:  R : b 7�! aR � bN.B. this is an abuse of notation. � annot take b as one of its arguments, so reallywe are looking at the funtionb 7�! (
�1)�1(aR � (bO0))Where 
�1 : 
X �! 
X 

is the isomorphism a 7! aO0. It is lear from the de�nition of � that  R is a pre-frame homomorphism.Moreover the assignment aR 7!  R from 
X 
 
Y to PreFrm(
Y;
X) is apreframe homomorphism. We aim to show that it is an isomorphism. Say we aregiven a preframe homomorphism  : 
Y ! 
X we an de�ne a losed subloaleR = :a � X � Y by a = ( 
 1)(#)Theorem 4.3.1 If X;Y are ompat Hausdor� loales thenPreFrm(
Y;
X) �= 
X 

Yas preframes.Before the proof we need a tehnial lemma.Lemma 4.3.1 For any I 2 
X 
 
Y (X;Y ompat Hausdor�) the preframehomomorphism 
Y 

Y �! 
X 

YJ 7�! I � Jan be fatored as
Y 

Y 
�1 
 1- 
Y 


 
Y (I � ( ))
 1- 
X 



Y (
�1)�1 
 1- 
X 

YProof: We need to hek for any J 2 
Y 

Y thatI � J = ((
�1)�1 
 1)((I � ( ))
 1)(
�1 
 1)(J)



102 CHAPTER 4. COMPACT HAUSDORFF RELATIONSAs in tehnial Lemma [4.2.1℄ it is learly suÆient to hek the ases J = b1Ob2I = aOb.But then LHS = (aOb) � (b1Ob2)= "_(faOb2g [ f1j1 � b1 _ bg)RHS = ((
�1)�1 
 1)((aOb � ( ))
 1)(b1O0Ob2)= ((
�1)�1 
 1)([(aOb) � (b1O0)℄Ob2)= ((
�1)�1 
 1)( "_(faO0g [ f1j1 � b _ b1g)Ob2)= ((
�1)�1 
 1) "_(faO0Ob2g [ f1j1 � b1 _ b2g)= "_(f((
�1)�1 
 1)(aO0Ob2)g [ f1j1 � b1 _ bg)= "_(faOb2g [ f1j1 � b1 _ bg) 2Proof of Theorem [4.3.1℄ De�ne� : PreFrm(
Y;
X) �! 
X 

Y 7�! ( 
 1)(#)� : 
X 

Y �! PreFrm(
Y;
X)I 7�! (b 7! (
�1)�1(I � (bO0)))We need to hek � Æ � = id and � Æ � = id.But (�(I)
 1) = ((
�1)�1
 1)((I � ( ))
 1)(
�1
 1) by the de�nition of �. Hene(�(I) 
 1)(J) = I � J for every J 2 
Y 
 
Y by the last lemma. It follows that(�(I)
1)(#) = I �#. But I �# = I sine the diagonal is the identity for relationalomposition. Hene � Æ � = id.On the other hand for any a 2 
Y (and any  2 PreFrm(
Y;
X))[(� Æ �)( )℄(a) = [�(( 
 1)(#))℄(a)= (
�1)�1(( 
 1)(#) � (aO0))= (
�1)�1(( 
 1)(#) � (1
 1)(aO0))= (
�1)�1( 
 1)(# � (aO0)) by Lemma [4.2.1℄ with f1 =  ; f2 = 1= (
�1)�1(( 
 1)(aO0))= (
�1)�1( (a)O0)=  (a) 2As an immediate orollary notie that a relation R ,! X�X is reexive if and onlyif  R(a) � a 8a 2 
XThe proof of Theorem [4.3.1℄ shows that there is an order reversing bijetive or-respondene between the losed relations on two ompat Hausdor� loales X;Yand preframe homomorphisms from 
Y to 
X . By looking at the SUP-lattiedesription of loales the above an be translated into a proof of



4.3. AXIOMS ON RELATIONS 103Theorem 4.3.2 If X;Y are disrete loales thenSUP(
Y;
X) �= 
X 

Yas SUP-latties.Proof: As stated in the preamble we an repeat the above proof (of Theorem[4.3.1℄) with SUP-lattie tensor in plae of preframe tensor. However we know thatthe ategory of disrete loales is equivalent to the ategory of sets (=the bak-ground topos) and so we an o�er a muh more straightforward proof of this result.All we need to do is hek that there is a one to one orrespondene between therelations on two sets X;Y and SUP-lattie homomorphisms going from PY to PX .This is an elementary exerise. 2The last theorem and its proper analogue (Theorem [4.3.1℄) an both be writ-ten as ategorial equivalenes. KHausLo is the ategory of ompat Hausdor�loales. We use KHausLoUto denote the opposite of the ategory whose objets are the frames of opens ofompat Hausdor� loales and whose maps are preframe homomorphisms. Theopen parallel is the ategory DisLoLwhih is the opposite of the ategory whose objets are powers sets of sets (i.e. theframes of opens of disrete loales) and whose morphisms are SUP-lattie homo-morphisms.Theorem 4.3.3 KHausLoU �= KHausRelDisLoL �= RelProof: We prove the proper parallel only. The problem is to hek that relationalomposition is taken to funtion omposition of the orresponding preframe maps.(For then sine � and � are inverse to eah other it will follow that � takes funtionomposition to relational omposition in an appropriate way.) Clearly it is suÆientto prove that �(I � J) = �(I) Æ �(J)for all I 2 
(X � Y ); J 2 
(Y � Z). But if  2 
Z then�(I � J)() = (
�1)�1(I � J � (O0))(reall that � is assoiative). But[�(I) Æ �(J)℄() = �(I)[(
�1)�1(J � (O0))℄= (
�1)�1(I � [(
�1)�1(J � (O0))O0℄)But b 7! bO0 is 
�1 : 
Y ! 
Y 
 
 and so [((
�1)�1K)O0℄ = K for everyK 2 
Y 
 
.Hene [�(I) Æ �(J)℄() = (
�1)�1(I � J � (O0)) 2



104 CHAPTER 4. COMPACT HAUSDORFF RELATIONSCorollary 4.3.1 (KHausLo)U and (DisLo)L are both self dual.Proof: This result follows from the fat that KHausRel and Rel are both selfdual. Their dualizing funtor is e�etively given by the twist isomorphism on theprodut of loales: �X;Y : X � Y �! Y � X . So a morphism (:I ,! X � Y ) ofKHausRel is mapped to the morphism:I ,! X � Y ��! Y �Xof KHausRelop. 2We now �x some notation that will be used in the �nal three hapters. SayR ,! X �X is a losed relation on a ompat Hausdor� loale X .Then R = :aR; aR 2 
X 
 
X . The lower losure of losed subloales is thefuntion: +: CSub(X) �! CSub(X):a 7�! :a ÆR(where CSub(X)=the losed subloales of X). The upper losure is the funtion:*: CSub(X) �! CSub(X):a 7�! R Æ :aBut in pratie (i.e. when it omes to algebrai manipulations) we are interested inthe orresponding preframe homomorphisms.+op: 
X ! 
Xis the unique preframe homomorphism suh that+ :a = : +op a 8a 2 
Xand *op: 
X ! 
Xis the unique preframe homomorphism suh that* :a = : *op a 8a 2 
X .We hoose the `op' sine CSub(X) �= 
Xop and so + is e�etively a funtion from
Xop to 
Xop. +op is the same funtion but ating on (and going to) the oppositeposet. So the analogy is with ategorial notation: if F : C ! D is a funtor be-tween ategories then F op : Cop ! Dop is the same funtor but with the arrows ofthe domain and odomain formally reversed.We an now write out some impliations of Theorem [4.3.1℄ applied to the aseX = Y : if R is a relation on X then we knowaR = (+op 
1)(#).But beause of the duality referred to in the last orollary we see thataR = (1
 *op)(#)as well. Of ourse the general onlusion is that for any relation R ,! X � Y notonly aR = ( R 
 1)(#) but alsoaR = (1
 �R)(#)



4.4. NOTES 105where �R : 
X ! 
Y is given by �R(a) = (
�2)�1((0Oa) � aR).We an also use the fat that relational omposition orresponds to funtion om-position to make the following onlusions: a relation R ,! X �X istransitive , +op (a) �+op Æ +op (a) 8a 2 
Xinterpolative , +op Æ +op (a) �+op (a) 8a 2 
Xreexive , +op (a) � a 8a 2 
X:4.4 NotesFor the reader who knows what the upper/lower power loale monad is, note thatthe equivalenes of Theorem [4.3.3℄ are saying that the allegory is equal to thefull subategory of the Kleisli ategory of the monad, onsisting of all ompatHausdor�/disrete loales. Also, notie that the orollariesCorollary 4.4.1 PU (X) �= $X for all ompat Hausdor� XCorollary 4.4.2 PL(X) �= $X for all disrete X(whih appear in [Vi94℄) an easily be derived from Theorems [4.3.1℄ and [4.3.2℄respetively.Muh more an be said about these monads (e.g. a disussion of the onstrutivepoints of the power loales). Most interestingly we see in [Vi95℄ that it might bepossible to use them to formalize what is meant by our expression `parallel'.
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Chapter 5Ordered Loales5.1 Spatial IntuitionsWe begin the hapter by repeating some well known fats about ordered topologialspaes, noting that the results we examine do not require the antisymmetry axiomfor the order �. We then prove some new theorems whih show that these resultsbeome more straightforward loalially.The topologial exposition is based on the beginning of Chapter VII in [Joh82℄.We are looking at lassial topologial spae theory in order to inspire a onstrutiveloali treatment to follow and so are free to use the exluded middle at this point.Lemma 5.1.1 Assume the exluded middle. Given a topologial spae X with apreorder � on it, then � is losed i� 8x; y 2 X x 6� y implies9U; V � X s.t. x 2 intU; y 2 intV; U \ V = �; " U = U; # V = VProof: ()) If � is losed and x 6� y then 9U1; V1 open suh that U1�V1\(�) = �.Take U =" U1; V =# V1. The reverse impliation is equally straight forward. 2Lemma 5.1.2 Assume the exluded middle. If (X;�) is a preordered topologialspae with � losed, and if K � X is ompat then # K; " K are losed.Proof: Say x 2 X� # K then for every k 2 K x 6� k and so by the lemma above9Uk upper losed and Vk lower losed s.t. (x; k) 2 intUk � intVk and Uk \ Vk = �.Clearly then K � [ni=1Vki for some n and sine [Vki is lower losed # K � [Vki .Also sine Uki \ Vki = � 8i we see that \iUki is a neighbourhood of x disjointfrom # K hene # K is losed. " K is shown to be losed by a similar argument. 2Notie that the above shows us that if the preordered topologial spae is ompatHausdor� then the upper(lower) losure of losed subspaes is losed (provided thepreorder is losed). The loali analogy here is lear: if we are assuming X is aompat Hausdor� loale it is a matter of de�nition that relational ompositiontakes loseds to loseds (provided the relation is losed).Corollary 5.1.1 Assume the exluded middle. If (X;�) is a ompat Hausdor�topologial spae with a losed preorder � then whenever x 6� y we an �nd disjointopens U and V suh that U is upper losed and V is lower losed and (x; y) 2 U�V .107



108 CHAPTER 5. ORDERED LOCALESProof:" x and # y are losed (by the lemma sine fxg and fyg are ompat) and" x\ # y = �. Hene sine ompat Hausdor� spaes are normal we know that 9disjoint opens U1; V1 suh that " x � U1; # y � V1. TakeU = X� # (X � U1) (� U1)V = X� " (X � V1) (� V1) 2This last orollary may be written6�� SfU � V j U \ V = � " U = U # V = V U; V opengThe opposite inlusion is trivial so we have the equation6�= SfU � V j U \ V = � " U = U # V = V U; V opengfor any ompat Hausdor� topologial spae X . Reall that lassially a set is upperlosed i� its omplement is lower losed. So we guess that the ondition " U = Uan be safely translated to the loali ondition+ :U =Sub(X) :Uwhere + is the lower losure operation orresponding to the relation �.The reasoning behind the loali form of the above orollary should now be lear:Theorem 5.1.1 If X is a ompat Hausdor� loale and � is a losed preorder onit (i.e. (�) Æ (�) � (�) and � � (�)) thena� = Wfa
 bj a ^ b = 0 +op a = a *op b = bgwhere �= :(a�).Reall from the end of the last hapter that +op is the preframe homomorphismfrom 
X to 
X whih orresponds to the losed relation �, and *op is the preframehomomorphism from 
X to 
X orresponding to the losed relation �. We sawthat a� = (+op 
1)(#)and notied that the symmetrial result is true:a� = (1
 *op)(#).Proof of Theorem:First note that for any open a of our ompat Hausdor� loale X we have that*op a � a and +op a � aThis is simply a reetion of the fat that � is postulated to be reexive.Now (�) Æ (�) � (�) meansa� � a� � a�= (+op 
1)(#) � (1
 *op)(#)= (+op 
 *op)(# �#) Lemma [4.2.1℄= (+op 
 *op)(#)= (+op 
 *op)(_"f^iaiObij ^i (ai _ bi) = 0g)= (_"f^i(+op aiO *op bi)j ^i (ai _ bi) = 0g= _f+op a
 *op bja ^ b = 0g� _f�a
 �bj�a ^ �b = 0 +op �a = �a *op �b = �bg



5.1. SPATIAL INTUITIONS 109The proof behind the penultimate line is a simple reworking of the proof that_"f^i(aiObi)j ^i (ai _ bi) = 0g = _fa 
 bja ^ b = 0g (see end of Lemma [2.7.1℄)and the last line follows sine (i) +op a^ *op b � a ^ b and (ii) *op;+op are bothidempotent sine the relation is a preorder.As for the `easier' way round, say we are given a; b with +op a = a;*op b = b anda ^ b = 0. Reall a� = (+op 
1)(#). (I ould have hosen a� = (1
 *op)(#) andfollowed an obvious parallel route.) Soa
 b = (+op a)
 b= (+op a)O0 ^ 0Ob� (+op a)O0 ^ (+op 0Ob)= (+op 
1)(aO0) ^ (+op 
1)(0Ob)= (+op 
1)(a
 b) � (+op 
1)(#) = a� 2This last result an be stated as a `preframe fat' as well: along the way we sawthat a� = W"f^i(+op aiO *op bi)j ^i (ai _ bi) = 0g.In fat the lemma an be stated and proved more easily as,Lemma 5.1.3 If (X;�) is a ompat Hausdor� loale with a losed preorder then:a� = W"f^i(aiObi)j +op ai = ai;*op bi = bi;^i(ai _ bi) = 0gNotie that the proof to follow is a lot simpler than our last proof sine we don'thave to worry about translating the onlusion from its preframe form to its SUP-lattie form.Proof: a� = a� � a�= (+op 
1)(#) � (1
 *op)(#)= (+op 
 *op)(#) from Lemma [4.2.1℄= _"f^i(+op aiO *op bi)j ^i (ai _ bi) = 0g� _"f^i(�aiO�bi)j +op �ai = �ai;*op �bi = bi;^i(�ai _ �bi) = 0gIn the other diretion say we have a �nite olletion (ai; bi)i2I suh that +op ai = aifor all i, *op bi = bi for all i and ^i(ai _ bi) = 0. Then^i(aiObi) = ^i(+op aiObi)= (+op 
1)(^i(aiObi))� (+op 
1)(#) = a� 2Theorem 5.1.2 (Na65) Assume the exluded middle. Let (X;�) be a ompatHausdor� topologial spae with a losed partial order. Then the sets of the formU \ V where U is an open upper set and V is an open lower set, form a base forthe topology on X.Proof: Say W � X is an open subset of X . Then 8x 2 W we need to �nd opensets U; V suh that x 2 U \V �W , " U = U and # V = V . Say y 62W Then x 6= yand so either x 6� y or y 6� x.If x 6� y then there exists opens Uy; Vy suh that Uy upper, Vy lower, x 2 Uy, y 2 Vy



110 CHAPTER 5. ORDERED LOCALESand Uy \ Vy = �.If y 6� x then there exists opens Uy; Vy suh that Uy lower, Vy upper, x 2 Uy, y 2 Vyand Uy \ Vy = �.Thus W  � Sy2W  Vy and so, sine W  is losed and thus ompat,W  � Si2I Vyifor some �nite I . Hene Ti2I Uyi �W and x 2 Ti2I Uyi . 2The loali version of this theorem is an easy orollary to the work that has alreadybeen done. Its proof, unsurprisingly, requires the antisymmetry axiom on the order�.Theorem 5.1.3 (X;�) is suh that X is a ompat Hausdor� loale and � is alosed partial order (i.e. � � (�); (�) Æ (�) � (�); (�) _ (�) � �) then every 2 
X is the join of elements of the form a ^ b where :a is a lower losed losedsubloale of X and :b is an upper losed losed subloale of X.Proof: Notie that the problem is equivalent to heking that the subframe of 
Xgenerated by the set, faj *op a = ag [ faj +op a = agis the whole of 
X .� is antisymmetri and reexive. So (�)_ (�) = �. i.e. a� _a� = #. But for anya 2 
X , a = # � a and so a = (a� _ a�) � a. Now in the last lemma ([5.1.3℄) wesaw that if � is a losed preorder on a ompat Hausdor� X thena� = W"f^i(+op ai& *op bi)j ^i (ai _ bi) = 0gThus a� = W"f^i(*op bi& +op ai)j ^i (ai _ bi) = 0gHene a� _ a� is a direted join of meets of elements of the form(+op a_ *op b)&(*op d_ +op e)and so a = [(a� _ a�) � a℄ is a direted join of meets of elements of the form:(+op a_ *op b) _ 
!(1 �*op d_ +op e _ a)Sine 1 ertainly belongs to faj *op a = ag [ faj +op a = ag and
!(1 �*op d_ +op e_a) = Wf1j1 �*op d_ +op e_ag we an now easily see that theframe generated by this set is the whole of 
X . 25.2 Compatness resultThere is a tehnial lemma whih will be needed later on. It bears a similarity tothe result (1
 *op)(#) = (+op 
1)(#) that has proved useful so far.Lemma 5.2.1 Say R ,! X � Y is a losed relation on ompat Hausdor� X;Y .If  R : 
Y ! 
X is the preframe homomorphism orresponding to R and �R :
X ! 
Y is the preframe homomorphism orresponding to �R then if b 2 
Y anda 2 
X we have



5.3. ORDER PRESERVING LOCALE MAPS 1111 �  R(b) _ a , 1 � b _ �R(a)Proof: If aR = W"j ^iaji&bji then the LHS of the impliation is:1 � (W"j ^i[aji _ 
!(1 � b _ bji )℄) _ a, 1 � W"j ^i[a _ aji _ 
!(1 � b _ bji )℄, (9j)(8i)[1 � (a _ aji ) _
!(1 � b _ bji )℄where the last line is by ompatness and the de�nition of meet.But for any ompat loale Z with �; � 2 
Z we must have1 � � _ 
!(1 � �) , 1 � � _
!(1 � �)sine � _ 
!(1 � �) = W"(f�g [ f1j1 � �g).So we onlude that 1 �  Rb _ a , (9j)(8i)[1 � (b _ bji ) _ 
!(1 � a _ aji )℄But 1 � b _ �R(a) is just the statement:1 � [W"j ^i(bji _ 
!(1 � a _ aji ))℄ _ bwhih as above (via ompatness of X) translates to,(9j)(8i)[1 � (b _ bji ) _ 
!(1 � a _ aji )℄ 2As a orollary note that if R is a losed relation on some ompat Hausdor� loaleX and b; a 2 
X then 1 �+op b _ a , 1 � b_ *op a.5.3 Order preserving loale mapsWe now turn to the de�nition of morphism between ordered loales. We �nd againthat it is appropriate to de�ne something by analogy to our spatial intuition. A mapf : X ! Y where X;Y are two ordered spaes is a morphism of the ategory ofordered spaes if and only if it is ontinuous and preserves order. An orderedloale is a loale with a subloale of the produt of the loale with itself. Soif (X;RX); (Y;RY ) are two ordered loales then a loale map f : X ! Y is amorphism of the ategory of ordered loales if and only if there exists a loale mapn : RX ! RY suh that RX n - RYX �X?\ f � f- Y � Y?\ommutes.For losed RX ; RY it is easy to hek that the above diagram an be de�ned andommutes if and only if 
(f � f)(aRY ) � aRXOf ourse we are not going to investigate things at this level of generality. We areonly interested the ase when the loales are ompat Hausdor� and the relationsare losed partial orders. We shall all suh ordered loales ompat Hausdor�posets. The notation (X;�X) will be used to denote suh posets. Say f : X ! Yis a loale map and (X;�X); (Y;�Y ) are two ompat Hausdor� posets. Then f isa map in the ategory of ordered loales if and only if
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(f � f)(a�Y ) � a�X (�)We now translate this ondition further.Assume (�) holds. Then if we a are given a 2 
Y (and a�Y = W"j (^i(ajiObji )) then
f +op a = 
f(a�Y � (aO0))= "_j ^i(
faji _ 
!(1 � bji _ a))But 
!(1 � bji _ a) � 
!(1 � 
fbji _ 
fa) and so
f +op a � "_j ^i(
faji _ 
!(1 � 
fbji _ 
fa))= [(
f 

f)(a�Y )℄ � (
faO0)� a�X � (
faO0)= +op 
faHene 
f +op a �+op 
fa for all a 2 
Y if we assume (�).For the onverse assume 
f +op a �+op 
fa 8a 2 
Y , and reall that sine(Y;�Y ) is a ompat Hausdor� poset we know (Lemma [5.1.3℄) thata�Y = W"f^iaiObij ^i (ai _ bi) = 0;+op ai = ai;*op bi = big.So 
(f � f)a�Y = W"f^i
faiO
fbij ^i (ai _ bi) = 0;+op ai = ai;*op bi = bigBut for any �nite olletion of ai; bis satisfying ^i(ai _ bi) = 0 and +op ai = ai;*op bi = bi we have 
fai = 
f +op ai �+op 
fai � 
faiby reexivity of �X and assumption. Similarly 
fbi =+op 
fbi.Clearly ^i(ai _ bi) = 0 ) ^i(
fai _
fbi) = 0, and so
(f � f)(a�Y ) � "_f^iaiObij ^i (ai _ bi) = 0;+op ai = ai;*op bi = big= a�XSo we have translated the ondition (�) to
fÆ +op�+op Æ
fNotie, inidentally, that exatly the same proof shows us that (�) is equivalent to
fÆ *op�*op Æ
fWe an now de�ne the ategory KHausPos: its objets are ompat Hausdor�posets and its maps are order preserving loale maps.



5.4. COMPACT REGULAR BIFRAMES 1135.4 Compat Regular BiframesThe ompat regular biframes were introdued by Banashewski, Br�ummer andHardie in [BBH83℄. Spatially they are the ompat regular T0 bispaes and havebeen related to the stably loally ompat loales ([BB88℄). We shall investigatethis relation extensively in the last hapter. For the moment we prove a new result:the ompat regular biframes are dually equivalent to the ompat Hausdor� posets.The objets of KR2Frm (the ategory of ompat regular biframes) are triples(L0; L1; L2) suh that L0 is a ompat frame and L1; L2 are two subframes ofL0 whih generate the whole of L0 and are required to satisfy two regularity-likeonditions:(i) 8a 2 L1 a = W"fj 2 L1  �1 ag where �1 a , 9d 2 L2  ^ d = 0 a _ d = 1(ii) 8a 2 L2 a = W"fj 2 L2  �2 ag where �2 a , 9d 2 L1  ^ d = 0 a _ d = 1It follows, sine L1; L2 generate the whole of L0, that if (L0; L1; L2) is a ompatregular biframe then L0 is the frame of opens of a ompat regular loale. SoL0 = 
X for some ompat Hausdor� loale X .If (L0; L1; L2); (L00; L10; L20) are two objets ofKR2Frm then morphisms are givenby frame homomorphisms l : L0 ! L00 whih satisfy:l(a1) 2 L10 8a1 2 L1l(a2) 2 L20 8a2 2 L2Theorem 5.4.1 KR2Frm �= KHausPosProof: Although the proof is quite straightforward it is not short.We �rst onstrut a ontravariant funtor from KR2Frm to KHausPos. Let usassume we are given a ompat regular biframe (L0; L1; L2). We an de�ne a oupleof preframe endomorphisms on L0: for i = 1; 2 set�i(a) = W"fj 2 Li  �i agThat �i preserves �nite meets is straightforward. (Reall that L1; L2 are subframesof L0, so ertainly �i(1) = 1 for i = 1; 2.) Compatness of L0 shows that �1; �2 arepreframe endomorphisms. The onditions (i) and (ii) in the de�nition of ompatregular biframe given above tell us that the images of �1; �2 are exatly L1; L2 re-spetively. Notie b 2 Li if and only if �i(b) = b. It follows that �i is idempotent.Bearing in mind the orrespondene between preframe endomorphisms and losedrelations, as worked out in Theorem [4.3.1℄, we de�ne our ompat Hausdor� poset(X;�) from (L0; L1; L2) as follows:
X = L0a� = (�1 
 1)(#)Reexivity and transitivity of � follows immediately sine �1(b) � b 8b 2 L0 and�1 is idempotent.In fat(�) a� = (1
 �2)(#)(�) a� _ a� � #i.e. (�): we haven't `lost' any information by piking �1 over �2 in our de�nition of(X;�) and (�): � is antisymmetri and therefore is a partial order.Proof of (�) We want,



114 CHAPTER 5. ORDERED LOCALES(�1 
 1)(#) = (1
 �2)(#).We prove that (�1 
 1)(#) � (1
 �2)(#)and appeal to the symmetry between �1; �2 for the full result.Now :(1 
 �2)(#) is a losed subloale of X � X and so gives rise to a uniquepreframe endomorphism of 
X by:a 7�! (1
 �2)(#) � aIt follows that if we an prove�1(a) � (1
 �2)(#) � afor every a 2 
X then we an onlude(�1 
 1)(#) � (1
 �2)(#)sine :(�1 
 1)(#) is the losed subloale orresponding to the preframe endomor-phism �1.But (1
 �2)(#) � a = W"f^i[ai _ 
!(1 � (�2(bi) _ a))℄j ^i (ai _ bi) = 0gand �1(a) = Wfj �1 a  2 L1g.Now if  �1 a then 9d 2 L2 suh that  ^ d = 0 and d _ a = 1. So �2(d) = d. If wetake (a1; b1) = (; 0) and (a2; b2) = (0; d) and I = f1; 2g then ^i2I (ai _ bi) = 0. Butfor these ais and bis we see^i[ai _ 
!(1 � (�2(bi) _ a))℄= [ _
!(1 � �2(0) _ a)℄ ^ 
![1 � (�2(d) _ a)℄�  sine �2(d) = d and d _ a = 1:Hene �1(a) � (1
 �2)(#) � aand so we may onlude that �2 is the preframe homomorphism orresponding toupper losure as outlined above. 2Proof of (�) Reall that L1; L2 are subframes of L0 whih generate the whole ofL0 (by the de�nition of ompat regular biframe). We have observed that:a 2 L1 , �1(a) = aa 2 L2 , �2(a) = a(This is really just a restatement of the regularity-like onditions (i), (ii).) So thefat that L1; L2 generate L0 lets us write:a = W"fb ^ j�1(b) = b; �2() = ; b ^  � agfor any a 2 L0.But a� = (�1
1)(#) (de�nition), and a� = (1
�2)(#) (�). And so by applying thetwist isomorphism on X �X to the seond of these we see that: a� = (�2 
 1)(#).Thus



5.4. COMPACT REGULAR BIFRAMES 115�1 =+op and �2 =*op.So �1(b) = b , +op b = b , a� � b = band �2() =  , *op  =  , a� �  = .We want to prove (a� _ a�) � #. We know from our equivalene between losedsubloales on X � X and preframe endomorphisms of 
X that it is suÆient toprove # � a � (a� _ a�) � a 8a 2 L0i.e. a � (a� _ a�) � a 8a 2 L0Now say b satis�es �1(b) = b. Thenb = (a� � b) � (a� _ a�) � band if  satis�es �2() =  then = (a� � ) � (a� _ a�) � .Hene for any suh b;  with b ^  � a we haveb ^  � ((a� _ a�) � b) ^ ((a� _ a�) � )= (a� _ a�) � (b ^ ) (beause � is a bipreframehomomorphism)� (a� _ a�) � a:But a = Wfb ^ j�1(b) = b; �2() = ; b ^  � ag sine L0 is generated by L1; L2and so a � (a� _ a�) � a as required. 2Reall that f : (X;�X)! (Y;�Y )is a morphism of KHausPos i� there exists a loale map n :�X�!�Y suh that�X n - �YX �X?\ f � f- Y � Y?\ommutes. We saw in the last setion that this ondition is equivalent to:
f Æ Y +op � X+op Æ
fIf l is a ompat regular biframe map from (L0; L1; L2) to (L00; L10L20) ertainlythere exists f : X ! Ya loale map where 
X = L00; 
Y = L0 and 
f = l. The order on X (asonstruted above) orresponds to the preframe homomorphism �X1 : 
X ! 
X .But l�Y1 (a) � �X1 l(a)sine  �1 a ) l() �1 l(a)



116 CHAPTER 5. ORDERED LOCALESas l() 2 L10 if  2 L1 and l(d) 2 L20 if d 2 L2. So f is a map in the ate-gory KHausPos and we have de�ned a ontravariant funtor from KR2Frm toKHausPos.Now on the other hand say we are given a Hausdor� poset (X;�).We know that a� = (1
 *op)(#)a� = (+op 
1)(#)where +op;*op are the preframe endomorphism whose ations are the lower/upperlosure of losed subloales. Thus we have preframe endomorphisms of 
X . Sine� is reexive we know that *op a � a 8a 2 
X and +op a � a 8a 2 
X , and sothe sets faj +op a = ag � 
Xfaj *op a = ag � 
Xare not only subpreframes but are subframes of the ompat frame 
X . Do theygenerate the whole of 
X ? The answer is yes; we saw exatly this fat in the proofof Theorem [5.1.3℄.So if we set L0 = 
X and L1 = faj +op a = ag; L2 = faj *op a = ag then L0 (isompat and) is generated by these two subframes.We are now in a position to hek the regularity-like ondition (i) for (L0; L1; L2)((ii) will learly follow by symmetry from this).(i) states that if a 2 L1 � faj +op a = ag thena = Wfj �1 a +op  = gwhere  �1 a , 9d with *op d = d; d^  = 0 and a_ d = 1. But we know byregularity of X that +op a = a = W"fbjb� ag and by taking +op of both sides wesee a = W"f+op bjb� ag, and so to hek (i) all we need do is hekb� a ) +op b �1 aNow if b� a then there exists d with 1 � a _ d and b ^ d = 0. But a =+op a and so+op a _ d = 1 letting us onlude a_ *op d = 1 by the ompatness result, Lemma[5.2.1℄.Also *op d � d and +op b � b (reexivity of � ): thus +op b^ *op d = 0, and sine*op d 2 L2 we may onlude +op b �1 a.Thus (
X; faj +op a = ag; faj *op a = ag) is a ompat regular biframe for anyompat Hausdor� poset (X;�).As for morphisms, say f : (X;�)! (Y;�) is a map of KHausPos then as well asthe ondition 
f +op�+op 
freall that we noted in the last setion that the symmetri ondition
f *op�*op 
fis implied by (and implies) the assumption `f is a KHausPos map'. Hene
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f : (
Y; fbj +op b = bg; fbj *op b = bg) �! (
X; faj +op a = ag; faj *op a = ag)is a map of KR2Frm and so we have a ontravariant funtor (C) from ompatHausdor� posets to ompat regular biframes.Now say (L0; L1; L2) � C(X;�). Near the beginning of this proof we de�ned forany ompat regular biframe a preframe endomorphism �i byb 7! W"faja 2 Li a �i bgI laim that sine L1 = faj +op a = ag thenW"faja 2 L1 a �1 bg =+op bCertainly �1(b) �+op b for if a �1 b; a 2 L1 then a � b and soa =+op a �+op b:In the other diretion: 8b 2 L0 = 
X+op b = W"faja� +op bgand so by applying +op to both sides we get+op b = W"f+op aja� +op bgand we know from above a� +op b implies +op a �1+op b. Thus +op a �1 b sine+op b � b.Hene �1 =+op, and so mapping (
X; faj +op a = ag; faj *op a = ag) to ( �X;� �X)where 
 �X = 
X and � �X is the losed subloale orresponding to the preframe en-domorphism �1 returns us to (X;�).Finally to hek that KR2Frm and KHausPos are dually equivalent we needto hek, given a ompat regular biframe (L0; L1; L2) that(L0; L1; L2) = (L0; faj +op a = ag; faj *op a = ag)where +op omes from the losed relation � de�ned bya� = (�1 
 1)(#):Thus +op= �1 and so faj +op a = ag = L1 as required. (Reall that b 2 L1 i��1(b) = b .)But we saw a� = (�2 
 1)(#) � (�)and so *op= �2 and, just as with �1, the �2 �xed elements of L0 are preisely theelements of L2. 2The lassial version of this result was proved in Priestley's paper `Ordered Topo-logial Spaes and the Representation of Distributive Latties' [Pri72℄. Proposition10 of that paper is (e�etively): `The ompat order-Hausdor� topologial spaesare equivalent to the ompat regular T0-bispaes'. It is shown in [BBH83℄ how toprove that the ompat regular biframes are equivalent to the ompat regular T0-bispaes assuming the prime ideal theorem, and in fat it is lear that the proof anbe repeated assuming the onstrutive prime ideal theorem. So in order to reoverthe lassial result we need to make sure that our ompat Hausdor� posets arelassially equivalent to the ompat order-Hausdor� topologial spaes. We �nd



118 CHAPTER 5. ORDERED LOCALESthat we only need to assume the onstrutive prime ideal theorem (CPIT). We'veshown that ompat Hausdor� loales are, given this assumption, spatial and so it iseasy to hek that they are then equivalent to the ompat Hausdor� spaes (wherein this onstrutive ontext it is easiest to de�ne the ompat Hausdor� spaes,KHausSp, as those topologial spaes whose frame of opens are ompat regular).To avoid the diÆulties that ome from onstrutively disussing the losed sub-sets of a topologial spae (suh as the fat that arbitrary intersetions of losedsare not losed via the usual proof sine we annot assume that arbitrary interse-tions distribute over �nite unions), we use as motivation the lassial result thatthe subspae of a ompat Hausdor� spae is losed if and only if it is ompat.Hene we de�ne the order-Hausdor� topologial spaes to be those pairs (X;�)suh that X is a ompat Hausdor� spae and �� X � X is a ompat partialorder. Notie that if KHausSp �= KHausLo then monomorphisms are going toorrespond to injetions of points i.e. to subspaes. In other words subloales inKHausLo orrespond to ompat subspaes in KHausSp assuming CPIT. Butdoes the notion of relational omposition of ompat sets of points orrespond torelational omposition as we've de�ned it via a preframe homomorphism? To seethat it does we need to hek that pullbaks and image fatorisations of ompatHausdor� topologial spaes are (on points) onstruted as in Set. We needLemma 5.4.1 Assuming CPIT, the forgetful funtor from KHausSp to Set re-ates pullbaks.Proof: If X �Z Y - YX? f - Zg?is a pullbak diagram in KHausLo then pt(X �Z Y ) is isomorphi as a set to theset of pairs of points p1 : 1! X , p2 : 1! Y suh that fp1 = fp2. Henept(X �Z Y ) - pt(Y )pt(X)? pt(f)- pt(Z)pt(g)?is a pullbak diagram in Set. The result follows sine we are assuming CPIT andso KHausSp �=KHausLo. 2The forgetful funtor also reates image fatorisations. The proof of this is om-pletely straightforward sine if f : X ! Y is a ontinuous map between ompatHausdor� spaes then ff(x)jx 2 Xg an be endowed with a topology (the subspaetopology from Y ) whih makes it into a ompat Hausdor� topologial spae.Thus if we reall the de�nition of relational omposition in terms of pullbak andimage fatorization (as presented at the beginning of Chapter 4) then provided wehave KHausSp �= KHausLo, we know that set theoreti relational ompositionof ompat subspaes is given by relational omposition of losed subloales. Hene,assuming CPIT, the order-Hausdor� topologial spaes are equivalent to the om-pat Hausdor� posets.



Chapter 6Loali Priestley Duality6.1 IntrodutionPriestley duality desribes how the ategory of oherent spaes is equivalent to theategory of ordered Stone spaes. We de�ne ordered Stone loales (whih lassiallyare just the ordered Stone spaes) and present a new theorem that shows that theategory of ordered Stone loales is equivalent to the ategory of oherent loales.Preframe tehniques are used to prove this result.6.2 Ordered Stone loalesA Stone spae is a ompat Hausdor� topologial spae whih is also oherent. If weassume CPIT then we know that the ategory of Stone spaes is equivalent to theategory of Stone loales i.e. ompat Hausdor� loales whih are also oherent. Theframes of opens of suh loales were seen (in Theorem [1.7.5℄) to be exatly the idealompletions of Boolean algebras. From this we onlude that the ategory of Stonespaes is dual to the ategory of Boolean algebras. This is Stone's representationtheorem [Sto 36℄,[Sto37℄.The equivalene between Stone loales and Boolean algebras is trivial, it is whenshowing that Stone loales are equivalent to Stone spaes that we invoke a hoieaxiom.Working in a lassial ontext Priestley ([Pri70℄) introdued ordered Stone spaes(also known as Priestley spaes). These are pairs (X;�) whereX is a ompat spaeand � is a partial order on X satisfying the requirement that for every x; y 2 Xwith x 6� y there is a lopen upper set U ontaining x and not ontaining y. Fromthis data it is a lassial exerise to prove that an ordered Stone spae is a Stonespae. It is immediate that � must be a losed subspae of X � X , in fat theondition on � above an be rewritten as the equation6�= SfU 
 UjU lopen " U = Ugwhere " U is the upper losure of U with respet to the order �. Notie that weould use this ondition to prove that � is transitive. Also note that this onditionan be written 6�= SfU 
 UjU lopen # U = Ugsine lassially a subset is upper losed i� its omplement is lower losed. Finallysine we know that X is ompat Hausdor� we may lassially onlude that U islopen if and only if it is a ompat open subset of X and so, sine X is oherent,U 2 
X �= Idl(K
X) is in K
X if and only if it is lopen.119



120 CHAPTER 6. LOCALIC PRIESTLEY DUALITYGiven these lassial observations it should be lear that the following is a reasonablede�nition of an ordered Stone loaleDe�nition: An ordered Stone loale is a pair (X;�) where X is a Stone loale (i.e.
X �= IdlBX for some Boolean algebra BX) and �� X � X is a losed partialorder satisfying a� = Wfa
:aja 2 BX ;+op a = ag (!)where �= :a� � X � X and +op: 
X ! 
X is the preframe endomorphism of
X orresponding to the ation of taking the lower losure of losed subloales.Notation warning: We have a notation lash between Boolean algebra negation(:) and `losed subloale orresponding to the open a' (:a ,! X). However ontextwill eliminate any ambiguity.The equation (!) is a SUP-lattie equation. It has a preframe equivalent whihwill be useful:a� = W"f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;+op bi = bi; I �nite gProving these two expressions to be the same requires the same manipulation(demonstrated in Lemma [2.7.1℄) that proves that the losure of the diagonal ofa loale an be expressed both as:Wfa
 bja ^ b = 0gand :W"f^iaiObij ^i (ai _ bi) = 0gWhen it omes to the manipulations that follow we will �nd that the prefame versionof the equation (!) will be the one to apply.Our �rst manipulation omes with a proof that if we are given a pair (X;R) suhthat X is a Stone loale and R is a losed relation whih satis�es (!) then R istransitive. To see this proof note that if a 2 
X then +op a is given by the formulaW"f^i(ai _ 
!(1 � :bi _ a))gwhere the direted join is over sets fai; biji 2 Ig suh that I is �nite, ais and bisare in the Boolean algebra of ompat opens of X and +op ai = ai , +op bi = bi ,^i(ai _ :bi) = 0. So +op+op a is equal to+op W" ^i[W"(faig [ f1j1 � :bi _ ag)℄ = W" ^iW"(f+op aig [ f+op 1j1 � :bi _ ag)= W" ^iW"(faig [ f1j1 � :bi _ ag) =+op a.Idempoteny of +op is equivalent to idempoteny of R with respet to relationalomposition. Idempoteny of R is enough to prove that R is transitive. Notie thatthe ondition (!) also implies that R is reexive.The morphisms between ordered Stone spaes are taken to be the ontinuousorder preserving funtions and so the ategory OStoneSp is de�ned. We takeOStoneLo to be the full subategory ofKHausPos whose objets are the orderedStone loales. Reall from Setion 5.3 that it follows thatf : (X �X) �! (Y;�Y )is a map of OStoneLo if and only if f : X ! Y is a loale map and 8a 2 
Y
fÆ +op (a) �+op (a) Æ
f



6.3. PRIESTLEY'S DUALITY 1216.3 Priestley's DualityPriestley's initial result was proved in [Pri70℄ (though see [Pri94℄ for some more re-ent thinking about the duality). It onsisted of the statementDLatop �= OStoneSp;hene the term `duality'. However we take the equivalene DLatop �= CohSp (i.e.generalization of Stone representation) for granted sine we are familiar with thisresult as essentially the assertion that oherent loales are spatial. (`Essentially'sine we need to fator in the ompliation that the maps between oherent spaesare those whose inverse images preserve ompat opens i.e. loalially the semi-proper maps.) We view Priestley duality as the equivalene CohSp �= OStoneSp.So the reader is warned that the word `duality' is not entirely appropriate. Thisview of the duality is also taken in II 4 of [Joh82℄. There the funtor:B : CohSp �! OStoneSp(X;
) 7�! (X; `path';�)is de�ned. � is the speialization order on (X;
) and a base for the path topologyis given by fU \ V jU; V ompat opengIn the other diretion we haveC : OStoneSp �! CohSp(X;
;�) 7�! (X; fU jU 2 
; " U = Ug)Lemma 6.3.1 Classially, fU jU 2 
; " U = Ug = IdlfU jU 2 K
; " U = Ug. i.e.C(X;
;�) is oherent. 2Priestley proved in [Pri70℄ that, provided we are free to use the prime idealtheorem (PIT), these funtors de�ne an equivalene. We now use the remarks inthe notes to Setion II 4.9 of Stone Spaes [Joh82℄ to see how an assumption thatBC de�nes an equivalene allows us to onlude the PIT:Let us assume that B; C de�ne an equivalene. We see straight away that if aoherent spae is T1 (i.e. if the speialization order � is equality) then it is Stone.But T1ness an equivalently be de�ned as saying that all points are losed. Forany distributive lattie A the points of the assoiated oherent spae are the primeideals and the losed points are the maximal ideals. Hene the statement of T1nessis equivalent to the statement that the maximal and prime ideals oinide. Soassuming B; C de�ne an equivalene we know that a oherent spae is T1 if and onlyif it is Stone. Hene:Lemma 6.3.2 (Na49) A distributive lattie is Boolean if and only if all its primeideals are maximal. 2It is not immediately obvious that this lemma implies PIT. It ertainly provesthat any non-Boolean distributive lattie has a prime ideal. But any non-trivialBoolean an be embedded into a non-trivial non-Boolean distributive lattie and sowe have PIT. To see how to onstrut suh an embedding onsult Exerise I 4.8 ofStone Spaes ([Joh82℄).Of ourse it is unfortunate that the above proof relies on the exluded middle.The reason why we repeat this haraterization of PIT is to make it lear that weannot hope to prove Priestley's duality without some hoie axioms. i.e. we haveto move to something like loales if we want to have a onstrutive theory of spaesthat admits a Priestley duality.



122 CHAPTER 6. LOCALIC PRIESTLEY DUALITY6.4 Loali VersionWe de�ne an equivalene of ategories via the funtors B; C:CohLo B-�C OStoneLoThe idea behind the onstrution of B omes from the following lassial reasoning:if x 6� y where x; y are points of a oherent spae X and � is the speializationorder then there exists a ompat open U suh that x 2 U and y 62 U . Thus(x; y) 2 U 
 U and, as always, (U 
 U) \� = �. Now when one is de�ning thefuntors of the original Priestley duality we take a oherent spae X and give it anew path topology. A base for the path topology is given byfU \ V jU; V ompat opengand so we see that the speialization order, �, is losed as a subset of X �X whenX is given the path topology. Thus there is evidene to suggest that we an �nd alosed subloale of the loale obtained when we move from a oherent loale to its`path topology' loale. This losed subloale will ome from (via pullbak it turnsout) the speialization order on the original oherent loale.We stay with our spatial intuitions for one more lassial lemma:Lemma 6.4.1 The set of ompat opens of the path topology on a oherent spaeX is the free Boolean algebra on the distributive lattie of ompat opens of X.Proof: Certainly if U is a ompat open of X it is a ompat open of the pathtopology.If W is in the path topology then W = Si2I Ui \ V i for some indexing set I . Butif W is ompat in the path topology then I an be taken to be �nite. The set� � fSi2I Ui \ V i jUi; Vi ompat open, I �niteg � PXis a Boolean algebra. The omplement ofSi2I Ui \ V iis given by the subset S[(\i2J1U i ) \ (\i2J2Vi)℄where the union if taken over all pairs J1; J2 � I suh that J1; J2 are �nite andI � J1 [ J2. Clearly any element of � is ompat open in the path topology. 2Thus the de�nition of this `path topology' loale, (whih will be the de�nition ofthe loali part of B) is lear: given a oherent loale X we know 
X = Idl(K
X)for some distributive lattie K
X . De�ne BX by 
BX = Idl(BX) where BX isthe free Boolean algebra on K
X .The distributive lattie injetion K
X � BX gives rise to a frame homomor-phism from Idl(K
X) to Idl(BX) and hene to a loale map BX ! X whih weshall all lX . lX is a surjetion. In fatLemma 6.4.2 lX is moni.



6.4. LOCALIC VERSION 123Proof: Say Y f1 -f2 - BX lX - Xis a diagram in Lo suh that lXf1 = lXf2. Then for all I 2 BXI = W"f# bjb 2 Igsine I is an ideal of BX . So to prove f1 = f2 it is suÆient to prove
f1(# b) = 
f2(# b) 8b 2 BXBut for all b 2 BX b = ^i2I (
lXai _ :
lXbi)for some �nite I with ai; bi 2 K
X . And so the result follows sine any framehomomorphism learly preserves omplements. 2One way to �nd a subloale of BX � BX is to look at the pullbak of thespeialization order on X �X (viewed as a subloale) along the map lX � lX . i.e.look at the pullbak diagram �BX - vBX �BX?? lX � lX- X �X??where 
(v) � Fr < 
X

X qua frame j aO0 � 0Oa 8a 2 
X > (see Lemma[2.7.2℄) and hope that �BX is losed.Lemma 6.4.3 Given the data above:I l - v
BX �BX?? lX � lX- X �Xq??is a pullbak diagram where I = Wfa
:aja 2 K
Xg. (We view K
X � BX .)The reason for the hoie of I should be apparent from the spatial reasoning pre-sented above.Proof: We an translate I to a preframe equivalent:I = W"f^i(aiO:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
XgUse the method of Lemma [2.7.1℄ to see this.De�ne 
l : 
(v) �! " IaOb 7�! I _ (
lXaO
lXb)This is seen to satisfy the `qua frame' part of the de�nition of 
(v). To onludethat 
l is well de�ned we need:



124 CHAPTER 6. LOCALIC PRIESTLEY DUALITYI _ (
lXaO0) � I _ (0O
lXa)for all a 2 K
X . Notie that for any a 2 K
X sine (a_0)^ (0_:a) = 0 we havethat I = I _ [(aO0) ^ (0O:a)℄. ButI _ (aO0) = I _ [(aO0) ^ (0O1)℄= I _ [(aO0) ^ (0O(:a _ a))℄= I _ [(aO0) ^ [(0O:a) _ (0Oa)℄℄= I _ [(aO0) ^ (0O:a)℄ _ [(aO0) ^ (0Oa)℄= I _ [(aO0) ^ (0Oa)℄� I _ (0Oa)Hene l is well de�ned, and the diagram in the statement of the lemma learlyommutes. Now say we are given Q;m; t suh thatQ t - vBX �BXm ? lX � lX- X �Xq??ommutes. Then the funtion 
z :" I �! 
QJ 7�! 
(m)Jwill (i) be well de�ned, (ii) make the appropriate triangles ommutes and (iii) be aframe homomorphism, provided we an hek that 
(m)I = 0.But 
m(I) = W"f
m ^i (aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg and so it issuÆient to prove 
m ^i (aiO:bi) = 0whenever ^i(ai _ :bi) = 0 for ai; bi 2 K
X . With suh onditions we see that(
lX 
 
lX)(aiO0) = aiO0, and so
m(^i(aiO:bi)) = ^i
m((aiO0) _ (0O:bi))= ^i[
m((
lX 

lX)(aiO0)) _
m(0O:bi)℄= ^i[
t
q(aiO0) _ 
m(0O:bi)℄� ^i[
t
q(0Oai) _ 
m(0O:bi)℄= ^i[
m(0Oai) _ 
m(0O:bi)℄= 
m[^i(0O(ai _ :bi))℄= 
m(0O ^i (ai _ :bi))= 
m(0O0) = 0: 2Now I � # so �BX is ertainly reexive. It is shown in Lemma [2.7.3℄ that the spe-ialization order is antisymmetri (v ^ w= �) and so �BX will be antisymmetrisine (i) the diagonal is preserved by pullbak along a moni and (ii) pullbak pre-serves �nite meets of subobjets (as pullbak is right adjoint to image fatorization).It is nie to know that the order on our ordered Stone loale an be found bypulling bak the speialization order sine then antisymmetry and reexivity of theorder follows from the fat that these two axioms hold for the speialization order.However we an prove that �BX is antisymmetri diretly:



6.4. LOCALIC VERSION 125Lemma 6.4.4 �BX is antisymmetri, where �BX is given bya�BX = W"f^i(aiO:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
Xg.Proof: We need to prove that (�BX)^ (�BX ) (p1;p2)� BX�BX is the diagonal. Wemay onlude this provided we hek that its right hand projetion is equal to itsleft hand projetion. i.e. p1 = p2. As a statement about frames this reads
(�1)(I) _ a� _ a� = 
(�2)(I) _ a� _ a� 8I 2 IdlBXNote that we may restrit to the ase that I 2 Idl(K
X). This is beause lX is amonomorphism. In fat we only need worry about ompat Is. i.e. we may assumeI = a 2 K
X . In suh a ase 
�1I = aO0; 
�2I = 0Oa. Hene we needaO0 _ a� _ a� = 0Oa _ a� _ a� 8a 2 K
X:Before proof note that for any a 2 K
X sine (a _ 0) ^ (0 _ :a) = 0 we have thata� = a� _ [(aO0) ^ (0O:a)℄ (I)a� = a� _ [(:aO0) ^ (0Oa)℄ (II)Hene for any a 2 K
XaO0 _ a� _ a� = a� _ [[a� _ (:aO0) _ (aO0)℄ ^ [a� _ (aOa)℄℄ by (II)= a� _ a� _ (aOa)0Oa _ a� _ a� = a� _ [[a� _ (aOa)℄ ^ [a� _ (0O:a) _ (0Oa)℄℄ by (I)= a� _ a� _ (aOa): 2So to be sure that B atually gives us an ordered Stone loale we need but hekthat a� = W"f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;+op bi = bi; I �nite g:This will follow one we've shown thatLemma 6.4.5 If X is a oherent loale and +op is the preframe endomorphism of
X that orresponds to the relation �BX then for all a 2 BX ,a 2 K
X , a =+op aProof: It is always the ase that +op a � a sine �BX is reexive. Hene we needbut prove a 2 K
X , a �+op a:We know thata�BX = _"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg.Assume we are given a 2 K
X . So+op a = _"f^i[ai _ 
!(1 � :bi _ a)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
XgSimply take I = f1; 2g a1 = a b1 = 0a2 = 0 b2 = :ato see that a �+op a.Conversely say a 2 BX and a �+op a. Sine `a 2 BX ' means a is ompat we seefrom our expression above for +op a that



126 CHAPTER 6. LOCALIC PRIESTLEY DUALITYa � ^i2I [ai _ 
!(1 � :bi _ a)℄for some ai; bis in K
X with ^i(ai _ :bi) = 0. Henea � ^i(ai _ 
!(bi � a))= _I=J1[J2(^i2J1ai) ^ (^i2J2
!(bi � a))= _I=J1[J2(^i2J1ai) ^ (
!(_i2J2bi � a))= _I=J1[J2(_f^i2J1aij _i2J2 bi � ag)= "_( [I=J1[J2f^i2J1aij _i2J2 bi � ag)The union is over all pairs J1; J2 � I suh that J1; J2 are �nite and I � J1 [ J2.The fat that this union is direted follows sine if (J1; J2); ( �J1; �J2) are two pairs ofthe indexing set then (J1 \ �J1; J2 [ �J2) is in the indexing set. Henea � W"(Sf^i2J1aij _i2J2 bi � ag)So, by ompatness of a, it is possible to �nd J1; J2 subsets of I suh thatI � J1[J2 with the property that a � ^i2J1ai and _i2J2bi � a. But the statement^i(ai _ :bi) = 0 implies _I�J1[J2 [(^i2J1ai) ^ (^i2J2:bi)℄ = 0) (^i2J1ai) ^ (^i2J2:bi) = 0) ^i2J1ai � :(^i2J2:bi) = _i2J2biHene a = ^i2J1ai and sine ai 2 K
X 8i we see that a 2 K
X . 2It is unfortunate that we have to rely on a distributivity law in the middle ofthe above proof. A more natural way to proeed would be to say: for every i 2 Ia � ai _
!(bi � a)= "_(faig [ f1jbi � ag)and so if we de�ne: J1 � fija � aigJ2 � fijbi � agthen ompatness of a implies that I � J1 [ J2. This is all very well but we nowdon't know for sure whether J1; J2 are �nite.As for the e�et of B on morphisms, say we are given a semi-proper loale mapf : X ! Y . So 
f restrits to a distributive lattie homomorphism from K
Y toK
X , and hene extends naturally to a distributive lattie homomorphism on therespetive free Boolean algebras BY ; BX . This indues a loale map Bf from BXto BY . We must hek that this map is an ordered Stone loale map. i.e. that
BfÆ +op a �+op Æ
Bf(a)



6.4. LOCALIC VERSION 127for every a 2 
BXButLHS = 
Bf(_"f^i[ai _
!(1 � :bi _ a)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg)= _"f^i[
Bf(ai) _ 
!(1 � :bi _ a)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg� _"f^i[
Bf(ai) _ 
!(1 � :
Bfbi _ 
Bfa)℄j ^i (ai _ :bi) = 0 ai; bi 2 K
Xg� +op Æ
Bf(a)To omprehend the last two lines we need to remind ourselves that 
Bf(a) =
f(a) 2 K
X if a 2 K
Y , and that if �
f is the extension of 
f : K
Y ! K
Xto the Boolean ompletions then �
f(:b) = :(
fb) for every b 2 K
Y . Thus Bde�nes a funtor from CohLo to OStoneLo.Fortunately the onstrution of a funtor C in the opposite diretion is less in-volved than our onstrution of B. De�ne C as followsC : OStoneLo �! CohLo(X;�) 7�! Idl(fa 2 K
X j +op a = ag)N.B. fa 2 K
X j +op a = ag is a subdistributive lattie ofK
X . The only triky bitin proving this is losure under �nite joins. But +op a � a 8a, so (i) 0 �+op 0 � 0and (ii) if a =+op a; b =+op b then a _ b =+op a_ +op b �+op (a _ b) � a _ b.The de�nition of C on morphisms is also lear: if f : (X;�X) ! (Y;�Y ) is anordered Stone loale map then it is proper and so is semi-proper; 
f preservesompat opens. The fat that 
f(+op (a)) �+op 
f(a) 8a 2 
Y means that 
frestrits to a distributive lattie homomorphism from fa 2 K
Y j +op a = ag tofa 2 K
X j +op a = ag. So f indues a semi-proper map C(f) from C(X;�X) toC(Y;�Y ).It is now lear that heking thatCB(X) �= X 8X 2 Ob(CohLo)amount to showing that 8a 2 BXa 2 K
X , a =+op a(where BX is the free Boolean algebra over the distributive lattie K
X). But wehave shown this already in Lemma [6.4.5℄.So all we need to do is ask: is BC(Y ) �= Y for all Y 2 OStoneLo ?Well we know that there is a distributive lattie inlusion,fa 2 K
Y j +op a = ag ,! K
Ybut is it universal? If it is then the fat that we requirea�Y = W"f^i(aiO:bi)j ^i2I (ai _ :bi) = 0 ai; bi 2 BX +op ai = ai;+op bi = bi; I �nite gfor Y to be an ordered Stone loale means that�Y=�BC(Y ) :



128 CHAPTER 6. LOCALIC PRIESTLEY DUALITYThus we will be �nished provided we an hek that the above inlusion is universal.Assume a diagram KC(Y ) � - K
Y�����f R B�?.................where f is a distributive lattie homomorphism and B is a Boolean algebra.Say a 2 K
Y and we have found two �nite sets of elements fai; biji 2 Ig;f�a�i;�b�ij�i 2 �Ig suh that ^i(ai _:bi) = a = �̂i(�a�i _:�b�i). (Where the ai; bi; �a�i;�b�is arein fa 2 K
Y j +op a = ag.) We want to hek,Lemma 6.4.6 ^i(fai _ :fbi) = �̂i(f�a�i _ :f�b�i)(For then it will be `safe' to de�ne �(a) = ^i(fai _ :fbi) for anyfai; biji 2 Ig � KC(Y ) suh that a = ^i(ai _ :bi).)Proof: We have done this already really in Lemma [1.3.3℄. To onlude that^i(fai_:fbi) � �̂i(f�a�i_:f�b�i) we need to prove that for every �i and for every pairJ1; J2 � I with I � J1 [ J2 we have(^i2J1fai) ^ (^i2J2:fbi) � (f�a�i _ :f�b�i)This relies on the by now well known �nite distributivity law being applied to themeet ^i(fai _ :fbi). But the last inequality an be manipulated tof((^i2J1ai ^ �b�i) _ _i2J2bi) � f((�a�i ^ �b�i) _ (_i2J2bi))and the fat that (^i2J1ai ^�b�i)__i2J2bi � (�a�i ^�b�i)_ (_i2J2bi) follows from exatlythe same manipulations applied to the assumption^i(ai _ :bi) � �̂i(�a�i _ :�b�i). 2Assumption: 8a 2 K
Y 9fai; biji 2 Ig � KCY s.t. ^i(ai _ :bi) = a.If this assumption is true then � will be a (neessarily unique) Boolean homomor-phism extending f . [For if a = ^i2I (ai_:bi) and �a = ^i2�I (ai _:bi) ) a^ �a =^I[�I(ai _ :bi). So�(a ^ �a) = ^I[�I(fai _ :fbi)= [^i2I (fai _ :fbi)℄ ^ [^i2�I (fai _ :fbi)℄= �(a) ^ �(�a)Similarly for _.℄We also have the following Boolean algebra lemma:Lemma 6.4.7 If I; �I are �nite sets and fai; biji 2 Ig and f�a�i;�b�ij�i 2 �Ig are sets ofelements of some Boolean algebra B, and ^i(ai _ :bi) = 0; �̂i(�a�i _ :�b�i) = 0. Thenfor any J1; J2 � I � �I, �nite subsets, suh that I � �I � J1 [ J2 we have^(i;�i)2J1(ai _ :�b�i) � _(i;�i)2J2(:�a�i ^ bi)



6.4. LOCALIC VERSION 129Proof: The onditions imply:[^(ai _ :bi)℄ _ [^(�a�i _ :�b�i)℄ = 0) ^(i;�i)2I��I [ai _ :bi _ �a�i _ :�b�i℄ = 0) _I��I�J1[J2 [(^(i;�i)2J1(ai _ :�b�i)) ^ (^(i;�i)2J2(�a�i _ :bi))℄ = 0) (^(i;�i)2J1(ai _ :�b�i)) ^ (^(i;�i)2J2(�a�i _ :bi)) = 0The result follows sine :(^(�a�i _ :bi)) = _(:�a�i ^ bi). 2We an now prove our assumption:Theorem 6.4.1 If (Y;�) is an ordered Stone loale and a 2 K
Y thena = ^i2I(ai _:bi) for some �nite I with ai; bi 2 K
Y and +op ai = ai;+op bi = bi.Proof: Clearly the antisymmetry axiom must now ome into play. This axiomstates that (�) ^ (�) �Sub(X�X) �whih as a statement about the opens of 
(X �X) reads:a� _ a� � #But a = # � a sine # orresponds to the identity of relational omposition. Thusa � (a� _ a�) � a (I)From our axioms used to de�ne `ordered Stone loale' we know,a� = _"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 K
Y +op ai = ai +op bi = bigsymmetriallya� = _"f �̂i(:�b�iO�a�i)j �̂i (�a�i _ :�b�i) = 0 �a�i;�b�i 2 K
Y +op �a�i = �a�i +op �b�i = �b�ig.Thus a� _ a� is a direted union of elements of the form[^i(aiO:bi)℄ _ [ �̂i(:�b�iO�a�i)℄= ^(i;�i)2I��I [(aiO:bi) _ (:�b�iO�a�i)℄= ^(i;�i)2I��I [(ai _ :�b�i)O(:bi _ �a�i)℄Sine a is ompat and ( ) � a preserves direted joins and �nite meets we see from(I) that a � ^(i;�i)2I��I([(ai _ :�b�i)O(:bi _ �a�i)℄ � a)for some fai; biji 2 Ig; f�a�i;�b�ij�i 2 �Ig suh that ^i(ai _:bi) = 0; �̂i(:�b�i _ �a�i) = 0 and+op ai = ai;+op bi = bi;+op �a�i = �a�i;+op �b�i = �b�i. Now[(ai _ :�b�i)O(:bi _ �a�i)℄ � a= (ai _ :�b�i) _ 
!(1 � :bi _ �a�i _ a)= _"[fai _ :�b�ig [ f1jbi ^ :�a�i � ag℄



130 CHAPTER 6. LOCALIC PRIESTLEY DUALITYAnd so, similarly to Lemma [6.4.5℄, via ompatness of a we an �nd �nite subsetsJ1; J2 � I � I with the properties:a � ai _ :�b�i 8(i;�i) 2 J1bi ^ :�a�i � a 8(i;�i) 2 J2I � �I � J1 [ J2Clearly (by de�nition of J1; J2) a � ^(i;�i)2J1(ai _ :�b�i)and _(i;�i)2J2(:�a�i ^ bi) � a:But by the last lemmâ (i;�i)2J1(ai _ :�b�i) � _(i;�i)2J2(:�a�i ^ bi)and so a = ^(i;�i)2J1(ai _ :�b�i): 26.5 NotesIn his thesis `The Struture of (free) Heyting Algebras' ([Pre93℄) Pretorius proves aonstrutive version of Priestley's duality. He shows that the the oherent loales aredual to a partiular subategory of the ategory of pairs of frames (where the seondelement of the pair is a subframe of the �rst and morphisms of this ategory areframe homomorphisms that preserve the subframe). This partiular subategory isseen, assuming PIT, to be equivalent to the ordered Stone spaes and so Priestley'soriginal duality is reovered. It is not lear how, from its de�nition, to view thispartiular subategory loalially; although given the results of this hapter we nowknow that it is onstrutively equivalent to the ordered Stone loales.The methods of Pretorius' proof are very di�erent from ours. He makes muh useof the frame of ongruenes on a distributive lattie. His observation that `the setof ompat ongruenes on a distributive lattie is the free Boolean algebra on thatlattie' has helped us in two important ways. Firstly it shows us how to onstrutthe free Boolean algebra on a distributive lattie (see Setion 1.3). This is not atrivial problem as the usual method, via �nitary universal algebra, is not allowedin our ontext sine it depends on the natural numbers. Seondly the fat thatthe ompat ongruenes form the free Boolean algebra means that we have a muhsimpler proof of Banashewski and Br�ummer's result that the stably loally ompatloales orrespond to the ompat regular biframes [BB88℄. The onsequenes ofthis orrespondene forms the ontent of our last hapter.



Chapter 7Hausdor� Systems7.1 IntrodutionGiven a poset (X;�) we an onstrut Idl(X), its ideal ompletion. Idl(X) isan algebrai dpo. For any algebrai dpo, A, we an onstrut KA, the set ofompat elements of A. These onstrutions are inverse to eah other. Howeverwe annot onlude that the ategory of posets is equivalent to the ategory ofalgebrai dpos. This is beause not all dpo maps preserve ompat opens. But ifwe extend the morphisms between posets to relations (satisfying suitable onditions)then a ategorial equivalene an be established. This is the idea behind Sott'sinformation systems (see [So82℄). One of the reasons for presenting algebrai dposas posets (=information systems) is that it beomes possible to use the presentationto solve domain equations. Domains are speial types of algebrai dpos and theproblem of solving domain equations is important in theoretial omputer siene.See [Vi89℄ for bakground on domains and [LW84℄ for details about how domainequations an be solved using information systems. The problem of extending thisequivalene to the retrats of the algebrai dpos (i.e. the ontinuous posets) isdealt with in [Vi93℄. In [Vi93℄ Vikers introdues the ategory of ontinuousinformation systems (InfoSys). These are pairs (X;R) where X is a set and R isa relation on X whih is idempotent with respet to relational omposition. Thereare many morphisms possible between ontinuous information systems. The mostgeneral are relations: R : (X;RX)! (Y;RY )R � X � Y suh that R = RY Æ R Æ RX where Æ is relational omposition. Theseare alled the lower approximable semimappings.We de�ne Hausdor� systems to be the proper parallel to ontinuous informationsystems. So a Hausdor� system is a pair (X;R) where X is a ompat Haus-dor� loale and R is a losed relation suh that R Æ R = R. Upper approximablesemimappings between Hausdor� systems are losed relations R ,! X � Y ,R : (X;RX)! (Y;RY ),suh that R = RY Æ R Æ RX where Æ is ompat Hausdor� relational omposition.We have de�ned the ategory HausSysUIf (X;R) is an infosys then we know (Chapter 4) that there is a SUP-lattie homo-morphism #R: PX ! PX orresponding to R. #R is idempotent sine R is. Theset 131



132 CHAPTER 7. HAUSDORFF SYSTEMSfT jT 2 PX #R T = Tgan then easily be seen to be a onstrutively ompletely distributive lattie. Theessene of [Vi93℄ is a proof that all onstrutively ompletely distributive lattiesarise in this way.Given a Hausdor� system (X;R) we know that there is a preframe morphism+op: 
X ! 
X orresponding to R (Chapter 4). Henefaja 2 
X +op a = agis a subpreframe of 
X . It also has �nite joins: +op 0 is least and the join of a; b isgiven by +op (a _ b). Further,Lemma 7.1.1 
 �X � faja 2 
X +op a = ag is the frame of opens of a stablyloally ompat loale.Proof: First we hek that the frame is ontinuous, i.e. that 8a 2 
 �Xa = W"fbjb�
 �X ag (�)Sine 
X is ompat regular we know that (8a; b 2 
X)a� b , a� bHene to onlude (�) all we need do is hek thatb� a ) +op b�
 �X aif a 2 
 �X . Say b� a and a � W" S S �" 
 �X then 9s 2 S b � s )+op b �+op s = s.As for stability we need to hek that 1�
 �X 1 (trivial by ompatness of 
X) anda �
 �X b1; b2 implies a �
 �X b1 ^ b2. Sine bi 2 
 �X, 
X is regular and +op is apreframe homomorphism we know thatbi = W"f+op j� bigHene a �+op i for some 1; 2 with i � bi. Hene a �+op (1 ^ 2). But1 ^ 2 � b1 ^ b2 and so 1 ^ 2 � b1 ^ b2. Hene a�
 �X b1 ^ b2. 2The next setion is devoted to proving that every stably loally ompat loalearises in this way. From then our program is to hek that this equivalene an bemade ategorial by restriting the lass of relations that are allowed to be Hausdor�system maps. The program is the proper parallel to the ontents of [Vi93℄.7.2 Stably loally ompat loalesLet StLoKLoU be the ategory whose objets are stably loally ompat loalesand whose morphisms are formally reversed preframe maps. Bearing in mind theorrespondene between preframe homomorphisms on the frame of opens of ompatHausdor� loales and losed relations on these loales (as aptured by Theorem[4.3.1℄) it should be lear that there is a funtor:CU : HausSysU ! StLoKLoU(X;R) 7! �Xwhere 
 �X = fa 2 
X j +op a = ag.If R : (X;RX) ! (Y;RY ) is an upper approximable semimapping (i.e. if RY Æ R ÆRX = R) then it is lear that  R (the preframe homomorphism from 
Y to 
Xorresponding to R) is going to satisfy:



7.2. STABLY LOCALLY COMPACT LOCALES 133 R = X+op Æ R Æ Y +opFrom this it follows that  R will restrit to a preframe homomorphism from 
�Y to
 �X. CU is funtorial.Lemma 7.2.1 The mapHausSysU ((X;RX); (Y;RY )) �! PreFrm(
�Y ;
 �X)R 7�! ( R)j
 �Xis a bijetion. i.e. CU is full and faithful.Proof: Send a preframe map � : 
 �Y ! 
 �X to the relation orresponding to thepreframe homomorphismX+op Æ � Æ Y +op : 
Y �! 
X 2We want to de�ne BU : StLoKLoU ! HausSysUFix, for the rest of the setion, X , a stably loally ompat loale. De�ne �
X tobe the set of Sott open �lters of 
X . So F 2 �
X i�(i) F is upper(ii) a; b 2 F ) a ^ b 2 F(iii) 1 2 F(iv) a 2 F ) 9b 2 F b� a:The following lemma is in [BB88℄,Lemma 7.2.2 �
X is the frame of opens of a stably loally ompat loale.Proof: If F1; F2 are two Sott open �lters thenF1 _ F2 =" fa1 ^ a2ja1 2 F1; a2 2 F2gDireted joins are given by union. F1 ^F2 = F1 \F2, �nite distributivity is an easymanipulation. If G is a Sott open �lter thenG = S"f""bjb 2 GgHene F � G if and only if there is a b 2 
X suh that F �" b � G. 2Sine X is stably loally ompat we know that there is a frame injetion## : 
X ! Idl
X . Now de�ne B
X to be the free Boolean algebra on 
X quadistributive lattie. There is a frame injetion of Idl
X into IdlB
X whih wewill denote by 
l. So if we ompose this injetion with ## we �nd that 
X an beembedded in IdlB
X . Notie that if �a� a then # �a � 
l##a.Lemma 7.2.3 �
X an be embedded into IdlB
X .Proof: Send F to W"b2F # :b. It is routine to hek that this is a frameinjetion. 2De�ne: 
Y=the subframe of IdlB
X generated by the image of the above twoembeddings.



134 CHAPTER 7. HAUSDORFF SYSTEMSTheorem 7.2.1 Y is a ompat Hausdor� loale.Proof: Compatness is immediate sine 
Y is a subframe of the ompat frameIdlB
X . As for regularity it is learly suÆient to hek that
l##a = W"fI jI �
l##agfor every a 2 
X and W"b2F # :b = W"fI jI �W"b2F # :bg8F 2 �
X .However a = W"fxjx � ag and F = W"fGjG � Fg sine both 
X and �
X areontinuous posets. So it is suÆient to prove thatx� a ) 
l##x�
l##a (I)G� F ) "_b2G # :b� "_b2F # :b (II).(I): Say x � a. Set F = ""x (a Sott open �lter). Then W"b2F # :b 2 
Y . Butlearly 
l##x ^W"b2F # :b = 0Further x� a ) 9�a x� �a� a. Hene
l##a _ "_b2F # :b � 
l##a_ # :�a� # �a_ # :�a = 1Hene 
l##x�
l##a.(II): Say G� F . So 9x 2 F G � ""x � F (sine F = W"f""xjx 2 Fg). ThenW"b2G # :b ^ 
l##x = 0Now x 2 F ) 9�x 2 F �x� x and so
l##x _W"b2F # :b �# �x_ # :�x = 1 2We want a losed idempotent relation on Y and so we need to �nd a preframeendomorphism +op: 
Y ! 
Y suh that (+op)2 = +op. If I; J 2 
Y we writeI �1 J if and only if 9F 2 �
X suh thatI ^W"b2F # :b = 0J _W"b2F # :b = 1Clearly �1� � and the last proof has shown us that x � a implies 
l##x �1 
l##a.De�ne +op: 
Y �! 
YJ 7�! "_fI jI = 
l##a for some a; I �1 Jg:Fats about +op:? 8J; +op (J) = 
l##a for some a 2 
X? +op (
l##a) = 
l##a 8a? (+op)2 =+op



7.2. STABLY LOCALLY COMPACT LOCALES 135? +op is a preframe homomorphism.Hene de�ne BU : StLoKLoU ! HausSysU by B(X) = (Y;R), where R is thelosed relation orresponding to +op.The above de�nition did not simply jump out of a hat. Although presentedin a very di�erent way it is essentially just a restruturing of Banashewski andBr�ummer's onstrution of a ompat regular biframe from a stably loally ompatloale. In their paper [BB88℄ they embedded 
X and �
X into the frame offrame ongruenes via exatly the same funtions; regularity of the frame generatedfollows the same path. Compatness in their proof is not immediate. They embedthe frame generated into the frame of frame ongruenes of the ideal ompletion of
X , pointing out that this embedding will be ontained within the frame generatedby ongruenes of the form (# a ,! Z) ^ (: # b ,! Z)where 
Z = Idl
X , a; b 2 
X . Another lemma veri�es that the frame generatedby these ongruenes is ompat. But it an be seen that the frame generated bythese ongruenes is just the ideal ompletion of the ompat distributive lattieongruenes on 
X . Pretorius [Pre93℄ tells us that the set of suh ompat ongru-enes is the Boolean ompletion of the distributive lattie 
X and so we see that wean embed into the ideal ompletion of the Boolean ompletion of 
X ; see Setion1.3. This is exatly what is done above.How is BU de�ned on morphisms? Say f : X1 ! X2 is a morphism ofStLoKLoU (so 
f : 
X2 ! 
X1 is a preframe homomorphism). From thestarred `fats about +op' above we see that the set of +op-�xed opens of BU (X) isjust the image of the inlusion 
l## : 
X ! 
BU (X). Hene 
X is isomorphi to
CUBU (X). So we an �nd a unique �f suh thatCUBUX1 �f- CUBUX2X1�= ? f - X2�=6ommutes. But CU is full and faithful. So there is a unique BUf : BUX1 ! BUX2suh that �f = CUBUf .Lemma 7.2.4 (X;R) �= (Y; S) in HausSysU if and only if 
 �X �= 
�Y as posets.Proof: Say (X;R) �= (Y; S) in HausSysU . It follows that there are upper approx-imable mappings T : (X;R) �! (Y; S)Q : (Y; S) �! (X;R)suh that T Æ Q = S and Q Æ T = R, where Æ is relational omposition. Tosee this notie that R : (X;R) ! (X;R) is the identity on the Hausdor� system(X;R). If  T ;  Q are the preframe homomorphisms orresponding to T;Q then T Æ  Q = R+op and  Q Æ  T = S+op. From whih it follows T j
�Y : 
 �Y �! 
 �X Qj
 �X : 
 �X �! 
�Y



136 CHAPTER 7. HAUSDORFF SYSTEMSare (order preserving) bijetions. Conversely , say
 �X � -� �� 
�Yare order preserving bijetions. Then � and �� are preframe homomorphisms. So if� is de�ned so as to make 
Y � - 
X
�YY +op ? �� - 
 �X[6ommute and  is de�ned to make
X  - 
Y
 �XX+op ? � - 
�Y[6ommute we see that �;  are preframe homomorphisms. If T;Q are the rela-tions orresponding to  ; � respetively then learly T;Q are upper approximablesemimappings whih are inverse to eah other in HausSysU . 2Theorem 7.2.2 HausSysU �= StLoKLoUProof: We need to hek BUCU (X;R) �= (X;R) in HausSysU , for every Haus-dor� system (X;R). This is immediate from the preeding lemma sine we knowCUBUCU (X;R) �= 
 �X = CU (X;R). 27.3 Approximable MappingsIn the paper [Vi93℄ various di�erent types of morphisms between ontinuous infor-mation systems are introdued. So far we have only examined the proper parallelto InfoSysL. i.e. to the ase where the morphisms are relationsR : (X;RX) ! (Y;RY ) suh that RY Æ R Æ RX = R. On the `open' side we see(Theorem 3.7 of [Vi93℄) thatInfoSysL �= CCDLoLwhere CCDLoL is the ategory whose objets are onstrutively ompletely dis-tributive loales and whose morphisms are formally reversed SUP-lattie homomor-phisms. On the proper side:HausSysU �= StLoKLoUIn [Vi93℄ we see that the equivalene an be re�ned:InfoSys �= CCDLo



7.3. APPROXIMABLE MAPPINGS 137CCDLo has been introdued in Setion 1.6. InfoSys has as objets all ontinu-ous information systems just as before. The morphisms are now the approximablemappings. Say R : (X;RX)! (Y;RY ) is a lower approximable semimapping. Thenit is an approximable mapping provided it also satis�es:(i) s0RXs ) 9t0 2 Y s0Rt0(ii) s0RXs sRt1 sRt2 ) 9t0 2 Y s0Rt0 t0RY t1 t0RY t2For a justi�ation of these axioms notie that if RX ; RY are partial orders then(i); (ii) are saying that for every s 2 X , ftjsRtg is an ideal of Y .It is quite easy to see that these two onditions an be expressed as:(i) #X (X) � Y ÆR(ii) #X (A1 ÆR \A2 ÆR) � (#Y A1\ #Y A2) ÆRwhere A1; A2 range over all subsets of Y . i.e. they range over all open subloales ofY (viewed as a a disrete loale). Hene it should be lear what an approximablemapping between Hausdor� systems should be:R : (X;RX)! (Y;RY )is an approximable mapping of Hausdor� systems if and only if R = RX Æ R ÆRYand (i) +X (X) �Sub(X) Y ÆR(ii) +X (F ÆR ^G ÆR) �Sub(X) (+Y F^ +Y G) ÆRfor all losed subloales F;G of Y . Say  R : 
Y ! 
X is the preframe homomor-phism orresponding to R. Then these equations are equivalent to the requirements:(i)  R(0) � X+op(0)(ii)  R(Y +op a _ Y +op b) � X+op( R(a) _  R(b)):It is easy, from these de�nitions, to hek that R : (X;R) ! (X;R) is alwaysan approximable mapping and that approximable mappings are losed under om-position. Let HausSys be the ategory of Hausdor� systems with approximablemappings. It should now be lear that we have a funtor:C : HausSys! StLoKLowhere StLoKLo is the full subategory of Lo onsisting of the stably loallyompat loales. The only diÆulty is heking that the approximable mappingsgive rise to frame homomorphisms. Say R : (X;RX)! (Y;RY ) is an approximablemapping. Then, as in the HausSysU ase, we know that  R restrits to a preframehomomorphism from 
�Y (� fa 2 
Y j +op a = ag) to 
 �X. For every a and b in
�Y  R(a _
�Y b) =  R(Y +op(a _ b))=  R(a _ b) ( R =  R Æ Y +op)� X+op( R(a) _  R(b)) (a; b 2 
�Y )=  R(a) _
 �X  R(b):And  R(0
�Y ) =  R(+op 0)=  R(0) � X+op 0= 0
 �X :



138 CHAPTER 7. HAUSDORFF SYSTEMSSo  R restrits to a frame homomorphism from 
�Y to 
 �X. On the other hand it iseasy to follow the de�nitions and prove that every frame homomorphism from 
�Yto 
 �X gives rise to an approximable mapping from (X;RX) to (Y;RY ) just as inLemma [7.2.1℄. In fat the onlusion of that lemma is easily seen to hold here: Cis full and faithful.The next task is to hek that the onstrution BU gives rise to a well de�nedfuntor: B : StLoKLo! HausSysThis amounts to heking that if f : X1 ! X2 is a loale map between two stablyloally ompat loales then BUf : BU (X1) ! BU (X2) is an approximable map-ping. By reexamining the onstrution of BUf we see that this fat follows fromour observation that C is full and faithful.Notie that Lemma [7.2.4℄ an now be repeated withHausSys in plae ofHausSysUand we may onlude:Theorem 7.3.1 HausSys �= StLoKLo. 27.4 Ho�mann-Lawson DualityWe use the blanket term Ho�mann-Lawson duality to over dualities indued bythe ation of taking Sott open �lters. Ho�mann and Lawson initially proved suh aduality for ontinuous posets in [Hof79℄,[Hof81℄ and [Law79℄. In [Vi93℄ we see howto make the duality onstrutive: the Ho�mann-Lawson dual of a ontinuous posetis found by taking the opposite of the orresponding ontinuous information system.By analogy, for a Hausdor� system (X;R) there is a duality (on objets) whihtakes (X;R) to (X; �R) where �R is the ompositeR ,! X �X ��! X �X(� is the twist isomorphism). It is not immediately lear how to make this dualityfuntorial. i.e. how to de�ne a funtor� : HausSys �! HausSysopNotie that if we reexamine (HausSys)U then� : HausSysU �! HausSysopUlearly is well de�ned. This is beauseRY ÆR ÆRX = R , �RX Æ �R Æ �RY = �Rand so we get our �rst duality:(HausSys)U �= (HausSys)opUWe have also (by impliation) just heked that(StLoKLo)U �= (StLoKLo)opUOn the open side there is the resultCCDLoU �= CCDLoopU



7.4. HOFFMANN-LAWSON DUALITY 139where the U indiates that the morphisms are formally reversed SUP-lattie homo-morphisms. Notie that in our onstrutive ontext we annot just take the oppositeof a onstrutively ompletely distributive lattie in order to get its dual; if we ouldthen the opposite of a onstrutively ompletely distributive lattie would be on-strutively ompletely distributive and, following our disussion in 1.6, this wouldimply that the exluded middle is true. The easiest onstrutive way of desribingthis duality is by looking at the points. We know that a CCD loale is uniquelydetermined by its ontinuous poset of points. [Vi93℄ shows how the above dualityorresponds to taking the Sott open �lters of these points in order to get the pointsof the dual. i.e. we are looking at a Ho�mann-Lawson duality.What is the dual of a stably loally ompat loale? Given that we are looking for aHo�mann-Lawson duality and we have observed already that �
 �X is the frame ofopens of a stably loally ompat loale if �X is stably loally ompat, it is learlydesirable to prove,Theorem 7.4.1 If (X;R) is a Hausdor� system thenfa 2 
X j *op a = ag �= �fb 2 
X j +op b = bg.Proof: Reall from Chapter 5 that if (X;R) is a Hausdor� system (i.e. R2 = R)then aR = W"f^i(+op aiO *op bi)j ^i2I (ai _ bi) = 0 I �niteg.(We see this result ontained within the �rst few lines of the proof of Lemma [5.1.3℄.)It follows that*op a = W"f^i(*op ai _ 
!(1 � a_ +op bi))j ^i (ai _ bi) = 0g (�)De�ne a funtion:� : fa 2 
X j *op a = ag �! �fb 2 
X j +op b = bga 7�! f+op bj1 � a_ +op bgClearly �(a) is a �lter on fbj +op b = bg � 
 �X. Say +op b 2 �(a). We know+op b = W"f+op �bj�b�
X+op bgsine +op b = W"f�bj�b �
X+op bg. Thus by ompatness of 
X sine 1 � a_ +op bwe know 9�b�
X+op b with 1 � a_ +op �b. Hene +op �b 2 �(a). But�b�
X+op b ) +op �b�
 �X+op b [7.1.1℄and so �(a) is a Sott open �lter. i.e. � is well de�ned.Further note that � reets order: say we are given a; �a 2 faj *op a = ag withf+op bj1 � a_ +op bg � f+op bj1 � �a_ +op bg then 8b1 � �a_ +op b ) 1 � a_ +op band so the fat that *op �a �*op a an be read o� from (�).In the other diretion de�ne : �
 �X �! faja 2 
X *op a = agF 7�! "_f*op aja 2 
X suh that 9b 2 
X with a ^ b = 0 +op b 2 FgWe need to show that 8F 2 �
 �X



140 CHAPTER 7. HAUSDORFF SYSTEMSF = f+op bj1 �  (F )_ +op bgProof of this: Say b 2 F then b =+op b. Sine F is a Sott open �lter we knowthat 9�b 2 F suh that �b�
 �X b:The dual of (�) is+op  = W"f^i(+op bi _ 
!(1 � _ *op ai))j ^i (ai _ bi) = 0g.But every (+op bi _ 
!(1 � _ *op ai)) is in 
 �X sine it an be expressed as adireted join of elements of 
 �X. Heneb =+op b = W"
 �Xf^i(+op bi _
!(1 � b_ *op ai))j ^i (ai _ bi) = 0g�b�
 �X b ) 9��b 2 
 �X �b�
 �X ��b�
 �X b.Hene there exists a �nite olletion (ai; bi)i2I with ^i(ai _ bi) = 0 suh that��b � ^i(+op bi _ 
!(1 � b_ *op ai))Hene (see Lemma [6.4.5℄) there exists J1; J2 � I �nite suh that I = J1 [ J2 and�b � ^i2J1(+op bi) 1 � b _ ^i2J2 *op aiHene �b �+op (^i2J1bi) and so +op (^i2J1bi) is in F . Now by the familiar �nitedistributivity law we know that^i2I (ai _ bi) = WI=J1[J2((^i2J1ai) ^ (^i2J2bi))and so sine (^i2J1bi) ^ (^i2J2ai) = 0 we get that *op (^i2J2ai) �  (F ). So1 �  (F ) _ b.On the other hand say 1 �  (F )_ b for some b with +op b = b. By the ompatnessof 
X (and the de�nition of  ) we know that1 �*op a _ bfor some a 2 
X suh that 9�b 2 
X with the properties that a ^ �b = 0 and+op �b 2 F . However reall Lemma [5.2.1℄. This stated that for any a; b 2 
X wehave that 1 �*op a _ b , 1 � a_ +op b:Hene �b �+op b. This implies +op �b �+op b = b. It follows that b 2 F sine+op �b 2 F . 2There is no natural way of �nding a ontravariant funtor from HausSys toHausSys sine if R is an approximable mapping then we annot hope that �Ris also an approximable mapping. Just as in the open parallel we symmetrizethe de�nition of approximable mapping in order to de�ne a new lass of funtionsbetween Hausdor� systems whih will give rise to a ontravariant funtor. Clearlythe parts of the de�nition whih need to be symmetrized are the onditions:(i) +X (X) �Sub(X) Y ÆR(ii) +X (F ÆR ^G ÆR) �Sub(X) (+Y F^ +Y G) ÆRDe�ne a Lawson approximable mapping to be an approximable mapping whih alsosatis�es (i) *Y (Y ) �Sub(Y ) X Æ �R(ii) *Y (F Æ �R ^G Æ �R) �Sub(Y ) (*X F^ *X G) Æ �Rwhere F;G are arbitrary losed subloales of X . Hene de�ne the ategory



7.4. HOFFMANN-LAWSON DUALITY 141(HausSys)�whose morphisms are the Lawson approximable mappings. It should be lear thatif R : (X;RX) ! (Y;RY ) is a Lawson approximable mapping then there are twoframe homomorphisms: R : fb 2 
Y j Y +op b = bg ! fa 2 
X jX+op a = ag �R : fa 2 
X jX*op a = ag ! fb 2 
Y j Y *op b = bg.We would like to de�ne the lass of Lawson maps between stably loally ompatloales and so de�ne a ategory (StLoKLo)� with the property(HausSys)� �= (StLoKLo)�The nature of the duality indued by � should then be lear. We will say thatf : �X ! �Y (a loale map) between stably loally ompat loales is Lawson i�(
f)�1 : �
 �X �! �
�Ypreserves �nite joins. That this is a sensible guess an be seen straightaway bynoting that  �R is a frame homomorphism from �
 �X to �
�Y for any Lawsonapproximable mapping R. This follows from the last theorem.Theorem 7.4.2 (HausSys)� �= (StLoKLo)�Proof: Although the proof is slightly trikier it is still essentially a variation of theproof of HausSysU �= StLoKLoU . As a �rst step we hek the fat that the setof Lawson approximable maps from (X;RX) to (Y;RY ) orresponds to the set ofLawson maps from �X to �Y via the usual transformation (i.e. R 7!  Rj
�Y ). Say weare given a Lawson approximable map R : (X;RX)! (Y;RY ). Then we will knowthat  Rj
�Y is the frame homomorphism orresponding to a Lawson map form �Xto �Y provided we an hek my laim that the omposite�
 �X �=�! fajX*op a = ag  �R�! fbj Y *op b = bg �=�! �
�Yis given by ( R)�1. (For then we know ( R)�1 preserves �nite joins sine  �Rdoes.) Realling the proof of the last theorem we see that the above ompositetakes F (2 �
 �X) toG � f+op bj1 � W"f*op  �R(a)j9�a a ^ �a = 0 +op a 2 Fg_ +op bgWe want +op b 2 G ,  R(+op b) 2 FNow F = f+op aj1 � W"f*op a0j9�a a0 ^ �a = 0 +op �a 2 Fg_ +op ag.So +op b 2 G if and only if 9�a; a0 a0 ^ �a = 0 +op �a 2 F suh that1 �*op  �R(a0)_ +op b, 1 �  �R(*op a0)_ +op band  R(+op b) 2 F , 9�a; a0 a0 ^ �a = 0 +op �a 2 F ,1 �*op a0 _  R(+op b)But we have seen that for every a 2 
X; b 2 
Y(1 �  �R(a) _ b) , (1 � a _  R(b))



142 CHAPTER 7. HAUSDORFF SYSTEMS(Lemma [5.2.1℄), and the omposition gives ( R)�1 as required.On the other hand say we are given f : X1 ! X2 a Lawson map between stablyloally ompat loales. Set (X;RX) = B(X1); (Y;RY ) = B(X2) and R = Bf . SoR : (X;RX) �! (Y;RY )is an approximable mapping. We hek that it is Lawson. As usual  R : 
Y ! 
Xis the preframe homomorphism orresponding to R. Clearly
�Y  Rj
�Y- 
 �X
X2�= ? 
f- 
X1�=6ommutes (where �= is as in the veri�ation that CB(Xi) �= Xi), and so( R)�1 : �
 �X ! �
�Y preserves joins sine (
f)�1 : �
X1 ! �
X2 does. Butwe have just shown that ( R)�1 : �
 �X ! �
�Y is given by the omposite�
 �X �=�! fajX*op a = ag  �R�! fbj Y *op b = bg �=�! �
�Yand so  �RjfajX*op a=ag preserves joins whih is suÆient to prove that�R : (Y; �RY )! (X; �RX )is an approximable mapping. i.e. R is Lawson. 27.5 ProdutsLemma 7.5.1 (1; 1) is the terminal objet of HausSys. If (X;R); (Y; S) are twoHausdor� systems then(X;R)� (Y; S) = (X � Y; i(R� S))where i : (X �X)� (Y � Y )! (X � Y )� (X � Y ) is the twist isomorphism.Proof: Clearly (1; 1) is terminal. This follows sine for any Hausdor� system(X;R) we know that approximable mappings from (X;R) to (1; 1) orrespond toloale maps from �X to 1.If R+op; S+op are the preframe homomorphisms orresponding to R;S thenR+op
 S+op : 
X 

Y �! 
X 

Yis the preframe homomorphism orresponding to i(R � S). We need projetionrelations: P1 : (X � Y; i(R� S)) ! (X;R)P2 : (X � Y; i(R� S)) ! (Y; S)De�ne P1 to be the pullbak of R alongX � Y �X �13�! X �Xand P2 to be the pullbak of S alongX � Y � Y �23�! Y � Y



7.6. SEMI-PROPER MAPS 143Hene the opens orresponding to P1; P2 areaP1 = 
�13(aR)aP2 = 
�23(aS)and the preframe homomorphisms orresponding to P1; P2 are
�1 Æ R+op
�2 Æ S+opwhere �1 : X � Y ! X , �2 : X � Y ! Y are the usual projetions. The best wayof demonstrating this last laim is to look at the ases aR = a1Oa2; aS = b1Ob2.From this it is lear that P1; P2 are approximable mappings.We need to hek that if Q1 : (Z; T ) ! (X;R) and Q2 : (Z; T ) ! (Y; S) are twoapproximable mappings, then there exists a unique approximable mapL : (Z; T ) �! (X � Y; i(R� S))suh that PiL = Qi for i = 1; 2.Assume suh an L exists. Say  Pi ;  L;  Qi are the orresponding preframe maps.Then sine  L is an approximable mapping it must satisfy  LÆ(R+op
 S+op) =  L.Hene for every aOb 2 
X 

Y we must have L(aOb) =  L(R+op aO S+op b)=  L( P1(a) _  P2(b))=  L((R+op
 S+op)( P1 (a)) _ (R+op
 S+op)( P2(b)))= T+op( L P1(a) _  L P2(b))= T+op( Q1 (a) _  Q2(b))The penultimate line is by the fat that  L is an approximable map. Thus L isuniquely determined and it is lear from the above what formula should be assignedto  L in order to de�ne L suh that PiL = Qi. 27.6 Semi-Proper MapsIn Banashewski and Br�ummer's paper \Stably Continuous Frames" ([BB88℄) thereis a proof that the ategory of stably ontinuous frames and `proper' maps is equiv-alent to the ategory of ompat regular biframes. Their `proper' maps are `�'preserving frame homomorphisms. We refer (see Setion 1.7.3) to `�' preservingmaps between stably loally ompat loales as semi-proper maps. This is a goodexpression sine it was shown (Lemma [3.2.1℄) that a loale map f : X ! Y betweenstably loally ompat loales is semi-proper if and only if 
f has a right adjointthat is a preframe homomorphism.(StLoKLo)SPis the ategory whose objets are stably loally ompat loales and whose mor-phisms are semi-proper loale maps. Banashewski and Br�ummer's result is(KR2Frm)op �= (StLoKLo)SPBut we saw in Setion 5.4 that(KR2Frm)op �=KHausPosSo



144 CHAPTER 7. HAUSDORFF SYSTEMSKHausPos �= (StLoKLo)SPThe main purpose of this setion is to outline a proof of this fat and to showhow this equivalene an be viewed as an extension of loali Priestley duality.Interestingly, on objets, the proof uses exatly the same onstrutions as the proofthat Hausdor� systems orrespond to stably loally ompat loales. For:Lemma 7.6.1 If X is a stably loally ompat loales and (Y;R) is the Hausdor�system given by BX (as in the funtor B : StLoKLo ! HausSys of Setion7.2) then (Y;R) is a ompat Hausdor� poset. i.e. R is a partial order.Proof: Reall the onstrution of BX . +op (J) � J 8J so R is reexive and the+op-�xed ideals form a subframe of 
Y whih is isomorphi to 
X .Further de�ne �2 : 
Y ! 
Y by mapping any ideal J toW"fI jI = W"b2F # :b some Sott open �lter F; I �2 Jgwhere I �2 J , 9a 2 
X I ^ 
l##a = 0J _ 
l##a = 1:Again �2 is a preframe homomorphism and �2(J) � J 8J and so the �2-�xedelements form a subframe isomorphi to �
X . 
Y is generated by these subframesand from the de�nitions it is easy to hek the regularity-like onditions for(
Y;+op ��xed ideals; �2 � �xed ideals)Consequently this last objet is a ompat regular biframe and so orresponds toan objet of KHausPos. 2We have a lemma whih an be read as a justi�ation for our hoie of examiningthe semi-proper maps:Lemma 7.6.2 Say f : X1 ! X2 is a map between stably loally ompat loales.Then f is semi-proper i� the mapping(
f)# : P
X2 �! P
X1F 7�! " f
f(a)ja 2 Fgtakes Sott open �lters to Sott open �lters.Proof: Say (
f)# maps Sott open �lters to Sott open �lters and a � b wherea; b 2 
X2. Then the set F �" f
f(�b)ja� �bgis a Sott open �lter. If 
f(b) � W" S for some S �" 
X1 then W" S 2 F . But Fis a Sott open �lter and so there exists s 2 S suh that s 2 F . Thus 
f(a) � s.The onverse is trivial. 2From this (and the fat that 
B(X) is generated by an image of 
X unionedwith an image of �
X) it should be lear how to de�ne a funtor:BSP : (StLoKLo)SP �! (KR2Frm)op �= KHausPosIn the other diretion we want:



7.6. SEMI-PROPER MAPS 145CSP : (KR2Frm)op �! (StLoKLo)SPThis is given on objets by taking the seond member of the triple ( (L0; L1; L2) 7!L1) and is given on morphisms by restrition. The easiest way to see that thisrestrition orresponds to a semi-proper loale map is by noting that for a; b 2 L1we have a�L1 b , a �1 band that �1 is preserved by any ompat regular biframe map.Clearly CSPBSP (X) �= X .In the other diretion say (L0; L1; L2) is a ompat regular biframe. We know(Theorem [7.4.1℄) that L2 �= �L1 and so if IdlBL1 is the ideal ompletion of thefree Boolean algebra qua distributive lattie on L1 then there is an embedding ofL0 into IdlBL1 .L0 (viewed as a subframe of IdlBL1) is the frame generated by the union of theimages of the embeddings of L1 and �L1. So(L0; L1; L2) �= BSPCSP (L0; L1; L2)and we have reaptured Banashewski and Br�ummer's result that(KR2Frm)op �= (StLoKLo)SPConsequently: KHausPos �= (StLoKLo)SP (a)It was pointed out at the end of Chapter 5 that the lassial orrespondenebetween ompat regular biframes and ompat Hausdor� posets was shown inPriestley's paper [Pri72℄. As for the lassial equivalene between stably loallyompat spaes and ompat regular T0 bispaes we �nd that this appears in [Sal84℄.Oswald Wyler's paper `Compat ordered spaes and prime Wallman ompati�a-tions' ([Wyl84℄) lassially overs both equivalenes: the stably loally ompatloales orrespond to the algebras of the prime Wallman ompati�ation funtor,a fat that is also in [Sim82℄.We now make a set of observations whih will allow us to onlude that result(a) above is an extension of loali Priestley duality. The ategory of oherent lo-ales has as morphisms the semi-proper maps between oherent loales, CohLo isa full subategory of (StLoKLo)SP . It is ertainly lear from the de�nition ofthe ategory of ordered Stone loales that it is a full subategory of the ompatHausdor� posets. So it is natural to hek whether the equivalene just heked (i.e.(a)) is an extension of the equivalene between ordered Stone loales and oherentloales as outlined in the previous hapter.Reall that we de�ned C : OStoneLo �! CohLoby 
C(X;�) = Idl(fa 2 K
X j +op a = ag). If we an show that:Idl(fa 2 K
X j +op a = ag) �= faj +op a = agthen it will be lear that the equivalene KHausPos �=�! StLoKLo is an exten-sion of C : StoneLo! CohLo. Certainly we an de�ne a frame homomorphism:
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X j +op a = ag �! faj +op a = agas the unique extension of the distributive lattie inlusionfa 2 K
X j +op a = ag ,! faj +op a = agand injetivety of this map learly lifts to �.So is � surjetive? Reall that the de�nition of an ordered Stone loale (X;�)required:a� = W"f^i(ai&:bi)j ^i (ai _ :bi) = 0; ai; bi 2 K
X; +op ai = ai; +op bi = bigSay a =+op a, then a is a direted join of elements of the form^i(ai _ 
!(1 � :bi _ a))where ai; bi 2 K
X and +op ai = ai;+op bi = bi. These elements are all interse-tions of the direted joins: W"(faig [ f1j1 � :bi _ ag)But ai; 1 2 fa 2 K
X j +op a = ag and so � is surjetive.This tells us that if KHausPos �=�! StLoKLo is applied to an ordered Stoneloale then the result is a oherent loale whih is isomorphi to the oherent loalegiven by the Priestley duality funtor C.Similarly to our work on Priestley's duality we �ndLemma 7.6.3 If (Y;R) is B(X) for some stably loally ompat loale X then thereis a pullbak diagram: R - v
Y � Y?\ k � k- X �X?\where v is the speialization subloale and 
k = 
l##.Compare this lemma with Lemma [6.4.3℄.Proof: It will be useful to have a formula for the open orresponding to R. I laimthat aR = W"f^i(aiO:bi)j ^i (ai _ :bi) = 0 ai; bi 2 
Xg(where we are taking 
X � 
Y sine 
k is an injetion). Notie that if this laimis true then the result follows by a proof idential to the proof of Lemma [6.4.3℄.We translate the laim into its SUP-lattie form. This readsaR = Wfa
:aja 2 
XgDe�ne � = Wfa
:aja 2 
Xg.Now aR = (+op 
1)(#) and soaR = W"f^i(+op NiOMi)j ^i2I (Ni _Mi) = 0 Ni;Mi 2 
Y I �nitegSay ^i(Ni _Mi) = 0. Then^i(+op NiOMi) = WI=J1[J2(^i2J1 +op Ni)
 (^i2J2Mi)



7.6. SEMI-PROPER MAPS 147and so we may onlude aR � � by noting that for every pair J1; J2(1) +op (^i2J1Ni) 2 
X(2) ^i2J2Mi � : +op (^i2J1Ni)where the latter is by the fat that (^i2J1Ni) ^ (^i2J2Mi) = 0 and +op� Id.Conversely notie that if a 2 
X , taking N1 = a;M1 = 0; N2 = 0;M2 = :a provesa
:a � aR. 2So the antisymmetry of R an be reaptured by noting that k is a monomorphism.Thus we don't have to use biframes in order to prove Lemma [7.6.1℄.How does Priestley duality �t into out parallel? We ould de�ne `PriestleySystems' as the images under B of the oherent loales. It is not quite lear whetherthese are the proper parallel to the simplest information systems (namely posetswith ertain relations as morphisms). Surely the proper parallel to a poset is aompat Hausdor� poset? But the posets orrespond to the algebrai dpos and theompat Hausdor� posets, we have seen, orrespond to the stably loally ompatloales. However the open parallel to the stably loally ompat loales are theontinuous posets (or CCD loales) rather than the algebrai dpos (or Alexandrovloales). Perhaps the ompat Hausdor� posets treated as Hausdor� systems (i.e.maps are approximable mappings) orrespond to the oherent loales? Priestleyduality would then show us that every ompat Hausdor� poset is isomorphi (asa Hausdor� system) to an ordered Stone loale. This is quikly seen to be falsesine the equivalenes of this hapter learly prove that HausSys is equivalent tothe full subategory of ompat Hausdor� posets and so a hypothesis of this kindwould lead to the ontradition that the oherent loales are equivalent to the stablyloally ompat loales. The author's onlusion is that we are not looking at a leftright symmetry. Reall the ube drawn at the end of Chapter 2. Algebrai dposare ontained within the dpo node and oherent loales are in the Frm node; thesymmetry for these nodes is perpendiular to the preframe/SUP-lattie symmetrythat has been the subjet of this thesis.
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