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Abstract

This is a brief summary of the original results in the thesis.

First, there is a localic version of the correspondence between perfect and patch con-

tinuous monotone maps. To this end, Escardó’s localic patch construction for a stably

compact locale is used. Given a stably compact locale X, we define constructively the

order in its patch locale. We also introduce localically the notion of a monotone patch

continuous function in this context. The fact that lax pullbacks of perfect maps pro-

duce proper maps in Loc is proved. Vickers’ preframe techniques are used throughout.

Beck-Chevalley conditions for lax-coequalisers are also proved.

When working in Top, the 2-category of Grothendieck topoi and geometric morphisms,

it is natural to consider functors between the (generalised) points of topoi. A 2-categorical

criterion of an adjunction situation F : X ⇋ Y : G in Top is proved by constructing the

classifying topoi of maps Fx→ y and x→ Gy, where x, y are points of X,Y respectively

and identifying them with inserters in Top.

Next, it is demonstrated that relative tidiness (in the sense of Moerdijk and Vermeulen)

is the right topos-generalisation of perfectness. Vickers has shown that the exponential

of topoi [set]X , where X is a stably compact locale, classifies the geometric theory of B-

sheaves which implies that a point of [set]X at stage Z is a B-sheaf in the sheaves over Z.

For f : X → Y a perfect map between two stably compact locales, a description of the map

[set]f : [set]X → [set]Y is given and is shown to have a right adjoint. The definitions of the

geometric morphisms are given by geometric constructions on the points of the exponential

topoi, i.e., the B-sheaves. The geometricity of these constructions is guaranteed by the fact

that we can represent perfect maps by strong homomorphisms between strong proximity

lattices. The adjunction is proved by application of the 2-categorical criterion in the 2-

category Top. The main result of this chapter is that for a map f : X → Y between stably

compact locales, f is perfect if and only if f is relatively tidy.

Finally, there are investigations with a possible topos analogue of the patch construc-

tion. Some results are given on relatively tidy maps between structures that are examples

of “stably compact topoi”. It is argued by example, that “stably compact topoi” and rel-

atively tidy maps should convey the notion of local partial ordering in the same sense that

stably compact locales and perfect maps amount to (globally) partially ordered locales

and monotone continuous maps.
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Chapter 1

Background

1.1 Our slice of topoi-On notation

Throughout this thesis, the term “topos” is used for a Grothendieck topos, or equivalently

for a elementary topos that fulfills the assumptions of Giraud’s theorem (see e.g. [Joh77],

theorem 0.45). The 2-category of Grothendieck topoi, geometric morphisms and natural

transformations is denoted as Top. We are thus usually suppressing the symbol of the

base topos from its notation, except when there is ambiguity from the context. Also,

sometimes, the symbol Top will be using for the 1-category of Grothendieck topoi. We

explicitly refer to (the sheaves of) our base topos as Sets, but we do not assume that

these are the classical sets; we do not allow use of the law of excluded middle or the

axiom of choice. This implies that the subobject classifier Ω of Sets (i.e. the power

object of the terminal set) is not the Boolean 2 but it is still the terminal locale (initial

frame). One thing that we assume is the existence of a natural numbers object. Indeed

we rely on universal algebra for several of our results. Therefore, everywhere, Sets could

be substituted with any Grothendieck topos B with a natural numbers object.

A frame is a poset with all joins and finite meets such that the arbitrary joins distribute

over finite meets. A frame homomorphism is a function that preserves arbitrary joins and

finite meets. We denote that the category of frames and frame homomorphisms as Fr. We

define Loc, the category of locales to be the opposite of the category of frames. We use a

single letter (say) X for the locale and ΩX for its defining frame. Locale theory offers the

possibility to do point-free topology and thus constructive topology; a frame and therefore

a locale is definable inside the sheaves of any topos.

We adopt the standpoint that contemplates Grothendieck topoi as generalised topo-

logical spaces or generalised locales. This manifests itself in the notation we use; an object
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CHAPTER 1. BACKGROUND 4

of Top is denoted with a Latin letter (e.g. X), whereas we reserve the symbol SX for the

category of its sheaves, very much in parallel with the juxtaposition of a locale X with

the frame of its opens ΩX. In this context, a geometric morphism will be denoted as

f : X −→ Y , whereas, e.g. the inverse image functor of f as f∗ : SY −→ SX.

Let us for a while write B for the base topos. Let X be a locale inside SB, correspond-

ing to an SB-internal frame ΩX. Taking sheaves over X (i.e. the category of functors

ΩX −→ SB obeying the usual patching conditions) amounts to a functor

S : Loc(B) −→ Top/B

between the category of locales inside SB to topoi over B ([JT84]). We say that the image

of a locale X inside SB under the functor S is the locale over B that corresponds to X.

Conversely, if f : X −→ B is a topos over B, we choose to write ΩX for the frame

ΩX := f∗ΩSX

where ΩSX is the subobject classifier of SX. Therefore, twisting the notation a little, we

write Ω for the functor

Ω : Top/B −→ Loc(B)

that sends a topos X over B to the locale inside SB whose defining frame is ΩX := f∗ΩSX .

The functor S is a full embedding of the category Loc(B) of locales in SB, into the

category Top/B of topoi over B.

Following Joyal and Tierney, we say that a topos f : X −→ B is localic over B, iff

there is an equivalence

S ◦ ΩX ≃ SX

Concluding, a locale X has opens ΩX and also sheaves (“generalised opens”) SX. Con-

versely, a topos X has sheaves SX and also opens ΩX.

We return to suppressing the base topos from the notation. If C is an (small) external

category, and by that we mean a category on sets, we denote the topos whose category

of sheaves is [C,Sets] by the symbol ˆC, i.e. S ˆC ≡ [C,Sets]. Furthermore, if I is

explicitly internal in the sheaves of a topos X, this is indicated by using the symbol XˆI

for the topos whose sheaves are the SX-internal (covariant) diagrams SXI, i.e.

S(XˆI) := SXI

When we consider finite products of topoi (that always exist), we can approach them
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via the geometric theories they classify. Nevertheless, it is useful to have a more concrete

characterisation of them. If X and Y are two Grothendieck topoi, the categories of their

sheaves SX and SX are cocomplete (and locally small) categories of set valued functors

from a small category C that preserve a Grothendieck topology J on that category. It

is therefore natural to seek their tensor product. Pitts [Pit85] indeed defines their tensor

product SX⊗SY in the 2-category COCTS of cocomplete locally small categories, small

colimit preserving functors and natural transformations, in the usual way: it amounts to

a functor ⊗SX,SY : SX × SY −→ SX ⊗ SY in COCTS (i.e. a functor that preserves

small colimits in both arguments), such that for any category C and any functor F : SX×

SY −→ C in COCTS, there is a unique (up to isomorphism) functor H : SX⊗SY −→ C

such that H ◦ ⊗SX,SY = F .

Pitts proves the following ([Pit85], 2.3).

Theorem 1.1 The category of sheaves over the product X ×Y of two Grothendieck topoi

is given by the tensor product SX ⊗ SY in COCTS. In particular, this implies that

SX ⊗ SY always exists.

This is an other analogy with locale theory (Ω(X × Y ) = ΩX ⊗ ΩY ) and more precisely,

as Pitts argues, with the fact that Ω(X × Y ) is the tensor product of ΩX and ΩY as

sup-lattices ([JT84]).

Suppose that C is a category in Sets and X any topos. The product X × ˆC in Top

is the trivial pullback

X × ˆC
!C ✲ ˆC

X
❄ ! ✲ 1

❄

(1.1)

Therefore, it is a consequence of Diaconescu’s theorem that X × ˆC is the topos (that we

denote) Xˆ!∗C, i.e. the topos whose sheaves are the internal diagrams

!∗(C) −→ SX

where !∗(C) is the “internalised version” in SX of C. Diaconescu’s theorem is proved in

[Joh77], 4.34 and the point we make about diagram 1.1 is a direct application of corollary

[Joh77], 4.35, which can be viewed as a change of base law for presheaf topoi.

We finish with an observation which, although it seems innocuous, it is of great im-

portance in the construction of geometric morphisms (see section 1.2). let 2 be the finite

category • −→ • (plus the two identities) in Sets. Then ˆ2 is the Sierpiński topos and
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we denote it by $. An object of S$ is a pair of sets A1, A0 together with a function

f : A1 −→ A0. The category 2 is finite and therefore it is indistinguishable from its

internal version in !∗(2) in SX, for ! : X −→ 1 (see example 2.39 in [Joh77]). Therefore,

according to the discussion above, the category of sheaves over the topos

X × ˆ2 := X × $

is [!∗(2),SX] ∼= [2,SX]. Moreover, the tensor product of 2 with any topos X exists (2 is

not a topos). More specifically, we have the following fact which is a special case of lemma

B3.4.2 in [Joh02].

Lemma 1.2 Any topos X has a tensor product with 2 and this is (the topos whose sheaves

are) [2,SX]. This implies that for any topos X, we have the equivalence

Top(X × $, Y ) ≃ [2,Top(X,Y )] (1.2)

1.2 Constructivism and geometricity

As mentioned in section 1.1 this thesis dwells in a universe of mathematical discourse

where the axiom of excluded middle and the axiom of choice do not exist. In other words

all our results are constructive.

Adhering to constructive mathematics guarantees that constructions and facts are

meaningful inside the sheaves of an arbitrary topos. Yet, this does not ensure that they

are preserved when transferred between different topoi.

Definition 1.3 We say that a construction is geometric when it is preserved by the inverse

image of geometric morphisms.

Geometric constructions include constructions that can be formalised in terms of finite

limits, arbitrary colimits, epiness, monicness, (Kuratowski) finiteness, existential quantifi-

cation, universal quantification over finite objects, free algebraic constructions (including

free essentially algebraic constructions, see section 5.5), natural numbers and others, al-

though we shall be basically using the ones mentioned.

A large part of this thesis purports to ascertain the existence of geometric counter-

parts for structures that are fundamentally non geometric, namely structures related to

stably compact locales and perfect maps. In chapter 3 we represent perfect maps between

stably compact locales using certain homomorphisms between strong proximity lattices.

The latter are geometric being homomorphisms between geometric structures. In chap-

ter 5 we demonstrate that sheaves over stably compact locales (non geometric structure)
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are equivalent with “B-sheaves” over strong proximity lattices. Finally, in chapter 6 we

essentially construct the geometric counterpart of a geometric morphism

f : Sh(X) −→ Sh(Y )

induced by a perfect map f : X −→ Y between two stably compact locales.

Geometricity is obviously more restrictive than constructivism. On the other hand

there is much to be gained if one abides its rigour. After all, one of the properties of

this versatile entity called Grothendieck topos is that it classifies geometric theories. We

proceed to outline how the construction of a geometric morphism between two topoi can

be facilitated by geometricity.

By a geometric transformation F γ between two geometric theories TX and TY we mean

a geometric construction that takes models of the theory TX inside the sheaves of a topos

Z to models of the theory TY in the sheaves of the same topos Z. In more detail, suppose

that TX contains sorts X̃i, relations R̃i, function symbols f̃i, constants c̃i and axioms Ãi.

A geometric transformation amounts to specifying a geometric process according to which,

once a model of this theory in the sheaves of it any topos Z has been chosen, say

MX = {{XM
i }, {R

M
i }, {f

M
i }, {c

M
i }}

(such that the axioms Ri are valid), a new set of objects and arrows

F γ(MX) = {{Y
F (M)
j }, {S

F (M)
j }, {g

(FM)
j }, {d

(FM)
j }}

in SZ can be constructed which is a model of the theory TY , i.e., the axioms Bj are valid.

We are going to demonstrate that a geometric transformation uniquely specifies a

geometric morphism. We point out that the exposition in this section follows the one in

[Vic98a], where the following exists.

Lemma 1.4 Let TX and TY be two geometric theories and X = [TX ], Y = [TY ]

their respective classifying topoi.

A geometric morphism F : [TX ] −→ [TY ] can be uniquely specified (up to equivalence)

by defining a geometric transformation F γ between the geometric theories TX and

TY .

I.II. As a consequence, functoriality of F is automatic

Proof. Indeed, the machinery is provided by the theory of classifying topoi. A geometric

transformation F γ can be applied to the universal model UX of TX in SX. F γ(UX) is
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then an object in Mod(SX,TY ) and (the object part of) the functor τX in

Mod(SX,TY )
τX✲
≃✛
σX

Top(X,Y ) (1.3)

specifies uniquely (up to isomorphism) a geometric morphism F : X −→ Y .

Let us suppose now that we fix the base topos Z. We have stressed already that F γ is

a mere map between the objects of the categories Mod(SZ,TX) and Mod(SZ,TY ). But

we can argue that geometricity also provides us with an arrow part so that F γ becomes

a functor between these categories. Indeed, if F γ is applicable on the models of TX in

the sheaves of any topos, we can choose this topos to be Z × $, where $ ≡ ˆ 2 is the

Sierpiński topos (see section 1.1). Hence, F γ also specifies a map between the objects of

Mod(S(Z × $),TX) and Mod(S(Z × $),TY ). The following lemma suffices to complete

the argument.

Lemma 1.5 Let TX be a geometric theory and X its classifying topos. Let also Z be any

Grothendieck topos. Then the following are equivalent.

i Geometric morphisms Z −→ [HomTX ].

ii 2-cells between geometric morphisms

Z
✲

⇓ ✲ X

iii Geometric morphisms Z × $ −→ X.

iv Geometric morphisms Z −→ X$.

Proof. (i)⇔ (ii): This is the classifying topos property, i.e. the equivalence 1.3.

(iii)⇔ (iv): Because of the exponentiation adjunction.

(ii)⇔(iii): We look at the equivalence 1.2. The geometric morphisms of (iii) are the

objects of the category in the L.H.S. of 1.2. The 2-cells of (ii) are objects of the R.H.S.

category of 1.2.

Lemmas 1.4 and 1.5 basically express the fact that we can construct geometric mor-

phisms between topoi by specifying their action on their points provided that this speci-

fication is geometric enough to make sense on points at any stage. This is an essentially

topological aspect of topoi. We are going to augment this aspect in chapter 4, where

we prove that in order to establish an adjunction F ⊣ G between geometric morphisms
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F : X ⇋ Y : G, it suffices to show that there is a bijection of homomorphisms

F (x) −→ y and x −→ Gy

where x, y are points of X and Y . There, naturality with respect to x and y comes for

free by geometricity.

1.3 Change of base for locales

Locale theory is a constructive way of doing topology. Nevertheless, a frame is not a

geometric structure; it is not preserved when pulled back along geometric morphisms. We

give an account of how the change of base for locales is treated. It will transpire that, in

some sense, a frame is not geometric but a locale is.

Let X be a locale inside the sheaves SZ of a topos. In section 1.1, we mentioned that

there is a locale X ′ over Z that corresponds to X and this is obtained as the topos whose

category of sheaves is SX (the image of X under the functor S). Joyal and Tierney prove

the following in [JT84].

Theorem 1.6 If X ′ −→ Z is a locale over Z, then for any topos p : E −→ Z, there

is an equivalence between geometric morphisms E −→ X ′ and frame homomorphisms

ΩX ′ −→ ΩE inside SZ.

The above theorem is equivalent with the statement that the functor Ω is left adjoint

to the functor S. Since S is essentially an inclusion of locales into topoi, the adjunction

Ω ⊣ S is a reflection of Top/Z in Loc(Z), usually referred to as the localic reflection.

Using theorem 1.6 we can easily prove the next lemma.

Lemma 1.7 Suppose that Z is a topos and X is a locale inside SZ. The locale q : X ′ −→

Z over Z (i.e. a localic topos over Z) corresponds to X iff

E ✲ X ′

❅❅❅p❘ ✠���
q

Z

(1.4)

for any topos p : E −→ Z over Z, there is an equivalence between geometric morphisms

E −→ X ′ over Z and frame homomorphisms

ΩX −→ ΩE(= p∗(ΩSE)) (1.5)

inside SZ.
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Proof. Let it be the case that X ′ corresponds to X. By theorem 1.6 we have that for any

topos E over Z, Top/Z(E,X ′) ≃ Fr(Z)(ΩX ′,ΩE). But since X ′ is just the topos over Z

whose sheaves are SX, we get

ΩX ′ ∼= ΩX in SZ

Conversely, letX ′′ be any locale over Z such that, for any toposE over Z, Top/Z(E,X ′′) ≃

Fr(Z)(ΩX,ΩE). Since ΩX ′ ∼= ΩX, we also get Top/Z(E,X ′) ≃ Fr(Z)(ΩX,ΩE). There-

fore, Top/Z(E,X ′) ≃ Top/Z(E,X ′′). This gives the equivalence X ′ ≃ X ′ over Z on the

grounds of X ′ and X ′′ having equivalent points (=models) at any stage over Z.

Now, following Vickers [Vic97], instead of a locale X inside SZ (which corresponds

to a frame inside SZ), we can consider a frame presentation Fr〈G|R〉 inside SZ. Then,

by the universal property of frame presentations, the frame homomorphisms of 1.5 are

equivalent to maps G −→ ΩE that preserve the relations R. The advantage is that frame

presentations, say in SZ, are geometric in the sense that they are models in SZ of a

geometric theory.

In short, a frame presentation is formally equivalent to an essentially propositional

geometric theory, i.e. a geometric theory with no sorts and hence no function symbols.

The generators of the frame presentation correspond to the relation symbols of the theory

and the relations to the axioms. The presence of the adjective “essential” signifies that

models of such a theory can contain objects corresponding to sorts that do not exist a

priori, i.e. objects other than subobjects of 1. These objects come into existence naturally

by manipulating the frame presentation geometrically (see an example in section 3.3). For

more on frame presentations as essentially propositional geometric theories, see [Vic99a].

Vickers (see [Vic97]) considers frame presentations brought into a particular form, the

“GRD” form. Using that, for a given frame presentation inside, say SZ, he constructs

the locale over Z that corresponds to this presentation. The following is the centrepiece

result pertaining to the change of base for locales ([Vic01], corollary 5.4).

Theorem 1.8 Let q : X −→ Z be a locale over Z that corresponds to a frame ΩX with

a frame presentation P in SZ. Let f : E −→ Z be any geometric morphism. Then the

locale over E that corresponds to the frame presentation f∗(P ) is given by the pullback in

Top
E ×Z X ✲ X

E
❄ f ✲ Z

q

❄

(1.6)

Roughly speaking, the underlying idea in Vickers’ construction is that a frame may
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not be geometric, but free constructions are. So instead of pulling back a frame in SZ

along f : E −→ Z, we can first pull back its presentation and then obtain the frame that

f∗(P ) generates in SE.

Joyal and Tierney have investigated the change of base for locales in [JT84]. They

demonstrated that locales can be regarded as certain types of monoids in the symmetric

monoidal category of SUP-lattices (a SUP-lattice is a partial ordered set with all arbitrary

joins). A geometric morphism E −→ Z induces a functor f# that takes SUP-lattices

in SZ to SUP-lattices in SE ([JT84], proposition VI.1). Moreover, f# preserves the

symmetric monoidal structure of SUP-lattices and hence locales. Therefore, a localeX −→

Z regarded as “a certain monoid” in the category of SUP-lattices inside SZ can be pulled

back along a geometric morphism f : E −→ Z. They first proved that the locale over E

that corresponds to f#(X) is given by the pullback diagram 1.6.

1.4 Stably compact locales - the extended Priestley duality

Definition 1.9 A map f : X −→ Y between two locales is perfect iff f∗ preserves directed

joins, i.e. it is Scott continuous. In literature, perfect maps are more usually referred to

as semi proper maps.

Lemma 1.10 A map f : X −→ Y between two locales is perfect iff for any b ∈ ΩY and

any a ∈ ΩX with b≪ f∗(a), there is a′ ≪ a such that b ≤ f∗(a
′).

Proof. ??

Definition 1.11 A locale X is stably locally compact iff the following conditions are sat-

isfied.

(i) X is locally compact, i.e. a =
∨↑{ai|ai ≪ a} for any a ∈ ΩX.

(ii) The way below relation of the frame ΩX is meet-stable, i.e. a ≪ b1, a ≪ b2 ⇒ a ≪

b1 ∧ b2 in ΩX.

Definition 1.12 A locale X is stably compact iff, in addition to the conditions of defini-

tion 1.11, we have

(iii) X is compact, i.e. 1≪ 1 in ΩX.

We are going to denote by StKLoc the category of stably compact locales and perfect

maps.

The following lemma is proved by Banaschewski & Brümmer in [BB88].
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Lemma 1.13 If ΩX is the frame of a stably compact locale, the set of its Scott-open filters

partially ordered by inclusion is the frame QX of a stably compact locale. Its directed joins

are unions, its binary meets are intersections and its binary joins are given by

K ∨ L = {a ∈ ΩX|∃a1 ∈ K (and) a2 ∈ L : a ≥ a1 ∧ a2} for any K,L ∈ QX

For any Scott-open filter K ∈ QX, K =
⋃↑{↑↑a|a ∈ K} and hence

K ≪ L iff ∃a ∈ QX such that K ⊆ ↑↑a ⊆ L

There is the following well known fact.

Lemma 1.14 Let f : X −→ Y be a continuous map between two stably compact locales.

Then the following are equivalent.

(i) f is perfect.

(ii) f∗ preserves the way below relation ≪.

(iii) For any L ∈ QY , ↑ f∗[L] ∈ QX.

Proof. (i)⇒ (ii): Let b1 ≪ b2 and f∗(b2) ≤
∨↑ S. Then we have

b2 ≤ f∗(
∨

↑S) (because f∗ ⊣ f∗)

⇔ b2 ≤
∨

↑{f∗(s)|s ∈ S} (by assumption)

⇒ ∃s ∈ S : b1 ≤ f∗(s) (↑↑b1 is Scott open)

⇒ f∗(b1) ≤ s (becausef∗ ⊣ f∗)

Therefore, f∗(b1)≪ f∗(b2).

(ii)⇒ (i): We shall prove that, if f∗ preserves the way below relation, then for any

a ∈ OmegaX,

f∗(a) =
∨

↑{b ∈ ΩY |f∗(b)≪ a} (1.7)

It can be easily checked that given 1.7, f∗ indeed preserves directed joins. To prove ??,

first we observe that f∗(b) ≪ a implies f∗(b) ≤ a and hence b ≤ f∗(a). So the R.H.S. of

1.7 is bounded by the L.H.S.. For the other direction, we observe that f∗(a) =
∨↑{b ∈

ΩY |b≪ f∗(a)} because Y is locally compact. But b≪ f∗(a) implies that f∗(b)≪ f∗f∗(a)

because F ∗ preserves the way below relation and so that f∗(b)≪ a because f∗ ⊣ f∗.

(ii)⇒(iii): Trivially, ↑ f∗[L] is a filter. We show that ↑ f∗[L] is Scott open. Let

f∗(b) ≤
∨↑ S for some b in ΩY . Because L is Scott open and ΩY is locally compact,
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there is b ∈ L with b′ ≪ b. This and perfectness of f implies that f∗(b′)≪ f∗(b). So, by

definition of the way below relation, there is s ∈ S such that f∗(b′) ≤ s which asserts that

s ∈↑ f∗[L].

(iii)⇒ (ii): Let b1 ≪ b2 in ΩY and f∗(b2) ≤
∨↑ S. We consider the set

M :=↑ {f∗(c)|b1 ≪ c}

The set ↑ b1 is a Scott open filter, therefore by assumption, M is a Scott open filter and
∨↑ S ∈ M . So there is s ∈ S with s ∈ M , i.e. s ≥ f∗(c) for some c with b1 ≪ c. We

deduce that f∗(b1) ≤ s by the fact that f∗(b1) ≤ f∗(c).

An important class of stably compact locales is the compact regular locales. A locale

X is regular iff for any a ∈ ΩX, a =
∨↑{ai ∈ ΩX|ai 0 a}. In any frame ΩX, we say that

b 6 a (b well inside a) iff there is c ∈ ΩX such that b∧ c = 0 and a∨ c = 1. The fact that

a compact regular locale is stably compact transpires from the following.

Lemma 1.15 If X is a compact regular locale and a, b ∈ ΩX, then

b 0 a⇔ b≪ a

Proof. Let b 0 a and a ≤
∨↑ S. Then we have that 1 ≤ ¬b∨a ≤ ¬b∨

∨↑ S =
∨↑{¬b∨s|s ∈

S}. But 1 ≪ 1 since X is compact, so there is s ∈ S such that 1 ≤ ¬b ∨ s which implies

b ≤ s.

Conversely, let b ≪ a. X is regular, so a =
∨↑{ai|ai 0 a}. Consequently, there is

a0 0 a with b ≤ a0. Obviously it holds that b ∧ a0 = 0 and a ∨ a0 = 1, i.e. b 0 a.

Definition 1.16 A map f : X −→ Y between two locales is proper iff it is perfect and in

addition it satisfies the coFrobenius condition

f∗(a ∨ f
∗(b)) = b ∨ f∗(a) for all a ∈ ΩX, b ∈ ΩY (1.8)

Recall that a map f : X −→ Y between two topological spaces is proper iff f−1 sends

compact subsets to compact subsets, or equivalently, iff it is closed and has compact fibres.

Vermeulen’s exposition [Ver94] on proper maps between locales contains the following

results.

Theorem 1.17 (i) Proper maps are pullback stable in Loc, i.e. in the following pull-
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back,

X ×Z Y
p2 ✲ Y

X

p1

❄ f ✲ Z

h

❄

(1.9)

if h is proper then p1 is proper. Also the Beck-Chevalley condition holds, i.e.

p1∗ ◦ p
∗
2 = f∗ ◦ h∗

(ii) Proper surjections are coequalisers of their kernel pair.

(iii) A map f : X −→ Y , where X is compact and Y is regular is always proper.

In section 2.3 we show that items (i) and (ii) of the theorem 1.17 are true for perfect

maps if we substitute pullbacks with lax pullbacks and coequalisers with lax coequalisers

respectively.

To put the scope of this thesis into a perspective, we now turn to the full subcategory of

StKLoc comprising the coherent (or spectral) locales (see [Joh82], II.3) and perfect maps.

We denote this category as CohLoc. By the term “Priestley Duality” we conventionally

understand the equivalence

CohSp ≃ OStoneSp (1.10)

where CohSp is the category of coherent spaces (the spatial counterpart of coherent

locales) and perfect maps and OStoneSp is the category of ordered Stone spaces and

monotone continuous maps. The equivalence 1.10 was effectively first proved by Priestley.

She actually showed the duality DLatop ≃ OStoneSp which together with the generalised

Stone representation DLatop ≃ CohSp yields 1.10, thus attaching the term “duality” to

what is usually expressed as an equivalence. The localic version of the Priestley duality

CohLoc ≃ OStoneLoc (1.11)

was proved by Townsend in [Tow97] (see also [Tow96]).

Banaschewski, Brümmer and Hardie introduced the notion of a compact regular biframe

in [BBH83]. It is a triple (L,L1, L2), where L is a compact frame and L1, L2 are two sub-

frames of L that generate L. L1 and L2 are equipped with two relations defined as follows.

a1 2 a2 in L1 iff there is b ∈ L2 such that a1 ∧ b = 0 and a2 ∨ b = 1.
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b1 2 b2 in L2 iff there is a ∈ L1 such that b1 ∧ a = 0 and b2 ∨ a = 1.

The subframes L1 and L2 are also required to fulfill the conditions

∀c ∈ Li c =
∨

↑{d ∈ Li|d 2 c}

for i = 1, 2. It follows that L is the frame of a compact regular locale. A biframe

homomorphism (L,L1, L2) −→ (L′, L′
1, L

′
2) is a frame homomorphism l : L −→ L′ that

also satisfies c ∈ Li ⇒ l(c) ∈ L′
i, for i = 1, 2. We denote by KR2Fr the category of

compact regular biframes and biframe homomorphisms.

Banaschewski & Brümmer proved in [BB88] that there is the following duality

StKLoc ≃ KR2Frop

This duality is exhibited by assigning a biframe (L,L1, L2) to any stably compact locale

X, where the frame L1 is the frame of the closed nuclei on ΩX, L2 is isomorphic to the

frame of Scott-open filters of ΩX and L is stipulated to be the frame generated by L1 and

L2. Townsend in his thesis [Tow96] gave a localic definition of compact regular ordered

locales and proved the duality

KR2Fr ≃ KRegPosop

where KRegPos is the category of compact regular ordered locales and monotone con-

tinuous maps. This establishes the equivalence

StKLoc ≃ KRegPos

The above equivalence will be referred to as the extended localic Priestley duality. Note

that the classical extended Priestley duality, which says that the category of stably com-

pact spaces and perfect maps is equivalent to the category of compact pospaces and mono-

tone continuous functions, is usually attributed to Nachbin ([Nac50]). The term pospace

is used here for a (necessarily) Hausdorff space equipped with a closed partial order.

1.5 Various compactness definitions for topoi

We have mentioned that proper maps between locales are defined by stipulating that they

satisfy a lattice theoretic condition (definition 1.16). Johnstone has defined proper maps in

[Joh79] (in this paper he actually calls them “perfect”) by giving a much more topological
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characterisation.

Definition 1.18 A map f : X −→ Y between two locales is proper iff it renders X

compact as a locale in the sheaves over Y .

The two definitions are proven to be equivalent by Vermeulen in [Ver94]. A special case

of this equivalence, is the well known fact that a locale X is compact iff the map

! : X −→ 1

is proper, i.e. X is compact in Sets. In fact, when the codomain of a map is the terminal

locale 1, the coFrobenius condition is redundant in definition 1.16 as it is implied by Scott

continuity of !∗. For a short constructive proof of this last fact see [Tow96], below theorem

3.2.2. Alternatively, it is easily observed that the statement that X is compact, i.e.

↑∨
S ≥ 1⇒ ∃s ∈ S : s ≥ 1

is logically equivalent with the statement that the global sections functor !∗ has the prop-

erty

!∗(
∨

↑{si}) =
∨

↑{!∗(si)}

where {si} ≡ S is a collection of subobjects of 1 in Sh(X).

Definition 1.19 More generally, a map f : X −→ Y between two locales renders X

compact inside the sheaves of Y when the direct image functor f∗ preserves colimits of

diagrams {si} of subobjects of 1 in Sh(X), indexed by Sh(Y )-internal filtered categories

(see [Joh79]).

Johnstone took a step further and defined a proper geometric morphism f : X −→ Y

between two arbitrary topoi to be one that renders f∗(ΩSX) compact lattice object inside

the sheaves SY . This amounts to the same condition as that of definition 1.19 with the

notational difference of SX and SY instead of Sh(X) and Sh(Y ).

Tierney proposed a stricter condition for properness which was studied by Lindgren

in his thesis [Lin]. Following Moerdijk and Vermeulen [MV97] we call the geometric

morphisms that satisfy the Tierney-Lindgren condition tidy.

Definition 1.20 A geometric morphism f : X −→ Y is tidy iff

f∗(colimi∈I{ci}) = colimi∈I{f∗(ci)}

where {ci} is a diagram of objects of SX indexed by a SY -internal filtered category.
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Definition 1.21 A topos X is strongly compact iff the direct image functor of the essen-

tially unique geometric morphism ! : X −→ 1 is tidy.

Example 1.22 ([MV97], III.1.1) Any coherent topos or compact Hausdorff space is a

strongly compact topos.

With the expression “a diagram of objects of SX indexed by a SY -internal filtered

category” we mean an object of the category SXf∗I, where I is an internal category in

SY . We refer the reader to [Joh77] for more on colimits of internal diagrams, or to section

6.8 where we briefly outline colimits of topos internal diagrams and give some more specific

pointers in literature.

We mention that in her thesis K.Edwards first studied topoi with the property of

definition 1.21 (strongly compact topoi).

Moerdijk and Vermeulen in their rather exhaustive monograph on compactness and

regularity conditions for topoi [MV97], investigated the properties of proper and tidy maps

providing (among other things) a different proof of a fact first established by Lindgren.

Theorem 1.23 In the pullback in Top,

X ×Z Y
p2 ✲ Y

X

p1

❄ f ✲ Z

h

❄

(1.12)

if h is tidy then p1 is also tidy. Furthermore, the induced natural transformation

f∗ ◦ h∗ ⇒ p1∗ ◦ p
∗
2 (1.13)

is an isomorphism, i.e. the Beck-Chevalley condition holds for pullbacks of tidy maps in

Top.

Theorem 1.23 about tidy maps is the topos analogue of theorem 1.17 about proper

maps. In [MV97], the authors prove that proper geometric morphisms are also pullback

stable and the natural transformation of expression 1.13 is a monomorphism if h is proper.

It is reasonable to pose the question: what is a topos analogue of perfectness? By

definition (1.9) perfect maps f : X −→ Y between locales have defining frame homomor-

phisms whose right adjoints preserve joins of directed subsets of ΩY and directed subsets

of ΩY are diagrams of elements of ΩY indexed by a filtered category in the sheaves of
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the base topos Sets1 (i.e. where the frames ΩX and ΩY live). We point at a class of

geometric morphisms introduced by Moerdijk and Vermeulen called relatively tidy.

Definition 1.24 Let X −→ B and Y −→ B be two topoi in Top/B. Then a geometric

morphism f : X −→ Y is relatively tidy (relative to B) iff f∗ preserves colimits of diagrams

of objects in SX indexed by a SB-internal category.

Compared with tidy maps, relatively tidy maps possess good stability properties not

under pullbacks but under lax pullbacks in Top. A lax pullback is an example of a 2-

categorical limit and always exists in Top. For any two geometric morphisms with common

codomain it consists of a square

X ⇒Z Y
ϑ2 ✲ Y

⇒

X

ϑ1

❄ f ✲ Z

h

❄

(1.14)

with the universal property that it commutes up to a 2-cell τ : f ◦ ϑ1 ⇒ h ◦ ϑ2. Lax

pullbacks are unique up to equivalence. The 2-cell τ and the adjunctions f∗ ⊣ f∗ and

ϑ∗2 ⊣ ϑ2∗ also induce a natural transformation f∗ ◦ h∗ ⇒ ϑ1∗ ◦ ϑ
∗
2 in the following stages

1SX ⇒ ϑ2∗ ◦ ϑ
∗
2 (the unit of the adjunction)

h∗ ⇒ h∗ ◦ ϑ2∗ ◦ ϑ
∗
2

h∗ ⇒ f∗ ◦ ϑ1∗ ◦ ϑ
∗
2 (because exists τ ′′ : h∗ ◦ ϑ2∗ ⇒ f∗ ◦ ϑ1∗)

f∗ ◦ h∗ ⇒ ϑ1∗ ◦ ϑ
∗
2 (because f∗ ⊣ f∗)

The following result proven by Moerdijk and Vermeulen ([MV97], theorem 5.1) was in

part the motivation for chapter 2 of this thesis.

Theorem 1.25 Suppose that diagram 1.14 is a lax pullback of topoi over a base B. If h is

relatively tidy then ϑ1 is tidy. Furthermore, the natural transformation f∗ ◦ h∗ ⇒ ϑ1∗ ◦ ϑ
∗
2

is an isomorphism, i.e. the Beck-Chevalley condition holds for lax pullbacks of relatively

tidy geometric morphisms.

In this thesis we manifest the view that relatively tidiness is the topos counterpart

of perfectness with the following results. First, in complete analogy with relatively tidy

1Is it correct?
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maps in Top, we demonstrate (chapter 2) that a lax pullback of a perfect map in Loc

produces a proper map and that the Beck-Chevalley condition holds for this square. Also,

a consequence of the results of chapter 6 is that a perfect map between stably compact

locales is a relatively tidy geometric morphism between the corresponding topoi of sheaves

over these locales. A corollary to this, which improves example 1.22, is that a stably

compact locale is strongly compact as a topos.

We close this section with a historical note. Joyal and Tierney studied open maps of

locales and topoi in [JT84] establishing a paradigm in which the study of proper maps

of locales and topoi also fits. After all, openness and compactness/properness are dual

notions in topology and topos theory.

1.6 Locally ordered topological spaces

A stably compact space is equivalent to a compact pospace, i.e. a compact Hausdorff

space equipped with a closed partial order on its points, via the generalised Priestley

duality (section 1.4). In this section briefly describe the notion of a local pospace, i.e. a

compact Hausdorff space space equipped with a local partial order. This notion is due

to Fajstrup, Goubault and Raussen in [FGR98]. Local pospaces were introduced by the

authors in order to be used for a directed homotopy account of iterative concurrent systems

in computer science. The definitions here are spatial.

Definition 1.26 Let X be a Hausdorff space. A local partial order on X is a collection of

pairs {(ai,≤ai)|i ∈ I}, such that {ai|i ∈ I} is an open covering of X and ≤ai is a partial

order on the open set ai for any i ∈ I, which in addition fulfills the following condition.

For any pair ai, aj , i, j ∈ I and any x, y ∈ ai ∩ aj, it holds x ≤ai y ⇔ x ≤aj y.

Let {(ai,≤ai)|i ∈ I} be a local partial order on a Hausdorff space X. Denote C the

open covering {ai|i ∈ I}. A refinement of this local partial order is a refinement D of the

open covering C such that for any b ⊆ a, b ∈ D and a ∈ C, it holds for any x, y ∈ b that

x ≤b y ⇔ x ≤a y. Two local partial orders on X are said to be equivalent iff they have a

common refinement. It can be proved easily that this is in fact an equivalence relation.

Definition 1.27 A Hausdorff space X together with an equivalence class of local partial

orders is called a locally partially ordered space, or locally ordered space.

A locally ordered space is a local pospace if there is a local partial order {(ai,≤ai)|i ∈ I}

such that all pairs (ai,≤ai are pospaces. We denote a local pospace as a pair (X,C), where

C is one of the equivalent local orders on X.
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Example 1.28 Consider the circle S1 covered by three opens: a1 = {eiϑ ∈ S1|ϑ ∈

(−3π/4 ≤, π/2)}, a2 = {eiϑ|ϑ ∈ (π/4, π)} and a3 = {eiϑ|ϑ ∈ (3π/4, 3π/2)}. Each of

these opens is ordered by increasing ϑ. The circle together with the equivalence class of

{(ai,≤ai)|i = 1, 2, 3} is a compact local pospace.

Note that in order to define a local order on S1, one has to cover it with at least three

partially opens. In other words the intersection of any two opens in the local partial order

must be connected.

We finally give an account of the morphisms between local pospaces.

Definition 1.29 Let (X,C) and (Y,D) be two local pospaces. Then a continuous map

f : X −→ Y is called a directed map (or dimap) iff there are equivalent local orders

C ′ ∼ C and D′ ∼ D such that, for any a ∈ C ′ and any b ∈ D′ and any x, y ∈ a ∩ f−1(b),

it holds

x ≤a y ⇔ f(x) ≤b f(y)



Chapter 2

Perfect Maps

This chapter takes it cue from the end of section 1.4 in the introduction. In section 2.1

there is a revision of Escardó’s patch construction for stably compact locales. In section

2.2 we prove that lax pullbacks of perfect maps produce proper maps in Loc. This is the

localic analogue of the result by Moerdijk and Vermeulen ([MV97]) according to which lax

pullbacks of relatively tidy geometric morphisms produce tidy maps (see section 1.5). Also

in section 2.2 we show that perfect surjections always emerge as lax coequalisers of their

kernel pair in Loc. Compare these two properties of perfect maps with the corresponding

ones for proper maps (Vermeulen [Ver94]): proper maps are pullback stable and proper

surjections always emerge as coequalisers of their kernel pair. Finally in section 2.4 we

demonstrate the bijection between perfect maps between stably compact locales and patch

continuous monotone functions. This is essentially generalised Priestley duality. Our proof

benefits from the insight of Escardó’s patch construction and is thus relatively short.

2.1 The patch construction

A major insight on constructing a biframe out of a stably compact locale was offered by

Escardó in his paper [Esc01]. He proved that the “total” biframe L is exactly the frame

of perfect nuclei on ΩX. By his definition, a nucleus is perfect iff it is Scott continuous.

More generally, he defines the patch of a locale X to be the locale PatchX whose frame

is the frame of perfect nuclei on ΩX. Thus the patch locale of a stably compact locale is

a compact regular locale. Furthermore, we have the following.

Lemma 2.1 If X is a stably locally compact locale, the nuclei of the form

â ∧ K̂ a ∈ ΩX and K ∈ QX (2.1)

21
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constitute a base of Ω(PatchX) ([Esc01], lemma 5.4).

• For a ∈ ΩX, we denote by â the perfect closed nucleus defined by â(b) := a ∨ b, for

any bıΩX. L1 is exactly the frame of these nuclei. In the lattice of sublocales of X,

nuclei of the form â correspond to open sublocales.

• For any Scott open filter K ∈ QX, we denote by K̂ the perfect nucleus defined by

K̂(b) :=
∨
{a ⇒ b|a ∈ K} for any b ∈ ΩX, where ⇒ is the Heyting implication in

ΩX. L2 is exactly the frame of these nuclei. In the lattice of sublocales of X, nuclei

of the form K̂ correspond to compact fitted sublocales. A sublocale is fitted iff it is

an intersection of open sublocales.

The following result exists in [Esc01b] (proposition 5.3) which is basically an other

version of [Esc01].

Lemma 2.2 If X is a stably locally compact locale

K̂ =
∨
{¬b|b ∈ K}

This implies that nuclei of the form

â ∧ ¬b̂ a, b ∈ ΩX (2.2)

also constitute a base of Ω(PatchX).

Restricting to the case of stably compact locales, the patch construction is extended

to a functor

Patch : StKLoc −→ KRegLoc

determined by stipulating that for any map g : X −→ Y between two stably compact

locales

(Patchg)∗(b̂) := ˆg∗(b) and (Patchg)∗(K̂) := ˆ↑ g∗[K]

for any b ∈ ΩY and K ∈ QY . Note that although g∗[K] is not necessarily a filter,

∨
{a⇒ b|a ∈ g∗[K]} =

∨
{a⇒ b|a ∈↑ g∗[K]} for any b ∈ ΩX

Theorem 2.3 The functor Patch is the right adjoint of the inclusion inc : KRegLoc →֒

StKLoc, i.e. KRegLoc is a coreflective subcategory of StKLoc. The counit of the

adjunction has components εX : PatchX −→ X, for any stably compact locale X, defined

by

ε∗X(a) = â
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for a ∈ ΩX. Moreover, εX is a perfect surjection.

Proof. [Esc01], definition 2.4, lemma 2.5 and corollary 5.9.

We close this section with briefly delving into spatial topology for the benefit of our

intuition. A sober spaceX is stably compact iff it is locally compact and finite intersections

of compact saturated subsets of X produce compact saturated subsets. A subset C is

saturated if ↑ C = C in the specialisation order of X. The patch topology on X is given

by considering the collection of opens in X and the complements of compact saturated

subsets in X. PatchX is a compact Hausdorff space and it can be naturally equipped with

a closed partial order, namely the specialisation order of X. A compact Hausdorff space

with a closed partial order is often called a compact pospace. Conversely, any compact

pospace (P,≤) gives rise to a stably compact space Y , by stipulating that the opens of Y

are subsets of P that are upper closed with respect to the order ≤.

A continuous function g : X −→ Y between two stably compact spaces is perfect iff

it reflects compact saturated sets (c.f. lemma 1.14, item (iii)). The same set theoretic

function is a continuous monotone if viewed as a map PatchX −→ PatchY . Conversely,

if f : PatchX −→ PatchY is a monotone and continuous, the same set theoretic function

is perfect if viewed as a map X −→ Y . The category of stably compact spaces and perfect

maps is equivalent to the category of compact pospaces and monotone continuous func-

tions. The spatial analogue of the map εX : PatchX −→ X is the set theoretical identity

(which is 1-1 and epi but not an isomorphism in Top). Therefore, diagrammatically, we

have the trivial statement that

PatchX
f✲ PatchY

X

εX

❄ g ✲ Y

εY

❄

(2.3)

for each perfect map g there is a unique monotone continuous function f that makes the

above diagram commutative and the converse. In section 2.4 we prove localically this

bijection between perfect and monotone (patch) continuous maps.
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2.2 Lax pullbacks in Loc

The category of locales and continuous maps is poset enriched in the sense that for any

pair of parallel continuous maps f, g : X ⇒ Y ,

f ≤ g iff f∗(b) ≤ g∗(b) ∀b ∈ ΩY

By abusing the notation, for the rest of this chapter, we are going to denote by Loc the

poset enriched category of locales and continuous maps.

We recall that in a poset enriched category C, a lax pullback of two arrows h : b −→ c

and f : c −→ c is an object a ⊑c b together with two arrows p1 : a ⊑c b −→ a and

p2 : a ⊑c b −→ b such that

• f ◦ p1 ≤ h ◦ p2 and

• For any object d and arrows q1 : d −→ a, q2 : d −→ b that satisfy f ◦ q1 ≤ h ◦ q2,

there exists a unique arrow e : d −→ a ⊑c b such that q1 = p1 ◦ e and q2 = p2 ◦ e.

In Loc lax pullbacks can be easily described by means of their frame presentations.

Lemma 2.4 In Loc lax pullbacks exist. In particular, the frame of a lax pullback

X ⊑Z Y
p2 ✲ Y Ω(X ⊑Z Y ) ✛p

∗
2 ΩY

≤ ≤

X

p1

❄ f ✲ Z

h

❄
ΩX

p∗1

✻

✛ f∗
ΩZ

h∗

✻

(2.4)

is presented as

Ω(X ⊆Z Y ) ∼= Fr〈ΩX ⊗ ΩY (qua frame)|f∗(a)⊗ 1 ≤ 1⊗ h∗(a)〉 (2.5)

and the frame homomorphisms p∗1 and p∗2 are given by

p∗1 = • ⊗ 1 and p∗2 = 1 • ⊗1

Proof. We denote A the frame of the presentation. The maps (•⊗1)◦f∗ = f∗(•)⊗1 and

(1 ⊗ •) ◦ h∗ = 1 ⊗ h∗(•) are well defined frame homomorphisms ΩZ −→ A and trivially

f∗(a)⊗ 1 ≤ 1⊗ h∗(a), for any a ∈ ΩZ.

Also for any frame ΩS and maps q∗1 : ΩX −→ ΩS and q∗2 : ΩY −→ ΩS such that

q∗1 ◦ f
∗(a) ≤ q∗2 ◦ h

∗(a) for any a ∈ ΩZ, the frame homomorphism e∗ : A −→ ΩS defined
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on the sub-basic elements of A by stipulating

e∗ : b⊗ 1 7→ q∗1(b) and e∗ : 1⊗ c −→ q∗2(c)

for any b ∈ ΩX and c ∈ ΩY , induces the equalities q1 = p1 ◦e and q2 = p2 ◦e and is clearly

the unique such.

Consider now the case where Y ≡ X and f ≡ h, i.e. the special case where the pullback

2.4 becomes the coequaliser

X ⊑Z X

p2 ✲

≤

p1

✲ X
h ✲ Z (2.6)

and X ⊑Z X is the lax kernel pair of h. Let also X be a compact regular locale. We

contemplate the monic

X ⊑Z X ⊂
< p1, p2 >✲ X ×X

as a relation on the locale X. Recall that in any regular category C (and KRegLoc

is a regular category), a relation on an object X is a monic < p1, p2 >: R →֒ X × X

(equivalently, a subobject R ⊆ X ×X). The relational composition R ◦R is the relation

R×X R ⊂
p1 ◦ a1 × p2 ◦ a2 ✲ X ×X

where R×X R is the following pullback in C.

R×X R
a2 ✲ R

R

a1

❄ p2 ✲ X

p1

❄

In this context, we have the following definition.

Definition 2.5 Let R →֒ X × X be a relation on X (in a regular category C). R is a

partial order if the following three axioms are satisfied.

(reflexivity) The diagonal ∆ : X →֒ X ×X factors through < p1, p2 > (equivalently ∆ ⊆ R).

(transitivity) The map p1 ◦ a1 × p2 ◦ a2 factors through < p1, p2 > (equivalently, R ◦R ⊆ R).

(antisymmetry) If for an object Q, there are monics Q →֒ R and Q →֒ Rc, where Rc is the relation
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< p2, p1 >: R →֒ X × X (p1 and p2 are swapped), then there is a monic Q →֒ ∆

(equivalently R ∩Rc ⊆ ∆).

For more on relations in category theory the reader is referred to [FŠ90].

Using presentations of frames, the proof of the following lemma is straightforward and

therefore omitted.

Lemma 2.6 Let h : X −→ Z be a continuous map and X be compact regular. Then

< p1, p2 >: X ⊑Z X →֒ X ×X is a reflexive and transitive relation on X.

If we make more specific demands on Y and h, we can further refine lemma 2.6.

Theorem 2.7 Let h : X −→ Z be a perfect map, X be compact regular and Y stably

compact. Then X ⊑Z X is a closed reflexive and transitive relation on X, i.e. X ⊑Z X

is a closed sublocale of X ×X.

Proof. By lemma 2.4, we know that the frame of X ⊑Z X is given by the presentation

Ω(X ⊑Z X) ∼= Fr〈ΩX ⊗ ΩX (qua frame)|h∗(a)⊗ 1 ≤ 1⊗ h∗(a), ∀a ∈ ΩZ〉 (2.7)

To prove that X ⊑Z X is a closed sublocale of X ×X it suffices to demonstrate that the

relations in 2.7 are logically equivalent to the relation

s ≤ 0 for some s ∈ ΩX ⊗ ΩX

Because then we shall know that X ⊑Z X corresponds to the complement of the open s.

We claim that

s =
∨

a∈ΩZ

h∗(a)⊗ ¬h∗(a) (2.8)

where ¬ is the Heyting complement in ΩX ⊗ ΩX.

Suppose that h∗(a)⊗ 1 ≤ 1⊗ h∗(a) for any a ∈ ΩZ. Then

s =
∨

a∈ΩZ

h∗(a)⊗ ¬h∗(a)

=
∨

a∈ΩZ

(h∗(a)⊗ 1 ∧ 1⊗ ¬h∗(a)) (meets of tensor products are computed componentwise)

≤
∨

a∈ΩZ

(1⊗ h∗(a) ∧ 1⊗ ¬h∗(a)) (by assumption)

=
∨

a∈ΩZ

(1⊗ (h∗(a) ∧ ¬h∗(a)))

= 1⊗ 0



CHAPTER 2. PERFECT MAPS 27

which is (isomorphic to) the bottom element 0 of ΩX ⊗ ΩX.

Conversely, assume that s ≤ 0. Let ai ≪ a in ΩZ. Since h is a perfect map between two

stably compact locales, h∗(ai) ≪ h∗(a). Furthermore, in the frame of a compact regular

locale, ≪=0 (lemma 1.15), so ai ≪ a implies that h∗(ai) 0 h∗(a). By the definition of

the well inside relation, the last implication becomes

ai ≪ a ∈ ΩZ ⇒ h∗(a) ∨ ¬h∗(ai) ∈ ΩX (2.9)

Using this information we have:

h∗(a)⊗ 1 = h∗(
∨

↑{ai|ai ≪ a})⊗ 1 (Z is locally compact)

=
∨

↑{h∗(ai)|ai ≪ a} ⊗ 1 (h∗ is frame homomorphism)

=
∨

↑{(h∗(ai)⊗ 1)|ai ≪ a} (in general
∨

(ai ⊗ b) =
∨
ai ⊗ b)

=
∨

↑{h∗(ai)⊗ h
∗(a) ∨ ¬h∗(ai)|ai ≪ a} (because of 2.9)

=
∨

↑{(h∗(ai)⊗ h
∗(a)) ∨ (h∗(ai)⊗ ¬h

∗(ai))|ai ≪ a}

≤
∨

↑{(1⊗ h∗(a)) ∨ (h∗(ai)⊗ ¬h
∗(ai))|ai ≪ a}

= (1⊗ h∗(a)) ∨
∨

↑{h∗(ai)⊗ ¬h
∗(ai)|ai ≪ a}

≤ (1⊗ h∗(a)) ∨ s (c.f. 2.8)

≤ 1⊗ h∗(a) (s ≤ 0 by assumption)

Now, for Z a stably compact locale, let us consider the case of the map

εZ : Patch(Z) −→ Z

where ε is the counit of the adjunction inc ⊣ Patch. Patch(Z) is compact regular and

εZ is perfect (and surjective), therefore by lemma 2.6 and theorem 2.7, Patch(Z) ⊑Z

Patch(X) is a closed, reflexive and symmetric relation on Z. Additionally, we know (c.f.

lemma 2.2) that any open b ∈ ΩPatch(Z) can be written as join of elements of the form

ε∗(ai) ∧ ¬ε
∗(aj) with a, a′ ∈ ΩZ (2.10)

Lemma 2.8 Patch(Z) ⊑Z Patch(Z) is an antisymmetric relation on Z.
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Proof. Let Patch(Z) ⊒Z Patch(Z) be the lax kernel pair of εZ : Patch(Z) −→ Z

Patch(Z) ⊑Z Patch(Z)

p2 ✲

≤

p1

✲ Patch(Z)
εZ ✲ Z (2.11)

In other words, if Patch(Z) ⊑Z Patch(Z) is R, Patch(Z) ⊒Z Patch(Z) is what we

denoted as Rc (compare with diagram 2.6). The frame ΩPatch(Z) ⊒Z Patch(Z) is has

the “symmetric presentation” of 2.7, i.e. the relations are

1⊗ ε∗(a) ≤ ε∗(a)⊗ 1 for any a ∈ ΩZ (2.12)

The above relation also implies that for any a ∈ ΩZ

¬(1⊗ ε∗(a)) ≥ ¬(ε∗(a)⊗ 1)⇔ 1⊗ ¬ε∗(a) ≥ ¬ε∗(a)⊗ 1 (2.13)

Now suppose that there is a sublocale i : Y →֒ PatchZ×PatchZ which is simultaneously

a sublocale of Patch(Z) ⊑Z Patch(Z) and Patch(Z) ⊒Z Patch(Z), i.e. there are monics

l : Y →֒ Patch(Z) ⊑Z Patch(Z) and m : Y →֒ Patch(Z) ⊒Z Patch(Z)

It holds i∗(b1 ⊗ b2) = l∗(b1 ⊗ b2) = m∗(b1 ⊗ b2), for any b1, b2 ∈ Patch(Z) We denote

by q1, q2 : Patch(Z) × Patch(Z) ⇒ Patch(Z) the two projections. Let b be any open

in ΩPatchZ. Let {ai|i ∈ I} and {aj |j ∈ J} be opens in ΩZ such that b =
∨
i,j(ε

∗(ai) ∧

¬ε∗(aj). We have

i∗ ◦ q∗2(b) = i∗(b⊗ 1)

= i∗(
∨

i,j

(ε∗(ai) ∧ ¬ε
∗(aj))⊗ 1)

=
∨

i,j

i∗(ε∗(ai)⊗ 1 ∧ ¬ε∗(aj)⊗ 1)

=
∨

i,j

(i∗(ε∗(ai)⊗ 1) ∧ i∗(¬ε∗(aj)⊗ 1))

=
∨

i,j

(l∗(ε∗(ai)⊗ 1) ∧m∗(¬ε∗(aj)⊗ 1))

≤
∨

i,j

(l∗(1⊗ ε∗(ai)) ∧m
∗(1⊗ ¬ε∗(aj)))

=
∨

i,j

(i∗(1⊗ ε∗(ai)) ∧ i
∗(1⊗ ¬ε∗(aj)))
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= i∗(1⊗
∨

i,j

(ε∗(ai) ∧ ¬ε
∗(aj)))

= i∗(1⊗ b)

= i∗ ◦ q∗1(b)

Similarly we prove i∗ ◦ q∗1 ≤ i∗ ◦ q∗2 and so that q1 ◦ i = q2 ◦ i. Hence Y is a sublocale of

the diagonal of Patch(Z)×Patch(Z).

Corollary 2.9 The lax kernel pair Patch(Z) ⊑Z Patch(Z) of εZ : Patch(Z) −→ Z is

a closed partial order on Z.

So we have proved:

Corollary 2.10 (⊑) is a closed sublocale of PatchA×PatchA. Its presentation is (equiv-

alently) given by:

Ω(⊑) = 〈ΩPatchA⊗ ΩPatchA (qua frame)|
∨

a∈A

¬â⊗ â ≤ 0 〉

Hence, it becomes apparent that Patch(Z) ⊑Z Patch(Z) qualifies as the sublocale

that corresponds to the closed partial order in Patch(Z) induced by the specialisation

order of Z. What we do next is to define monotone homomorphisms between two locales

PatchX and PatchY , where X,Y are stably compact locales.

Definition 2.11 Let f : PatchX −→ PatchY be continuous. Then f is monotone iff

there is a continuous map f ′ : PatchX ⊑X PatchX −→ PatchY ⊑Y PatchY that

makes the upper square in the following diagram commutative.

PatchX ⊑X PatchX
f ′✲ PatchY ⊑Y PatchY

PatchX ×PatchX

iX

❄

∩

f × f✲ PatchY ×PatchY

iY

❄

∩

PatchX

p1

❄

p2

❄ f ✲ PatchY

q1

❄

q2

❄

(2.14)
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By the definition of the cartesian product the two lower squares in the diagram are

always commutative, so an equivalent statement would be that f is monotone iff there

is a continuous map f ′ : PatchX ⊑X PatchX −→ PatchY ⊑Y PatchY such that

f ◦ p1 ◦ iA = q1 ◦ iB ◦ f
′ and f ◦ p2 ◦ iA = q2 ◦ iB ◦ f

′.

2.3 Perfect surjections as lax coequalisers in Loc.

In this section we move away from thinking about the patch construction and we study

the more general case of perfect maps between arbitrary locales. It can be observed that

the above construction of Ω(⊑) can be generalised for any perfect surjection h : ΩY −→ Z

and not just εA PatchA −→ A.

We consider the case where h : Y −→ Z is perfect and f : X −→ Z is any continuous

map. Let X ⊑Z Y be the lax pullback in Loc as depicted below using the lax pullback

square.

X ⊑Z Y
p2 ✲ Y Ω(X ⊑Z Y ) ✛1⊗ • ΩY

≤ ≤

X

p1

❄ f ✲ Z

h

❄
ΩX

• ⊗ 1

✻

✛ f∗
ΩZ

h∗

✻

(2.15)

The frame Ω(X ⊑Z Y ) can be presented as

Ω(X ⊑Z Y ) = Fr〈ΩPatchX ⊗ΩPatchY (qua frame)| f∗(a)⊗ 1 ≤ 1⊗ h∗(a), for a ∈ ΩZ〉

(2.16)

Let us note here that we cannot turn the presentation 2.16 into an equivalent presentation

like that of corollary 2.10. Ω(X ⊑Z Y ) is not closed in general.

Next, we construct a preframe presentation of the frame 2.16. Preframes are posets

having all binary meets and directed joins, with the binary meets distributing over directed

joins. Johnstone and Vickers [JV91] have proved the preframe version of the coverage

theorem which states that frames can be presented as preframes with relations of a specific

form (playing the role of a preframe coverage):

PreFr〈P (qua poset) | C 〉 ∼= Fr〈P (qua join semilattice) | C 〉

where C are relations of the form ∧S ≤
∨↑
i ∧Si where S, Si are finite subsets of P and C

are join stable in the sense that if a relation of the above form is in C, then for any x ∈ P

the relation ∧{x∨y, y ∈ S} ≤
∨↑
i ∧{x∨y, y ∈ Si} is also contained in C. So next we write

the frame presentation of Ω(X ⊑Z Y ) in an equivalent form so that the preframe coverage
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theorem can be readily applied.

Ω(X ⊑Z Y ) = Fr〈ΩX ⊗ ΩY (qua frame) | f∗(a)⊗ 1 ≤ 1⊗ h∗(a), a ∈ ΩZ 〉 (2.17)

which is equivalent to

Fr〈j ⊗ k, j ∈ ΩX, k ∈ ΩY | ∧(ji ⊗ ki) = ∧ji ⊗ ∧ki,
∨

i
(ji ⊗ k) =

∨
i
ji ⊗ k,

∨
i
(j ⊗ ki) = j ⊗

∨

i

ki,

f∗(a)⊗ 1 ≤ 1⊗ h∗(a), a ∈ ΩZ 〉

where j ⊗ k are formal symbols in this stage. By defining j

&

k = j ⊗ 1 ∨ 1 ⊗ k we can

“accumulate” all the binary joins in the generators’ part of the presentation. Using

&

, the

equivalent presentation is:

Fr〈j

&

k, j ∈ ΩX, k ∈ ΩY (qua join semilattice)|∧iji

&

k = ∧i(ji

&

k),

j
&

∧iki = ∧i(j
&

ki),
∨↑

i
ji

&

k =
∨↑

i
(ji

&

k),

j

&∨↑

i
ki =

∨↑

i
(j

&

ki) (2.18)

and ∀a ∈ ΩZ, (f∗(a) ∨ j)

&

k ≤ j

&

(h∗(a) ∨ k) (2.19)

where the first four types of relations generate the first three types of relations in the

previous presentation because they are join-stable. The fifth type of relations can be

expressed as the join of the relations

h∗(a)

&

0 ≤ 0

&

h∗(a) with j

&

k ≤ j

&

k

which is the least general join-stable expression equivalent with f∗(a)⊗ 1 ≤ 1⊗h∗(a). By

a fairly standard procedure we can put the relations in the required form ∧S ≤
∨↑
i ∧Si

where S, Si are finite (so we do not need to do it explicitly), and therefore, by direct

application of the Johnstone-Vickers preframe coverage theorem:

Ω(X ⊑Z Y ) = PreFr〈j

&

k, j ∈ ΩX, k ∈ ΩY (qua poset) | same relations as above〉

(2.20)

Next, we seek an explicit form of the right adjoint of the map p∗1 in the case where X,Y
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and Z are general locales and h is perfect. We define a function

p′1 : Ω(X ⊑Z Y ) −→ ΩX

by p′1(j ⊗ k) := j ∧ f∗h∗(k) (2.21)

We need to show that this function is well-defined on Ω(X ⊑Z Y ). To this end, we use

preframe techniques. The action of p′1 on j

&

k, for any j ∈ ΩX and k ∈ ΩY is

p′1(j

&

k) = j ∨ f∗h∗(k) (2.22)

Lemma 2.12 The map p′1 : Ω(X ⊑Z Y ) −→ ΩX is well defined.

Proof. Thinking Ω(X ⊑Z Y ) in terms of the preframe presentation, we have to show

that p′1 is a preframe homomorphism. Expression 2.12 defines p′1 on the generators of the

presentation 2.20 and we need to demonstrate that it respects its relations. It is easily

checked that p′1 preserves the first four. In particular, relation 2.18 is preserved because

h is perfect and therefore h∗ commutes with directed joins. We need a little more work

about the fifth one. We need to prove that

p′1(j ∨ f
∗(a)

&

k) ≤ p′1(j

&

h∗(a) ∨ k)

for any j ∈ ΩX, k ∈ ΩY and a ∈ ΩZ We have:

h∗h∗(k) ≤ k (h∗ ⊣ h
∗)

⇔ h∗(a) ∨ h∗h∗(k) ≤ h∗(a) ∨ k

⇔ h∗(a ∨ h∗(k)) ≤ h∗(a) ∨ k (h∗ is a frame homomorphism)

⇔ a ∨ h∗(k) ≤ h∗(h
∗(a) ∨ k) (h∗ ⊣ h

∗)

⇔ f∗(a ∨ h∗(k)) ≤ f∗h∗(h
∗(a) ∨ k) (f∗ is monotone)

⇔ f∗ ∨ f∗(a)h∗(k) ≤ f∗h∗(h
∗(a) ∨ k) (f∗ is a frame homomorphism

⇔ j ∨ f∗(a) ∨ f∗h∗(k) ≤ j ∨ f∗h∗(h
∗(a) ∨ k)

⇔ p′1((f
∗(a) ∨ j)

&

k) ≤ p′1(j

&

(h∗(a) ∨ k)) (by definition)

and so p′1 preserves the fifth relation. So these two maps are well defined.

So now we are ready for the following.

Lemma 2.13 The map p′1 defined by expression 2.21 or (equivalently) by 2.22 is the right

adjoint of p1. Furthermore, p1 is automatically perfect.
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Proof. The great advantage of having defined p′1 on a preframe presentation is that we

have already established that p′1 is a preframe homomorphism, i.e. it preserves finite meets

and directed join. We demonstrate now that p′1 is indeed the right adjoint of p∗1.

• Thinking Ω(X ⊑Z Y ) as a preframe, the general element in it is written as
∨↑ ∧j

&

k

for j ∈ ΩX and k ∈ ΩY . Therefore, the action of the composite p∗1p
′
1 on an arbitrary

element is p∗1p
′
1(

∨↑ ∧ j

&

k) =
∨↑ ∧ p∗1p

′
1(j

&

k) because p′1 is preframe homomorphism

and p∗1 is a frame homomorphism. For this reason, in order to show that p∗1p
′
1(s) ≤ s,

for any element s ∈ Ω(X ⊑Z Y ), it suffices to show that for any j

&

k ∈ Ω(X ⊑Z Y ),

p∗1p
′
1(j

&

k) ≤ j

&

k. We do that as follows

p∗1p
′
1(j

&

k) = p∗1(j ∨ f
∗h∗(k)) (by 2.22)

= (j ∨ f∗h∗(k))⊗ 1

= (j ⊗ 1) ∨ (f∗h∗(k)⊗ 1) (by the tensor product property)

≤ (j ⊗ 1) ∨ (1⊗ h∗h∗(k)) (by the relation of presentation 2.17)

≤ (j ⊗ 1) ∨ (1⊗ k) (because h∗ ⊣ h∗)

= (j
&

k) (by the definition of
&

)

• It is more straightforward to prove that p′1p
∗
1(j) ≥ j, for any j ∈ ΩY . Indeed we

have

p′1p
∗
1(j) = p1∗(j ⊗ 1) = j ∧ f∗h∗(1) = j ∧ 1 = j ≥ j

Where we used the fact that h∗ is monotone and so h∗(1) = 1 and f∗h∗(1) = 1.

This completes the proof of p∗1 ⊣ p
′
1.

Lemma 2.13 has an immediate important consequence.

Corollary 2.14 (i) Consider the lax pullback in Loc.

X ⊑Z Y
p2 ✲ Y Ω(X ⊑Z Y ) ✛1⊗ • ΩY

≤ ≤

X

p1

❄ f ✲ Z

h

❄
ΩX

• ⊗ 1

✻

✛ f∗
ΩZ

h∗

✻

If h is perfect then p1 is proper.

(ii) The Beck-Chevalley condition holds in lax pullback squares of perfect maps in Loc,
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i.e. with the notation of the lax pullback 2.15,

f∗ ◦ h∗ = p1∗ ◦ p
∗
2 (2.23)

Proof. (i) We have already shown in lemma 2.12 that p′1 is a preframe homomorphism

and in lemma 2.13 that p′1 = p1∗. What remains to be verified is that p1 satisfies the

coFrobenius condition (definition 1.16). Since p1∗ is a preframe homomorphism, it suffices

to show that

p1∗((j

&

k) ∨ p∗1(j
′)) = p1∗(j

&

k) ∨ j′ ∀j, j′ ∈ ΩX, k ∈ ΩY

We have

p1∗((j

&

k) ∨ p∗1(j
′)) = p1∗((j

&

k) ∨ (j′

&

0))

= p1∗((j ∨ j
′)

&

k)

= (j ∨ j′) ∨ f∗h∗(k) (by 2.22)

= j′ ∨ (j ∨ f∗h∗(k))

= j′ ∨ p1∗(j

&

k)

(ii) The Beck-Chevalley condition can be got out directly from the explicit form of p1∗

(expression 2.21); for any k ∈ ΩY , we have p1∗p
∗
2(k) = p1∗(1⊗k) = 1∧f∗h∗(k) = f∗h∗(k).

Consider now the special case of the lax pullback 2.15 in Loc with X ≡ Y and f ≡ h

still a perfect map. Then the Beck-Chevalley condition becomes

p1∗ ◦ p
∗
2 = h∗ ◦ h∗ (2.24)

By relying just on the above equality we are able to prove the following theorem

Theorem 2.15 Let h : X −→ Z be a perfect surjection between two locales. Then h is

the lax coequaliser of its kernel pair in Loc.

X ⊑Z X

p2 ✲

≤

p1

✲ X
h ✲ Z Ω(X ⊑Z Y )

✛p
∗
2

≤✛
p∗1

ΩX ✛ h∗
ΩZ

❅
❅

❅
❅

❅
f ′

❘

■❅
❅

❅
❅

❅
f ′∗

W

g

❄
ΩW

g∗

✻
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Proof. We shall prove that a perfect surjection possesses the required universal property.

Suppose there is continuous map f : X −→ W such that p∗1f
∗(b) ≤ p∗2f

∗(b), for any

b ∈ ΩW . We need to demonstrate that there is a unique continuous map g : Z −→ W ,

such that f∗ = h∗ ◦ g∗. First we observe that if such a map g exists then it is clearly

unique since h∗ is an injection by assumption.

To prove existence, we claim that

g := h∗ ◦ f
∗ (2.25)

is such a map. At first glance h∗ ◦ f∗ is not necessarily a frame homomorphism because

h∗ does not in general preserve finite joins. However, we show that when h∗ is restricted

to the subframe A of ΩX with j ∈ A iff p∗1(j) ≤ p∗2(j), then h∗ is the inverse of h∗ (and

hence a frame homomorphism) and it obviously holds A ⊇ Im(f∗). If j ∈ A then we have

h∗ ◦ h∗(j) = p1∗ ◦ p
∗
2(j) (by 2.24)

≥ p1∗ ◦ p
∗
1(j) (by definition of A)

= p1∗(j ⊗ 1)

= j ∧ h∗ ◦ h∗(1) (c.f. 2.21)

= j ∧ 1 = j

For the other direction, we recall that the adjunction h∗ ⊣ h∗ implies h∗ ◦ h∗(j) ≤ j.

This shows that h∗ : A −→ ΩZ is a right inverse of h∗. The fact that h∗ is an injection

guarantees that h∗ is also a left inverse of h∗. This in particular implies that the choice of

2.25 is the correct one since

h∗ ◦ (h∗ ◦ f
∗) = f∗

Remark 2.16 The elements j of ΩX for which p∗1(j) ≤ p∗2(j) are referred to as the

elements equipped with lax descent data. We denote LDes(h) the poset of objects with such

lax descent data. In the above proof we effectively showed that LDes(h) is isomorphic to

ΩZ. When this happens, we say that “h is of lax descent”. We refer to [MV99] for a brief

description of lax descent in the more general case of topoi.

From the proof of theorem 2.15 we extract the following fact which will be evoked later.

Lemma 2.17 If h : X −→ Z is a perfect surjection between two locales, then h∗ ◦ h
∗ =

idΩZ
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2.4 The relation between perfect and patch continuous maps

In this section we return to our study of stably compact locales. We investigate the relation

of perfect maps between stably compact locales and monotone continuous maps between

their respective patch frames in order to reach a conclusion with the same content as the

classical one.

The following theorem relies on the fact that εX : PatchX −→ X is a perfect surjec-

tion1.

Theorem 2.18 (i) Let X and Y be stably compact locales. If f : PatchX −→ PatchY

is continuous and monotone (in the sense of definition 2.11) there is a unique con-

tinuous function g : X −→ Y that makes the following diagram commutative.

PatchX
f✲ PatchY

X

εX

❄ g ✲ Y

εY

❄

(2.26)

(ii) Any map g that makes the above diagram commutative is perfect.

Proof. (i) We exploit the lax coequaliser result of theorem 2.15. For this reason we

construct the following diagram.

PatchX ⊑X PatchX
f ′ ✲ PatchY ⊑Y PatchY

PatchX

p1

❄

≤ p2

❄ f ✲ PatchY

q1

❄

≤ q2

❄

X

εX

❄ g ✲ Y

εY

❄

(2.27)

We sum up by saying that εX and εY are perfect surjections so they are the coequalisers

of their respective lax kernel pairs in Loc. The map f ′ is the unique continuous map

that makes the two top squares commutative according to the definition of monotonicity

1Put reference.
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(definition 2.11). We have

εY ◦ q1 ≤ εY ◦ q2 (by construction of (⊑)Y )

⇒ εY ◦ q1 ◦ f
′ ≤ εY ◦ q2 ◦ f

′

⇒ εY ◦ f ◦ p1 ≤ εY ◦ f ◦ p2 (definition 2.11)

This means that the function εY ◦ f is also a coequaliser of p1 and p2. Hence, by the

universal property of εX there must be a unique g : X −→ Y that makes the lower

diagram commutative which is the claimed.

(ii) Suppose that g is a map that makes the diagram 2.26 commutative with f continu-

ous and monotone. By the uniqueness of the right adjoint, the same diagram involving the

right adjoints of the defining frame homomorphism involved is also commutative. Starting

with this equality, we have the following implications.

g∗ ◦ εX∗ = εY ∗ ◦ f∗

⇒ g∗ ◦ εX∗ ◦ ε
∗
X = εY ∗ ◦ f∗ ◦ ε

∗
X

⇒ g∗ = εY ∗ ◦ f∗ ◦ ε
∗
X (lemma 2.17) (2.28)

Now, in equation 2.28

ε∗X is a frame homomorphism so it preserves directed joins.

εX∗ preserves directed joins because εX is perfect.

PatchX and PatchY are compact regular locales and it is known (first proved

by Vermeulen in [Ver94]) that any map between compact regular locales is proper.

Therefore, f is proper and this in particular entails that f∗ preserves directed joins.

Hence the function g∗ preserves directed joins as a composite of functions that do so. This

completes the proof of perfectness of g.

The converse of theorem 2.18 can also be established by using the adjunction inc ⊣

Patch that Escardó demonstrated in [Esc01].

Theorem 2.19 If g : X −→ Y is a perfect map between two stably compact locales, then

there is a unique map f that makes the familiar diagram below commutative. Moreover,
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this unique map is monotone.

PatchX
f✲ PatchY

X

εX

❄ g ✲ Y

εY

❄

(2.29)

Proof. All the ingredients of this proof are essentially provided by Escardó in [Esc01].

We recall that ε is the counit of the adjunction inc ⊣ Patch. Therefore, for any stably

compact locale Y

εY : inc ◦PatchY −→ Y

is universal from inc to Y . This means that, if we consider the map g◦εX (which is perfect

because both g and εX are), there is indeed a unique continuous map f : PatchX −→

PatchY that makes the diagram 2.29 commutative.

This unique map is clearly Patchg. This comes out of the definition of the arrow part

of Patch (see discussion that precedes theorem 2.3) and the fact that εX : Patch −→ X

is defined by the frame homomorphism

a ∈ ΩX 7→ â

where â is the closed nucleus corresponding to the open a.

It remains to prove that Patchg is monotone which is trivial if we consider the frame

presentation

Ω(PatchX ⊑X PatchX) ∼= Fr〈ΩPatchX⊗ΩPatchX (qua frame) |â⊗1 ≤ 1⊗â, ∀a ∈ ΩX〉

(2.30)

and the corresponding for Ω(PatchX ⊑X PatchX). The map

f ′ := Patchg ×Patchg

makes the two upper squares of diagram and it is well defined because for any a ∈ ΩY ,

(Patchg)∗ ⊗ (Patch)∗g(â⊗ 1) = ((Patchg)∗(â)⊗ (Patchg(1))∗)

= ˆg∗(a)⊗ 1 (by the definition of Patch)

≤ 1⊗ ˆg∗(a)

= (Patchg)∗ ⊗ (Patchg)∗(1⊗ a)
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Chapter 3

Finitary Representations of Stably

Compact Locales

3.1 Introduction

We have mentioned in section 1.4, the generalised Stone representation

DLatop ≃ CohSp (3.1)

Suppose that one wants to obtain an analogous representation for stably compact spaces.

The lattices of stably compact locales are in general “more manifestly continuous” so

one would need an extra element on the distributive lattice structure that conveys this

continuity. It turns out that this extra element is an additional binary relation (referred to

as strong order), not necessarily reflexive, that imitates the way below relation of the frame

of a stably compact locale. More specifically, Jung and Sünderhauf considered in [JS96]

strong proximity lattices (see definition in section 3.2 below) and proved the equivalence

of the category of stably compact spaces and continuous maps with the category of strong

proximity lattices and certain relations. The essence of this equivalence is the fact that

the lattice of opens of any stably compact locale is always the rounded ideal completion

of some strong proximity lattice, where a rounded ideal is an ideal with respect to the

additional binary relation.

The idea of representing continuous domains as rounded ideal completions of sets

endowed with a “strong order” goes back to Smyth who introduced in [Smy77] the notion

of the R-structure. An R-structure is a set A with a transitive binary relation (≺) such that

for any a ∈ A, ↓ a := {a′ ∈ A|a′ ≺ a} is ≺-directed. It follows that any continuous dcpo

D is the rounded ideal completion of some R-structure, namely the R-structure (ptD,≪)

40
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where ptD is the set of points of D and ≪ the way below relation of D.

The primary reason we are interested in representations of stably compact locales with

strong proximity lattices is that the theory of strong proximity lattices is geometric and

is thus preserved when pulled back by means of the inverse image functors of geomet-

ric morphisms. Moreover, we are interested in representing perfect maps (rather than

general continuous maps) between stably compact locales as certain maps between the

corresponding strong proximity lattices. To this end we introduce the notion of a strong

homomorphism between two strong proximity lattices.

More analytically, this chapter is organised as follows. In section 3.2 we introduce

strong proximity lattices and it is shown that if B is a strong proximity lattice then its

rounded ideal completion RIdl(B) is the frame of a stably compact locale. In section

3.3, we momentarily forget about RIdl(B). Instead, given a strong proximity lattice B,

we consider a particular presentation of a frame ΩRSpec(B). By treating this frame

presentation as an essentially propositional geometric theory, we characterise the points of

the locale RSpec(B). Then we prove that RIdl(B) ≃ RSpec(B). In section 3.4, we start

from an arbitrary stably compact locale X and we construct a strong proximity lattice

BX. In section 3.5, we make the constructions RSpec and B functorial: We introduce the

notion of a strong homomorphism between two strong proximity lattices and we construct

a perfect map RSpec(µ) : RSpec(B1) −→ RSpec(B2) out of a strong homomorphism

µ : B2 −→ B1 and conversely, a strong homomorphism Bf : BX2 −→ BX1 out of a

perfect map f : X1 −→ X2 between two stably compact locales. Finally we show that

RSpec ◦ B = idStKLoc. In section 3.6 we revisit the points of the locale RSpec(B) with

the purpose to investigate how a strong homomorphism µ : B2 −→ B1 acts on the points

pt ◦RSpec(B1) −→ RSpec(B2).

3.2 Strong proximity lattices

We introduce the notion of strong proximity lattices and their basic properties. All the

definitions and results of this section were established by Jung & Sünderhauf in [JS96].

Definition 3.1 A strong proximity lattice (B,∧,∨,≺) is a distributive lattice with an

additional relation ≺ which is transitive and interpolative and satisfies the following:

(i) if a ≤ b ≺ c ≤ d then a ≺ d.

(ii) if a ≺ bi (i ∈ Ifinite) then a ≺ ∧ibi.

(iii) if ai ≺ b (i ∈ Ifinite) then ∨iai ≺ b.
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(iv) if a ≺ ∨ibi (i ∈ Ifinite) then a ≺ ∨ib
′

i for some b
′

i ≺ bi.

(v) if ∧iai ≺ b (i ∈ Ifinite) then ∨ia
′

i ≺ b for some a
′

i ≻ ai.

Remark 3.2 In general, a ≺ b does not imply a ≤ b.

Remark 3.3 The theory of strong proximity lattices is a geometric theory.

It can be readily noticed that strong proximity lattices are self-dual (B ∼= Bop), because

of the symmetry of its definition. We will be referring to the additional relation ≺ as the

strong order. We define ideals and filters with respect to the strong order.

Definition 3.4 Let B be a strong proximity lattice. A rounded ideal is a subset I of B

such that

(i) I is lower closed with respect to ≺: if a ∈ I and a′ ≺ a, then a′ ∈ I

(ii) I is rounded: if a ∈ I, then there is a′ with a ≺ a′ and a′ ∈ I.

(iii) I is ∨-closed: if a, b ∈ I then a ∨ b ∈ I.

(iv) ⊥ ∈ I.

The definition of a rounded filter is the dual.

A prime rounded filter is a filter F ⊆ B which in addition possesses the property that

for any pair a, b of elements of B with a ∨ b ∈ F , a ∈ F or b ∈ F .

We shall always be denoting by ↓ and ↑ the lower closure and upper closure with

respect to the strong order ≺. Note that properties (i) and (ii) of definition 3.4 can be

expressed respectively as ↓ I ⊆ I and ↓ I ⊇ I. Hence, (i) and (ii) can be substituted by

the property

↓ I = I

Similarly, a filter of B is a subset of B such that ↑ F = F and F is ∧-closed. It is easy

to check that the subsets ↓ a and ↑ a, a ∈ B are rounded ideals and filters respectively

(properties (iii) and (ii) respectively of definition 3.1).

Also we remark that if I is a rounded ideal then I is a weak rounded ideal, i.e. a

lower closed subset of B with respect to the weak order ≤ that also satisfies properties

(ii) and (iii) of definition 3.4. For if I is a rounded ideal and a′ ≤ a with a ∈ I, then by

roundedness there is a′′ ∈ I with a ≺ a′′ and so a′ ≤ a ≺ a′′ or a′ ≺ a′′ (by definition

3.1(i)). Therefore a′ ∈ I.
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Lemma 3.5 Let I be an ideal in a strong proximity lattice B. Then I =
⋃↑{↓ b|b ∈ I}

Proof. If a ∈ I, then by roundedness there is an element b ∈ I with a ≺ b. Therefore,

a ∈↓ b and this shows that I ⊆
⋃↑{↓ b|b ∈ I}. If a ≺ b and b ∈ I, then a ∈ I because

↓ I = I and this shows I ⊇
⋃↑{↓ b|b ∈ I}. The union is obviously directed, for if a1 ∈ I

and a2 ∈ I, then the principal rounded ideal ↓ (a1 ∨ a2) is a superset of both ↓ a1 and

↓ a2.

It is well known that the ideal completion of a distributive lattice yields a a frame. We

prove that the rounded ideal completion of a strong proximity lattice yields a frame of a

stably compact locale.

Theorem 3.6 Let B be a strong proximity lattice. Let RIdl(B) be the set of rounded ideals

of B partially ordered by set inclusion. Then RIdl(B) is a frame of a stably compact locale.

Its binary meets, directed joins and binary joins are computed as follows:

(i) For I, J ∈ RIdl(B), I ∧ J = I ∩ J .

(ii) For {Ii ∈ RIdl(B)} a directed family,
∨↑ Ii =

⋃↑ Ii.

(iii) For I1, ..., In ∈ RIdl(B) a finite family, ∨ni=1Ii = {a ∈ B|∃a1 ∈ I1, ..., an ∈ In, with a ≺

∨ni=1ai}

The way below relation of RIdl(B) is given by

I ≪ J iff ∃a ∈ J such that I ⊆↓ a(⊆ J)

Proof. Obviously I1 ∧ I2 is a rounded ideal if I1 and I2 are. It is easy to show that
⋃↑ Ii is a rounded ideal if {Ii} is a directed family of rounded ideals. Indeed, obviously

↓
⋃↑ Ii =

⋃↑ Ii. Let a1, a2 ∈
⋃↑ Ii and {Ii} is a directed family of rounded ideals. Say

without loss of generality that a1 ∈ I1 and a2 ∈ I2, where I1, I2 are two rounded ideals of

the family. By directedness there is an ideal I3 in the family such that I1 ⊆ I3 and I2 ⊆ I3.

This implies that a1, a2 ∈ I3 and I3 is ∨-closed, hence a1 ∨ a2 ∈ I3 and so a1 ∨ a2 ∈
⋃↑ Ii.

It is also easy to show that I ∨ J is a rounded ideal if I and J are. We check easily

that ↓ (I ∨ J) = I ∨ J (using the transitivity and interpolation property of ≺). Also, if

a, b ∈ I ∨ J , then there are a1 ∈ I, a2 ∈ J and b1 ∈ I and b2 ∈ J such that a ≺ a1 ∨ a2

and b ≺ b1 ∨ b2. This gives a ≺ a1 ∨ a2 ∨ b1 ∨ b2 and b ≺ a1 ∨ a2 ∨ b1 ∨ b2 (using property

(i), definition 3.1). The last pair of inequalities yields a∨ b ≺ a1 ∨ a2 ∨ b1 ∨ b2 by applying

property (iii) of definition 3.1. Now, a1 ∨ b1 ∈ I and a2 ∨ b2 ∈ J and therefore a ∨ b is an

element of I ∨ J according to the definition.
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We need to show that the binary join corresponds to the least upper bound in RIdl(B).

If I, J are two rounded ideals then clearly I ∨ J is an upper bound of I and J , for if (say)

a ∈ I, then roundedness guarantees that there is a′ ∈ I with a ≺ a′ and therefore

a ≺ a′veeb, where b is any element of J . Let K be any rounded ideal and simultaneously

an upper bound of I and J . Then if a is an element of I ∨ J , there are a1 ∈ I and a2 ∈ J

such that a ≺ a1 ∨ a2. Now K contains all elements present in I and J , so a1, a2 ∈ K.

Also K is ∨-closed and so a1 ∨ a2 ∈ K. Finally ↓ K = K, which proves that a ∈ K, i.e.

that I ∨ J ⊆ K.

For a directed family {Ji} of rounded ideals and a rounded ideal I we have that

I ∧
∨

i

↑Ji = I ∩
⋃

i

↑Ji =

⋃

i

↑(I ∩ Ji) =
∨

i

↑(I ∧ Ji)

We will show that the binary joins also distribute with meets. Let I, J,K three rounded

ideals. It can be easily checked that (I ∧ J) ∨ (I ∧K) ⊆ I ∧ (J ∨K). For the opposite

direction, let a ∈ I ∧ (J ∨K). Then a ∈ I and a ≺ a1 ∨ a2 for some a1 ∈ J and a2 ∈ K.

By roundedness of I, there is a′ ∈ I such that a ≺ a′. By applying the property (ii) of

definition 3.1 we get a ≺ a′ ∧ (a1 ∨ a2) or a ≺ (a′ ∧ a1) ∨ (a′ ∧ a2) and this demonstrates

that a ∈ (I ∧ J) ∨ (I ∧K).

Up to this point in the proof we have effectively established that RIdl(B) is indeed

a frame. As always the finite joins are computed inductively out of the binary joins and

arbitrary joins can be got out of the directed and finite ones. Also the above demonstration

suffices to prove that the arbitrary joins distribute over (binary and hence) finite meets.

Now suppose that I ≪ J in RIdl(B). By lemma 3.5 J =
⋃↑{↓ b|b ∈ J} and so there

is b ∈ J such that I ⊆↓ b (and obviously ↓ b ⊆ J). Conversely, if there is b ∈ J such that

I ⊆↓ b ⊆ J and {Ii} is a directed family of rounded ideal with J ⊆
⋃↑
i Ii. By assumption

b ∈ J , which implies that there is index i0 such that b ∈ Ii0 . Ii0 is rounded and so there is

b′ ∈ Ii0 such that b ≺ b′ and therefore ↓ b ⊆ Ii0 . This together with the assumption I ⊆↓ b

yield I ⊆ Ii0 .

Next we prove that RIdl(B) is a continuous lattice, i.e. that for any rounded ideal I,

I =
⋃↑{Ii ∈ RIdl(B)|Ii ≪ I}. We show that I ⊆

⋃↑{Ii ∈ RIdl(B)|Ii ≪ I}. To that

end, let a ∈ I. Evoking roundedness, there is an element a1 ∈ I such that a ≺ a1 and,

subsequently, an other element a2 ∈ I such that a1 ≺ a2. The element a is contained in

the rounded ideal ↓ a1 and obviously ↓ a1 ⊆↓ a2, i.e. ↓ a1 ≪ I. Therefore a ∈
⋃↑{Ii ∈

RIdl(B)|Ii ≪ I}. The inclusion I ⊇
⋃↑{Ii ∈ RIdl(B)|Ii ≪ I} is obvious from the fact
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that ≪ entails ≤ in RIdl(B).

The fact that ≪ is stable under meets is an immediate result of the axioms of strong

proximity lattices. Suppose that I ≪ I1 and I ≪ I2 which we proved that is equivalent to

the fact that there are a ∈ I1 and b ∈ I2 such that I ⊆↓ a and I ⊆↓ b. Now a ∧ b ≤ a and

a∧b ≤ b and by the comment just before lemma 3.5 this implies that a∧b ∈ I1∩I2 = I1∧I2.

Also for any element c ∈ I, c ≺ a and c ≺ b by assumption and therefore c ≺ a ∧ b by the

property (ii) of the definition 3.1. Hence I ⊆↓ (a∧ b) and so we establish that I ≪ I1∧ I2.

Finally, we show that RIdl(B) is the frame of a compact locale, i.e. that the top

element of RIdl(B) is compact. Let ⊥ and ⊤ be the bottom and top elements of B as

a distributive lattice. If we implement property (ii) of definition 3.1 with the index set I

being empty we get that a ≺ ∧∅ = ⊤, for any a ∈ B. Similarly, using the property (iii)

of definition 3.1, we get ∨∅ = ⊥ ≺ a, for any a ∈ B. In particular, ⊤ ≺ ⊤ which implies

that ↓ ⊤ ⊆ ⊤ ⊆ ⊤ which can be written as

B ⊆↓ ⊤ ⊆ B

which amounts to RIdl(B) being the frame of a compact locale.

The next lemma is almost trivial but we place it here for future reference.

Lemma 3.7 Let B be a strong proximity lattice. Then in RIdl(B),

(i) (↓ a) ∧ (↓ b) =↓ (a ∧ b).

(ii) ↓ a∨ ↓ b =↓ (a ∨ b).

Proof. (i) If c ∈ (↓ a) ∧ (↓ b) = (↓ a) ∩ (↓ b), then c ≺ a and c ≺ b, so by the defining

properties of strong proximity lattices, c ≺ a ∧ b. If c ≺ a ∧ b, then c ≺ a ∧ b ≤ a and

c ≺ a ∧ b ≤ b and hence c ∈↓ (a ∧ b).

(ii) Obviously ↓ (a ∨ b) ⊆ (↓ a) ∨ (↓ b). Also if c ∈ (↓ a) ∨ (↓ b), then, by the definition

of binary joins in RIdl(B), there are a′ ≺ a and b′ ≺ b such that c ≺ a′ ∨ b′. But a′ ≺ b

and b′ ≺ b implies a′ ∨ b′ ≺ a ∨ b and hence c ≺ a ∨ b which entails that c ∈↓ (a ∨ b).

3.3 Presentation of frames of stably compact locales

The subject of this section is to write presentations of frames of stably compact locales

using strong proximity lattices and then argue geometrically about the points of such

locales.

We start with some generalities about frame presentations as essentially propositional

geometric theories. The reader is also referred to section 1.3. Let TX be an essentially



CHAPTER 3. FINITARY REPRESENTATIONS OF STABLY COMPACT LOCALES46

propositional geometric theory, i.e. a geometric theory that has no (primitive) sorts and

(hence) no function symbols, only nullary relation symbols R̃i and axioms Ãi. Such a

geometric theory, after a formal modification is equivalent to a frame presentation; the

relation symbols are the formal generators of the presentation and, in the absence of

sorts, the axioms on the relations can always be written in equational form A1 = A2,

where each expression Ai is a join of finite meets of generators. Conversely, a frame

presentation readily yields a propositional geometric theory where the generators are the

relation symbols and the equational relations are the geometric axioms on those relation

symbols.

Now let TX be a propositional geometric theory that corresponds to a presentation of a

frame ΩX. Then the standard construction of the syntactic site of a geometric theory TX

(e.g. the one in [MM92]) results to the site (ΩX, J), where J is the Grothendieck topology

that assigns to each a ∈ ΩX the subfunctors of the representable presheaf yΩX(a) that

are the open covering sieves. The sheaves over the site (ΩX, J) is just SX, the topos of

sheaves over the frame ΩX. Adhering to the notation that displays topoi as generalised

topological spaces, we can write that the classifying topos of the geometric theory TX is

the locale X.

Since such a geometric theory has no sorts then a modelMZ
X of TX inside the sheaves

of a topos Z is obtained by identifying its relation symbols R̃i with subobjects of the

empty product of objects in this topos, i.e., with subobjects of the terminal object 1SZ

in such a way so that the axioms are valid. It is important to stress that a model of

the theory TX in SZ can ultimately comprise not only these interpretations Ri of the

primitive relation symbols R̃i but also other objects that are constructed geometrically,

i.e. by means of finite limits and arbitrary colimits. A model of the theory TX inside SZ

is equivalent to a geometric morphism Z −→ X and the latter is a point of the locale X at

stage Z. Therefore, the models of a propositional geometric theory are equivalent to the

generalised points of the locale that this theory corresponds to. Specifying the points of

a locale at any stage Z (Z being a Grothendieck topos) completely determines the locale

itself.

Before we focus on frame presentations of stably compact locales, let us recall that

given a distributive lattice D, its ideal completion is isomorphic to the frame presented as

Fr < D (qua D.L.)| > (3.2)

(“D.L.” stands for distributive lattice). The points of the locale that this frame defines

are prime filters of D and these are equivalent to lattice homomorphisms D −→ Ω.
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We define the following refinement of the presentation 3.2.

Definition 3.8 Let B be a strong proximity lattice. We define RSpec(B) (rounded spec-

trum of B) to be the locale whose frame is presented as

ΩRSpec(B) = Fr < B (qua D.L.) | b =
∨

↑{a′|a′ ≺ a} > (3.3)

We turn the frame presentation 3.3 into the equivalent propositional geometric theory,

which we denote TRSpec(B). In accordance with the preceding discussion the relation sym-

bols of TRSpec(B) correspond to the elements of B and the axioms of TRSpec(B) correspond

to the properties of a distributive lattice plus the extra axiom in the presentation 3.3.

Definition 3.9 Given a strong proximity lattice B, let TRSpec(B) be the geometric theory

presented as follows.

relations: a relation symbol F̃b ⊆ 1 for each element b ∈ B

axioms: 1. ⊤ ⇔ F̃⊤.

2. F̃a∧b ⇔ F̃a ∧ F̃b.

3. ⊥ ⇔ F̃⊥.

4. F̃a∨b ⇔ F̃a ∨ F̃b.

5. F̃b ⇒
∨
{F̃b′ |b

′ ≺ b}.

6. F̃b ⇐
∨
{F̃b′ |b

′ ≺ b}.

Axioms 1-4 correspond to the

(qua D.L.) part of the relations whereas axioms 5-6 correspond to the relation b =
∨ ↑{a′|a′ ≺

a} in the frame presentation 3.3.

The locale RSpec(B) of definition 3.8 is the same as the locale that classifies the

geometric theory TRSpec(B). The global points of this locale are equivalent to the geometric

morphisms 1 −→ RIdl(B). Geometricity also allows us to speak about the points of

RIdl(B) at a stage Z, where Z is any Grothendieck topos. Such generalised points are

the same (up to natural equivalence) as models of the geometric theory TRIdl(B) inside

SZ. By following the standard recipe we can determine the models of TRIdl(B) in SZ.

A model of TRIdl(B) inside SZ (equivalently a point of RSpec(B) at stage Z) is de-

termined by assigning a subobject of the terminal object 1 of SZ to each relation symbol

F̃a, or in other words assigning a truth value in the subobject classifier ΩSZ to each F̃a in

such a way that the axioms hold.

Let us first consider the case where Z = 1, i.e. global points of RSpec(B). Then

SZ = Sets and we can argue as follows. There are as many relations F̃b as the elements

of the strong proximity lattice B. Hence, assigning truth values to F̃b is the same as fixing
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a characteristic function χF : B −→ Ω, i.e. a map B −→ Ω that respects the axioms of

TRSpec(B). Such an arrow uniquely specifies a subset F of B as the set with the property

b ∈ F ⇔ χF (b) = ⊤

For such a set F ⊆ B, the axioms of TRIdl(B) become

1. ⊤ ∈ F .

2. a ∧ b ∈ B ⇔ a ∈ B and b ∈ B.

3. ⊥ /∈ F (this is the intuitionistic negation).

4. a ∨ b ∈ F ⇔ a ∈ B or b ∈ B.

5. b ∈ F ⇒ there is b′ ∈ F with b′ ≺ b.

6. If b′ ≺ b and b′ ∈ F ⇒ b ∈ F .

Axioms 1 and 2 say that F is a filter, axioms 3 and 4 that F is a prime filter. Axiom 5

says that F is rounded with respect to the strong order and axiom 6 that F is lower closed

with respect to the strong order. So F is a rounded prime filter (with the definition of

roundedness given in 3.4). Hence, the points of the locale RSpec(B) are rounded prime

filters of B, or in other words, the topos RSpec(B) classifies rounded prime filters of B.

We remark that, although the geometric theory TRSpec(B) has no sorts, the set B came

into existence as a result of purely geometric manipulations. The analysis was hitherto

carried out in Sets but geometricity of frame presentations guarantees that its results can

be transferred inside the sheaves of any Grothendieck topos Z by means of the inverse

image of the essentially unique geometric morphism ! : Z −→ 1. The theory of strong

proximity lattices is geometric, therefore in SZ, the object !∗(B) is a strong proximity

lattice object and the subobjects F →֒!∗(B) corresponding to rounded prime filter of

!∗(B) in SZ can be constructed naturally as follows.

Using theorem 1.6, a generalised point

p : Z −→ RIdl(B)

corresponds to a frame homomorphism

Ω(RIdl(B)) −→!∗(ΩSZ)

We recall that the set !∗(ΩSZ) is a frame (because !∗ preserves frames) and is actually the

one that we usually write as ΩZ. By the universal property of frame presentations, frame
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homomorphisms Ω(RIdl(B)) −→ ΩZ are in bijection with distributive lattice homomor-

phisms f : B −→ ΩZ that preserve the extra relation of the presentation 3.3. Furthermore,

via the isomorphism

Sets(B,ΩZ)
∼= ✲ SZ(!∗(B),ΩSZ)) (due to !∗ ⊣!∗)

the map p gives rise to a characteristic map χ :!∗(B) −→ ΩSZ in SZ. The rounded prime

filters of !∗(B) in SZ are realised as pullbacks

F ⊂ ✲ !∗(B)

1

!

❄
⊂

true✲ ΩSZ

χ

❄

We have therefore demonstrated that the points at stage Z of the topos RSpec(B),

defined as the classifying (localic) topos of the geometric theory TRSpec(B), are rounded

prime filters of the strong proximity lattice object !∗(B) inside SZ.

Next we are going to show that the frame presented by 3.3 is exactly the frame of

rounded ideals of B as in theorem 3.6. By juxtaposition with the presentation 3.2, the

extra relation b =
∨ ↑{a′|a′ ≺ a} has the effect of restricting to the frame of rounded ideals

(instead of any ideals) and we know that this is the frame of a stably compact locale by

theorem 3.6.

Lemma 3.10 The presentation Fr < B (qua D.L.) |b =
∨↑{b′|b′ ≺ b} > presents the

frame RIdl(B), for any strong proximity lattice B.

Proof. Let A be the frame Fr < B (qua D.L.)|b =
∨↑{b′|b′ ≺ b} >. We are going to

define two frame homomorphisms

A
f ′ ✲✛
g

RIdl(b)

By the universal property of the presentation, in order to define the map f ′, it suffices

to define a distributive lattice homomorphism f : B −→ RIdl(B) respecting the extra

relation, because then there is a unique frame homomorphism f ′ that makes the following



CHAPTER 3. FINITARY REPRESENTATIONS OF STABLY COMPACT LOCALES50

diagram commutative

B
f✲ RIdl(B)

�
�

�
�

�

f ′

✒

A

i

❄

∩

where i is the inclusion of generators. We define f to be the map with the action f(b) :=↓ b

which is a lattice homomorphism by lemma 3.7 and respects the extra relation by lemma

3.5.

We define g to be the map with action g(I) :=
∨↑{i(b)|b ∈ I}, where

∨↑ is the operation

of calculating directed joins in A. We show that this is indeed a frame homomorphism.

Let I1, I2 ∈ RIdl(B). Then (dropping the inclusion symbol i) g(I1 ∧ I2) = g(I1 ∩ I2) =
∨↑{ai|ai ∈ I1 and ai ∈ I2}. On the other hand g(I1) ∧ g(I2) = (

∨↑{ai ∈ I1}) ∧ (
∨↑{aj ∈

I2}) =
∨↑{ai ∧ aj |ai ∈ I1, aj ∈ I2}. Obviously {ai|ai ∈ I1 and ai ∈ I2} ⊆ {ai ∧ aj |ai ∈

I1, aj ∈ I2}. Also the assumption that I1, I2 are rounded ideals of BX implies that they

are (weak) ideals. So if ai ∈ I1 and aj ∈ I2, then ai ∧ a2 ∈ I1 and a1 ∧ a2 ∈ I2. Therefore,

{ai|ai ∈ I1 and ai ∈ I2} = {ai ∧ aj |ai ∈ I1, aj ∈ I2}.

To prove that g preserves directed joins in RIdl(B), let {Ik}k is a directed collection of

rounded ideals. Then g(
∨↑
k Ik) = g(

⋃↑
k Ik) =

∨↑{a ∈
⋃↑
k Ik} =

∨↑
k

∨↑{a ∈ Ik} =
∨↑
k g(Ik).

Finally, we prove that g preserves finite joins. Trivially it preserves nullary joins. Also,

for I1, I2 two rounded ideals, we have

g(I1) ∨ g(I2) =
∨

↑{a ∈ I1} ∨
∨

↑{a ∈ I2}

=
∨

↑{a1 ∨ a2|a1 ∈ I1, a2 ∈ I2}

The relation in the presentation asserts that a1 ∨ a2 =
∨↑{a′|a′ ≺ a1 ∨ a2}. Therefore,

iterating the above equalities,

g(I1) ∨ g(I2) =
∨

↑{
∨

↑{a′ ∈ B|a′ ≺ a1 ∨ a2}|a1 ∈ I1, a2 ∈ I2}

=
∨

↑{a′ ∈ B|a′ ≺ a1 ∨ a2, a1 ∈ I1, a2 ∈ I2}

= g(I1 ∨ I2)

To complete the proof of the isomorphism, it suffices to prove that for any rounded ideal

I ∈ RIdl(B), f ′ ◦ g(I) = I and that for any formal generator i(b), b ∈ B of A, it holds
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g ◦ f ′(i(b)) = i(b). For any rounded ideal I, we have

f ′ ◦ g(I) = f ′(
∨

↑{i(b)|b ∈ I})

=
∨

↑{f ′(i(b))|b ∈ I}

=
∨

↑{f(b)|b ∈ I} (by the definition of f ′)

=
∨

↑{↓ b|b ∈ I}

= I (because of lemma 3.5)

Also, for any b ∈ B, g ◦ f ′(i(b)) = g(↓ b) =
∨↑{b′|b′ ≺ b} = b by the relation of the

presentation. This completes the proof.

3.4 Derivation of strong proximity lattices from stably com-

pact locales

In sections 3.2 and 3.3 we demonstrated how any strong proximity lattice gives rise to a

stably compact locale. In this section we demonstrate the inverse construction. Associated

with a stably compact locale X is not only the frame of its opens ΩX but also the frame

of its Scott-open filters QX that classically corresponds to its compact saturated sets.

The typical construction that assigns a strong proximity lattice BX to the stably compact

locale X takes both ΩX and QX into account. Jung & Sünderhauf first gave a classical

account of this construction in [JS96]. The constructive one developed in this section is

due to Vickers [Vic98b].

We start by recalling a simple fact.

Lemma 3.11 Scott open subsets of frames of locally compact locales are rounded.

Proof. The claim of the lemma means that if ΩX is a continuous frame and a ∈ K,

where K is a Scott open filter, then there is a′ ∈ K with a′ ≪ a. Take the Scott open set

S := ↓↓a. By continuity of ΩX,
∨↑ S = a ∈ K and since K is Scott open there is s ∈ S,

i.e. a′ ≪ a, such that a′ ∈ K.

Lemma 3.12 Let X be a stably compact locale. Let bi ∈ ΩX (i ∈ I) be a finite number

of opens and K ⊆ ΩX a Scott-open filter such that ∨ibi ∈ K. Then there are Scott open

filters Ki ⊆ ΩX such that bi ∈ Ki for all i ∈ I and ∩iKi = K.

Proof. If the index set I is empty, the assumption (⊥ =) ∨ ∅ ∈ K automatically implies

that K = ΩX = ∧∅.
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We cover the case I = {1, 2}. Let b1, b2 ∈ ΩX with b1 ∨ b2 ∈ K. We consider the

subset of ΩX

L := {a ∈ ΩX|a ∨ b2 ∈ K} (3.4)

It is easy to prove that L is a Scott-open filter. Let a ∈ L and a′ ≥ a. Then a′ ∨ b2 ≥

a ∨ b2 ∈ K and so a′ ∈ L because K is upper closed. If a, a′ ∈ L, then (a ∧ a′) ∨ b2 =

(a∨b2)∧(a′∨b2) ∈ K becauseK is ∧-closed. Finally,
∨↑
j ai ∈ L implies that (

∨↑
j ai)∨b2 ∈ K

or that
∨↑
j (ai ∨ b2) ∈ K. K is Scott-open and so there is index j0 such that aj0 ∨ b2 ∈ K

and this forces aj0 ∈ L.

Now b1 ∈ L and L is a rounded with respect to the relation ≪ (lemma 3.11), so there

is b′1 ∈ L with b′1 ≪ b1. We define the following Scott-open filter

K1 := ↑↑b′1 (3.5)

Obviously b1 ∈ K1. We also define the Scott-open filter

K2 := {a ∈ ΩX|b′1 ∨ a ∈ K} (3.6)

It holds that b′1 ∨ b2 ∈ K and so b2 ∈ K2. We observe that

(K ∨K1) ∧ (K ∨K2) = K ∨ (K1 ∧K2) (3.7)

We also observe that if c ∈ K1 ∧K2 = K1 ∩K2, then c ≫ b′1 ⇒ c ≥ b′1 and at the same

time b′1 ∨ c ∈ K. Therefore, c = b′1 ∨ c ∈ K and thus we conclude that K1 ∧K2 ⊆ K. This

insight and equation 3.7 yield (K ∨ K1) ∧ (K ∨ K2) = K which proves the claim of the

lemma for the binary case.

The case where the index set I is any finite cardinal can be proved from the binary

case by obvious induction on the cardinality of I.

Theorem 3.13 Let X be a stably compact locale. Let BX be the poset of those pairs

(a,K) in

ΩX ×QXop qua distributive lattice

that fulfill the property that a is a lower bound of K.

We endow BX with a relation ≺ by stipulating that (a,K) ≺ (b, L) iff b ∈ K (where

a, b ∈ ΩX and K,L ∈ QX). Then BX is a strong proximity lattice.

Proof. First, we verify that BX is a distributive lattice. We show that it is closed under

meets. Let (a,K), (b, L) ∈ BX. Then (a,K) ∧ (b, L) = (a ∧ b,K ∨ L) in ΩX ×QXop. Let
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c ∈ K ∨L. Then by the definition of the joins in QXop, there are c1 ∈ K and c2 ∈ L such

that c ≥ c1∧c2. Moreover, a ≤ c1 and b ≤ c2, as a, b are lower bounds of K,L respectively.

Therefore a ∧ b ≤ c1 ∧ c2 and so a ∧ b ≤ c.

BX is also closed under joins. The join of two pairs in BX is (a,K) ∨ (b, L) =

(a∨ b,K ∧L) = (a∨K ∩L). Trivially, if c ∈ K ∩L, then c ≥ a and c ≥ b and so c ≥ a∨ b.

We thus establish that BX is a distributive lattice. Note that (by definition)

(a,K) ≤ (b, L)⇒ a ≤ b & K ⊇ L

Now we verify that the relation ≺ satisfies the properties of definition 3.1. To show

that ≺ is interpolative, let (a,K) ≺ (b, L) in BX. By definition b ∈ K and the fact that

K is a Scott-open filter of a continuous lattice implies that it is rounded with respect to

≪. Hence, there is an element c ≪ b with c ∈ K. The pair (c, ↑↑c) is an element of BX

and it satisfies (a,K) ≺ (c, ↑↑c) ≺ (b, L).

The relation ≺ is transitive. For let (a1,K1) ≺ (a2,K2) ≺ (a3,K3). This means that

a3 ∈ K2 and the fact that a2 is a lower bound of K2 shows that a2 ≤ a3. This last

inequality together with the fact a2 ∈ K1 yield that a3 ∈ K1 (because K1 is a filter). So

(a1,K) ≺ (a3,K3).

We verify the validity of definition 3.1(i). We consider four pairs in BX related as

below

(a1,K1) ≤ (a2,K2) ≺ (a3,K3) ≤ (a4,K4)

That means that a3 ∈ K2 and hence a3 ∈ K1 because K2 ⊆ K1. Also it holds a3 ≤ a4

and we recall that K1, being a filter, is upper closed and so a4 ∈ K1.

Now we come to the property (ii) of definition 3.1. Let (bi, Li) ∈ BX be a finite family

and (a,K) ∈ BX such that (a,K) ≺ (bi, Li) for all i. Then bi ∈ K and so ∧ibi ∈ K

because K is a filter. So (a,K) ≺ (∧ibi,∨iLi) = ∧i(bi, Li).

The property (iii) of definition 3.1 is likewise trivial to verify. Let (ai,Ki) ∈ BX be a

finite family and (b, L) ∈ BX such that (ai,Ki) ≺ (b, L) for all i. This translates as b ∈ Ki

for all i and so b ∈ ∩iKi = ∧iKi. So ∨i(ai,Ki) = (∨iai,∧iKi) ≺ (b, L).

The property (iv) is the most non-trivial to verify. Let (bi, Li) ∈ BX be a finite family

and (a,K) ∈ BX such that (a,K) ≺ ∨i(bi, Li) = (∨ibi,∧iLi). Then ∨ibi ∈ K. By

applying lemma 3.12, there are Scott-open filters Ki such that bi ∈ Ki and ∧iKi = K. By

roundedness of the Scott-open filters Ki (with respect to ≪), there are elements b′i ∈ Ki

such that b′i ≪ bi for all i. We consider the elements (b′i, ↑↑b
′
i). By construction it obviously

holds that (b′i, ↑↑b
′
i) ≺ (bi, Li) and (a,K) ≺ (∨ib′i,∧i↑↑b

′
i).

Finally we verify the property (v) in definition 3.1. Let (ai,Ki) ∈ BX be a finite
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family and (b, L) ∈ BX satisfying ∧i(ai,Ki) = (∧iai,∨iKi) ≺ (b, L). This implies that

b ∈ ∨iKi and by the definition of joins in QX, it is the same with the assertion that there

are bi ∈ Ki, for all i, with b ≥ ∧ibi. Again, we evoke roundedness of the Scott-open filters

Ki and we find elements b′i ∈ Ki such that b′i ≪ bi, for all i. We consider the pairs (b′i, ↑↑b
′
i).

It holds that (ai,Ki) ≺ (b′i, ↑↑b
′
i) because b′i ∈ Ki and

∧i(b
′
i, ↑↑b

′
i) = (∧ib

′
i,∨i↑↑b

′
i)

because there are indeed elements b′′i ≫ b′i, namely b′′i := bi, such that b ≥ ∧ib
′′
i .

Remark 3.14 Clearly, in BX it holds that

(a,K) ≺ (b, L)⇒ (a,K) ≤ (b, L)

whereas this is not true for a general strong proximity lattice.

3.5 Perfect maps versus strong homomorphisms

In this section we shall extend the constructions of a stably compact locale RSpec(B)

out of a strong proximity lattice B and of a strong proximity lattice BX out of a stably

compact locale X to functors

StKLoc
B ✲✛

RSpec
StPrLatop

where StKLoc is the category of stably compact locales and perfect maps and StrPrLat

is the category of strong proximity lattices and a special class of lattice homomorphisms

that we first introduce here and christen strong homomorphisms. The main result of this

section is that RSpec is a retraction (left inverse) of B.

We point out that in [JS96] Jung and Sünderhauf consider the category of strong

proximity lattices and certain relations and subsequently prove the equivalence of this

category with the category of stably compact spaces and continuous maps. On the other

hand, we are interested in the category StKLoc where the morphisms are perfect maps

instead of general continuous functions. The mentioned result

RSpec ◦ B = idStKLoc (3.8)

falls short of an equivalence between StKLoc and StrPrLat but it nevertheless states

that for any perfect map between stably compact locales there is an equivalent strong
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homomorphism between the corresponding strong proximity lattices, the latter regarded

as the geometric counterpart of the former. We shall be relying on the fact of expression

3.8 in chapter 6 where we investigate the geometric counterpart of geometric morphisms

induced by perfect maps between stably compact locales.

We briefly compare our result 3.8 with the duality

CohLoc ≃ DLatop

where CohLoc is the category of coherent locales and perfect maps (see also section 1.4).

We start by introducing strong homomorphisms.

Definition 3.15 We call a lattice homomorphism µ : B1 −→ B2 between two strong

proximity lattices strong iff in addition it fulfills the following three properties

(i) If a1 ≺ a2 in B1 then µ(a1) ≺ µ(a2) in B2.

(ii) For any two elements a ∈ B1 and b ∈ B2 with such that b ≺ µ(a), there is a′ ∈ B1

with a′ ≺ a such that b ≺ µ(a′).

(iii) For any two elements a ∈ B1 and b ∈ B2 with such that b ≻ µ(a), there is a′ ∈ B1

with a′ ≻ a such that b ≻ µ(a′).

First we define the functor RSpec. The following lemma is an immediate consequence

of the the property (ii) of strongness.

Lemma 3.16 Let µ : B2 −→ B1 be a strong lattice homomorphism. Then for any b ∈ B2

↓ µ[↓ b] =↓ µ(b)

where ↓ µ[↓ b] ≡ {a ∈ B1|∃b′ ≺ b with a ≺ µ(b′)}.

Proof. Clearly ↓ µ[↓ b] ⊆↓ µ(b). Conversely, let a ≺ µ(b). Then by the property (ii)

of definition 3.15 there is b′ ≺ b with a ≺ µ(b′). This means that a ∈ {ai ∈ B1|∃b
′ ≺

b with a = µ(b′)} or that a ∈↓ µ[↓ b].

Next we define the arrow part of the functor RSpec.

Theorem 3.17 Let µ : B2 −→ B1 be a strong homomorphism. Then the function

RSpec(µ)∗ : RIdl(B2) −→ RIdl(B1)

defined for any rounded ideal I ⊆ B2 by

(RSpecµ)∗(I) :=↓ {a ∈ B1, such that ∃b ∈ I with a = µ(b)} =↓ µ(I)
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is the defining frame homomorphism of a perfect map RSpec(B1) −→ RSpec(B2).

(The down closure ↓ symbol appearing in the definition of RSpec(µ) is with respect to

the strong order ≺ in B1).

Proof. For I a round ideal in B2, (RSpecµ)∗(I) is easily checked to be a rounded ideal

in B1. It is lower closed by definition. Also if a1, a2 ∈ (RSpecµ)∗(I), then a1 ≺ µ(b1) and

a2 ≺ µ(b2) for some b1, b2 ∈ B2. So a1 ∨ a2 ≺ µ(b1) ∨ µ(b2) = µ(b1 ∨ b2). But b1 ∨ b2 ∈ I

because I is an ideal, so a1 ∨ a2 ∈ (RSpec ◦ µ)∗(I).

The finite meets and directed joins in RIdlB1 are intersections and unions respectively,

which makes easy to check that (RSpecµ)∗ preserves them. The finite joins involve a little

more subtlety, so we demonstrate the fact that (RSpecµ)∗ preserves the binary joins. Let

I and J be two rounded ideals in B2. Then the definition of binary joins in RIdl(B2)

yields.

(RSpecµ)∗(I) ∨ (RSpecµ)∗(J) = {a ∈ B1|∃a1, a2 ∈ B1, ∃b1 ∈ I, ∃b2 ∈ J

with a1 ≺ µ(b1) & a2 ≺ µ(b2) & a ≺ a1 ∨ a2}

(RSpecµ)∗(I ∨ J) = ↓ {a ∈ B1|∃b1 ∈ I, ∃b2 ∈ J, ∃b12 ∈ B2

with b12 ≺ b1 ∨ b2 & a = µ(b12)}

Let a′ ∈ (RSpecµ)∗(I ∨ J). Then there are b1 ∈ I, b2 ∈ J and b12 ∈ B2 with a′ ≺ µ(b12)

and b12 ≺ b1∨b2. Since µ is strong, b12 ≺ b1∨b2 implies µ(b12) ≺ µ(b1∨b2) = µ(b1)∨µ(b2).

Evoking the property of strong proximity lattices, there are a1, a2 ∈ B1 with a1 ≺ µ(b1)

and a2 ≺ µ(b2) and µ(b12) ≺ a1∨a2. Hence, we have a′ ≺ µ(b12) ≺ a1∨a2 with a1 ≺ µ(b1)

and a2 ≺ µ(b2) which implies that a′ ∈ (RSpecµ)∗(I) ∨ (RSpecµ)∗(J). Conversely, let

a ∈ (RSpecµ)∗(I) ∨ (RSpecµ)∗(J). Then there are a1, a2 ∈ B1 and b1 ∈ I, b2 ∈ J with

a1 ≺ µ(b1), a2 ≺ µ(b2) and a ≺ a1 ∨ a2. This implies that a1 ∨ a2 ≺ µ(b1 ∨ b2). Because µ

is strong by assumption, there is b12 ∈ B2 with b12 ≺ b1 ∨ b2 and a1 ∨ a2 ≺ µ(b12). Hence

a ∈ (RSpecµ)∗(I ∨ J).

Finally we prove that RSpecµ is perfect. Let I ≪ J in RIdl(B2). By theorem 3.6

this means that there is c ∈ B2 such that I ⊆↓ c ⊆ J . Since (RSpecµ)∗ is monotone, it

preserves these inclusions. So

(RSpecµ)∗(I) ⊆ (RSpecµ)∗(↓ c) ⊆ (RSpecµ)∗(J)

All that remains to be proved is that (RSpecµ)∗(↓ c) is a principal rounded ideal in B1

and this fact is demonstrated in lemma 3.16. Therefore, (RSpecµ)∗(I) ≪ (RSpecµ)∗(J).
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We recapitulate in the next definition.

Definition 3.18 Let RSpec : StPrLat −→ StKLocop be the functor whose object part

is defined by definition 3.8 (c.f. lemma 3.10) and arrow part by theorem 3.17.

Now we turn to the arrow part of the functor B : StKLoc −→ StPrLatop. Given a

perfect map f : X −→ Y we seek a strong homomorphism Bf : BY −→ BX. Note that

Bf is in the same direction as the defining frame homomorphism of f . We observe that if

L is a Scott-open filter then its image f∗[L] along f∗ is not necessarily upper closed but

it generates a Scott-open filter, namely the subset ↑↑f∗[L].

Theorem 3.19 Let f : X −→ Y be a perfect map between two stably compact locales.

Then the function Bf : BY −→ BX defined as

Bf : (b, L) 7→ (f∗(b), ↑↑f∗[L]) (where f∗[L] := {a ∈ ΩX|∃c ∈ L : a = f∗(c)})

for a pair (b, L) ∈ BY is a strong homomorphism.

Proof. First we prove that Bf is a lattice homomorphism.

Bf preserves ∧: For any (a,K), (b, L) ∈ BY , by definition we have

Bf(a,K) ∧ Bf(b, L) = (f∗(a) ∧ f∗(b), ↑↑f∗[K] ∨ ↑↑f∗[L]) and

Bf((a,K) ∧ (b, L)) = Bf(a ∧ b,K ∨ L) =

= (f∗(a ∧ b), ↑↑f∗[K ∨ L])

Since f∗ preserves meets, we have to show that

↑↑f∗[K] ∨ ↑↑f∗[L] = ↑↑f∗[K ∨ L]

Let a ∈ ↑↑f∗[K] ∨ ↑↑f∗[L]. Then there is c ≫ f∗(c′) and d ≫ f∗(d′), for c′ ∈ K and

d′ ∈ L, such that a ≥ c ∧ d. The fact that c ≫ f∗(c′) and d ≫ f∗(d′) implies that

c ∧ d≫ f∗(c′) ∧ f∗(d′) = f∗(c′ ∧ d′). So a≫ f∗(c′ ∧ d′) and c′ ∧ d′ ∈ K ∨ L which implies

that a ∈ ↑↑f∗[K ∨ L]. Conversely, let b ∈ ↑↑f∗[K ∨ L]. Then b≫ f (c) for some c ∈ K ∨ L.

Since c ∈ K ∨ L, there are c1 ∈ K and c2 ∈ L such that c ≥ c1 ∧ c2. This in turn implies

that f∗(c) ≥ f∗(c1 ∧ c2) = f∗(c1) ∧ f
∗(c2). Hence we have that b≫ f∗(c1) ∧ f

∗(c2) which

implies that

b ≥ f∗(c1) ∧ f
∗(c2) (3.9)

Now, by roundedness of K and L there are c′1 ∈ K with c′1 ≪ c1 and c′2 ∈ L with

c′2 ≪ c2. This also implies that f∗(c1) ≫ f∗(c′1) and f∗(c2) ≫ f∗(c′2). The last two
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inequalities assert that f (c1) ∈ ↑↑f
∗[K] and f∗(c2) ∈ ↑↑f

∗[L] and so by the inequality 3.9,

b ∈ ↑↑f∗[K] ∨ ↑↑f∗[L].

Bf preserves ∨: Because f∗ preserves joins, we just need to show that

↑↑f∗[K] ∩ ↑↑f∗[L] = ↑↑f∗[K ∩ L] (3.10)

Let a ∈ ↑↑f∗[K] ∩ ↑↑f∗[L]. Then there are a1 ∈ K and a2 ∈ L with a ≫ f∗(a1) and

a ≫ f∗(a2). This yields that a ≫ f∗(a1) ∨ f
∗(a2) = f∗(a1 ∨ a2). The open a1 ∨ a2

belongs both in K and L, therefore a is an open of the R.H.S. set of 3.10. The proof of

↑↑f [K ∩ L] ⊆ ↑↑f∗[K] ∩ ↑↑f∗[L] is obvious.

Now we prove that Bf is strong, i.e. it obeys the three axioms of definition 3.15.

Proof of (i): Let (a,K) ≺ (b, L) in BY . Then by definition b ∈ K. By roundedness of

K, there is an open c ∈ K with c ≪ b. Since f is perfect, f∗(c) ≪ f∗(b) or equivalently

f∗(c) ∈ ↑↑f∗(b). This immediately yields that

(f∗(a), ↑↑f∗[K]) ≺ (f∗(b), ↑↑f∗[L])

Proof of (ii): First we assume that (a,K) ≺ Bf(b, L) in BX. By the definition of Bf

this assumption reads

(a,K) ≺ (f∗(b), ↑↑f∗[L])

which by definition implies f∗(b) ∈ K. Now, since f∗(b) ∈ K and K is rounded as a

Scott-open filter, there is a′ ∈ K with a′ ≪ f∗(b). Given that f is perfect, there is b′ ≪ b

with a′ ≪ f∗(b′). K is upper closed, so f∗(b′) ∈ K.

We consider the pair (b′, ↑↑b′). ΩY is stably continuous and therefore ↑↑b′ is a Scott-

open filter and trivially b′ is a lower strong bound of ↑↑b′. So (theorem 3.13), (b′, ↑↑b′) is an

element of BY . Since b′ ≪ b or equivalently b ∈ ↑↑b′, we have that (b′, ↑↑b′) ≺ (b, L) in BY .

Finally, the fact that f∗(b′) ∈ K guarantees that (a,K) ≺ Bf(b′, ↑↑b′) = (f∗(b′), ↑↑f∗[↑↑b′]).

Proof of (iii): Now assume that (a,K) ≻ Bf(b, L), i.e., (a,K) ≻ (f∗(b), ↑↑f∗[L]). By

definition, this now implies that a ∈ ↑↑f∗[L], or that there is cb′′ ∈ L such that a≫ f∗(b′′).

Since L is rounded, b′′ ∈ L implies that there is b′ ≪ c with b′ ∈ L.

Now we consider the pair (b′, ↑↑b′) ∈ BY . The fact that b′ ∈ L implies that (b, L) ≺

(b′, ↑↑b′). Also, the fact that b′′ ≻ b′′ and a ≻ f∗(b′′) yields that a ∈ ↑↑f∗[↑↑b′′]. Therefore,

(a,K) ≻ (f∗(b′), ↑↑f∗[↑↑b′]) = Bf(b′, ↑↑b′) by the definitions of BY and Bf .

Definition 3.20 We define B : StKLoc −→ StPrLat to be the functor whose object

part is given by theorem 3.13 and arrow part by theorem 3.19.
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The rest of this section is devoted to proving that RSpec is a retraction of B. First

two simple facts.

Lemma 3.21 If K ⊆ ΩX is a Scott-open filter and b is a lower bound of K, then a ∈ K

implies b≪ a.

Proof. Out of roundedness of Scott open filters (

Lemma 3.22 3.11). If b is a lower bound of a Scott open filter K then for any a ∈ K,

there is a′ ≪ a such that a′ ∈ K. So b ≤ a′ ≪ a or b≪ a.

Lemma 3.23 For X stably compact locale, (b, L) ≺ (a,K) implies that K ⊆ L.

Proof. Trivial from the definition.

Theorem 3.24 Let X be a stably compact locale. Then the following isomorphism holds

ΩX ∼= Ω(RSpec ◦ B ◦X) (3.11)

Proof. Given a stably compact locale X, BX consists of pairs (a,K) where a ∈ ΩX,

K ⊆ ΩX is a Scott-open filter and a is a lower bound of K. Therefore, Ω(RSpec ◦B ◦X)

consists of rounded ideals I = {(ai,Ki)} of such pairs. We define a map

β : Ω(RSpec ◦ B ◦X) −→ ΩX by β(I) :=
∨

↑ai (3.12)

We start by observing that β is monotone. We prove that β is a frame homomorphism.

Let I1, I2 ∈ Ω(RSpec ◦B ◦X). Then β(I1 ∧ I2) = β(I1 ∩ I2) =
∨↑{ai|ai ∈ I1 and ai ∈ I2}.

On the other hand β(I1) ∧ β(I2) = (
∨↑{ai ∈ I1}) ∧ (

∨↑{aj ∈ I2}) =
∨↑{ai ∧ aj |ai ∈

I1, aj ∈ I2} and we have shown in the proof of lemma 3.10 that this is the same as
∨↑{ai|ai ∈ I1 and ai ∈ I2}.

Directed joins in Ω(RSpec(BX)) are unions of rounded ideals of BX, so for a collection

of ideals {Ik} = {(aki,Kki)}, we have β(
∨↑
k Ik) = β(

⋃↑
k Ik) =

∨↑
ik{aik} =

∨↑
k

∨↑
i {aki} =

∨↑
k β(Ik).

The binary joins need a little more attention (theorem 3.6). Let I1, J2 two rounded

ideals of BX. Then

β(I1 ∨ I2) = β({(ai,Ki) ∈ BX|∃(a1,K1) ∈ I1,∃(a2,K2) ∈ I2

and (a1,K1) ≺ (a1,K1) ∨ (a2,K2)})

=
∨

↑{ai}
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On the other hand

β(I1) ∨ β(I2) =
∨

↑{aj |∃(aj ,Kj) ∈ I1} ∨
∨

↑{ak|∃(ak,Kk) ∈ I2}

=
∨

↑{aj ∨ ak|∃(aj ,Kj) ∈ I1 and ∃(ak,Kk) ∈ I2}

By lemma 3.21, (ai,Ki) ≺ (a1,K1)∨(a2,K2) = (a1∨a2,K∩K2) implies that ai ≪ a1∨a2,

so obviously β(I1∨I2) ≤ β(I1)∨β(I2). Also, by the roundedness of I1, I2, for (aj ,Kj) ∈ I1

and (ak,Kk) ∈ I2 there are (a′j ,K
′
j) ∈ I1 and (a′k,K

′
k) ∈ I2 with (aj ,Kj) ≺ (a′j ,K

′
j) and

(ak,Kk) ≺ (a′k,K
′
k). This implies that (aj ,Kj) ∨ (ak,Kk) ≺ (a′j ,K

′
j) ∨ (a′k,K

′
k) and by

the interpolation property, there is (ai,Ki) ∈ BX with (aj ,Kj) ∨ (ak,Kk) ≺ (ai,Ki) ≺

(a′j ,K
′
j) ∨ (a′k,K

′
k). Therefore, (ai,Ki) ∈ I1 ∨ I2 and aj ∨ ak ≪ ai ≪ a′j ∨ a

′
k. This proves

that β(I1) ∨ β(I2) ⊆ β(I1 ∨ I2).

Now we prove that β is perfect. Suppose that I1 = {(ai,Ki)} and I2 = {(aj ,Kj)} are

two rounded ideals of elements of BX and I1 ≪ I2 in Ω(RSpec ◦ BX). By theorem (3.6),

there is a pair (a,K) in I2 with

{(ai,Ki)} ⊆↓ (a,K) ⊆ {(aj ,Kj)} (3.13)

It is easy to show that in general the following sets are identical

{ak|∃Kk ∈ QX : (ak,Kk) ≺ (a,K)} = ↓↓a

Indeed, if (ak,Kk) ≺ (a,K) then by lemma 3.21, ak ≪ a. Conversely, if ak ≪ a then

(ak, ↑↑ak) ≺ (a,K). Therefore, β(↓ (a,K)) =
∨↑{↓↓a} = a because ΩX is a continuous

lattice. By monotonicity, β(I1) ≤ β(↓ (a,K)) ≤ β(I2) which with the exact labelling

of expression 3.13 gives
∨↑{ai} ≤ a ≤

∨↑{aj}. By expression 3.13 above, (ai,Ki) ∈ I1

implies that (ai,Ki) ≺ (a,K) which in turn implies that ai ≪ a. Therefore,
∨↑{ai} ≪ a.

This proves that β(I1)≪ a ≤ β(I2) which gives β(I1)≪ β(I2).

Now we define a map on the other direction as follows.

γ : ΩX −→ Ω(RSpec ◦ B ◦X) by γ(a) := {(ai,Ki)|a ∈ Ki} (3.14)

It can be readily checked (lemma 3.23) that for any a ∈ ΩX, γ(a) is a rounded ideal in

BX. It is also straightforward to prove that γ preserves finite meets and directed joins.
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We will prove now that it preserves binary joins. By laying out the definition we have that

γ(a ∨ b) = {(ai,Ki)|a ∨ b ∈ Ki} and (3.15)

γ(a) ∨ γ(b) = {(al,Kl)|∃(aj ,Kj), a ∈ Kj & ∃(ak,Kk), b ∈ Kk

& (al,Kl) ≺ (aj ,Kj) ∨ (ak,Kk)}

= {↓ (a,⊤)} (where ⊤ is the top element in ΩX)

It is trivial to verify that γ preserves finite meets and directed joins. It is only marginally

more difficult to prove that γ preserves finite joins. We have that γ(a1) ∨ γ(a2) =

{(ai,Ki)|∃(a
′
1,K

′
1) ≺ (a1,⊤) & ∃(a′2,K

′
2) ≺ (a2,⊤) : (ai,Ki) ≺ (a′1,K

′
1) ∨ (a′2,K

′
2)} and

γ(a1∨a2) = {↓ (a1∨a2,⊤)}. If (ai,Ki) ∈ γ(a1)∨γ(a2) then there are (a′1,K
′
1), (a

′
2,K

′
2) such

that (a′1,K
′
1) ≺ (a1,⊤) and (a′2,K

′
2) ≺ (a2,⊤) with (ai,Ki) ≺ (a′1,K

′
1)∨(a′2,K

′
2). This im-

plies that (ai,Ki) ≺ (a′1,K
′
1) ∨ (a′2,K

′
2) ≺ (a1,⊤) ∨ (a2,⊤), i.e. that (ai,Ki) ∈ γ(a1 ∨ a2).

Conversely, if (ai,Ki) ∈ γ(a1 ∨ a2), then (ai,Ki) ≺ (a1 ∨ a2,⊤) = (a1,⊤) ∨ (a2,⊤).

But since BX is a strong proximity lattice, there are (a′1,K
′
1) ≺ (a1,⊤) and (a′2,K

′
2) ≺

(a2,⊤) such that (ai,Ki) ≺ (a′1,K
′
1) ∨ (a′2,K

′
2). Therefore, (ai,Ki) ∈ γ(a1 ∨ a2) since

(a′1,K
′
1) ∨ (a′2,K

′
2) ≺ (a1,⊤) ∨ (a2,⊤) = (a1 ∨ a2,⊤).

We also prove that γ preserves the way below relation in ΩX. Let a≪ b in ΩX. Then

there is c ∈ ΩX with a ≪ c ≪ b. Then ↓ (a,⊤) ⊆↓ (c,⊤) ⊆↓ (b,⊤) or γ(a) ⊆↓ (c,⊤) ⊆

γ(b) which by theorem 3.6 implies γ(a)≪ γ(b) in Ω(RSpec ◦ BX).

Finally we prove that β and γ are inverse to each other. For any a ∈ ΩX it holds that

β ◦ γ(a) =
∨

↑{ai|∃(ai,Ki) ≺ (a,⊤)}

=
∨

↑{ai|ai ≪ a}

Indeed, (ai,Ki) ≺ (a,⊤) implies ai ≪ a by lemma 3.21 and if ai ≪ a then (ai, ↑↑ai) ≺ (a⊤).

But since X is locally compact,
∨↑{ai|ai ≪ a} = a, so β ◦ γ(a) = a.

Furthermore, for any rounded ideal I ⊆ BX, we have that

γ ◦ β(I) = {↓ (
∨

↑{ai|∃(ai,Ki) ∈ I},⊤)}

Let (aj ,Kj) ∈ γ ◦ β(I). Then (aj ,Kj) ≺ (
∨↑{ai|∃(ai,Ki) ∈ I},⊤), which implies

∨↑{ai|∃(ai,Ki) ∈ I} ∈ Kj . But since Kj is Scott-open, there is (a0,K0) ∈ I with

a0 ∈ Kj and this implies that (aj ,Kj) ≺ (a0,K0). Since I is lower closed, this entails
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that (aj ,Kj) ∈ I. Conversely, let (ai,Ki) ∈ I. Because I is rounded, there is (a0,K0) ∈ I

with (ai,Ki) ≺ (a0,K0). This implies that a0 ∈ Kj and there is Scott-open filter K0

with (a0,K0) ∈ I. Hence,
∨↑{ai|∃(ai,Ki) ∈ I} ∈ Ki because Ki is upper closed. This

completes the proof.

3.6 The points of strong proximity lattices (revisited)

We have shown in section 3.3 that the global points of the localic topos RSpec(B) that

classifies (the geometric theory of) the frame presentation 3.8 are prime rounded filters

of the strong proximity lattice B. The points of the topos RSpec(B) are in equivalence

with the points of the locale carrying the same symbol. This is easily seen by recalling

theorem 1.6 in the introduction. Putting E ≡ 1, the terminal topos, that theorem says

that there is an isomorphism

Top(1,RSpec(B)) ∼= Fr(Ω(RSpec(B)),Ω) = Loc(1,RSpec(B)) (3.16)

with 1 in the far right hand side being the terminal locale inside the sheaves of the base

topos (which we denote as Sets). The elements of the far right hand side category are the

global points of the locale RSpec(B). Let us recall a few things about the global points

of a locale (see [Joh82]).

Suppose that we have a global point of an arbitrary locale X, i.e. continuous map

x : 1 −→ X. The defining frame homomorphism of such a point is x∗ : ΩX −→ Ω, where

Ω is the initial frame in Sets which coincides with the subobject classifier of Sets. It

follows that such a frame homomorphism gives rise to a unique completely prime filter

H ⊆ ΩX, which is its true kernel

H = {a ∈ ΩX|x∗(a) = ⊤}

Conversely, any completely prime filter is a true kernel of a unique frame homomorphism

that defines a point of X. The set of points ptX of the given locale is partially ordered

(specialisation order) by set inclusion of the corresponding completely prime filters. Fur-

thermore, it has all directed joins, i.e. it is a dcpo. If f : X −→ Y is a continuous map

between two locales, there is an obvious point transformation (Scott-continuous map)

ptf : ptX −→ ptY obtained by post-composition with f in Loc: ptf(x) = f ◦ x, or equiv-

alently, by pre-composition with f∗ in Fr. Since a point is the same as the completely

prime filter of its true values, a point transformation ptf is equivalent to a map that sends
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completely prime filters H of ΩX to completely prime filters of ΩY defined by

ptf : H 7→ {a ∈ ΩY |f∗(a) ∈ H} (3.17)

Now we consider the case where X = RSpec(B). In section 3.3 we showed that the

points of the topos RSpec(B) are rounded prime filters of B, so the poset of completely

prime filters of rounded ideals of B, partially ordered by set inclusion of rounded ideals,

must be equivalent to the dcpo of rounded prime filters of B.

We are going to give an other more tangible proof of this fact here.

Lemma 3.25 Let B be a strong proximity lattice. We denote by RPFilt(B) the dcpo of

its rounded prime filters (it is easy to show it is a dcpo) and by ptRSpec(B) the dcpo of

the completely prime filters of the frame Ω(RSpec(B)). Then the following isomorphism

holds

RPFilt(B) ∼= pt ◦RSpec(B) (3.18)

Proof. It is trivial to verify that the set of prime rounded filters of a strong proximity

lattice partially ordered by set inclusion has all directed joins (they are directed unions).

For F ⊆ B any rounded prime filter, we define

Ξ(F ) = {I ∈ Ω(RSpec(B))| I ∩ F 6= ∅} (3.19)

It is easy to check that Xi is monotone and preserves directed unions. Conversely, for a

completely prime filter H ⊆ Ω(RSpec(B)), we define

Σ(H) = {b ∈ B| ↓ b ∈ H} (3.20)

It is routine to check that Ξ(F ) upper closed and that Ξ(F ) is inaccessible by directed joins

(they are unions). Let I1, I2 ∈ RIdl(B) with I1 ∩F 6= ∅ and I2 ∩F 6= ∅ and in particular,

let a1 ∈ I1 & a1 ∈ F and a2 ∈ I2 & a2 ∈ F . Then a1 ∧ a2 ∈ I1 & a1 ∧ a2 ∈ I2 but also

a1 ∧ a2 ∈ F because it is ∧-closed. Hence I1 ∩ I2 ∩ F 6= ∅, i.e. Ξ(F ) is ∧-closed. Finally,

let I1 ∨ I2 6= ∅. Then there is c ∈ I1 ∨ I2 & c ∈ F . By the definition of the binary joins

in Ω(RSpec(B)), there are a1 ∈ I1 and a2 ∈ I2 with c ≺ a1 ∨ a2. Since F is upper closed,

a1 ∨ a2 ∈ F and since F is prime, either a1 ∈ I1 or a2 ∈ I2 which implies that either

I1 ∩ F 6= ∅ or I2 ∩ F 6= ∅. Therefore Ξ(F ) is prime.

It is also routine to check that Σ(H) is upper closed and ∧-closed. Let b1 ∨ b2 ∈ Σ(H).

Then ↓ (b1 ∨ b2) ∈ H. From lemma 3.7, ↓ (b1 ∨ b2) = (↓ b1) ∨ (↓ b2) ∈ H and since H is

prime either ↓ b1 or ↓ b2 is an element of H which implies that either b1 or b2 is an element
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of Σ(H). Therefore Σ(H) is prime.

The two assignments are inverse to each other. Indeed it is easy to verify that for any

rounded prime filter of B we have

Σ ◦ Ξ(F ) = {b ∈ B| ↓ b ∩ F 6= ∅} = F (3.21)

On the other hand, for any completely prime filter H of rounded ideals of B we have

Ξ ◦ Σ(H) = {I ∈ Ω(RSpec(B))| ∃b ∈ B with ↓ b ∈ H & b ∈ I} (3.22)

Let I ∈ Ξ ◦ Σ(H). Then there is b ∈ B with ↓ b ∈ H and b ∈ I. From the latter fact

we deduce that ↓ b ⊆ I ⇔↓ b ≤ I. So I must be an element of H because H is upper

closed. Conversely, let I be an element of H. Then I =
∨↑{↓ b|b ∈ B} and because H

is inaccessible by directed joins, there is b ∈ I with ↓ b ∈ H which implies that I is an

element of Ξ ◦ Σ(H).

Corollary 3.26 Let QX be the set of Scott-open filters of Ω(RSpec(B)). Then QX ∼=

Ω(RSpec(Bop)).

Proof.

Now let µ : B2 −→ B1 be a strong homomorphism between two strong proximity

lattices. It induces point transformations between

pt ◦RSpec(B1) −→ pt ◦RSpec(B2) or equivalently between (3.23)

RPFilt(B1) −→ RPFilt(B2) (3.24)

In the rest of this section, we give an account of the above maps. We readily know that

we can obtain the transformation of expression 3.23 by putting f∗ := (RSpecµ)∗ in the

expression 3.17, i.e

pt ◦RSpec(µ) : H 7→ {a ∈ ΩRSpec(B2)|(RSpecµ)∗(a) ∈ F} (3.25)

where H is a completely prime filter of rounded ideals of B1.

The following lemma describes the transformations of the expression 3.24.

Lemma 3.27 Let ΞB : RPFilt(B) ⇋ pt ◦RSpec(B) : ΣB be the isomorphisms as in the
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proof of lemma 3.25. Then the following two square diagrams are commutative.

pt ◦RSpec(B1)
(↓ µ)−1

✲ pt ◦RSpec(B2)

RPFilt(B1)

ΞB1

✻

ΣB1

❄ (µ)−1
✲ RPFilt(B2)

ΣB2

❄

ΞB2

✻

(3.26)

Proof. It suffices to show that (↓ µ)−1 = ΞB2 ◦ (µ)−1 ◦ ΣB1 . We are going to prove that

for any H ∈ pt ◦ RSpec(B1), we have that (↓ µ)−1(H) = ΞB2 ◦ (µ)−1 ◦ ΣB1(H). The

definitions yield that

(↓ µ)−1(H) = {I ∈ Ω(RSpecB)|∃J ∈ H with (↓ µ)(I) = J}

ΞB2 ◦ (µ)−1 ◦ ΣB1(H) = {I ∈ Ω(RSpecB)|∃a ∈ B2 with ↓ µ(a) ∈ H & a ∈ I}

Let I ∈ (↓ µ)−1(H). Then there is J ∈ H such that (↓ µ)(I) = J ∈ H. But I =
∨↑{↓

a|a ∈ I}, so we have that

J = (↓ µ)(I) = (↓ µ)(
∨

↑{↓ a|a ∈ I})

=
∨

↑{(↓ µ)(↓ a)|a ∈ I}

because (↓ µ) := (RSpecµ)∗ preserves directed joins as a frame homomorphism. The

fact that H is inaccessible by directed joins implies that there is a0 ∈ I such that (↓ µ)(↓

a0) ∈ H. Using lemma 3.16, this fact becomes ↓ µ(a0) ∈ H and by looking at its defining

expression above, this means that I ∈ ΞB2 ◦ (µ)−1 ◦ ΣB1(H).

Now let I ∈ ΞB2 ◦ (µ)−1 ◦ ΣB1(H). Then there is a ∈ B2 such that ↓ µ(a) ∈ H and

a ∈ I. But using again lemma 3.16, ↓ µ(a) = (↓ µ)(↓ a) ∈ H, hence ↓ a ∈ (↓ µ)−1(H).

Also the fact that a ∈ I implies ↓ a ⊆ I and (↓ µ)−1(H) is upper closed being a filter,

therefore, I ∈ (↓ µ)−1(H).

Corollary 3.28 (i) By stipulating that

RPFilt(µ)(F ) := (µ)−1[F ]

for any strong homomorphism µ : B2 −→ B1 and any rounded prime filter of B1,
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the construction RPFilt is extended to a functor

RPFilt : StrPrLat −→ dcpo

and isomorphism 3.18 is extended to isomorphism between functors

RPFilt ∼= pt ◦RSpec (3.27)

(ii) Let X be a stably compact locale. Then we have the isomorphism

ptX ∼= RPFilt ◦ BX (qua dcpo)

Proof. (i) Obvious from lemma 3.27.

(ii) We put B = BX in 3.27 and we get the claimed isomorphism using theorem 3.24.

Note that if x is a point, i.e. a completely prime filter of ΩX, then the prime rounded

filter of BX that corresponds to x is

Σ(x) = {(a,⊤)|a ∈ x} (3.28)

This is deduced from expression 3.20 after setting H = x in its L.H.S. and H = γ(x) in

its R.H.S., where γ is as in the proof of theorem 3.24.



Chapter 4

Adjunctions in Top

4.1 Introduction

Suppose that F : X ⇋ Y : G are functors between two small categories. Of the several

equivalent definitions of the adjoint situation F ⊣ G, we cite the following two (see [Mac71],

IV, theorem 2)

Definition 4.1 G is right adjoint to F iff, for any object x in X and any object y in Y

there is a bijection φx,y

Y(Fx, y)
∼=

φx,y
✲ X(x,Gy) (4.1)

which is natural both in x and y.

Definition 4.2 G is right adjoint to F iff there are natural transformations

η : idX ⇒ G ◦ F and ε : G ◦ F −→ idY

such that the composites

G
ηG✲ G ◦ F ◦G

G • ε✲ G and

F
F • η✲ F ◦G ◦ F

εF ✲ F

(4.2)

are the identities of G and F respectively. This condition is usually referred to as the

triangle identities. (• is the horizontal composition of 2-cells.)

Of the two definitions, the second one can be interpreted in any 2-category. In partic-

ular, it can be interpreted in the 2-category Top of Grothendieck topoi. We rewrite this

67
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definition, adapting it for the context of Top plus a small change: we require the triangle

identities to hold only up to isomorphism.

Definition 4.3 Let F : X −→ Y and G : Y −→ X be two geometric morphisms between

two Grothendieck topoi. We say that G is the right adjoint of F (F ⊣ G) iff there are

2-cells

η : idX ⇒ G ◦ F and ε : G ◦ F ⇒ idY

such that the composites

G
ηG✲ G ◦ F ◦G

G • ε ✲ G and

F
F • η✲ F ◦G ◦ F

εF ✲ F

(4.3)

are both isomorphisms.

The aim of this chapter is to recover a sufficient condition for adjoint situations in Top

which is analogous to definition 4.1. The condition we establish is indeed analogous to

definition 4.1, only easier; naturality comes for free.

We shall demonstrate that the analogue of 4.1 in Top involves points x, y rather than

objects of X and Y and the Hom-sets appearing in 4.1 are promoted to categories whose

objects are 2-cells F ◦ x⇒ y and x⇒ G ◦ y respectively.

More specifically, given geometric morphisms F : X −→ Y and G : Y −→ X, we define

the following two topoi.

• The topos E := [TE ] that classifies (theories whose models are) triples

(x, y;Fx⇒ y)

where x : Z −→ X and y : Z −→ Y are arbitrary points (at any stage Z)

• The topos F := [TF ] that classifies (theories whose models are) triples

(x′, y′;x′ ⇒ Gy′)

where x′, y′ are also points of X and Y at any stage.

E and F are topoi over X × Y . This is because one can geometrically construct maps

iE : E −→ X × Y and iF : F −→ X × Y that simply forget the 2-cells Fx ⇒ y and

x′ ⇒ Gy′ from the ingredients of the theories TE and TF respectively (model reduction
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functors). In words, the topos iE : E −→ X×Y over X×Y classifies 2-cells Fx⇒ y given

two points x and y of X and Y respectively.

Now consider the situation that iE and iF are equivalent in Top/(X × Y ), i.e. E ≃ F

and the following diagram commutes in Top

E
✲

≃✛ F

❅
❅iE ❘ ✠�

�
iF

X × Y

(4.4)

Let us see roughly when such situation occurs. Commutativity of diagram 4.4 means that

the two pairs of points coincide x = x′ and y = y′. Equivalence of E and F in Top means

that models (x, y;Fx ⇒ y) (say in SZ) of TE are equivalent to models (in the same SZ)

(x, y;x ⇒ Gy) and since the point parts have been identified already, the situation in

discussion happens when models of the two kinds of 2-cells are equivalent (in SZ).

(Fx⇒ y) ≃ (x⇒ Gy) (4.5)

which is indeed analogous to the 1-categorical bijection 4.1.

We shall be referring to the topoi E and F the geometric inserters of the diagrams

X × Y
F ◦ p1✲

p2

✲ Y X × Y
p1✲

G ◦ p2

✲ X (4.6)

respectively, where p1 and p2 are the first and second projections. The goal of this chapter

is to prove the following theorem.

Theorem 4.4 If the geometric inserters E and F are equivalent over X×Y , then F ⊣ G.

4.2 Outline of the chapter

This section is intended to be a guide for the rest of the sections of this chapter. Pointers

to literature are not provided as all the notions mentioned here are discussed in detail in

the sections that follow.

Consider the diagram in Top

X
F ✲

G
✲ Y (4.7)

that generalises the diagrams 4.6. The task in sections 4.3-4.5 is to write a geometric theory
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TE whose models are pairs (x; f) where x is a point of X and f is a 2-cell F ◦ x⇒ G ◦ x.

Such a theory TE must contain the ingredients (sorts, function symbols, relation symbols,

constants and axioms) of the theory TX that X classifies plus new function symbols (say

k̃) that correspond to the 2-cells F ◦x⇒ G ◦x. We also need to incorporate in TE certain

new naturality axioms for k.

The subtlety lies in how one formally defines the “new function symbols that corre-

spond to the 2-cells F ◦ x⇒ G ◦ x”. F and G correspond to functors between the sheaves

of the topoi X and Y and not homomorphisms between the geometric theories TX and TY .

Our method is to construct site morphisms F σ and Gσ out of the geometric morphisms

F and G in the following sense.

Suppose that (C, J) and (D,K) are the syntactic sites for the topoi X and Y respec-

tively. Then we can consider a subcategory C′ of S(C, J) such that together with some

Grothendieck topology J ′ on C′

• C′ contains the image of D under both F ∗ and G∗ and

• S(C, J) ≃ (C′, J ′).

The existence of such a topology J ′ comes directly out of the Giraud’s theorem but we

prove it independently of that theorem in section 4.3.

Given such a site (C′, J ′), precomposing the inverse image functors F ∗ and G∗ with

the Yoneda embedding yD (the topology of the syntactic site is subcanonical) we obtain

a pair of site morphisms

(C′, J ′) ✛ F σ

✛
Gσ

(D,K) (4.8)

Now we exploit the fact that X and Y classify the geometric theories (say T′
X and TY

) of flat and continuous covariant functors over the sites (C′, J ′) and (D,K) respectively.

Such geometric theories have languages with sorts and function symbols formally equiv-

alent to the objects and arrows of the categories C and D respectively. In this context,

F σ and Gσ map sorts and function symbols of the geometric theory that Y classifies to

the geometric theory that X classifies. This means that it is perfectly legitimate now to

define the aforementioned new function symbols k̃ as function symbols between sorts of

the form

F σ(d) −→ Gσ(d) for any object d in D

The additional axioms needed are essentially the ones that guarantee that k̃ are actually

the components of a natural transformation between the functors F σ and Gσ (naturality
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axioms).

Diagrams of the form 4.7 in any 2-category admit a particular well known 2-categorical

(weighted) limit called the inserter. Section 4.6 offers a quick review of weighted limits and

inserters. In section 4.7 we prove that, for a given pair of parallel geometric morphisms in

Top, its inserter is equivalent with the geometric inserter.

Next we focus on the diagrams of the special form 4.6. Being able to interchange

between the inserter and the geometric inserter facilitates the proof of the main theorem

4.4. This is done in section 4.8.

We have already discussed in section 4.1 how the equivalence of the categories of

homomorphisms in expression 4.5 entail that E ≃ F over X×Y . In section 4.9 we explain

how such an equivalence entails from a mere “set”-theoretic bijection between the objects

of these categories.

4.3 Enhancing sites

LetX be a Grothendieck topos. Let C be a small category with pullbacks and J a topology

on C such that the category of sheaves on the site (C, J) is equivalent to the category

SX.

The aim of this section is to prove that if C′ is a subcategory of SX that contains the

image of C under ayC, then there is a Grothendieck topology J on C′ such that

SX ≃ S(C′, J ′)

We start with some well known facts. We denote by ayC : C −→ SX the composite

yC : C −→ SetsC
op

followed by a : SetsC
op

−→ S(C, J), where yC is the Yoneda

embedding and a is left adjoint of the inclusion functor i : S(C, J) −→ SetsC
op

, i.e. the

associated sheaf (or sheavification) functor. The Yoneda embedding functor yC preserves

whatever limits there are in C. The associated sheaf functor a preserves finite limits

([MM92],III.5) which means that the composite ayC preserves whatever finite limits there

are in C. In particular, our assumption is that C has pullbacks, so the following is always

a pullback square in C

ayC(ci ×c cj)
π2
ij✲ ayC(cj)

ayC(ci)

π1
ij

❄ ay(fi)✲ ayC(c)

ay(fj)

❄
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for any arrows fi : ci −→ c and fj : cj −→ c. It is well-known that any object x of SX i.e.

a sheaf on the site (C, J) has the form x = colimk{ayC(ck)} for an appropriate diagram

of objects {ck} in C. This in particular implies that the objects of ayC(C) generate the

category SX in the sense that for any object x of SX the set of arrows

{ayC(ci) −→ x|ci object in C}

is a jointly epimorphic family. Since the objects of the category ayC(C) generate the

category SX, obviously the objects of any subcategory C′ of SX that contains ayC(C)

also generate SX. Therefore, we know by Giraud’s theorem that SX can be written as

(equivalent to) S(C′, J ′) for some appropriate Grothendieck topology J ′ on C′. What this

section offers is a “shortcut” to the proof of Giraud’s theorem in the much simplified case

where SX is already the category of the sheaves on a site S(C, J).

We fix the assumption that C′ is any subcategory of SX that contains the image of C

under the functor ayC.

The following lemma provides a hint about the choice of the Grothendieck topology

J ′ on C′.

Lemma 4.5 Let SX = S(C, J). A family {fi : ci −→ c} is a sieve in J(c) iff the map

∐

i

ayC(ci) −→ ayC(c)

is epi in E.

Proof. [MM92]

We define the topology J ′ as follows. A sieve S on an object u in C′ is included in

J ′(u) iff S is a set of jointly epimorphic arrows in SX. A set {hi : ui −→ u} is a set of

jointly epimorphic arrows in E exactly when
∐
i ui −→ u is an epi arrow in SX. This in

turn is equivalent to the fact that for any pair of distinct arrows f, g : u −→ v in SX,

there is an arrow hi in S such that f ◦ hi 6= g ◦ h.

Lemma 4.6 The above collection of sieves on objects of C′ is indeed a topology on C′

Proof. (i) The fact that C′ contains ayC(C) guarantees that for any object u in C′

there is at least one epimorphism h : ayC(c) −→ u, for some object c in C. Hence, J ′(u)

includes the maximal sieve.

(ii) Let S be a sieve in J ′(u), i.e. S is a family of jointly epimorphic arrows fi : ui −→

u. Let also h : v −→ u be any arrow in C′. Then the family of the pullback arrows



CHAPTER 4. ADJUNCTIONS IN TOP 73

f∗i : ui ×u v −→ v in E is also epimorphic.

ayC(cij)
kij✲ ui×uv

f∗i ✲ v

ui
❄ fi ✲ u

h

❄

Now, the fact that objects of the form ac(c), with c an object in C generate SX means

that for each object ui×uv there is an epimorphic family kij : ayC(cij) −→ ui×uv, where

cij are all objects in C. Therefore, the composite arrows f∗i ◦ kij constitute an epimorphic

family whose codomain is v. Moreover, by the defining property of the pullback, h ◦ f∗ij is

an element of S which forces h ◦ f∗i ◦ kij to be an element of S. So, the epimorphic family

{f∗i ◦kij} is a family of arrows in C′ and is contained in the sieve h∗(S). That means that

h∗(S) is an epimorphic family and so h∗(S) ∈ J ′(v). This proves stability.

(iii) Finally, transitivity is easily verified for J ′.

We denote by X ′ the Grothendieck topos defined by SX ′ := S(C′, J ′). We shall prove

that X ≃ X ′ in Top.

First we define a functor

Ψ : S(C′, J ′) −→ SetsC
op

Ψ(P ) = P ◦ ayC

for any object P in S(C′, J ′). We prove that this functor actually sends a J ′-sheaf over

C′ to a J-sheaf over C.

Lemma 4.7 Let P be any object in S(C′, J ′). Then the presheaf Ψ(P ) = P ◦ ayC is a

sheaf over C with respect to the J ′-topology.

Proof. Let S = {fi : ci −→ c} ∈ J(c) be a sieve that covers an object c in C. Suppose

that fi 7→ xfi ∈ P ◦ayC(ci) is any matching family for this sieve. Lemma (4.5) guarantees

that the family of arrows ayC(fi) is jointly epimorphic in C′. It is not necessarily a sieve

though, but it generates a sieve in J ′(ayC(c)). Indeed, we denote by S′ the family of

arrows in ayC(C ′) defined as

S′ = {G : b −→ c | G = ayC(fi) ◦ F} :=↑ ay(fi)

where F is any arrow in ayC(C ′) with codomain ci for some index i. This family is
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obviously a sieve on c in C′. Moreover, it is a sieve in J ′(c) because it is still a jointly

epimorphic family of arrows with codomain c because for any ci the maps ayC(fi) ◦ idci
are included in S′ which means that S′ ⊇ {ayC(fi)}.

Now, the matching family for the presheaf P ◦ ayC and the sieve S naturally induces

a matching family for the sheaf P and the sieve S′ as follows.

For an arrow of the form G = ayC(fi) ◦ F in S′ define a matching family given by

xG = P (H)(xfi)

where {xfi} is a matching family for the presheaf P ◦ ayC and H is any arrow in C′ such

that G = ayC(fi) ◦H. This definition is in fact independent of the choice of H and fi as

demonstrated below. Let it be the case that G = ayC(fi) ◦H = ayC(fi) ◦K.

b

☛✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

H

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

K

❯

ayC(ci ×c cj)

I

❄

✠�
�

�
�

�

Π1
ij

❅
❅

❅
❅

❅
Π2
ij

❘
ayC(ci) ayC(cj)

❅
❅

❅
❅

❅
ayC(fi)

❘ ✠�
�

�
�

�

ayC(fj)

ayC(c)

In the above diagram Π1
ij = ayC(π1

ij) and Π2
ij = ayC(π2

ij) as in diagram (4.3). By

definition

xayC(fi) = P (H)(xfi)

= P (Π1
ij ◦ I)(xfi)

= P (I) ◦ P (Π1
ij)(xfi)

= P (I) ◦
(
P ◦ ayC(π1

ij)
)

(xfi)

But fi ◦ π
1
ij is an arrow in S and {xfi} is a matching family for P ◦ ayC, so P (I) ◦(

P ◦ ayC(π1
ij)

)
(xfi) = P (I)(xfi◦π1

ij
) = P (I)(xfj◦π2

ij
) (because of the property of the pull-
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back). Hence,

xayC(fi) = P (I)(xfj◦π2
ij
)

= P (I) ◦
(
P ◦ ayC(π2

ij)
)

(xfj )

= P (I) ◦ P (Π2
ij)(xfj )

= P (Π2
ij ◦ I)(xfj )

= P (K)(xfj )

= xayC(fj)◦K

The above proves that we have well-defined a matching family for a sieve S′ ∈ J ′(ayC(c)).

The assumption is that P is a sheaf for the J ′-topology, which leads to the conclusion

that this matching family has a unique amalgamation, i.e. a unique element x ∈ ayC(c)

such that xG = P (G)(x) for all G ∈ S′. This element is clearly also an amalgamation

for the matching family fi 7→ xfi for the sieve S and sheaf P ◦ ayC. It is also unique

for this matching family. For if there was an other element x′ ∈ ayC(c) such that xfi =

P ◦ ayC(fi)(x
′), then for the arbitrary arrow G = ayC(fi) ◦ F ∈ S

′,

P (G)(x′) = P (ayC(fi) ◦ F )(x′) = P (F ) ◦ P (ayC(fi))(x
′)

= P (F )(xfi) = xayC(fi)◦F

= xG

which proves x′ also an amalgamation for S′ ∈ J ′(ayC(c)). So x′ = x.

On the other direction, we can define a functor

Φ : SX = S(C, J) −→ SetsC
′op

taking an object u in SX to the presheaf SX(−, u) : C′op −→ Sets and an arrow

f : u1 −→ u2 in SX to the morphism f∗, defined by

x ∈ SX(c′, u1) then f∗c′ (x) = x ◦ f

The refer to ([MM92],Appendix) for the proof of the following lemma.

Lemma 4.8 Let C′ be a full subcategory of SX whose objects generate SX. Let also J ′

be a topology on C′ consisting of sieves of jointly epimorphic arrows for each object of C′.

Then SX(−, u) is a J ′-sheaf for any object u of SX.

This lemma guarantees that the functor Φ sends objects of SX to objects of S(C′, J ′).
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Indeed, the above lemma is applicable in our case because C contains the category ayC(C),

which in turn generates SX. This lemma has an immediate corollary.

Corollary 4.9 The Yoneda embedding map yC′ : C′ −→ SetsC
′op

takes objects of C′ to

J ′-sheaves over C′. In other words, J ′ is a subcanonical topology on C′.

Proof. Since C′ is a full subcategory of SX, we have the following equality of sets.

SX(u′, u) = C′(u′, u)

for any objects u, u′ in C′. So yC′(u) = SX(−, u) when u is an object of C′.

We are going to evoke this corollary later as indeed the following lemma also proved

by Mac Lane & Moerdijk in [MM92],Appendix.3, lemma 4.

Lemma 4.10 Let in : C′ →֒ SX be the inclusion functor Then the functor

SX(in,−) : SX −→ S(C′, J ′)

u 7→ SX(in(−), u)

preserves colimits.

Finally, we will demonstrate that the pair of functors Φ,Ψ is an equivalence of cate-

gories.

Theorem 4.11 The categories S(C, J) and S(C′, J ′) are equivalent.

Proof. We need to show that Ψ ◦ Φ(u) is naturally isomorphic to the identity u, for

any sheaf u in SX and that Φ ◦ Ψ(P ) is naturally isomorphic to the identity P , for any

sheaf in SX(C′, J ′). For the former isomorphism is effectively demonstrated in [MM92];

it manifests itself in two stages. Let i be the inclusion SX →֒ SetsC
op

, then

SX(ayC, u)
∼=

φyC,u

✲ SetsC
op

(yC, i(u))
∼=

Yu

✲ u (4.9)

The map φyC,u is the isomorphism (natural in u) of Hom-sets stemming from the adjunc-

tion a ⊣ i and φyC,u is the isomorphism of the Yoneda lemma which is also natural in u

(see e.g. [Bor91(1)], theorem 1.3.3).

To prove that Φ ◦Ψ(P ) ∼= P , for P any J ′-sheaf over C′, we demonstrate that for any

object c′ in C′ we have an isomorphism

SX(c′, P ◦ ayC) ∼= P (c′)
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We first prove the above isomorphism for any representable sheaf yC′(c′i) in S(C′, J ′),

for c′i an object in C′. (Recall that the Yoneda embedding yC′ : C′ −→ SetsC
′op

in fact

takes objects of C′ to sheaves (corollary 4.9).)

It holds that yC′(c′i) = SX(−, c′i), as discussed in corollary 4.9 and so

yC′(c′i) ◦ ayC = SX(ayC(−), c′i) (4.10)

∼= c′i (the same natural isomorphism as in 4.9) (4.11)

Therefore

SX(c′,yC′(c′i) ◦ ayC) ∼= SX(c′, c′i) (4.12)

= yC′(c′i)(c
′) (4.13)

Now, any object P in S(C′, J ′) can be written as a colimit P ∼= colimiyC′(c′i) for an

appropriate diagram {c′i}. So we have

SX(c′, P ◦ ayC) ∼= SX(c′, (colimiyC′(c′i)) ◦ ayC)

∼= (c′, colimi (yC′(c′i) ◦ ayC) (colimits of sheaves are computed pointwise)

∼= colimi SX(c′,yC′(c′i) ◦ ayC) (because of lemma 4.10)

∼= colimi (yC′(c′i)(c
′)) (because of 4.12)

∼= (colimiyC′(c′i))(c
′)

∼= P (c′)

Hence, the functors P and SX(−, P ◦ ayC) are isomorphic.

It remains to prove that this last isomorphism is natural in P . We argue as follows. The

inclusion functor in : C′ →֒ S = S(C, J) is in fact flat and continuous with respect to the

J ′-topology. It is flat because, trivially, it preserves finite limits (see theorem 4.13 below).

Continuity of in with respect to the J ′ topology is also trivial (check with definition 4.14

below). Therefore, in gives rise to a geometric morphism SX −→ S(C′, J ′) +++++++

The pair Φ,Ψ defines an equivalence of the categories S(C, J) and this implies that

Φ ⊣ Ψ and also Φ ⊢ Ψ ([Mac71],IV.4, theorem 1). We introduce two geometric morphisms

X
e ✲✛
e′

X ′ (4.14)
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by stipulating that e is formally defined by the pair Ψ ⊣ Φ and e′ by the pair Φ ⊣ Ψ. This

is possible because e and e′ have both a left and a right adjoint, so they preserve all limits

and colimits and in particular finite limits.

4.4 2-categorical aspects of Top with respect to sites

Let F : X −→ Y be a geometric morphism between two Grothendieck topoi as before.

We can assume that the topoi are isomorphic to sheaves over sites SX = S(C, J) and

SY = S(D,K). Starting with the geometric theories TX ,TY that are classified by the two

topoi, the typical construction of SX,SY identifies C andD as the syntactic categories of

TX and TY respectively. In this construction the Grothendieck topologies are subcanonical,

i.e. the Yoneda embedding functors y send objects of the syntactic categories to sheaves.

It is well known (e.g. [MM92], VII.7) that, for any Grothendieck topos X and any site

site (D,K) there is an equivalence of categories

Top(X,S(D,K))

θ✲
∼=✛
φ

F latCont((D,K),SX) (4.15)

where the R.H.S. of the equivalence 4.33 is the category with

• objects the functors D −→ SX that are flat and continuous.

• arrows the natural transformations between such flat and continuous functors

We are not going to include the general definition of a flat functor here. In the case where a

functor F : D −→ SX targets a Grothendieck topos, it holds that F is flat iff it is filtering

([MM92], VII.9, Theorem 1). We outline what a filtering functor targeting a Grothendieck

topos is. We start with the case where SX ≡ Sets.

Definition 4.12 Let C be a small category and F : C −→ Sets a functor. Then F is

filtering iff it fulfills the following conditions.

(i) F is nonempty, i.e. there is object c of C such that F (c) 6= ∅.

(ii) For any two elements x ∈ F (c) and y ∈ F (d), there exists an object a of C, mor-

phisms f : a −→ c, g : a −→ d and an element z ∈ F (a) such that f(z) = x and

g(z) = y.

(iii) For any two parallel arrows f, g : c −→ d in C and an element x ∈ F (c) with

f(x) = g(y), there is an arrow h : a −→ c in C and an element z ∈ F (a) such that

f ◦ h = g ◦ h and h(z) = x.
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Definition 4.12 may assume that F targets Sets, but it transpires from it that the

theory of filtering functors is in fact geometric and therefore makes sense in any topos. All

that one has to do is to rewrite definition 4.12 in a diagrammatic form. If we now demand

that the domain of a functor F has all finite limits we get the following theorem.

Theorem 4.13 ([MM92],VII.9) If D has all finite limits, then a functor D −→ SX is

flat iff it preserves finite limits.

Next we recall the definition of a continuous functor.

Definition 4.14 Let (D,K) be a site and X a Grothendieck topos. Then a flat functor

D −→ SX is continuous with respect to to the topology K iff it sends K-sieves to jointly

epimorphic families in SX.

Remark 4.15 The Yoneda embedding is a flat and continuous functor.

Proof. Obvious from lemma 4.5.

We conclude that, provided that the category D has all finite limits, the objects of

the R.H.S. of the equivalence 4.33 are K-continuous left exact functors. Also we mention

that, if K is a subcanonical topology, then the geometric morphism

F : SX −→ S(D,K)

corresponds under the equivalence 4.33 to the flat continuous functor

F# : (D,K) −→ SX where F# := F ∗ ◦ yD (4.16)

Indeed F# is obviously left exact because both F ∗ and yD are left exact. For a proof of the

continuity of F# we point at [MM92], VII.7. We shall not need the explicit construction

of the opposite direction of the equivalence 4.33. The reader is again referred to [MM92].

One direction of the equivalence 4.33 can be taken a stage further. Let D have all

finite limits as before and let SX = S(C, J), where C also has all finite limits. We have

the following definition.

Definition 4.16 Let (D,K) and (C, J) be two sites where C and D are small categories

with all finite limits. Then a site morphism F σ : (D,K) −→ (C, J) is a functor F σ :

D −→ C that preserves finite limits and also preserves the Grothendieck topologies in the

sense that if R is a sieve in K(d) on an object d in D, then the sieve ↑ F σ(R) generated

by F σ(R) is a sieve in J(F σ(d)).
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Given such a site morphism F σ : (D,K) −→ (C, J) and assuming again that J and K are

subcanonical topologies, there is an obvious induced geometric morphism F : (C, J) −→

S(D,K) ([MM92],VII.10). Indeed the composite

yC ◦ F
σ : SX ← (D,K)

is flat and continuous. For, in view of theorem 4.13, yC ◦F
σ is left exact because F σ and

yC are left exact. Also, F σ sends K-sieves to families that generate J ′-sieves (definition

4.16) and yC being continuous (remark 4.15) sends J-sieves to jointly epimorphic families

in SX. So, for a K-sieve {gi}, yC(↑ F σ({gi})) is a jointly epimorphic family in SX and

thus yC(F σ({gi})) is also a jointly epimorphic family in SX. This amounts to yC ◦ F
σ

being continuous. In fact we have just proved

Lemma 4.17 Let F σ : (D,K) −→ (C, J) be a site morphism and a# : (C, J) −→ SZ be

flat and continuous. Then a# ◦ F σ is flat and continuous.

For the rest of this section we fix a pair of geometric morphisms between two Grothendieck

topoi

X
F ✲

G
✲ Y

where SX = S(C, J) and SY = S(D,K), with C and D small categories having all finite

limits and J and K being subcanonical.

Definition 4.18 Let C′ be the closure under finite limits of a small full subcategory C′′

of SX that contains the images of the following three functors.

• ay : C −→ SX.

• F# : D −→ SX, where F# = F ∗ ◦ yD.

• G# : D −→ SX, where G# = G∗ ◦ yD.

Let also J ′ be the topology on C′ as in section 4.3, i.e. such that S(C′, J ′) ≃ SX.

Remark 4.19 The category C′ is still small.

This enhancement of the generating category C provides the possibility to have a descrip-

tion of F and G by means of site morphisms.

Lemma 4.20 The functors F# and G# factor uniquely through site morphisms F σ, Gσ :

(D,K) −→ (C′, J ′) .



CHAPTER 4. ADJUNCTIONS IN TOP 81

Proof. By construction of C′, the images of the functors F# and G# are confined inside

C′. We rename them as F σ and Gσ. They are left exact and hence flat (C′ has all

finite limits adjoined so theorem 4.13 is valid). Also continuity of F# and G# means that

they send covering K-sieves to jointly epimorphic families of arrows in SX. So, by the

definition of J ′ in section 4.3, if S ∈ K(d), for an object d in D, then F#(S) ∈ J ′(F σ(d))

and similarly for G#. So F σ and Gσ are site morphisms.

Let now η : F ⇒ G be a 2-cell in Top. The enhancement of the generating category

C also provides the means to define a natural transformation ησ : F σ −→ Gσ out of η.

We recall that a 2-cell η : F ⇒ G between two geometric morphisms F,G : X −→ Y is

generally defined by a natural transformation η′ : F ∗ −→ G∗ (note that η′ has the same

direction as η′). For the sake of completeness we note here that, for any such natural

transformation η′, there is always a unique natural transformation η′′ : G∗ −→ F∗ and

conversely.

The components of η′y : F ∗(y) −→ G∗(y) for any object y of SY satisfy the usual

naturality square. By restricting the arguments of F ∗, G∗ to objects of the form yD(d),

with d object in D, η′ induces a natural transformation ησ : Gσ −→ F σ by stipulating

that its components are ησd = ηy(d). In other words, the following diagram is commutative

for any arrow g : d −→ d′ in D.

Gσ(d)
ησd✲ F σ(d)

Gσ(d′)

Gσ(g)

❄ ησd✲ F σ(d′)

F σ(g)

❄

We close this section by mentioning that geometricity also provides us with an internal

picture of 2-cells in Top. A pair of parallel geometric morphisms F,G : X −→ Y can also

be construed as two (generalised) points of Y at stage X. A 2-cell between F and G then

carries the meaning of a “transformation between points”. More concretely, if Y classifies

a geometric theory TY then the inverse image functors F ∗ and G∗ send the universal model

UY of TY in SY to two models F ∗(UY ) and G∗(UY ) of TY in SX. A 2-cell η : F ⇒ G

is a natural transformation that corresponds to a homomorphism between the models

F ∗(UY ) −→ G∗(UY ) in SX.

Remark 4.21 Obviously, we can generalise the above result for any (finite) number of

parallel geometric morphisms Fi : X −→ Y : We can always choose a small full subcategory

with finite limits C′ of SX and a Grothendieck topology J ′ on C′, such that SX = S(C′, J ′)
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and the functors F#
i factor through site morphisms F σi : (D,K) −→ (C′, J ′).

4.5 The geometric inserter

Now, let us argue on the fact SX ≃ S(C′, J ′). We have started with the assumption

that X classifies a geometric theory TX . At the same time we have managed to write

SX as the topos of sheaves over the site (C′, J ′) (up to equivalence). We know that such

a construction invariably yields that X (also) classifies the geometric theory (say T′
X) of

flat continuous covariant functors over C′. A model of this theory in the sheaves of an

arbitrary topos Z corresponds to a flat continuous functor C′ −→ SZ. Equivalently, there

is also the internal way of describing flat continuous functors, according to which, a model

of T′
X in SZ is an internal flat continuous functor on !∗(C′) inside SZ. !∗(C′) stands for

the internalised version of this category in SZ, i.e. the pullback of C′ along the essential

unique geometric morphism ! : Z −→ 1.

We now present the geometric theory TX′ of flat continuous (covariant) functors over

(C′, J ′) (external version).

sorts: a sort X̃i for each object Xi of C′

functions: F1. a function symbol f̃ : X̃1 −→ X̃2 for each arrow f : X1 −→

X2 in C′

axioms: A1. ∀x∈X̃
(
⊤ ⇒ ĩdX̃i(x) = x

)

A2. ∀x∈X̃

(
⊤ ⇒ f̃(g̃(x)) = (̃f ◦ g)(x)

)
,

where g : X → Y , f : Y → Z in C′

A3. ⊤ ⇒
∨
Xi∈C′

{
∃x ∈ X̃i(x = x)

}

A4. ∀x∈X̃ ∀y∈Ỹ (⊤ ⇒
∨
Z∈C′{∃z∈Z̃ (x = f̃(x)∧y = g̃(x), for f :

Z −→ X, g : Z −→ Y in C′ )})

A5. ∀x∈X̃ ((f̃(x) = g̃(x)) ⇒
∨
Z∈C′{∃z∈Z̃ (x = h̃(z), for h̃ :

Z̃ −→ X̃, f̃ ◦ h̃ = g̃ ◦ h̃)}),

where f, g : X −→ Y in C′

A6. ∀x∈X̃ (
∨
Xi
{∃y∈X̃i(x = f̃i(y))}),

where {fi : Xi −→ X} is a J ′-sieve on X

Axioms (A1,A2) are covariant functoriality, axioms (A3,A4,A5) are flatness (c.f. def-

inition 4.12) and axiom (A6) is J ′-continuity (c.f. definition 4.14). The last one actually
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dictates that in a model (M) of TX′ in any topos, the arrows f̃
(M)
i are jointly epimorphic.

Now we return to the pair of site morphisms F σ, Gσ : (D,K) −→ (C′, J ′) of lemma

4.20. Let d be any object in D. In accordance with our nomenclature, we denote by F̃ σ(d)

and G̃σ(d) the sorts of the geometric theory TX′ that correspond to the objects F σ(d) and

Gσ(d) of C′ respectively. Also, for g an arrow in D, we denote by F̃ σ(g) and G̃σ(g) the

function symbols of TX′ that correspond to the arrows F σ(g) and Gσ(g) respectively.

It is worth remarking that the category D can be viewed as a “set” of indices for part

of the sorts and functions of the geometric theory TX′ . The two ways of assigning sorts

and functions of TX′ to the indices are provided by the applications of the two functors

F σ and Gσ on the objects and arrows of D.

We enhance the geometric theory [4.5], by adjoining the following ingredients to its

presentation.

functions: F2. a function symbol k̃d : F̃ σ(d) −→ G̃σ(d) for each object d

of D, (i.e. for each pair of objects F σ(d),Gσ(d) of C′, for d

object in D)

axioms: A7. ∀x∈ F̃ σ(d1) (G̃σ(g)(k̃d1(x)) = k̃d2(F̃
σ(g)(x))), where k̃d1 :

F̃ σ(d1) −→ G̃σ(d1), k̃d2 : F̃ σ(d2) −→ G̃σ(d2) and g : d1 −→

d2 in D

Axiom (7) can be categorically formulated by demanding the following naturality

square to commute.

F̃ σ(d1)
k̃d1✲ G̃σ(d1)

F̃ σ(d2)

F̃ σ(g)

❄
k̃d2✲ G̃σ(d2)

G̃σ(g)

❄

We denote the geometric theory presented by all the above ingredients by TE . We also

denote by E the classifying topos of this geometric theory.

The fact that TE ⊇ TX implies that, in any topos Z, a model of the geometric theory

TE is also a model of the geometric theory TX . We define a “model reduction” functor

mrZ

mrZ : Mod(SZ,TE) −→Mod(SZ,TX)

by stipulating that mrZ sends a model of TE in SZ to itself and a homomorphism between

two models of TE in SZ to itself.
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We evoke the fact that when TR is a geometric theory and R its classifying topos then

the following pair of maps is an adjoint equivalence of categories

Mod(SZ,TR)

τZ ✲
∼=✛
σZ

Top(Z,R) (4.17)

So, we can define the composite functor

Mod(SZ,TE)
mrZ ✲ Mod(SZ,TX)

Top(Z, E)

σZ

✻

Top(Z, iE)✲ Top(Z,X)

τZ

❄

(4.18)

By putting Z for E in [4.18], we get a functor

Mod(SE ,TE)
mrE ✲ Mod(SE ,TX)

Top(E , E)

σE

✻

Top(E , iE)✲ Top(E , X)

τE

❄

(4.19)

We denote by iE the geometric morphism that is the image of the identity idE in Top(E , E)

along the functor τE ◦mrE ◦ σE . Using the terminology of section 1.2, the defining ge-

ometric construction mrZ of iE is a geometric transformation and corresponds to the

postcomposition with iE .

The geometric construction of iE exhibits the following obvious fact which is important

to bear in mind in what follows.

Corollary 4.22 Let X̃ be a sort in TX′ and X an object in the universal model of TX′

in S(C′, J ′) (denoted UX′). Then i∗E takes X to an object X ′ in SE which is the object

of the universal model of TE in SE (denoted UE) that corresponds to the same sort X̃ in

TX′ ⊆ TE .

Proof. We read diagram [4.19]. The functor τE by definition constructs a geometric

morphism iE such that

i∗E(UX′) = mrE(UE)

where the R.H.S is the “reduct” of UE .
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Now, let TR be any geometric theory, (B(TR), L) its syntactic site and (hence) SR =

S(B(TR), L) the sheaves over its classifying topos. It is known (e.g. [MM92]) that the

universal model UR in SR is the same (up to equivalence) with the image of the Yoneda

embedding yB(TR) : B(TR) −→ SR, i.e.

UR = yB(TR)(B(TR))

(the topology on the syntactic site is subcanonical). If in particular TR is the geometric

theory of flat continuous covariant functors on a category B with respect to a topology L,

then its syntactic site is (B, L) itself.

Hence, if X̃c′ is a sort of TX′ corresponding to an object c′ in C′, then yC′(c′) is the

object in UX′ that corresponds to X̃c′ and i∗E ◦yC′(c′) is the object in UE that corresponds

to X̃ ′
c.

The geometric morphism iE is a universal 1-cell associated with the classifying topos E .

There is also a universal 2-cell. For any object d in D, let [kd] be the arrow corresponding

to the function symbol of type [F2] k̃d : F̃ σ(d) −→ G̃σ(d) in the universal model UE of

TE in SE . Axiom [A7] dictates that for any arrow g : d −→ d′ in D, the following is

commutative

[F σ(d)]
kd✲ [Gσd]

[F σ(d′)]

[F σ(g)]

❄ kd′✲ [Gσ(d′)]

[Gσ(g)]

❄

(4.20)

Using the insight of corollary 4.22, the object e.g. [F σ(d)] in UE is obtained as

[F σ(d)] = i#E (F σ(d)) := i∗E ◦ yC′(F σ(d))

Therefore the square becomes for any object d in D

i#E (F σ(d))
kd✲ i#E (Gσ(d))

i#E (F σ(d′))

i#E (F σ(g))

❄
kd′✲ i#E (Gσ(d′))

i#E (Gσ(g))

❄

(4.21)

Hence the arrows kd are the components of a natural transformation k : i#E ◦F
σ ⇒ i#E ◦G

σ

and by lemma 4.17, the functors i#E ◦F
σ and i#E ◦G

σ are flat and continuous. The image of
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k along the arrow part of the functor φ is a natural transformation (say) ǫ : F ◦iE ⇒ G◦iE .

Definition 4.23 We call the triple (E , iE , ǫ) the geometric inserter of the diagram

X
F ✲

G
✲ Y (4.22)

in Top. The choice of the adjective “geometric” reflects the fact that both the topos E and

the geometric morphism iE have been defined entirely geometrically.

4.6 The 2-categorical inserter

In this section we introduce the notion of the inserter in the 2-category Top.

An inserter is an example of a weighted limit. A thorough study of weighted limits is

in [Kel89] and [PR91]. Let D and K be two 2-categories and let CAT be the 2-category

of all categories. We consider 2-functors P : D −→ K and F : D −→ CAT. P can be

interpreted as a diagram in K (in the appropriate 2-categorical sense) and F as a weight

on D.

Definition 4.24 The F -weighted limit of the diagram P is an object LimFP in K such

that for any object Z in K, we have the equivalence of categories

K(Z,LimFP ) ≃ [D,CAT] (F,K (Z,P (−))) (4.23)

which is natural in Z. The objects of the R.H.S. 2-category above are the natural

transformations from F to K(Z,P (−)) and can be viewed as F -weighted cones over P

with vertex Z. Its arrows are the modifications of these F -weighted cones.

The above definition is a weaker version of the standard one appearing e.g. in [Kel89] and

[PR91] in that it demands 4.23 to be natural equivalence instead of natural isomorphism.

We point out that, if it exists, a weighted limit of a given weighted diagram is unique up

to equivalence.

An inserter is the F -weighted limit for the special case where D is the category

d0

f1 ✲

f2

✲ d1

and the weight F sends d0 to the category 1 and d1 to the category 2, the category of two

objects ⊥ and ⊤ and one arrow between them ↑: ⊥ −→ ⊤ apart from the identities. It
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also sends f1 to the arrow that maps · (the single object of 1) to ⊥ and f2 to the arrow

that maps · to ⊤. We fix the notation of the diagram P (D) as below

X = P (d0)
F = P (f1)✲

G = P (f2)
✲ P (d1) = Y

We are interested in giving a concise description of the category [D,CAT] (F,K(Z,P (−)))

for the special case of the defining diagram and weight of the inserter. The following lemma

gives an equivalent definition of this category after discarding the redundant data of the

above definition.

Lemma 4.25 The category [D,CAT](F,K(Z,G(−))) for the weight and the diagram

X
F ✲

G
✲ Y (4.24)

of the inserter in a 2-category K is (isomorphic to) the category whose objects and arrows

are as below

• objects are pairs (a, α) where a : Z −→ X is an arrow in K and α : F ◦ a ⇒ G ◦ a

is a 2-cell in K.

• Let (a, α) and (b, β) be two objects in [D,CAT](F,K(Z,P (−))), with a, b : Z −→ X,

α : F ◦ a⇒ G ◦ a and β : F ◦ b⇒ G ◦ b . Then an arrow (a, α) −→ (b, β) is a 2-cell

η : a⇒ b such that the following diagram commutes

F ◦ a
F • η✲ F ◦ b

G ◦ a

α

❄ G • η✲ G ◦ b

β

❄

(4.25)

(The symbol • stands for “horizontal” composition of 2-cells.)

Now, we we consider the special case where K is the 2-category Top of Grothendieck

topoi and geometric morphisms. For brevity we denote

I(Z) := [D,CAT] (F,Top (Z,P (−)))

and we preserve all the notation of the above lemma. In the next section we are going to

prove that there is an adjoint equivalence between the categories I(Z) and Top(Z, E), where
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E is the geometric inserter of F,G (section 4.5), and that this equivalence is natural in Z.

Such a natural equivalence implies that the Grothendieck topos E is the (2-categorical)

inserter of a diagram of two parallel geometric morphisms F,G : X −→ Y in the sense of

definition 4.24.

4.7 Equivalence of inserter and geometric inserter

In this section we are going to demonstrate that there is a natural equivalence

I(Z) ≃ Top(Z, E)

for any topos Z. We shall be using the construction of section 4.3 and relying on the

natural equivalence

Mod(SZ,TE)
τ✲
≃✛
σ

Top(Z, E) (4.26)

as well as the natural equivalence 4.33 of section 4.4.

We are going to describe the construction of a pair of functors ΛZ : Mod(SZ,TE) ⇋

I(Z) : ΣZ with great detail so that the fact that they are inverse to each other becomes

obvious.

We first define a functor

ΛZ : Mod(SZ,TE) −→ I(Z) (4.27)

Let MZ
E be a model of TE in SZ. The model reduction functor

mrZ : Mod(SZ,TE) −→Mod(SZ,TX′) (4.28)

defines via the equivalence 4.26 a geometric morphism a : Z −→ X ′ corresponding to the

model mrZ(MZ
E ).

Z
a ✲ X ′

F ✲

G
✲ Y (4.29)

SZ ✛ a∗
SX ′ ✛yC′

(C′, J ′) ✛F
σ

✛
Gσ

(D,K) (4.30)

Now, the fact thatMZ
E is a model of TE implies that for any object d in D, MZ

E fixes an

arrow

[kd] : [F σ(d)] −→ [Gσ(d)]
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in SZ that corresponds to the [F2]-function K̃d : F̃ σ(d) −→ G̃σ(d) of the language of TE .

By the way a is defined we immediately know that

[F σ(d)] = a#(F σ(d)) and [Gσ(d)] = a#(Gσ(d))

because yC′(F σ(d)) and yC′(Gσ(d)) are the objects corresponding to the sorts F σ(d) and

Gσ(d) in the universal model of TX′ in SX ′ (see corollary 4.22).

The axiom [A7] in MZ
E asserts that for any arrow h : d −→ d′ in D the following

naturality square commutes

[F σ(d)]
[kd]✲ [Gσ(d)]

[F σ(d′)]

[F σ(h)]

❄ [kd′ ]✲ [Gσ(d′)]

[Gσ(h)]

❄

(4.31)

Obviously we also have that [F σ(h)] = a#(F σ(h)) and [Gσ(h)] = a#(Gσ(h)), so if, in

addition, we denote

ασd := [kd]

the square 4.31 becomes

a# ◦ F σ(d)
ασd✲ a# ◦Gσ(d)

a# ◦ F σ(d′)

a# ◦ F σ(h)

❄
ασd′✲ a# ◦Gσ(d′)

a# ◦Gσ(h)

❄

(4.32)

This demonstrates that ασd are the components of a natural transformation ασ : a#◦F σ ⇒

a# ◦Gσ. The functor a# is just a∗ ◦yC′ and hence it is flat and continuous. By the lemma

4.17 we conclude that the functors a# ◦ F σ and a# ◦Gσ are flat and continuous.

Hence ασ induces a natural transformation F ◦ a ⇒ G ◦ a via the equivalence of

categories

Top(Z, Y )
θ✲
≃✛
φ

ConF lat((D,K),SZ) (4.33)

The natural transformation ασ is an arrow between objects a∗ ◦yC′ ◦Gσ and a∗ ◦yC′ ◦F σ

in the R.H.S category in 4.33. These objects are actually θ(G ◦ a) and θ(F ◦ a). Hence
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φ(ασ) provides as with a 2-cell α : φ ◦ θ(F ◦ a)⇒ φ ◦ θ(G ◦ a). φ ◦ θ is isomorphic to the

identity on the L.H.S. category in 4.33, hence we have constructed a 2-cell

α : F ◦ a⇒ G ◦ a (4.34)

We have therefore proved the following lemma.

Lemma 4.26 The pair (a, α) defined above is a well-defined object in I(Z).

We know turn to the arrow part of the functor ΛZ . LetMZ
E and NZ

E be two models of

TE in SZ, corresponding to objects (a, α) and (b, β) in I(Z). Let H be a homomorphism

between the two models. The sorts of TE are indexed with respect to the objects of C′,

so the components of H are arrows Hc′ : [c′]1 −→ [c′]2 for any object c′ of C′, where [c′]1

is the object in SZ that corresponds to the object c′ in C′ as fixed by the first model and

[c′]2 the object in SZ that corresponds to the same object in C′ as fixed by the second

model. Such components Hc′ are, by definition, subject to the property that the following

diagram is commutative for any arrow f : c′1 −→ c′2 in C′, equivalently for any function

symbol f̃ : X̃c′1
−→ X̃c′2

, where X̃c′
i

is the sort in TE that is indexed by c′i.

[c′1]1
Hc′1✲ [c′1]2

[c′2]1

[f ]1

❄ εc′2 ✲ [c′2]2

[f ]2

❄

(4.35)

By assumption, [c′i]1 = a∗ ◦ yC′(c′i) and [c′i]2 = b∗ ◦ yC′(c′i) (i=1,2). We first choose [f ] to

correspond to the function symbols [F1]. Then the above commutative square becomes

a∗ ◦ yC′(c′1)
Hc′1✲ b∗ ◦ yC′(c′1)

a∗ ◦ yC′(c′2)

a∗ ◦ yC′(f)

❄ Hc′2✲ b∗ ◦ yC′(c′2)

b∗ ◦ yC′(f)

❄

(4.36)

Repeating a previous argument, a∗ ◦ yC′ and b∗ ◦ yC′ are flat and continuous functors

and the above diagram asserts that H is a natural transformation between them. Via the
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equivalence

Top(Z,X ′)

θ✲
∼=✛
φ

F latCont((C′, J ′),SZ) (4.37)

it corresponds to a 2-cell η : a⇒ b. Before we claim that this natural transformation is a

morphism of I(Z), we have to prove that η also makes the diagram 4.25 commutative.

Lemma 4.27 The natural transformation is an arrow in I(Z).

Proof. We go back to the diagram 4.35. X̃c′1
and X̃c′2

can be any sorts in TE and f̃ any

function symbol connecting them. We set c′1 = F σ(d), c′2 = Gσ(d) and f = [kd] for any

d object in D which corresponds by definition to a function symbol f̃ : F̃ σ(d) −→ G̃σ(d).

Then diagram 4.36 becomes

a#(F σ(d))
HFσ(d)✲ b#(F σ(d))

a#(Gσ(d))

ασd := [kd]1

❄ HGσ(d)✲ b#(Gσ(d))

βσd := [kd]2

❄

which corresponds exactly to the desired diagram 4.25. (e.g. the horizontal composite

F • η is ηF .)

Now we define a functor on the opposite direction

Σ : I(Z) −→Mod(SZ,TE) (4.38)

Let (a, α) be an object in I(Z), where a is a geometric morphism a : Z −→ X and α is a

natural transformation F ◦ a −→ G ◦ a. Let a′ be the composite geometric morphism

Z
a ✲ X

e ✲ X ′

where e is the geometric morphism defined at the end of section 4.3.

It is intuitively clear that a is going to specify a model of TX′ in SZ and α will adjoin

to that the arrows in SZ that correspond to the function symbols [F2] subject to axioms

[A7] so that they “add up” to a model of TE in SZ.

The functor a′∗ readily provides a model of TX′ in SZ. Namely, the model

MZ
X′ = a′∗(UX′) := a∗ ◦ e∗(UX′) (4.39)
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with UX′ being the universal model of TX′ in SX ′. Note that (section 4.3)

The natural transformation α is defined by a natural transformation α′ : a∗ ◦ F ∗ −→

a∗ ◦ G∗, i.e. by arrows α′
y : a∗ ◦ F ∗(y) −→ a∗ ◦ G∗(y) for any object y in SY , subject to

the commutativity of the naturality square

a∗ ◦ F ∗(y1)
α′
y1✲ a∗ ◦G∗(y1)

a∗ ◦ F ∗(y2)

a∗ ◦ F ∗(h)

❄ α′
y2✲ a∗ ◦G∗(y2)

a∗ ◦G∗(h)

❄

(4.40)

for any arrow h : y1 −→ y2 in SY . In particular, by choosing y to be any representable

sheaf y = yD, we get an arrow α′
yD(d) : a∗ ◦ F ∗(yD(d)) −→ a∗ ◦G∗(yD(d)) for any object

in the category D. Note that one of the fixed assumptions of this chapter is that the

topology K on D is subcanonical (e.g. by choosing (D,K) to be the syntactic site of TY ),

so that yD(d) is a sheaf in SY . The square [4.40] now becomes

a∗ ◦ F ∗(yD(d1))
α′

yD(d1)✲ a∗ ◦G∗(yD(d1))

a∗ ◦ F ∗(yD(d2))

a∗ ◦ F ∗(yD(g))

❄ α′
yD(d2)✲ a∗ ◦G∗(yD(d2))

a∗ ◦G∗(yD(g))

❄

(4.41)

where g : d1 −→ d2 is any arrow in D and the functoriality of yD was used. By definition

F ∗ ◦ yD = F σ and G∗ ◦ yD = Gσ (remark 4.21). We also denote

[kd] = α′
yD(d) (4.42)

For any object d in D the above is an arrow between objects a∗ ◦F σ(d) and a∗ ◦Gσ(d) in

SZ that makes the following square commutes for any arrow g : d1 −→ d2 in D

a′∗ ◦ yC′ ◦ F σ(d1)
[kd1 ]✲ a′∗ ◦ yC′ ◦Gσ(d1)

a′∗ ◦ yC′ ◦ F σ(d2)

a′∗ ◦ yC′ ◦ F σ(g)

❄ [kd2 ]✲ a′∗ ◦ yC′ ◦Gσ(d2)

a′∗ ◦ yC′ ◦Gσ(g)

❄

(4.43)
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where we used the identity

e∗ ◦ e∗ ≡ Ψ ◦ Φ = idSX

proved in theorem 4.11, together with the fact that Φ acts on C′ as the Yoneda embed-

ding yC′ and that a′∗ = a∗ ◦ Ψ. The definition (4.42) gives the right arrow with respect

to definition (4.39) because objects in MZ
X′ , corresponding to sorts of types F̃ σ(d) and

G̃σ(d), are (up to isomorphism) a′∗(yC′(F σ(d))) and a′∗(yC′(Gσ(d))) respectively (corol-

lary (4.22)). So the arrows [kd] have the correct sources and targets inMZ
X′ . The validity

of the argument is “up to isomorphism” because of theorem (4.11) again.

Therefore, we stipulate that the object part of the functor Σ is defined by (4.39) and

(4.42) in the sense that Σ(a, α) is the model a′∗(UX′) together with the arrows [kd] of

(4.42). We denote

Σ(a, α) :=M
Z,(a)
E

We now define the arrow part of Σ. Let (a, α) and (b, β) be two objects in I(Z), such that

Σ(a, α) and Σ(b, β) are two respective objects MZ
E and NZ

E in Mod(SZ,TE). Let also η

an arrow between them in I(Z), i.e., η : a ⇒ b is a natural transformation rendering the

diagram (4.25) commutative. Such an η amounts to component arrows η′x : b∗(x) −→ a∗(x)

for any object x in SX satisfying two kinds of properties:

• the naturality square

• the following commutative diagram

a∗ ◦ F ∗(y)
(η′ • F ∗)y✲ b∗ ◦ F ∗(y)

a∗ ◦G∗(y)

αy

❄ (η′ •G)y✲ b∗ ◦G∗(y)

βy

❄

(4.44)

If we restrict x to being an object c′ in C′ ⊆ SX then

Hc′ := η′c′ : a∗(c′) −→ b∗(c′) (4.45)

or by interpolating the identity idSX as before, we have that

Hc′ := η′c′ : a′∗ ◦ yC′(c′) −→ b′∗ ◦ yC′(c′) (4.46)

where a′∗ := a∗ ◦Ψ and b′∗ := b∗ ◦Ψ, are maps of objects inMZ
E to objects in NZ

E . Indeed,
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the source of η′c′ in (4.46) is the object inMZ
E that corresponds to the sort X̃c′ that in turn

corresponds to the object Xc′ in C′. The target of η′c′ is the object in NZ
E that corresponds

to the (same) sort X̃c′ . This is obvious when we recall that yC′(c′) is the object in the

universal model of TX′ in S(C′, J ′) that corresponds to X̃c′ (see also corollary (4.22)).

In order to prove thatH is actually a homomorphism between the two modelsMZ
E ,N

Z
E ,

it suffices to show that it respects the interpretations of the function symbols of TE in SZ.

There are two types of functions in TE . We will prove thatH respects the interpretations of

function symbols [F1] by using the naturality of η′ and that it respects the interpretations

of function symbols [F2] by using the commutativity of the diagram (4.44).

It is straightforward to verify that the naturality of η′ yields respect of the function

symbols [F1]. For any map f : c′1 −→ c′2 in C′, the following is commutative

a′∗ ◦ yC′(c′1)
η′
c′1✲ b′∗ ◦ yC′(c′1)

a′∗ ◦ yC′(c′2)

a′∗ ◦ yC′(f)

❄ η′c′2✲ b′∗ ◦ yC′(c′2)

b′∗ ◦ yC′(f)

❄

(4.47)

By the discussion following equation (4.46), a′∗ ◦ yC′(c′i) (i = 1, 2) is the interpretation of

the sort X̃c′
i

inMZ
E , so we can denote it [c′i]1. Similarly, b′∗ ◦ yC′(c′i) is the interpretation

of the sort X̃c′
i
in NZ

E and we denote it [c′i]2. The same goes for the functions: a′∗ ◦yC′(f)

and b′∗ ◦ yC′(f) are the interpretations of the function symbols (of type [F1]) in the two

models and hence denoted [f ]1 and [f ]2 respectively. Hence, by denoting Hi := η′c′
i
, the

above square becomes

[c′1]1
H

(a,b)
X1 ✲ [c′1]2

[c′2]1

[f ]1

❄ H
(a,b)
X2 ✲ [c′2]2

[f ]2

❄

which proves that the components Hc′
i

respect the interpretations of function symbols of

type [F1].

Now we turn to the square 4.44. For any object d in D, we consider the components

of η′ of types

• η′F ∗(yD(d)) = η′(F σ(d)) = (η′ • F ∗)yD(d)

• η′G∗(yD(d)) = η′(Gσ(d)) = (η′ •G∗)yD(d)
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The commutative square (4.44) then reads

a′∗ ◦ yC′(F σ(d))
η′F ∗(yD(d))✲ b′∗ ◦ yC′(F σ(d))

a′∗ ◦ yC′(Gσ(d))

αyD(d)

❄ η′G∗(yD(d))✲ b′∗ ◦ yC′(Gσ(d))

βyD(d)

❄

(4.48)

The horizontal maps in the above diagram are HFσ(d) and HGσ(d) by virtue of the es-

tablished notation of (4.46). Adhering to the nomenclature of the discussion that follows

diagram (4.47), we denote [F σ(d)]1 := a′∗ ◦ yC′(F σ(d)), [F σ(d)]2 := b′∗ ◦ yC′(F σ(d)),

[Gσ(d)]1 := a′∗ ◦ yC′(Gσ(d)) and [Gσ(d)]2 := b′∗ ◦ yC′(Gσ(d)). By also using the notation

of (4.42), the above diagram becomes

[F σ(d)]1
HFσ(d)✲ [F σ(d)]2

[Gσ(d)]1

[kd]1

❄ HGσ(d)✲ [Gσ(d)]2

[kd]2

❄

(4.49)

This proves that the mapsHc′ for c′ object in C′ also respect the interpretations of function

symbols of type [F2] in TE . Hence, they constitute a well-defined homomorphism between

the two models Σ(a, α) and Σ(b, β).

We stipulate that the arrow part of the functor Σ is given by Σ(η) = H
(a,b)
X as defined

in equation (4.46).

The two constructions Λ and Σ are explicitly inverse to each other, so Σ◦Λ(MZ
E ) ∼=MZ

E

for any modelMZ
E and Λ ◦Σ(a, α) is isomorphic to (a, α) in IZ . Therefore in this section

we have effectively proved the following

Theorem 4.28 The Grothendieck topos E is the inserter in Top of the diagram of the

parallel functors F,G.

Proof. We have demonstrated that the category IZ is equivalent to the category to

Mod(SZ,TE) and hence it is equivalent to the category Top(Z, E) due to the natural

equivalence 4.26. More specifically, the functors Λ′ and Σ′ defined as the composites

Top(Z, E)
σZ✲ Mod(SZ,TE)

Λ ✲ I(Z)
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I(Z)
Σ✲ Mod(SZ,TE)

τZ✲ Top(Z, E)

are an equivalence of categories.

Now let l : Z ′ −→ Z be a geometric morphism in Top. It induces a functor I(l) :

I(Z) −→ I(Z ′) by the assignments

(a, α) 7→ (a ◦ l, α • l) and η 7→ η • l

The fact that I(l) acts by precomposition means that the following square is commutative

I(Z)
ΣZ✲ Mod(SZ,TE)

I(Z ′)

I(l)

❄ ΣZ′✲ Mod(SZ ′,TE)

l∗

❄

is clearly commutative and therefore the equivalence I(Z) ≃ Top(Z, E) is natural with

respect to Z. So E is the inserter in Top of the diagram of the parallel functors F,G in

the sense of section 4.6.

After the preceding lengthy analysis, it is not difficult to observe the following.

Remark 4.29 Let A : Z −→ E a geometric morphism. Then the object part of the functor

Λ′ essentially assigns

A 7→ (iE ◦A , ǫ•)

Let A1, A2 : Z −→ E two geometric morphisms and η : A1 ⇒ A2 a natural transformation.

Then the arrow part of the functor Λ′ essentially assigns

η 7→ η •A

iE and ǫ are the universal 1-cell and universal 2-cell of the geometric inserter E (section

4.5).

The following 2-categorical universal property of E is then an immediate consequence of

the natural equivalence I(Z) ≃ Top(Z, E).

Lemma 4.30 The triple (E , iE , ǫ) satisfies the following two universal properties.

(i) Given a geometric morphism a : Z −→ X and a natural transformation α : F ◦ a⇒

G ◦ a, there is a unique geometric morphism A : Z −→ E such that a = A ◦ iE and

α = A • ǫ.



CHAPTER 4. ADJUNCTIONS IN TOP 97

(ii) Given two geometric morphisms a1, a2 : Z −→ X and two natural transformations

α1 : F ◦ a1 ⇒ G ◦ a1 and α2 : F ◦ a2 ⇒ G ◦ a2 together with a natural transformation

η : a1 ⇒ a2 such that

(G • η) ◦ α1 = α2 ◦ (F • η)

there is a unique natural transformation H : A1 ⇒ A2 such that iE •H = η.

4.8 A criterion for adjunctions in Top

Let us suppose that we have two pairs of parallel geometric morphisms F1, G1 : X −→ Y1

and F2, G2 : X −→ Y2 with SX = S(C, J), SY = S(D1,K1) and SY2 = S(D2,K2), with

K1 and K2 being subcanonical topologies on D1 and D2 as before. We construct a site

(C1, J1) as in definition 4.18 taking the geometric morphisms F1, G1 into account (C1, J1)

and an other site (C2, J2) taking F2, G2 into account. It holds

SX ≃ S(C1, J1) ≃ S(C2, J2)

Let (E , iE) be the inserter corresponding to the pair F1, G1 and (F , iF ) the inserter corre-

sponding to the pair F2, G2. Let IE(Z) and IF (Z) be the respective categories of lemma

4.25 for the two pairs. We obtain a pair of functors Λ1Mod(SZ,TE) ⇋ IE(Z) : Σ1 and

Λ2Mod(SZ,TF ) ⇋ IF (Z) : Σ2 as in section 4.7 that are equivalences of categories. We

define the functors Λ′
1 and Σ′

1 as the composites

Top(Z, E)
σ✲ Mod(SZ,TE)

Λ1✲ IE(Z)

IE(Z)
Σ1✲ Mod(SZ,TE)

τ✲ Top(Z, E)

where σ and τ are the functors of the equivalence 4.26 and correspondingly the functors

ya′2 and Σ′
2.

We assume now that there are geometric morphisms φ : E −→ F and φ−1 : F −→ E

such that the following conditions are both satisfied

• The pair φ, φ−1 is an equivalence of categories.
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• The following two triangular diagrams commute.

E
φ ✲
≃✛
φ−1

F

❅
❅

❅
❅

❅

iE

❘ ✠�
�

�
�

�
iF

X

(4.50)

in the sense that there are 2-cells iF◦φ⇒ iE and iE◦φ
−1 ⇒ iF that are isomorphisms.

In other words φ and φ−1 are maps between iE and iF in the slice topos Top/X.

Let

Top(Z, φ) : Top(Z, E) −→ Top(Z,F) and Top(Z, φ−1) : Top(Z,F) −→ Top(Z,F)

be the induced functors whose action is defined by postcomposition with φ and φ−1 respec-

tively. This pair of functors is obviously also an equivalence of categories. Furthermore,

Top(Z, φ) and Top(Z, φ−1) induce the functors φ̂ : I(Z) −→ I ′(Z) and φ̂−1 defined as the

composites

φ̂ : IE(Z)
Σ′

1✲ Top(Z, E)
Top(Z, φ)✲ Top(Z,F)

Λ′
2✲ IF (Z)

φ̂−1 : IF (Z)
Σ′

2✲ Top(Z,F)
Top(Z, φ−1)✲ Top(Z, E)

Λ′
1✲ IE(Z)

By construction, the pair φ̂, φ̂−1 is an equivalence of categories, i.e., IE(Z) ≃ IF (Z). We

pause and study the action of the functor φ̂ on the objects and arrows of IE(Z).

An arbitrary object of I(Z) is a pair (a, α), where a : Z −→ X is a geometric morphism

and α is a 2-cell F ◦a⇒ G◦a. The geometric morphism Λ−1 takes this pair to the unique

A : Z −→ E such that a = iE ◦ A (c.f. remark 4.29 and lemma 4.30). Subsequently, A is

mapped to the object φ◦A in Top(Z,F). Finally, the geometric morphism Σ takes φ◦A to

the pair consisting of the geometric morphism iF ◦φ◦A and a 2-cell φ̂(α) : F ′◦iF ◦φ◦A⇒

G′ ◦ iF ◦ φ ◦A. Taking into account the commutativity of the diagram 4.50, this pair can

be written

φ̂(a, α) = (a, φ̂(α))

In a similar way we can demonstrate that for any arrow η in I(Z),

φ̂(η) = η
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The action of the functor φ̂−1 is the same as above, assuming that (a, α) and η are an

object and an arrow of the category IF (Z).

It will be useful to formulate and prove the following two lemmas.

Lemma 4.31 Let x1, x2 : Z −→ X be two points of X (at stage Z) and η : x1 −→ x2 a

point transformation, i.e., a 2-cell between the geometric morphisms x1, x2. Let also f, g

be natural transformations f : F ◦ x1 ⇒ G ◦ x1 and g : F ◦ x2 ⇒ G ◦ x2, such that the

diagram below commutes

Fx1
f ✲ Gx1

Fx2

F (η)

❄ g ✲ Gx2

G(η)

❄

(4.51)

then the following diagram is also commutative

F ′x1
φ̂(f)✲ G′x1

F ′x2

F ′(η)

❄ φ̂(g)✲ G′x2

G′(η)

❄

(4.52)

Proof. The assumptions of the lemma can be rephrased as “(x1, f) and (x2, g) are two

objects of I(Z) and η : (x1, f) −→ (x2, g) is an arrow between them in I(Z)”. Indeed,

the commutative square (4.51) is just the property expressed by the commutative diagram

(4.25) in lemma 4.25). Applying the functor φ̂ yields that

φ̂(η) : φ̂(x1, f) −→ φ̂(x2, g)

is an arrow in I ′(Z). But in the discussion above we showed that φ̂(η) = η, φ̂(x1, f) =

(x1, φ̂(f)) and φ̂(x2, g) = (x2, φ̂(g)) (up to equivalence). The fact that η is an arrow

between (x1, φ̂(f)) and (x2, φ̂(g)) by definition implies that the second diagram of the

lemma commutes.

Moreover, the symmetric of the lemma 4.31 can also be proved in exactly the same

way (using φ̂−1 instead of φ̂).

Lemma 4.32 With the x1, x2, η as in lemma 4.31, if f, g are natural transformations

f : F ′x1 ⇒ G′x1 and g : F ′x2 ⇒ G′x2 that make the L.H.S. square below commutative
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then the R.H.S square is also commutative.

F ′x1
f ✲ G′x1 Fx1

φ̂−1(f)✲ Gx1

F ′x2

F ′(η)

❄ g ✲ G′x2

G′(η)

❄
Fx2

F (η)

❄ φ̂−1(g)✲ Gx2

G(η)

❄

The importance of lemmas 4.31 and 4.32 become evident after their application in a special

case. Suppose now that F,G are two geometric morphism in opposite directions.

X
F ✲✛
G

Y (4.53)

We consider the following two diagrams in Top.

X × Y
F ◦ p1✲

p2

✲ Y X × Y
p1 ✲

G ◦ p2

✲ X (4.54)

where p1 and p2 are the first and second projections of the product topos X × Y . We

denote E and F the inserters of these two diagrams respectively. Lemmas 4.25 and 4.28

essentially tell us that the points (at stage say Z) of E are triples (x, y; f), where x, y

are points of X and Y respectively and f is a map f : Fx −→ y. Similarly, the points

of F (at the same stage Z) are triples (x, y; g), where now g is a map g : x −→ Gy.

Therefore, by construction, the X × Y -topos iE : E −→ X × Y is the classifying topos

of the geometric theory (say T(Fx,y)) whose models in any SZ are homomorphisms (of

models of TY ) Fx −→ y given two models x and y in SZ of the geometric theories TX

and TY respectively. Similarly the X × Y -topos iF : F −→ X × Y classifies the geometric

theory (say T(x,Gy)) whose models in SZ are homomorphisms (of models of TX) x −→ Gy

given two models x and y in SZ of the geometric theories TX and TY respectively.

The points of the topoi iE : E −→ X × Y and iF : E −→ X × Y can be contemplated

as the “geometric analogue” of the Hom-sets C2(F(c1), c2) and C1(c1, G(c2)) with F,G

being two functors F : C1 −→ C2 and G : C2 −→ C1 and C1,C2 being small categories.

In category theory, the existence of an isomorphism between the two Hom-sets, which

is natural in both c1 and c2, is usually adopted (see [Mac71]) as the definition of adjoint

situation between F and G (F ⊣ G). The next theorem and its corollary will demonstrate

that the equivalence of the topoi E and F over X × Y implies adjoint situation of the

geometric morphisms F and G of figure 4.53.
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Before we start, we draw attention on the fact that, among the equivalent definitions

of an adjoint situation (e.g. [Mac71],IV, theorem 2), the one involving the validity of the

triangle identities is “robust enough” to be used in our 2-categorical sense.

Theorem 4.33 Let F : X −→ Y and G : Y −→ X be geometric morphisms between two

Grothendieck topoi. Let also E and F be the inserters of the diagrams 4.54. Suppose that

there are geometric morphisms φ : E −→ F and φ−1 : F −→ E such that (φ, φ−1) is an

equivalence of categories and the following diagrams commute up to isomorphism

E
φ ✲

φ−1
✲ F

❅
❅

❅
❅

❅
iE

❘ ✠�
�

�
�

�

iF

X × Y

(4.55)

or in other words E and F are equivalent topoi over X×Y . Then, for any point x : Z −→ X

and any point y : Z −→ Y there are natural transformations (2-cells in Top)

ηx : x −→ G ◦ F ◦ x εy : F ◦G ◦ y −→ y

such that the composite natural transformations

G ◦ y
ηGy✲ G ◦ F ◦G ◦ y

G • εy✲ G ◦ y (4.56)

F ◦ x
F • ηx✲ F ◦G ◦ F ◦ x

εFx✲ F ◦ x (4.57)

are isomorphic to the identity 2-cells idGy and idFx respectively.

Proof.

We denote the inserter of the left diagram in (4.54) as IE(Z) and the inserter of the

right diagram as IF (Z). Let Z be any Grothendieck topos and x : Z s.t.X and y : Z −→ Y

be two arbitrary geometric morphisms that are fixed throughout this proof. Let also a

and b be two geometric morphisms Z −→ X × Y given by

a =< G ◦ y, F ◦G ◦ y > b =< G ◦ y, y > (4.58)

meaning that, e.g., a is given as the geometric morphism that has the product universal
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property

Z
y ✲ Y

G ✲ X

✠�
�

�
�

�
G

X ✛ p1
X × Y

a

❄ p2 ✲ Y

F

❄

(4.59)

We consider the identity 2-cell f = idFGy : F ◦G◦y ⇒ F ◦G◦y. f is also trivially a 2-cell

f := idFGy : (F ◦ p1) ◦ a⇒ p2 ◦ a (4.60)

which implies that (a, f) is an object of IE(Z). If furthermore we look at the identity 2-cell

idGy : G ◦ y ⇒ G ◦ y, we observe that it is also a 2-cell

idGy : p1 ◦ b⇒ (G ◦ p2) ◦ b (4.61)

i.e., the pair (b, idGy) is an object of the inserter IF (Z) (the inserter of the R.H.S. diagram

(4.54)). By the analysis that precedes lemma (4.31), φ̂−1(b, idGy) = (b, φ̂−1(idGy)) and this

is an object in IE(Z). By definition this says that φ̂−1(idGy) is a 2-cell with φ̂−1(idGy) :

(F ◦ p1) ◦ b⇒ p2 ◦ b and hence φ̂−1(idGy) : F ◦G ◦ y ⇒ y. We denote

g := φ̂−1(idGy) (4.62)

Finally, the fact that idGy is a 2-cell between G ◦ y ⇒ G ◦ y and φ̂−1(idGy) is a 2-cell

between F ◦G ◦ y ⇒ y renders

η :=< idGy, φ̂
−1(idGy) > (4.63)

a 2-cell between a ⇒ b. Using f, g, η, x1 = a and x2 = b, the square (4.51) of the lemma

(4.31) becomes

F ◦G ◦ y
idFGy ✲ F ◦G ◦ y

F ◦G ◦ y

F • idGy

❄ φ̂−1(idGy) ✲ G ◦ y

φ̂−1(idGy)

❄

(4.64)

which trivially commutes because F • idGy = idFGy! Therefore, by lemma (4.31), the
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diagram below also commutes

G ◦ y
φ(idFGy)✲ G ◦ F ◦G ◦ y

G ◦ y

idGy

❄ idGy ✲ G ◦ y

G • φ̂−1(idGy)

❄

(4.65)

where for the bottom horizontal map, we used the fact that φ̂ ◦ φ̂−1(idGy) is isomorphic

to idGy dictated by the assumption that (φ̂, φ̂−1) is an equivalence of categories. So more

precisely, the diagram (4.65) commutes up to isomorphism.

For the second identity, we turn to lemma 4.32. In the same fashion we can choose

a =< x,F ◦x > and b =< G◦F ◦x, F ◦x >. Also, f = φ̂(idFx), which can also be checked

that it is a natural transformation p1 ◦a⇒ (G◦p2)◦a, and g = idGFx. Finally, we choose

η =< φ̂(idFx), idFx >. With these choices the L.H.S. diagram of lemma 4.32 becomes

x
φ̂(idFx)✲ G ◦ F ◦ x

G ◦ F ◦ x

φ̂(idFx)

❄ idGFx✲ G ◦ F◦

G • idFx

❄

(4.66)

which again trivially commutes. Hence, by lemma 4.32, the following square also commutes

F ◦ x
idFx ✲ Fx

F ◦G ◦ F ◦ x

F • φ̂(idFx)

❄ φ̂−1(idGFx)✲ F ◦ x

idFx

❄

(4.67)

Corollary 4.34 Let the assumptions and notation of theorem 4.33 hold. Then G is the

right adjoint of F .

Proof. We consider Z := X × Y and x = pr1, y = pr2 the first and second projections

in Top respectively. Then the triangle identities 4.56 and 4.57 can be expressed by the
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commutativity (up to isomorphism) of the following two diagrams

G
ηG✲ G ◦ F ◦G F

F • η✲ F ◦G ◦ F
◗◗◗◗idG s

◗◗◗◗idF s
G

G • ε
❄

F

εF❄
(4.68)

4.9 Conclusion

Let F : X −→ Y and G : Y −→ X be two geometric morphisms between two Grothendieck

topoi. Suppose also that we know that X classifies a geometric theory TX and Y a

geometric theory TY . Corollary 4.34 asserts that F ⊣ G when the inserters of the diagrams

4.54 are equivalent over X×Y . Such an equivalence can be established geometrically. The

recipe for that can be outlined as follows. Consider arbitrary modelsMZ
X and NZ

Y of TX

and TY respectively inside the sheaves of an arbitrary topos Z. Then consider the category,

say CZ
(Fx,y), whose objects are TY -homomorphisms between models F ∗(MX

X) −→ NZ
Y and

the category CZ
(x,Gy) whose objects are homomorphisms MZ

X −→ G∗(NZ
Y ). Prove that

there is a bijection between the objects of the two categories.

The specification of such a bijection need not be functorial. Indeed, an object assign-

ment, e.g. CZ
(Fx,y) −→ CZ

(x,Gy), determines a fortiori a functor between the two categories

by geometricity (c.f. lemma 1.4). We finally point out that “inside the sheaves of an

arbitrary topos Z” can be (mentally) substituted with “in Sets” as long as we restrict

ourselves to the domain of geometric mathematics.

In chapter 6 we shall apply corollary 4.34 when proving the adjoint situation of a pair

of functors between topoi that classify sheaves over strong proximity lattices (B-sheaves).



Chapter 5

Sheaves Over Strong Proximity

Lattices

5.1 Introduction

S. Vickers introduced the notion of a B-sheaf, i.e. a sheaf over a strong proximity lattice

B in [Vic98b] (draft). This section is a reworking of the ideas and results of this paper.

Section 5.2 opens the chapter with a result about sheaves of sets: a presheaf over a

locale is a sheaf iff it has binary (and hence finite) and directed pasting. This splitting

of pasting prepares the ground for the definition of B-sheaves. Distributive lattices can

accommodate only the notion of finite pasting. The extra strong order of a strong proxim-

ity lattice is enough structure to support the notion of continuity of approximation which

emulates directed pasting. All the basic definitions of approximating presheaves and B-

sheaves are given in section 5.3 where also some properties are studied, most notably the

notion of the interior of an approximating presheaf.

Sheaves over a stably compact locale X and B-sheaves over a strong proximity lattice

B such that X = RSpec(B) are equivalent and this is proved in section 5.4. The theory

of B-sheaves is geometric, and this equivalence connects a non geometric construction with

a geometric one. Geometricity of B-sheaves is discussed in section 5.5. In particular it

is proved that for a stably compact locale X, the exponential [set]X in Top exists and

classifies the geometric theory of B-sheaves over the strong proximity lattice BX.

Finally, section 5.6 introduces what effectively is sheavification for approximating

presheaves.

The reader is prompted to compare the results in this chapter with the ones in [JJ82].

There, Johnstone and Joyal prove with different methods that a locale X is exponentiable

105
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as a topos iff it is metastably locally compact. The class of metastably locally compact

locales comprises the stably locally compact locales (not necessarily compact).

5.2 A note on sheaves of sets over locales

This section is about sheaves over locales. Their defining property of pasting is studied

developing separately its finite part (finite pasting) from the infinitary (directed pasting).

Let (F, r) be a presheaf over a locale X whose restriction maps are ra2
a1

for a1 ≤ a2 in

ΩX. We state the standard condition for F to be a sheaf over X.

Let {ai|i ∈ I} be a family of opens ΩX. We say that a tuple {x(ai) ∈ F (ai)|i ∈

I} is coherent iff for any two elements x(a1) ∈ F (a1) and x(a2) ∈ F (a2) in the tuple

raia1∧a2
(x(a1)) = ra2

a1∧a2
(x(a2)).

Definition 5.1 A presheaf (F, r) over ΩX has arbitrary pasting iff for any family of opens

{ai ∈ ΩX|i ∈ I} with
∨
ai = a and any coherent tuple {x(ai) ∈ F (ai)|i ∈ I}, there is a

unique element z ∈ F (a), such that raai(z) = x(ai) for any i ∈ I.

Definition 5.2 A presheaf F : ΩXop −→ Sets is a sheaf iff it has arbitrary pasting.

We used the rather superfluous term “arbitrary pasting” in definition 5.1 in order to

introduce three restricted cases of pasting: directed pasting, binary pasting and finite

pasting.

Definition 5.3 A presheaf (F, r) over X has directed pasting iff for any directed family

of opens {ai ∈ ΩX|i ∈ I} with
∨↑ ai = a and any tuple {x(ai) ∈ F (ai)|i ∈ I}, there is a

unique element z ∈ F (a), such that raai(z) = x(ai) for any i ∈ I.

Let limi∈IF (ai) be the limit of the diagram F : L −→ Sets, where L is the full

subcategory of (ΩX,≤) that includes the opens of the family {ai|i ∈ I}). In concrete

terms, any element x ∈ limi∈IF (ai) is a tuple of elements {x(ai) ∈ F (ai)|i ∈ I} with the

property that if ai ≤ aj with i, j ∈ I, then x(ai) = r
aj
ai (x(aj)) stemming from the fact

that limi∈IF (ai) together with its projections is a cone of the diagram F : L −→ Sets.

We denote by Γ : F (a) −→
∏
i∈I F (ai) the map that takes elements z ∈ F (a) to tuples

{raai(z)|i ∈ I}. Such tuples are actually elements of limi∈IF (ai) because if ai ≤ aj with

i, j ∈ I with pai(Γ(z)) = x(ai) and paj (Γ(z)) = x(aj) then

r
aj
ai (x(aj)) = r

aj
ai ◦ paj ◦ Γ(z) =

r
aj
ai ◦ r

a
aj

(z) = raai(z) =

pai ◦ Γ(z) = x(ai)
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In categorical terms, Γ is the unique map with the property that pai ◦ Γ = raai for any

i ∈ I, where pai is the limit projection limi∈IF (ai) −→ F (ai).

Theorem 5.4 Let (F, r) : Ωop −→ Sets be a presheaf over the locale X. Then F has

directed pasting iff for any directed family {ai ∈ ΩX|i ∈ I} with
∨↑
i ai = a the map,

Γ : F (
∨

↑ai) −→ limi∈IF (ai)

is an isomorphism.

Proof.

First let F have directed pasting. We are going to show that the map Γ is an iso-

morphism. Let x = {x(ai)|i ∈ I} ∈ limi∈IF (ai). We show that x is a coherent tuple

of elements. By assumption, {ai} is directed, so for any two elements x(ai), x(aj) in the

tuple, there is an element ak with k ∈ I and ai ≤ ak and aj ≤ ak. Furthermore, by

the defining property of the limit, x(ai) = rakai (x(ak)) and x(aj) = rakaj (x(ak)). Therefore,

raiai∧aj (x(ai)) = raiai∧aj ◦ r
ak
ai

(x(ak)) = rakai∧aj (x(ak)) = r
aj
ai∧aj ◦ r

ak
aj

(x(ak)) = r
aj
ai∧aj (x(aj)).

So, by assumption, there is a unique z ∈ F (a) such that raai(z) for any i ∈ I which shows

that Γ is an isomorphism.

For the opposite direction, let it be the case that Γ : F (a) −→ limi∈IF (ai) is an

isomorphism and let {x(ai) ∈ F (ai)|i ∈ I} be a coherent tuple of elements. It is easy to

argue that this tuple is an element of limi∈IF (ai). Indeed, if ai ≤ aj with i, j ∈ I then

coherence forces r
aj
ai∧aj (x(aj)) = raiai∧aj (x(ai)) or r

aj
ai (x(aj)) = x(ai). Since Γ is 1-1 and

epi, there is a unique z ∈ F (a) such that Γ(z) = {x(ai)|i ∈ I}. But Γ(z) = {raai(z)|i ∈ I}

which proves that F has directed pasting.

Next, we introduce the notions of binary and finite pasting.

Definition 5.5 A presheaf (F, r) over X has binary pasting iff it possesses one of the

following obviously equivalent properties.

(I) For any pair of elements x ∈ F (a1) and y ∈ F (a2) with ra1
a1∧a2

(x) = ra2
a1∧a2

(y), there

is a unique element z ∈ F (a1 ∨ a2) with ra1∨a2
a1

(z) = x and ra1∨a2
a2

(z) = y.

(II) F preserves pullbacks of the form

a1 ∨ a2
✲ a1

a2

❄
✲ a1 ∧ a2

❄
(5.1)
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Definition 5.6 A presheaf F over X has finite pasting iff for any finite tuple of elements

{xi ∈ F (ai)|i = 1, ..., N} that are coherent, there is a unique element z ∈ F (∨Ni=1ai), with

r
∨N
i=1ai

ai (z) = xi, for any i = 1, ..., N .

Naturally we anticipate that binary pasting implies finite pasting. This is indeed true

although there is some intricacy in how induction is used to prove it.

Lemma 5.7 Let (F, r) be a presheaf over a locale X. Then F has finite pasting iff it has

binary pasting.

Proof. Let {xi ∈ F (ai)|i = 1, ..., N} be a finite tuple of coherent elements. We introduce

a “block” index s with ∅ 6= s ⊆ {1, ..., N} and we write

as := ∧i∈sai

It is obvious that there is a unique zs ∈ F (as) such that i ∈ s⇒ zs = raias(xi). Moreover, let

{sr} be any total ordering of the subsets s ⊆ {1, ..., N}, i.e. r = 1, ..., n where n = 2N − 1.

We are going to prove by induction on n that there is a unique z ∈ F (∨nr=1asr) such that

r
∨nr=1asr
asr (z) = zsr

This suffices to prove finite pasting because ∨nr=1asr = ∨Ni=1ai. We observe that the claim

is trivially true for n = 1. Suppose now that if r = 1, ..., n − 1 then there is a unique

z′ ∈ F (∨n−1
r=1asr) such that

r
∨n−1
r=1 asr

asr (z′) = zsr

We are going to prove that

r
∨n−1
r=1 asr

(∨n−1
r=1 asr )∧asn

(z′) = r
asn
∨n−1
r=1 asr∧asn

(zsn) (5.2)

This fact together with the binary pasting property of F imply that there is a unique

element z ∈ F ((∨n−1
r=1asr) ∨ asn) = F (∨nr=1asr), such that

r
∨nr=1asr

∨n−1
r=1 asr

(z) = z′ and r
∨nr=1asr
asn (z) = asn

which will complete the induction.

Furthermore, to prove equation 5.2, we argue that it suffices to prove that

r
∨n−1
r=1 asr

asr∧asn
(z′) = r

asn
asr∧asn

(zsn) (5.3)
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for all r = 1, ..., n − 1. Indeed, the elements r
∨n−1
r=1 (asr )

asr∧asn
(z′) are obviously coherent, so, by

assumption, there is a unique z′′ ∈ F (∨n−1
r=1 (asr ∧ asn)) such that

r
∨n−1
r=1 (asr∧asn )

asr∧asn
(z′′) = r

∨n−1
r=1 asr

asr∧asn
(z′) (5.4)

Now, the elements

z′′1 := r
∨n−1
r=1 asr

∨n−1
r=1 (asr∧asn )

(z′) and z′′2 = r
asn
∨n−1
r=1 (asr∧asn )

(zsn) (5.5)

are clearly such elements because of equation 5.3. Therefore, uniqueness implies that

z′′1 = z′′2 which is equation 5.2.

Finally, we prove equation 5.3 for r = 1, ..., n. The L.H.S. is the restriction of z′ to

asr ∧ asn which is an open (say) asr′ , where the index sr′ is sr ∪ sn and hence r′ 6= r. So,

according to the assumption of the induction we have

r
∨n−1
r=1 asr

asr∧asn
(z′) = zsr′

The R.H.S. of 5.3 is also zsr′ by the definition of the elements zsr and the fact that

asr′ ≤ asn . This completes the proof.

So combining lemma 5.7 and theorem 5.4 we arrive to the main result of this section.

Theorem 5.8 A presheaf over a locale F : X −→ Sets is a sheaf iff it has binary pasting

and transforms directed meets to codirected limits.

Proof. Let (F, r) be a presheaf over X that fulfills the theorem’s assumptions. From

lemma 5.7 and theorem 5.4 we know that F has finite and directed pasting. It is easy

to shoe that this amounts to having arbitrary pasting. Let {ai ∈ ΩX}i∈I be a family of

opens in ΩX and {x(ai) ∈ F (ai)|i ∈ I} a tuple of elements. We derive the family of opens

{bj ∈ ΩX, j ∈ J |bj = ∨i∈Mai, M ⊆ I finite}

From finite pasting, for each bj = ai1 ∨ ... ∨ ain , there is a unique element x(bj) that

restricts to x(aik) for any k = 1, ..., n. The tuple {x(bj) ∈ F (bj)|j ∈ J} is coherent and

the family {bj |j ∈ J} is obviously directed. Therefore there is a unique element

z ∈
∨

j

{bj |j ∈ J} =
∨

i

{ai|i ∈ I}

that restricts to the elements {x(bj)|j ∈ J} and hence to the elements {x(ai)|i ∈ I}.

The following is an obvious generalisation.
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Corollary 5.9 Theorem 5.8 holds for F being C-valued presheaf over a locale X, where

C is any category with codirected limits. In particular it holds topos-valued presheaves (for

a topos where sheaves are definable).

5.3 B-Sheaves and Their First Properties

If B is a strong proximity lattice, we are going to denote by (B,≤) the underlying poset

and by (B,≺,=) the category with objects the elements of B and with arrows the relation

a ≺ b plus the identities a = a.

Definition 5.10 Let B be a strong proximity lattice. A presheaf with approximation over

B is a triple (V, φ, θ) such that

(i) (V, φ) is a presheaf over the underlying poset (B,≤), i.e. for any a ≤ b in B, there

are functions φba : V (b) −→ V (a) such that for any a ∈ B, φaa = idV (a) and if

a ≤ b ≤ c, then φcb ◦ φ
b
a = φca. We are going to refer to φ := V (≤) as the weak

restriction maps of V .

(ii) (V, θ, id) is a presheaf over the category (B,≺,=), i.e. for any a ≺ b there are

functions θba : V (b) −→ V (a) such that if a ≺ b ≺ c then θcb ◦ θ
b
a = θca. Also,

V (a = a) = idV (a). We are going to refer to φ as the strong restriction maps of V .

(iii) The strong restriction maps absorb the weak: If a ≤ b ≺ c ≤ d, then φdc ◦θ
c
b ◦φ

b
a = θda.

Definition 5.11 Let (V, φ, θ) and (W,β, δ) be two presheaves with approximation over

a strong proximity lattice B. Then a morphism of presheaves with approximation or an

approximating presheaf morphism is a transformation f : V −→ W which is both natural

with respect to the weak and strong restrictions. That means that f is defined by component

functions fa : V (a) −→ W (a) for any a ∈ B, such that for a1 ≤ a2 or b1 ≺ b2, the

respective naturality diagrams are commutative

V (a2)
fa2✲ W (a2) V (b2)

fb2✲ W (b2)

V (a1)

φa2
a1

❄ fa1✲ W (a2)

βa2
a1

❄
V (b1)

θb2b1

❄ fb1✲ W (b1)

θb2b1

❄

(5.6)

Sometimes we will refer to the left square as the “weak naturality square” and to the left

as the “strong naturality square”. We denote by PreBSh(B) the category of presheaves

with approximation over B and approximating presheaf morphisms.
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For any a ∈ B, consider the full subcategory Jsa of (B,≺,=) that includes all the elements

ai ∈ B with a ≺ ai. Jsa is filtered because ↑ a is an ideal. Let colima≺aiV (ai) be the

colimit of the diagram V : Jsa −→ Sets, where (V, φ, θ)) is a presheaf with approximation

over B. Note that the superscript s signifies that the diagram is with respect to the strong

restriction maps. There is an obvious map θa : colima≺aiV (ai) −→ V (a) (unique in that

it makes θa ◦ θ
ai = θaia , where θai are the colimit injections).

Definition 5.12 Let (V, φ, θ) be a presheaf with approximation over B. V is continuous

or equivalently V has continuous approximation iff the map θa : colima≺aiV (ai) −→ V (a)

is an isomorphism. We denote by ContPreBSh(B) the category of continuous presheaves

with approximation over B and approximating presheaf morphisms, i.e. ContPreBSh(B)

is a full subcategory of PreBSh(B).

In other words, if V is continuous V (a) is approximated by the sets {V (ai)|a ≺ ai}

1 “strongly over” V (a). This is in parallel with the notion of lattice continuity where

a =
∨↑{ai|a ≻ ai}. This has the following impact.

Lemma 5.13 Let B be a strong proximity lattice and (V, φ, θ) : B −→ Sets a presheaf

with continuous approximation. Then the strong restrictions φ completely determine the

weak restrictions δ.

In particular, if b1, b2 ∈ B with b1 ≤ b2 and b1 ≺ b2, then for any x ∈ W (b2),

φb2b1(x) = θb2b1 (x).

Proof. Let b1 ≤ b2 in B. Then V (b2) ∼= colimb2≺biV (bi). Then, for any bi ≻ b2, we have

b1 ≤ b2 ≺ bi ⇒ b1 ≺ bi, so the functions φb2b1◦θ
bi
b2

= θbib1 together with V (b1) constitute a cone

of the diagram V : Jsb2 −→ Sets. Therefore, there is a unique function α : V (b2) −→ V (b1)

such that α ◦ θbib2 = θbib1 for any bi ≻ b2 which implies φb2b1 = α.

The second part of the lemma is more or less obvious now, but we are going to prove

it formally in order to establish the notation henceforth used! Let b1 ≤ b2 and b1 ≺ b2.

Continuity dictates that V (b2) ∼= colimb2≺biV (bi). Let θbi : V (bi) −→ colimb2≺biV (bi)

be the colimit injections and θb2 the obvious isomorphism colimb2≺biV (bi) −→ V (b2). To

prove that for any x ∈ V (b2), φ
b2
b1

(x) = θb2b1 (x), it suffices to prove that for any bi ≻ b2 and

for any x ∈ V (bi), φ
b2
b1
◦ θa2 ◦ θ

bi(x) = θb2b1 ◦ θa2 ◦ θ
bi(x), which is the same as φb2b1 ◦ θ

bi
b2

(x) =

θb2b1 ◦ θ
bi
b2

(x). But (definition ??) this last equality is the same as θbib1(x) = θbib1(x) which is

trivially true.

The following definition pertains to the lattice structure of the strong proximity lattice.

Definition 5.14 Let (V, φ, θ) be a presheaf with approximation over B. Then V has

pasting or equivalently V is a pasting presheaf with approximation iff V (⊥) ∼= 1 and for



CHAPTER 5. SHEAVES OVER STRONG PROXIMITY LATTICES 112

any a, b ∈ B, the following is a pullback in Sets

V (a ∨ b)
φa∨ba ✲ V (a)

V (b)

φa∨bb

❄ φba∧b✲ V (a ∧ b)

φaa∧b

❄

(5.7)

We denote by PastPreBSh(B) the category of pasting presheaves with approximation over

B and approximating presheaf morphisms; PastPreBSh(B) is also a full subcategory of

PreBSh(B).

Finally we have the following.

Definition 5.15 A B-sheaf is a pasting, continuous presheaf with approximation over

a strong proximity lattice B. We denote by BSh(B) the category of B-sheaves and ap-

proximating presheaf morphisms. Note that the category BSh(B) is a full subcategory of

PreBSh(B).

Note: If B is a strong proximity lattice, we shall be referring to a “B-sheaf” or

equivalently to a “B-sheaf over B” (in the latter case B- is calligraphic).

Next, we investigate the interplay between the continuity and pasting property of

approximating presheaves. Given a presheaf with approximation V , there is an obvious

continuous presheaf with approximation V ′ constructed out of V . What is less trivial is

that V ′ has pasting if V has pasting.

Definition 5.16 Let (V, φ, θ) be a presheaf with approximation over B. The interior of

V , (intV, β, δ), is the presheaf with approximation defined by

intV (a) = colima≺aiV (ai)

and for a ≤ b (a ≺ b), βba (δba) are the obvious unique maps stemming from the fact

that Jsb is a full subcategory of Jsa. We are going to denote the colimit injections as

θai,a : V (ai) →֒ colima≺aiV (ai).

Lemma 5.17 Let V be a pasting presheaf over a strong proximity lattice B. Then its

interior intV also has pasting.

Proof. We are going to prove the property of definition 5.14. First we easily observe that

all the injections into colim⊥≺ai factor through the map V (⊥) −→ colim⊥≺ai because

⊥ ≺ ⊥ and V (⊥) ∼= 1 by assumption. So intV (⊥) ∼= 1[?][expression]
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Let x ∈ V (ai) and y ∈ V (bi) with ai ≻ a and bi ≻ b, such that

βaa∧b ◦ θ
ai,a(x) = βaa∧b ◦ θ

bi,b(y)⇔

θai,a∧b(x) = θbi,a∧b(y)

Since the diagram Jsa∧b is filtered, the above equality is realised “before” the colimit, i.e.

there is an element c with a ∧ b ≺ c ≺ ai ∧ bi such that

θaic (x) = θbic (y) (5.8)

B is a strong proximity lattice, so there are a′, b′ ∈ B with a ≺ a′ and b ≺ b′ such that

a′ ∧ b′ ≺ c. Also, let c1, c2 be two interpolants with a ≺ c1 ≺ ai and b ≺ c2 ≺ bi. We

denote a0 := a′∧c1 and b0 := b′∧c2. The elements a0 and b0 have the following properties

by construction.

a ≺ a0 ≺ ai b ≺ b0 ≺ bi

a0 ∧ b0 ≺ c a ∨ b ≺ a0 ∨ b0

Since a0 ∧ b0 ≺ c, equation 5.8 becomes θaia0∧b0
(x) = θbia0∧b0

(x) which is equivalent to

φa0
a0∧b0

◦ θaia0
(x) = φb0a0∧b0

◦ θbib0

V has pasting by assumption, so there is a unique z ∈ V (a0 ∨ b0)such that

φa0∨b0
a0

(z) = θaia0
and φa0∨b0

b0
(z) = θbib0(x) (5.9)

We need to prove that θa0∨a0,a∨b(z) is the required unique element. For any interpolant

a ≺ a1 ≺ a0 we have the following

βa∨ba ◦ θa0∨a0,a∨b(z) = θa0∨b0,a(z)

= θa1,a ◦ θa0∨b0
a1

(z)

= θa1,a ◦ θa0
a1
◦ φa0∨b0

a0
(z)

= θa1,a ◦ θa0
a1
◦ θaia0

(x)(equation 5.9)

= θa1,a ◦ θaia1
(x)

= θai,a(x)
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Similarly we can prove βa∨bb ◦ θa0∨a0,a∨b(z) = θai,a(x). This proves existence.

To prove uniqueness, suppose there are two elements z1 ∈ V (ai1) and z2 ∈ V (ai2) with

a ∨ b ≺ aii and a ∨ b ≺ ai2 such that

βa∨ba ◦ θai1 ,a∨b(z1) = βa∨ba ◦ θai2 ,a∨b(z2)

and βa∨bb ◦ θai1 ,a∨b(z1) = βa∨bb ◦ θai2 ,a∨b(z2)

and with the property that the above expressions become equal when further weakly

restricted to intV (a∧b). Let d be an interpolant a∨b ≺ d ≺ ai1∧ai2 and let z′1 := θ
ai1∧ai2
d ◦

φ
ai1
ai1∧ai2

(z1) and z′2 := θ
ai1∧ai2
d ◦ φ

ai2
ai1∧ai2

(z2). To prove that θai1 ,a∨b(z1) = θai2 ,a∨b(z2), it

suffices to prove that θd,a∨b(z′1) = θd,a∨b(z′2) given that

βa∨ba ◦ θd,a∨b(z′1) = βa∨ba ◦ θd,a∨b(z′2) := x

and βa∨bb ◦ θd,a∨b(z′1) = βa∨bb ◦ θd,a∨b(z′2) := y

and

βaa∧b(x) = βba∧b(y) (5.10)

Since we are dealing with filtered colimits, equation 5.10 implies that θdc (z
′
1) = θdc (z

′
2) for

some element c with a ∧ b ≺ c. Also, there are elements c1, c2 with a ≺ c1 ≺ d and

b ≺ c2 ≺ d such that θdc1(z
′
1) = θdc1(z

′
2) and θdc2(z

′
1) = θdc2(z

′
2). We call c′1 := c ∧ c1 and

c′2 := c ∧ c2. It holds that c′1 ∨ c
′
2 ≺ d, therefore the last pair of equations yield

φ
c′1∨c

′

2

c′1
◦ θdc′1∨c′2

(z′1) = θdc′1
(z′1) (5.11)

= θdc′1
(z′2) = φ

c′1∨c
′

2

c′1
◦ θdc′1∨c′2

(z′2) (5.12)

and similarly

φ
c′1∨c

′

2

c′2
◦ θdc′1∨c′2

(z′1) = φ
c′1∨c

′

2

c′2
◦ θdc′1∨c′2

(z′2) (5.13)

Furthermore, it holds that c′1 ∧ c
′
2 ≤ c, which means that if we post-compose φ

c′1∨c
′

2

c′1
◦

θd
c′1∨c

′

2
(z′1) and φ

c′1∨c
′

2

c′2
◦ θd

c′1∨c
′

2
(z′1) with φ

c′1
c′1∧c

′

2
and φ

c′2
c′1∧c

′

2
, they become equal. Hence, by

uniqueness of pasting

θdc′1∨c′2
(z′1) = θdc′1∨c′2

(z′2)



CHAPTER 5. SHEAVES OVER STRONG PROXIMITY LATTICES 115

which in turn implies θc
′

1∨c
′

2,a∨b◦θdc′1∨c′2
(z′1) = θc

′

1∨c
′

2,a∨b◦θdc′1∨c′2
(z′2), or θd,a∨b(z′1) = θd,a∨b(z′2)

as desired.

The choice of the word “interior” in definition 5.16 is justified by the following theorem.

Theorem 5.18 Let V be a presheaf with approximation over B. Then its interior is a

continuous presheaf with approximation. Moreover, the interior construction defines a

functor int which is the right adjoint of the inclusion functor

i3 : ContPreBSh(B) →֒ PreBSh(B)

This exhibits ContPreBSh(B) as a co-reflective subcategory of PreBSh(B).

Proof. To define the functor int, we set int(V ) = intV , for any presheaf with approxima-

tion, as in definition 5.16. Let (V, φ, θ) and (W,β, δ) be two presheaves with approximation

over B and q : V −→W an approximating presheaf morphism. We are going to define an

approximating presheaf morphism between intV −→ intW .

Let θai,a : V (ai) →֒ colima≺aiV (ai) and δai,a : W (ai) →֒ colima≺aiW (ai) be the re-

spective colimit injections as before. For a ≺ ai1 ≺ ai2 in B, all the loops are commutative

in the following diagram.

V (ai1)
✛

θ
ai2
ai1 V (ai2)

W (ai1)

qai1 ❄
✛

δ
ai2
ai1 W (ai2)

qai2❄

❏
❏
❏
❏
❏

δai1 ,a

❫ ✢✡
✡
✡
✡
✡

δai2 ,a

colima≺aiW (ai)

(5.14)

Indeed, the upper square commutes because of lemma 5.19 and the lower triangle because

it is the universal cone of the diagram W : Jsa −→ Sets. So the functions δai,a ◦ qai with

the set colima≺aiW (ai) constitute a cone of the diagram V : Jsa −→ Sets and therefore

there is a unique function int(q)a : colima≺aiV (ai) −→ colima≺aiW (ai) with the property

int(q)a ◦ θ
ai,a = δai,a ◦ qai (5.15)

for any ai ≻ a. Now we prove that int(q) is an approximating presheaf morphism between

V and W . We start with the strong naturality property. We denote by int(φ) and int(θ)

the weak and strong restriction maps of int(V ) and by int(β) and int(δ) the weak and
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strong restriction maps of int(W ). We consider the following diagram for a1 ≺ a2 ≺ ai

V (ai)
qai ✲ W (ai)

int(V )(a2)

θai,a2

❄ int(q)a2✲ int(W )(a2)

δai,a2

❄

int(V )(a1)

int(θ)a2
a1

❄ int(q)a1✲ int(W )(a1)

int(δ)a2
a1

❄

(5.16)

The left composite vertical map is just θai,a1 and the right composite vertical map is δai,a1 .

Therefore, the outer diagram commutes as the defining property of int(q) (expression 5.15

above). For the same reason the upper square diagram also commutes. Therefore, the

lower diagram, which is the strong naturality square of int(q), pre-composed with (any)

colimit injection θai,a commutes which implies that it commutes.

In order to prove the weak naturality of int(q), we consider the corresponding diagram

for a1 ≤ a2 ≺ ai with int(φ)a2
a1

instead of int(θ)a2
a1

and int(β)a2
a1

instead of int(δ)a2
a1

. The

argument is the same as in the strong case because φa2
a1
◦ θai,a2 = θai,a1 and βa2

a1
◦ δai,a2 =

δai,a1 .

Finally, we prove that int is the right adjoint of the inclusion functor i3 : ContPreBSh(B) →֒

PreBSh(B). Let (V, φ, θ) be a presheaf with approximation. It is easy to observe that

the maps θa of definition 5.12 are the components of an approximating presheaf mor-

phism int(V ) −→ V . Indeed, the strong naturality is demonstrated as follows for any pair

a1 ≺ a2 and any colimit injection θai,a2 :

θa1 ◦ int(θ)a2
a1
◦ θai,a2 = θa1 ◦ θ

ai,a1 =

θaia1
= θa2

a1
◦ θaia2

=

= θa2
a1
◦ θa2 ◦ θ

ai,a2

The strong naturality is demonstrated similarly. We denote by θ̇ the morphism whose

components are the functions θa. Let (W,β, δ) be an other presheaf with approximation

and f : W −→ V an approximating morphism of presheaves. Then the following square

commutes

int(W )
int(f)✲ int(V )

W

δ̇
❄ f ✲ V

θ̇
❄

(5.17)



CHAPTER 5. SHEAVES OVER STRONG PROXIMITY LATTICES 117

To demonstrate this fact, we consider any a ∈ B and any colimit injection δai,a : W (ai) →֒

int(W )(a). Then

fa ◦ δa ◦ δ
ai,a = fa ◦ δ

ai
a

= θaia ◦ fai (strong naturality of f)

= θa ◦ θ
ai,a ◦ fai

= θa ◦ int(f)a ◦ δ
ai,a (by the defining property of int(f))

Now, assume in addition that W is continuous, i.e. it has the property that δ̇ : int(W ) −→

W is an isomorphism (definition 5.12). We will prove that there is a unique morphism

f ′ : W −→ int(V ) such that f = θ̇◦f ′. Namely, let f ′ := δ̇−1 ◦ int(f). The commutativity

of the square 5.17 reads

θ̇ ◦ int(f) = f ◦ δ̇ ⇔ θ̇ ◦ int(f) ◦ δ̇−1 = f

⇔ θ̇ ◦ f ′ = f

We finally prove that f ′ is the unique such map. Let f ′′ be an approximating presheaf

morphism such that for any a ∈ B, θa ◦ f
′′
a = fa. We will show that for any x ∈ W (a),

f ′′a (x) = f ′(x). Since W is continuous, there is x′ ∈ W (ai) for some ai ≻ a such that

δaia (x′) = x. Let b be any interpolant a ≺ b ≺ ai. We observe that since int(V )(b) =

colimb≺biV (bi), there is y ∈ V (c) for some c ≻ b such that

f ′′b ◦ δ
ai
b = θc,b(y) (5.18)

We have the following sequence of equalities:

f ′′a ◦ δ
ai
a (x′) = f ′′a ◦ δ

b
a ◦ δ

ai
b (x′)

= int(θ)ba ◦ f
′′
b ◦ δ

ai
b (x′) (by naturality of f ′′)

= int(θ)ba ◦ θ
c,b(y) (expression 5.18)

= θb,a ◦ θb ◦ θ
c,b(y) (by definition of int(θ))

= θb,a ◦ θb ◦ f
′′
b ◦ δ

ai
b (x′) (expression 5.18)

= θb,aθfb ◦ δ
ai
b (x′) (by assumption)

= θb,a ◦ θaib ◦ fai(x
′) (by naturality of f)

= int(θ)aia ◦ f
′
ai

(x′)

= f ′a ◦ δ
ai
a (x′) (by naturality of f ′)
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This proves uniqueness of f ′.

5.4 B-sheaves are equivalent to sheaves

We recall from chapter 3 that if B is a strong proximity lattice, then there is a locale

X = RSpec(B) generated by B whose frame is the rounded ideal completion of B. In the

rest of the section we are going to prove that the category of B-sheaves and approximating

presheaf morphisms is equivalent to the category Sh(RSpec(B)) of sheaves over the locale

RSpec(B) and sheaf morphisms. Before the main theorem, we are going to need some

technical results.

Suppose that (V, φ, θ) is a presheaf with approximation over B. We consider the

full subcategory Lsa of (B,≺,=) that includes all the elements ai ∈ B with a ≻ ai.

We denote lima≻aiV (ai) the limit of the diagram V : Lsa −→ Sets and with paai the

limit projections paai : lima≻aiV (ai) −→ V (a). Furthermore, let a2 ≥ a1 in B. For

any ai ≺ a1, ai ≺ a2 and this implies that lima2≻aiV (ai) together with its projections

pa2
ai

: lima2≻aiV (ai) −→ V (ai), for any ai ≺ a1, is a cone of the diagram Lsa1
. Hence there

is a unique function βa2
a1

: lima2≻aiV (ai) −→ lima1≻aiV (ai) that satisfies pa1
ai
◦ βa2

a1
= pa2

ai

for any ai ≺ a1. Repeating the argument for a2 ≻ a1 we define a function δa2
a1

.

Finally, for a ≻ ai in B, the object V (a) together with the restriction maps θaai con-

stitute a cone of the diagram Lsa and therefore there is a unique function qa : V (a) −→

lima≻aiV (ai) with the property paai ◦ qa = θaai for any ai ≺ a.

Lemma 5.19 Let (V, φ, θ) be a presheaf with approximation over the strong proximity

lattice B. Then the assignment a 7→ lima≻aiV (ai) := W (a) for any a ∈ B, together with

the maps βa2
a1

and δa2
a1

for a2 ≥ a1 and a2 ≻ a1 in B respectively define a presheaf with

approximation over B.

The maps qa are the components of a natural transformation q : (V, θ, id) −→ (W, δ, id).

Furthermore, for any a1 ≺ a2, q1 ◦ p
a2
a1

= δa2
a1

.

Proof. It is straightforward to check that the maps β, δ satisfy the properties of the weak

and strong restriction maps of definition 5.10. The second part of the lemma is slightly

less trivial. Let a1 ≺ a2 in B. Then for any ai ≺ a1, we consider the following diagram in
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Sets.

V (a1) ✛
θa2
a1 V (a2)

lima1≻aiV (ai)

qa1
❄

✛
δa2
a1 lima2≻aiV (ai)

qa2
❄

❏
❏
❏
❏
❏

pa1
ai

❫ ✢✡
✡
✡
✡
✡

pa2
ai

V (ai)

(5.19)

By the definition of q, we have that pa1
ai
◦ qa1 = θa1

ai
and pa2

ai
◦ qa2 = θa2

ai
which entails

that the total outlying diagram commutes. Also, by the definition of δa2
a1

, the triangular

diagram commutes. Therefore, the upper square diagram commutes by virtue of the fact

that the projections pa1
ai

are epi. This is the strong naturality square of q.

To prove the last claim of the lemma, for any projection P a1
ai

(ai ≺ a1), we have

pa1
ai
◦ qa1 ◦ p

a2
a1

= θa1
ai
◦ pa2

a1
by the defining property of q. The last composite is equal to

pa2
ai

= pa1
ai
◦ δa2

a1
which proves the claim.

Corollary 5.20 If in addition V is continuous then q is an approximating presheaf mor-

phism.

Proof. Let now a1 ≤ a2. Then for any a3 with a2 ≺ a3, the map θa3
a2

: V (a3) −→ V (a2)

is the colimit injection θa3,a2 : V (a3) →֒ colima2≺aiV (ai). The outer diagram below

commutes because it is the strong naturality square of q (lemma 5.19)

V (a1) ✛
φa2
a1 V (a2) ✛

θa3
a2 V (a3)

lima1≻aiV (ai)

qa1
❄

✛
βa2
a1 lima2≻aiV (ai)

qa2
❄

✛
δa3
a2 lima3≺aiV (ai)

a3
❄

(5.20)

For the same reason the right diagram also commutes. This means that qa1 ◦ φ
a2
a1
◦ θa3

a2
=

βa2
a1
◦ qa2 ◦ θ

a3
a2

for any injection θa3
a2

. Therefore, the left square diagram commutes.

Finally, we are going to rely on the following technical fact.

Lemma 5.21 Let (V, φ, θ) be a continuous presheaf with approximation over B and q the

approximating morphism of presheaves as in lemma 5.19 and corollary 5.20. Then int(q)

is an isomorphism of B-sheaves.

Proof. We have to prove that

colima≺ai limai≻ajV (aj) ∼= V (a)
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In what follows, we denote γa := int(int)a.

V (ai)
qai ✲ W (ai)

colima≺aiV (ai)

θai
❄ γa ✲ colima≺aiW (ai)

δai
❄

❩
❩

❩
❩

❩
❩

❩
θa

⑦
V (a)

α

❄

(5.21)

For any ai ≻ a, the projections paia : W (ai) := limai≻ajV (aj) −→ V (a) together with the

vertex V (a) constitute a cone of the diagramW : Jsa −→ Sets because of the defining prop-

erty of the restrictions δ. That means that there is a unique map αa : colima≺aiW (ai) −→

V (a) with the property

αa ◦ δ
ai = paia (5.22)

where δai is the colimit injection δai : W (ai) −→ colima≺aiW (ai). Let θa be the obvious

map as in the discussion preceding definition 5.12. By assumption V is continuous and

hence θa is an isomorphism. We will prove that αa has an inverse, namely the map

α−1
a := γa ◦ θ

−1
a

First, we recall that by the definition of q, for any ai ≻ a, paia ◦ qai = θaia (see right above

lemma 5.19). Furthermore,

paia ◦ qai = θaia

⇒ αa ◦ δ
ai ◦ qai = θaia (by definition of αa)

⇒ αa ◦ γa ◦ θ
ai = θaia (expression 5.15 in theorem 5.18)

⇒ αa ◦ γa ◦ θ
ai = θa ◦ θ

ai (by definition of θa)

Since θai are the colimit injections, the last equality implies αa ◦ γa = θa or that αa ◦ (γa ◦

θ−1
a ) = idV (a). For the other direction, for any colimit injection δai,a and any interpolant

a′ with a ≺ a′ ≺ ai, we have

γa ◦ θ
−1
a ◦ αa ◦ δ

ai,a = γa ◦ θ
−1
a ◦ p

ai
a (by definition of α)
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= γa ◦ θ
−1
a ◦ θ

a′

a ◦ p
ai
a

= γa ◦ θ
a′,a ◦ paia (because θa

′

a = θa ◦ θ
a′,a)

= δa
′,a ◦ qa′ ◦ p

ai
a (by definition of γ)

= δa
′,a ◦ δaia′ (lemma 5.19)

= δaia

This proves that (γa ◦ θ
−1
a ) ◦ αa = idcolima≺ai limai≻ajV (aj).

Theorem 5.22 Let B be a strong proximity lattice. Then the category BSh(B) is equiv-

alent with the category Sh(RSpec(B)) of ordinary sheaves over RSpec(B).

Proof. First we are going to define a functor Ψ : Sh(RSpec(B)) −→ BSh(B). Let

F : RSpec(B) −→ Sets be a sheaf. We denote by ra2
a1

: F (a2) −→ F (a1) its restriction

maps for a1 ≤ a2.

As an intermediate step, let (V, φ, θ) be the triple where V (a) := F (↓ a) for any a ∈ B,

φa2
a1

:= r↓a2

↓a1
for a1 ≤ a2 and θa2

a1
:= r↓a2

↓a1
for a1 ≺ a2. (V, φ, θ) is obviously a presheaf with

approximation over B. It is easy to demonstrate that V has pasting. Let x ∈ V (a) and

x ∈ V (b) such that φaa∧(x) = φba∧b(y). This condition translates as r↓a↓a∧↓b(x) = r↓b↓a∧↓b(y)

or r↓a↓(a∧b)(x) = r↓b↓(a∧b)(y). Because F has binary pasting, there is a unique z ∈ F (↓ a∨ ↓ b)

such that r↓a∨↓b↓a (z) = x and r↓a∨↓b↓b (z) = y. But lemma ?? says that ↓ a∨ ↓ b =↓ (a ∨ b)

and therefore, the last statement translates that there is a unique z ∈ V (a ∨ b) such that

φa∨ba (z) = x and φa∨bb (z) = y.

Now we are ready to define the object part of the functor Ψ. We stipulate that

Ψ(F ) = intV = intF (↓ •) (5.23)

where int is as in definition 5.16 and theorem 5.18. We denote the weak and strong

restriction maps of Ψ(F ) as β and δ respectively. Lemma 5.17 guarantees that (Ψ(F ), β, δ)

has pasting and theorem 5.18 that it is continuous. For the arrow part of Ψ, let f : F1 −→

F2 be a natural transformation. The components f↓a : F1(↓ a) −→ F2(↓ a) define a

transformation f ′ : V ′
1 −→ V ′

2 , where V ′
1(a) = F (↓ a) and V ′

2(a) = F (↓ a), which is

obviously weakly and strongly natural. We define Ψ(F )(f) := int(f ′).

For the opposite direction, we are going to construct a functor Φ : BSh(B) −→

Sh(RSpec(B)). Let (U, ρ, σ) be a B-sheaf. For any rounded ideal I ∈ Ω(RSpec(B)), we

define

Φ(U)(I) = lima∈IU(a)
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The limit is on the diagram V : LsI −→ Sets where LsI is the full subcategory of (B,≺,=)

that includes all the elements of the ideal I. For I1 ⊆ I2, there is an obvious map

tI2I1 : lima∈I2U(a) −→ lima∈I1U(a), unique in that it makes pI1a ◦ t
I2
I1

= pI2a for any a ∈ I1,

where pI1a and pI2a are the respective projections of the two limits. We are going to prove

that (Ψ(U), t) is a sheaf over RSpec(B).

The arrow part of Φ is defined as follows. Let g : U −→ U ′ be an approximat-

ing presheaf morphism between two B-sheaves (U, ρ, σ) and (U ′, ρ′, σ′) and let pIai :

limai∈IU(ai) −→ U(ai) and p′Iai : limai∈IU
′(ai) −→ U ′(ai) be the respective projections.

Its strong naturality of g property reads that for any a1 ≺ a2, ga1 ◦ σ
a2
a1

= σ′a2
a1
◦ ga2 .

The composite maps gai ◦ p
I
ai

: limai∈IU(ai) −→ U ′(ai), for any ai ∈ I, together with

the vertex limai∈IU(ai) constitute a cone of the diagram whose limit is limai∈IU
′(ai).

That is because, for a1 ≺ a2 in I, ga1 ◦ p
I
a1

= ga1 ◦ σ
a2
a1
◦ pIa2

which using the strong

naturality of g becomes, ga1 ◦ p
I
a1

= σ′a2
a1
◦ ga2 ◦ p

I
a2

. Therefore, there is a unique map

Φ(g)I : limai∈IU(ai) −→ limai∈IU
′(ai) such that p′Iai ◦ Φ(g)I = gai ◦ p

I
ai

, for any ai ∈ I.

The map Φ(g) is a natural transformation between Φ(U) and Φ(U ′) because for I ⊆ J

and any projection p′Iai ,

p′Iai ◦ t
′j
i ◦ Φ(g)J = p′Jai ◦ Φ(g)J

= gai ◦ p
J
ai

= gai ◦ p
I
ai
◦ tJI

= p′Iai ◦ Φ(g)I ◦ t
J
I

(Φ(U), t) is obviously a presheaf. To show that it has pasting we are going to rely on

theorem 5.8 according to which, it suffices to prove that it has binary and directed pasting.

First we show that it has binary pasting. Suppose that, for any pair of rounded ideals

I, J ∈ RSpec(B), there are elements x ∈ Φ(U)(I) and y ∈ Φ(U)(J) that are coherent,

i.e. they satisfy

tII∧J(x) = tJI∧J(y) (5.24)

We will prove that there is a unique element z ∈ Φ(U)(I ∨ J) such that tI∨JI (z) = x and

tI∨Jj (z) = y. It serves the task ahead to think of the elements x, y in concrete terms.

Namely, x is an element of the limit lima∈IU(a), so it can be represented as a tuple

{x(a)|a ∈ I} ∈
∏
{U(a)|a ∈ I} (5.25)

subject to the restriction that if x(a1) ∈ U(a1) and x(a2) ∈ U(a2) are two entries of the
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tuple with a1 ≺ a2, then the identity

σa2
a1

(x(a2)) = x(a1) (5.26)

must be satisfied. Note that we used the strong restriction map in equation 5.26 as the

defining limits of Φ(U) are with respect to the strong restrictions. Nevertheless, if x(a1)

and x(a2) are two entries of the tuple with a1 ≤ a2 (weakly less) then we must also have

ρa2
a1

(x(a2)) = x(a1) (5.27)

For if a1 ≤ a2 in I, then from roundedness there is a′2 ∈ I such that a2 ≺ a′2 and hence

a1 ≺ a′2. Then we have

ρa2
a1

(x(a2)) = ρa2
a1
◦ σ

a′2
a2 (x(a

′
2)) (because of 5.26)

= σ
a′2
a1 (x(a

′
2))

= x(a1) (because of 5.26)

Similarly, y is a tuple {y(a) ∈ U(a)|a ∈ J} ∈
∏
a∈J U(a) with the property that if a1 ≺ a2

(or a1 ≤ a2) in J , then σa2
a1

(y(a2)) = y(a1) (or ρa2
a1

(y(a2)) = y(a1)). By the definition of

the restriction maps t, the restrictions tII∧J(x) and tJI∧J(y) are the tuples {x(a) ∈ U(a)|a ∈

I ∧ J} and {y(a) ∈ U(a)|a ∈ I ∧ J}. So, equation 5.24 can be read as

{x(a) ∈ U(a)|a ∈ I ∧ J} = {y(a) ∈ U(a)|a ∈ I ∧ J} (5.28)

Now, for any a1 ∈ I and any a2 ∈ J , the pair of elements x(a1) and y(a2) is coherent as

we briefly demonstrate. Since I is rounded, there is a′1 ∈ I with a1 ≺ a
′
1. The identity 5.26

dictates that x(a1) = σ
a′1
a1 (x(a

′
1)). Also a1 ∧ a2 ≤ a1 ≺ a

′
1 and so a1 ∧ a2 ≺ a

′
1. Therefore,

ρa1
a1∧a2

(x(a1)) = ρa1
a1∧a2

◦ σ
a′1
a1 (x(a

′
1))

= σ
a′1
a1∧a2

(x(a′1))

= x(a1 ∧ a2) (because of 5.26 and a1 ∧ a2 ∈ I)

By the same argument, also ρa2
a1∧a2

(y(a2)) = y(a1 ∧ a2). The element a1 ∧ a2 obviously is

an element of I ∩ J = I ∧ J , therefore if we apply the coherence assumption for x and y,

i.e. equation 5.28 we get x(a1 ∧ a2) = y(a1 ∧ a2) and we just proved that this amounts to

ρa1
a1∧a2

(x(a1)) = ρa2
a1∧a2

(y(a2)).

We exploit the coherence of pairs x(a1), y(a2) as follows. U has pasting, so, for any
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a1 ∈ I and a2 ∈ J , there is a unique element z(a1∨a2) ∈ U(a1∨a2) such that ρa1∨a2
a1

(z(a1∨

a2)) = x(a1) and ρa1∨a2
a2

(z(a1 ∨ a2)) = y(a2). We recall that the ideal I ∨ J is defined

as in theorem 3.6(iii). Our goal is to show that there is a unique tuple of elements

z := {z(a) ∈ U(a)|a ∈ I ∨ J} such that tI∨JI (z) = x and tI∨JJ (z) = y. We consider the

following tuple

z := {σa1∨a2
a (z(a1 ∨ a2))|a ∈ I ∨ J and a1 ∈ I, a2 ∈ J with a ≺ a1 ∨ a2} (5.29)

Before we actually demonstrate why the above does the job, we have to prove that such a

tuple is well defined and this will be rather painstaking. Let it be the case that there are

a1, a
′
1 ∈ I and a2, a

′
2 ∈ J such that a ≺ a1 ∨ a2 and a ≺ a′1 ∨ a

′
2. We have to prove that

ρa1∨a2
a (z(a1 ∨ a2)) = ρ

a′1∨a
′

2
a (z(a′1 ∨ a

′
2)). First we show that z(a1 ∨ a2) and z(a′1 ∨ a

′
2) are

coherent. We have that

ρa1∨a2

a1∧(a′1∨a
′

2)(z(a1 ∨ a2)) = x(a1 ∧ (a′1 ∨ a
′
2)) and

ρ
a′1∨a

′

2

a2∧(a′1∨a
′

2)(z(a
′
1 ∨ a

′
2)) = y(a2 ∧ (a′1 ∨ a

′
2)) (5.30)

because, e.g. ρa1∨a2
a1

(z(a1 ∨ a2)) = x(a1) and a1 ∧ (a′1 ∨ a
′
2) ≤ a1 and the entries of the

tuple x have obey the property 5.27. Now, a1 ∧ (a′1 ∨ a
′
2) ∈ I and a2 ∧ (a′1 ∨ a

′
2) ∈ J so by

a previous argument, x(a1 ∧ (a′1 ∨ a
′
2)) and y(a2 ∧ (a′1 ∨ a

′
2)) are coherent. Therefore, there

is a unique element z′ ∈ U((a1 ∨ a2) ∧ (a′1 ∨ a
′
2)) such that

ρ
(a1∨a2)∧(a′1∨a

′

2)

a1∧(a′1∨a
′

2) (z′) = x(a1 ∧ (a′1 ∨ a
′
2)) and

ρ
(a1∨a2)∧(a′1∨a

′

2)

a2∧(a′1∨a
′

2) (z′) = y(a2 ∧ (a′1 ∨ a
′
2)) (5.31)

It holds that a1 ∧ (a′1 ∨ a
′
2) ≤ (a1 ∨ a2) ∧ (a′1 ∨ a

′
2) ≤ a1 ∨ a2 and a2 ∧ (a′1 ∨ a

′
2) ≤

(a1 ∨ a2) ∧ (a′1 ∨ a
′
2) ≤ a

′
1 ∨ a

′
2, so the pair of equations 5.30 can be written

ρ
(a1∨a2)∧(a′1∨a

′

2)

a1∧(a′1∨a
′

2) ◦ ρa1∨a2

(a1∨a2)∧(a′1∨a
′

2)(z(a1 ∨ a2)) = x(a1 ∧ (a′1 ∨ a
′
2)) and

ρ
(a1∨a2)∧(a′1∨a

′

2)

a2∧(a′1∨a
′

2) ◦ ρ
a′1∨a

′

2

(a1∨a2)∧(a′1∨a
′

2)(z(a
′
1 ∨ a

′
2)) = y(a2 ∧ (a′1 ∨ a

′
2)) (5.32)

so that by uniqueness of z′ (expressions 5.31) we can infer that

ρa1∨a2

(a1∨a2)∧(a′1∨a
′

2)(z(a1 ∨ a2)) = ρ
a′1∨a

′

2

(a1∨a2)∧(a′1∨a
′

2)(z(a
′
1 ∨ a

′
2))

which is the coherence property of the elements z(a1∨a2) and z(a′1∨a
′
2). So by the pasting
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property of U , there is a unique z′′ ∈ U(a1 ∨ a2 ∨ a
′
1 ∨ a

′
2) such that

ρ
a1∨a2∨a′1∨a

′

2
a1∨a2

(z′′) = z(a1 ∨ a2) and ρ
a1∨a2∨a′1∨a

′

2

a′1∨a
′

2
(z′′) = z(a′1 ∨ a

′
2) (5.33)

which is enough to prove

σa1∨a2
a (z(a1 ∨ a2)) = σa1∨a2

a ◦ ρ
a1∨a2∨a′1∨a

′

2
a1∨a2

(z′′)

= σ
a1∨a2∨a′1∨a

′

2
a (z′′) = σ

a′1∨a
′

2
a ◦ ρ

a1∨a2∨a′1∨a
′

2

a′1∨a
′

2
(z′′)

= σ
a′1∨a

′

2
a (z(a′1 ∨ a

′
2))

Now we explain why the element z of expression 5.29 has the desired property tI∨JI (z) = x

and tI∨JJ (z) = y. What we have to show is that, e.g. for any a ∈ I with a ∈ I ∨ J ,

σa1∨a2
a (z(a1 ∨ a2)) for a1 ∈ I and a2 ∈ J with a ≺ a1 ∨ a2. Since σa1∨a2

a (z(a1 ∨ a2)) is

independent of the choice of a1 and a2, we chose an element a1 such that a ≺ a1. Then

σa1∨a2
a (z(a1 ∨ a2)) = σa1

a ◦ ρ
a1∨a2
a1

(z(a1 ∨ a2)) = σa1
a (x(a1)) = x(a).

To conclude that Φ(U) has binary pasting, we must show uniqueness of the tuple of

5.29. Suppose that we have an other tuple w := {w(a)|a ∈ I ∨ J}, such that w(a) = x(a)

if a ∈ I and w(a) = y(a) if a ∈ J . Let w(a) with a ≺ a1 ∨ a2, a1 ∈ I, a2 ∈ J be any entry

of the tuple w. Then there are a′1 ≺ a1 and a′2 ≺ a2 such that a ≺ a′1 ∨ a
′
2 ≺ a1 ∨ a2. We

have that a′1 ∈ I, a
′
2 ∈ J and the element a′1 ∨ a

′
2 is then an element of I ∨ J . The entries

of w must observe the property of expression 5.26, so

w(a) = σ
a′1∨a

′

2
a (w(a′1 ∨ a

′
2)) (5.34)

We have

ρ
a′1∨a

′

2

a′1
(w(a′1 ∨ a

′
2)) = w(a′1) (as in 5.27)

= x(a′1) (by assumption)

and similarly

ρ
a′1∨a

′

2

a′2
(w(a′1 ∨ a

′
2)) = y(a′1)

But we have shown that the elements x(a′1) and y(a′2) are coherent and the unique element

that weakly restricts to them is z(a′1∨a
′
2). Incorporating this information to equation 5.34,

we get σ
a′1∨a

′

2
a (z(a′1 ∨ a

′
2)) which completes the proof of uniqueness.

Now we prove that Φ ◦ Ψ = idSh(RSpec(B)). Let (F, r) be a sheaf over RSpec(B).
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With theorem 5.4 we showed that

F (I) = F (
∨

↑{↓ ai|ai ∈ I}) ∼= limai∈IF (↓ ai)

Let qai : limai∈IF (↓ ai) −→ F (↓ ai) be the limit projections that coincide with the restric-

tion maps rI↓ai . Also the maps θai : colimai≺ajF (↓ aj) −→ F (↓ aj) are the components of

an approximating morphism of presheaves θ : intV −→ V , where V = F (↓ •) as before

(see proof of theorem 5.18 ). We denote by β the approximating morphism of presheaves

Φ(θ). The defining property of Φ(θ) (see above in this proof) says that for any ai ∈ I, the

following square is commutative

limai∈Icolimai≺ajF (↓ aj)
βI✲ limai∈IF (↓ ai)

colimai≺ajF (↓ aj)

pIai

❄ θai ✲ F (↓ a1)

qIai = rI↓ai

❄

(5.35)

We will prove that the functions βai are isomorphisms. To this end we define maps on

the opposite direction. For any ai ∈ I, we fix an element a′i ∈ I with ai ≺ a′i (such

an element always exists because of roundedness of I). With notational consistency, we

denote θa
′

i
,ai : F (↓ a′i) →֒ colimai≺ajF (↓ aj) the colimit injections. We will argue that the

outer diagram below is commutative for any pair a1 ≺ a2 in I.

F (I)

✰✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑

rI↓a′1

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗

rI↓a′2

s
F (↓ a′1) limai∈Icolimai≺ajF (↓ aj)

αI

❄
F (↓ a′2)

❂✚
✚

✚
✚

✚
✚

✚
✚

pIa1

❩
❩

❩
❩

❩
❩

❩
❩

pIa2

⑦
colima1≺ajF (↓ aj)

θa
′

1,a1

❄
✛

δa2
a1 colima2≺ajF (↓ aj)

θa
′

2,a2

❄

(5.36)

Indeed, if a1 ≺ a
′
1 and a1 ≺ a2 ≺ a

′
2, then a1 ≺ a

′
1 ∧ a

′
2 and so we have

θa
′

1∧a
′

2,a1 ◦ r
↓a′1
↓(a′1∧a

′

2) ◦ r
I
↓a′1

= θa
′

1∧a
′

2,a1 ◦ r
↓a′2
↓(a′1∧a

′

2) ◦ r
I
↓a′2
⇔
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θa
′

1,a1 ◦ rI↓a′1
= θ

a′2
a1 ◦ r

I
↓a′2

= δa2
a1
◦ θa

′

2,a2 ◦ rI↓a′2

Therefore, there exists a function αI that makes the rest of the diagrams in 5.36 com-

mutative. For any projection qIai = rI↓ai , the following (up to the isomorphism F (I) ∼=

limai∈IF (↓ ai))

qIai ◦ βI ◦ αI = θai ◦ p
I
ai
◦ αai (diagram 5.35)

= θai ◦ θ
a′
i
,ai ◦ rI↓a′

i
(diagram 5.36)

= θ
a′
i
ai ◦ r

I
↓a′
i

= rI↓ai

= qIai

Therefore βI ◦ αI = idF (I). For the other direction we have for any projection pIai (again

up to isomorphism)

pIai ◦ αI ◦ βI = θa
′

i
,ai ◦ rI↓a′

i
◦ βI (diagram 5.36)

= θa
′

i
,ai ◦ θa′

i
◦ pIa′

i
(diagram 5.35)

= θ
a′
i
ai ◦ p

I
a′
i

= pIai

This completes the proof of Φ ◦Ψ = idSh(RSpec(B)).

Finally, we prove that Ψ ◦Φ = idBSh(B). Let (U, ρ, σ) any B-sheaf. We recall that the

map with components qa : U(a) −→ lima≻aiU(ai) is an approximating presheaf morphism

(corollary 5.20) and lemma 5.21 guarantees that int(q) is an isomorphism. We consider

the map σ̇ ◦ int(q)−1 : Ψ ◦ Φ(U) −→ U with components

colima≺ailimai≻ajU(aj)
int(q)−1

a✲ colima≺aiU(ai)
σa✲ U(a) (5.37)

The composite σ̇ ◦ int(q)−1 is an approximating morphism of presheaves because both

int(q) and σ̇ are (theorem 5.18) and in particular it is an isomorphism. This completes

the proof of the theorem.
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5.5 B-sheaves as models of a geometric theory

Care has been taken so that all the definitions and results of the previous section are valid

inside the sheaves of any Grothendieck topos and not just Sets. To make this point more

concrete, we stress the following facts:

(i) The theory of approximating presheaves with pasting over a strong proximity lattice

(definition 5.14) is essentially algebraic in the sense of Freyd [Fre72].

(ii) The theory of presheaves with continuous approximation over a strong proximity

lattice (definition 5.12) is geometric.

(iii) Therefore, the theory of B-sheaves over a strong proximity lattice (definition 5.15)

is geometric.

Let us denote by TBSh(B) geometric theory of B-sheaves over a strong proximity lattice B.

Its language contains

sorts: a sort ˜V (a) for each element a ∈ B.

functions: 1. a function symbol φ̃a′a for each pair of elements a, a′ ∈ B

with a ≤ a′.

2. a function symbol θ̃a′a for each pair of elements a, a′ ∈ B

with a ≺ a′.

It is straightforward to translate into formal geometric axioms (in the above language)

the essentially algebraic properties of definitions 5.10 and 5.14. The continuity axiom of

definition 5.12 can be expressed as

1. ∀x ∈ ˜V (a)(⊤ →
∨
a≺a′{∃x

′ ∈ ˜V (a′)(x = θ̃a′a (x′))})

2. ∀x, y ∈ ˜V (a′)(θ̃a′a (x) = θ̃a′a (y) →
∨
a≺a′′≺a′{

˜θa
′

a′′(x) =
˜θa
′

a′′(y)})

This is the concrete property of the filtered colimit colima≺a′V (a′). For the rest of the

thesis, we use

PreBShZ(B), ContPreBShZ(B), PastPreBShZ(B), BShZ(B)

to denote the categories of approximating presheaves, continuous approximating presheaves,

pasting approximating presheaves and B-sheaves inside the sheaves of any Grothendieck

topos Z. For example

BShZ(B) := Mod(SZ,TBSh(B))

where Z is any Grothendieck topos.
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Now we revisit theorem 5.22. It It renders equivalent two notions; that of B-sheaves

which is geometric and that of ordinary sheaves which clearly is not. Unlike B-sheaves,

ordinary sheaves cannot be transferred freely between topoi. Nevertheless, the fact that

they are equivalent holds inside the sheaves of any Grothendieck topos and not just Sets.

We make the following upgrading of theorem 5.22 for future reference.

Remark 5.23 Theorem 5.22 is valid inside the sheaves of any Grothendieck topos.

Since the theory of B-sheaves is geometric, it merits a classifying topos [B − sh] and next

we are going to uncover just that. Before we start we point out that, more accurately,

we are in search of the classifying topos of B-sheaves given a strong proximity lattice B

where the latter is defined inside the sheaves of the our base topos, or more specifically in

Sets. The theory of strong proximity lattices is algebraic, so after a model B is defined

in Sets, we can pull it back along the inverse image functor of Z −→ 1 (the essentially

unique map) to obtain the strong proximity lattice !∗(B) in SZ (see section 3.3).

Theorem 5.24 Let B be a strong proximity lattice and X be RSpec(B). Then the ex-

ponential [set]X (in Top) classifies the geometric theory of B-sheaves over B.

Proof. We must show that any point of [set]X at stage Z is equivalent to a B-sheaf inside

SZ. This is clearly the case for Z = 1; a geometric morphism 1 −→ [set]X corresponds

to its exponential transpose under the exponentiation adjunction, i.e. to a geometric

morphism X −→ [set]. The latter morphism corresponds to a sheaf of sets over X and

theorem 5.22 says that such a sheaf is equivalent to a B-sheaf over B.

To prove the claim for any topos Z, we argue as follows. Any geometric morphism

Z −→ [set]X is equivalent to its exponential transpose Z × X −→ [set] and the latter

is equivalent to geometric morphisms Z × X −→ Z × [set] over the topos Z, i.e., such

morphisms that make the following triangle commutative.

Z ×X ✲ Z × [set]

❅❅p1
❘ ✠��

q1
Z

(5.38)

The map p1 stands for first projection which is a localic map, so p1 : Z × X −→ Z is a

locale over Z. The first projection map Z × [set] −→ Z is the object classifier over Z,

therefore the horizontal map in diagram 5.38 is equivalent to a sheaf of the locale Z ×X

over Z.
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Now, p1 : Z ×X −→ Z is trivially the pullback

Z ×X
p2✲ X

Z

p1 ❄ !✲ 1

!❄ (5.39)

So, by theorem 1.8, p1 : Z ×X −→ Z is just the locale RSpec(!∗(B)), i.e., the locale X

pulled back along the inverse image of ! : Z −→ 1. This implies that a sheaf of the locale

Z ×X over Z is equivalent to a sheaf over X inside SZ and by theorem 5.22 and remark

5.23, this in turn is equivalent to B-sheaf over !∗(B). Therefore, in conclusion Z −→ [set]X

is equivalent to a model of the theory of B-sheaves inside SZ.

The above theorem shows that the exponential [set]X exists in Top. By a Johnstone

and Joyal result, this can be generalised for any topos instead of the object classifier [set].

Theorem 5.25 Let E be any topos. Then E is exponentiable in Top iff the exponential

[set]E exists in Top.

Proof. [JJ82], theorem 4.5.

Therefore we have.

Corollary 5.26 If X is a stably compact locale then X is exponentiable as a topos.

Also, from the last part of the proof of theorem 5.24, we pick the following fact.

Corollary 5.27 Let B be a strong proximity lattice in Sets. The object of Top/Z that

classifies the geometric theory of !∗(B)-sheaves over a Grothendieck topos Z is the first

projection

Z × [set]X −→ Z

5.6 The free pasting approximating presheaf

We are closing this chapter with a notion of sheavification for approximating presheaves.

We seek a construction that, given an approximating presheaf over a strong proximity

lattice B, it results to a pasting presheaf with approximation over B (not necessarily

continuous).

As mentioned in the beginning of section 5.5, the theory of approximating presheaves

with pasting is essentially algebraic. We adopt Freyd’s version of essential algebraicity

[Fre72]- see also [JV91] for a quick review. Without going into any detail, an essentially

algebraic theory is the theory where some operations are only partial, with domain of
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definition stipulated equationally. In the case of approximating presheaves, the partially

defined operations are the restrictions (weak and strong).

Most of the techniques of universal algebra can be extended to cover essentially alge-

braic theories. In particular, free constructions exist in the same sense as for algebraic

theories and they are geometric. Owing to the applicability of universal algebra, we can

readily accept the following.

Theorem 5.28 Let i1 : PastPreBSh(B) −→ PreBSh(B)

be the category inclusion (inside any topos). Then i1 has a left adjoint past. In other

words, if V is a presheaf with approximation, then past(V ) is the free pasting presheaf

with approximation over V .

Remark 5.29 The functor past provides a notion of sheavification for approximating

presheaves. Sometimes it will be referred to as the sheavification functor.

We have seen that the inclusion i3 : ContPreBSh(B) −→ PreBSh(B) has a right

adjoint int. This together with lemma 5.17 has the following consequence.

Theorem 5.30 If an approximating presheaf V over B is continuous then so is past(V ),

i.e. past(V ) is a B-sheaf.

Proof. First we use the universal property of the counit of the adjunction i3 ⊣ int. Let

ηV : V −→ i1 ◦ past(V )

be the unit of the (other) adjunction past ⊣ i1 (i.e. the injection of generators). Then,

omitting the category inclusions, there is a unique morphism ζ : V −→ int ◦ past(V ),

such that the left diagram below commutes.

We continue to omit the symbols for the category inclusions. By lemma 5.17, int ◦

past(V ) has pasting, so the universal property of the unit of the adjunction past ⊣ i1

says that given the morphism ζ : V −→ int ◦ past(V ), there is a unique morphism

α : past(V ) −→ int ◦ past(V ) that makes the right diagram below commutative.

int ◦ past(V )
εpast(V )✲ pastV int ◦ past(V ) ✛ α

past(V )

✟✟✟✟✟✟✟

ηV

✯

✟✟✟✟✟✟✟

ηV

✯

V

ζ
✻

V

ζ
✻

The morphism ηV is an injection, so

εpastV ◦ α ◦ ηV = ζηV
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= ηV

implies that εpastV ◦ α = idpast(V ). Similarly, the fact that εpast(V ) is epi, gives

εpast(V ) ◦ α = idpast(V ) ⇒

εpast(V ) ◦ α ◦ εpast(V ) = εpast(V ) ⇔

α ◦ εpast(V ) = idint◦past(V )

In view of the previous theorem, we denote as

past′ : ContPreBSh(B) −→ BSh(B)

the functor that produces the free pasting presheaf over a continuous approximating

presheaf. We denote by

i4 : BSh(B) →֒ ContPreBSh(B) (5.40)

the inclusion functor. Then theorem 5.30 also implies that

past′ ⊣ i4

Finally, the following are consequences of the fact that PastPreBSh(B) is a full subcat-

egory of PreBSh(B) and that BSh(B) is a full subcategory of ContPreBSh(B).

Lemma 5.31 (i) Denote as i1 : PastPreBSh(B) −→ PreBSh(B) the inclusion func-

tor. Then past ◦ i1 = idPastPreBSh(B). This together with past ⊣ i1 imply that

PastPreBSh(B) is a reflective subcategory of PreBSh(B).

(ii) Denote as BSh(B) →֒ ContPreBSh(B) the inclusion functor. Then past′ ◦ i4 =

idBSh(B). This together with past′ ⊣ i4 imply that BSh(B) is a reflective subcategory

of ContPreBSh(B).

Proof. (i) The claim basically says that if V is already a B-sheaf over B then shB(V ) = V .

We will prove that indeed V already has the universal property of the free presheaf above

itself. Let f : V −→ V ′ a presheaf with approximation morphism between V and any

B-sheaf V ′. Then, by definition ??, f is also a sheaf morphism between V and V ′. So f
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must be the unique extension of itself as in the diagram below.

V
f✲ V ′

��f
✒

V

idBSh(B) ❄

So V is the free sheaf above itself.

(ii) Trivially from (i).



Chapter 6

Functors Between Approximating

Presheaves

6.1 Introduction

In the opening section 6.2 we introduce the geometric notion of the stalk of an approxi-

mating presheaf. The important result there is that sheavification does not alter the stalks

in accordance with ordinary sheaf theory.

A strong homomorphism µ : B2 −→ B1 induces two functors BSh(B1) ⇋ BSh(B2)

much the same way as a continuous map between two locales induces two functors between

the respective categories of sheaves over the two locales. In this chapter we demonstrate

just that- in two stages.

In sections 6.3 and 6.4 we construct two functors

ContPreBSh(B1)
✛ρµ

πµ
✲ ContPreBSh(B2)

and in section 6.5 we prove that ρµ ⊣ πµ. We call ρµ, the inverse image functor and πµ,

the direct image functor; a brief justification of this choice is in the beginning of section

6.3.

The functor πµ actually takes B-sheaves to B-sheaves but in order to obtain a functor

BSh(B2) −→ BSh(B1), we need to consider ρµ followed by the sheavification functor past

of section 5.6. This is how we construct a pair of functors

BSh(B1)
✛µ

∗

µ∗
✲ BSh(B2)

134
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in section 6.6 and prove µ∗ ⊣ µ∗.

The functors µ∗ and µ∗ are functors between the (generalised) points of the classifying

topoi [set]RSpec(B1) and [set]RSpec(B2) and have been constructed geometrically. There-

fore, they determine two geometric morphisms

[set]RSpec(B1) ✛Rµ

Pµ
✲ [set]RSpec(B2)

Furthermore, by virtue of corollary 4.34, the adjunction µ∗ ⊣ µ∗ has a “sufficiently 2-

categorical value” to assert the adjoint situation Rµ ⊣ Pµ. All this is demonstrated in

section 6.7. There it is also proved that Rµ is nothing else but the exponential geometric

morphism [set]RSpec(µ) in Top. To this end, the insight of section 6.2 on stalks of B-sheaves

is used.

The last result has an immediate consequence. The functor RSpec is a retraction of

the functor B (theorem 3.24), so if f : X −→ Y is perfect and X,Y are stably compact

locales, then the geometric morphism [set]f has a right adjoint. An important implication

of this fact is demonstrated in section 6.8; the direct image functor f∗ preserves filtered

colimits that are externally indexed (i.e. in the base topos), or, using the terminology of

the Moerdijk & Vermeulen monograph [MV97], f is relatively tidy.

All the results in this chapter are new.

6.2 The stalks of B-sheaves

We recall that, if B is a strong proximity lattice, a point of the locale RSpec(B) is a

completely prime filter of rounded ideals of B. Under the isomorphism of lemma 3.25

completely prime filters of rounded ideals of B correspond to rounded prime filters of B.

At the same time, we know how to calculate the stalks of sheaves over points of RSpec(B)

but we do not have the notion yet of stalk for a B-sheaf.

Theorem 6.1 Let (V, φ, θ) be a B-sheaf over a strong proximity lattice B. Let (F, r) be

the sheaf over RSpec(B) that corresponds to V under the equivalence of theorem 5.22,

i.e. F = Φ(V ) in the notation of theorem 5.22. Finally, let H be a point of RSpec(B),

i.e. a completely prime filter of rounded ideals of B. Then

stalkHΦ(V ) ∼= colima∈GV (a) (6.1)

where G is the rounded prime filter that corresponds to H under the isomorphism of lemma

3.25. The colimiting diagram on the R.H.S. of isomorphism 6.1 is with respect to the strong
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restrictions.

Proof. We know (theorem 5.22) that stalkHΦ(V ) ∼= colimI∈H lima∈IV (a). Also from

lemma 3.25, I ∈ H ⇔ I ∩G 6=. So the L.H.S. of 6.1 can be written as

stalkHΦ(V ) ∼= colimI∩G6=limai∈IV (a) (6.2)

On the other hand, using lemma 5.21, the R.H.S. of 6.1 can be written as

colima∈GV (a) ∼= colima∈Gcolima≺a′ lima′≻aiV (ai) ∼= colima∈Glima≻aiV (ai) (6.3)

The last isomorphism above holds because G is upper closed with respect to ≺.

First we define a function from the colimit 6.3 to the colimit 6.2. Let rIJ : F (J) −→

F (I) be the generic restriction map of F = Φ(V ) as derived by the restrictions of the

B-sheaf V (theorem 5.22). We observe that, for any rounded filter G, a ∈ G⇔↓ a ∩G 6=

∅. Therefore, colima∈Glima≻aiV (ai) can be formally written as colimİ∩G6=∅limai∈İ
V (ai)

where İ is any principal rounded ideal of B (i.e. İ =↓ c for some c ∈ B). We fix the

notation for the two types of colimit injections:

lima≻aiV (ai) ⊂
r↓a,G✲ colima∈Glima≻aiV (ai)

limai∈IV (ai) ⊂
rI,H✲ colimI∩G6=∅limai∈IV (ai)

(6.4)

The set colimI∩G6=∅limai∈IV (ai) together with the injections r↓a,H , for a ∈ G, is a cone

of the diagram whose colimit is colima∈Glima≻aiV (ai). So there is a unique function αG

that makes the following diagram commutative for any a ∈ G.

lima≻aiV (ai)

❅
❅

❅
❅

❅

r↓a,G

❘
colima∈Glima≻aiV (ai)

✠�
�

�
�

�

αG

colimI∩G6=∅limai∈IV (ai)

r↓a,H

❄

(6.5)

Defining a function on the opposite direction needs more care. Given a rounded filter G,

for all rounded ideals I with I ∩G 6= ∅, we fix an element b ∈ I ∩G. Suppose that I1 ≤ I2
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and the corresponding fixed elements are b1 ∈ I1 ∩ G and b2 ∈ I2 ∩ G. We consider the

following diagram.

limai∈I1V (ai) ✛
rI2I1 limai∈I2V (ai)

❅
❅

❅
❅

❅
❅

❅

rI1,H

❘ ✠�
�

�
�

�
�

�

rI2,Hlimb1≻aiV (ai)

rI1↓b1 ❄
limb2≻aiV (ai)

rI2↓b2❄

❅
❅

❅
❅

❅
❅

❅

r↓b1,G

❘ ✠�
�

�
�

�
�

�

r↓b2,G
colimI∩G6=∅limai∈IV (ai)

colima∈Glima≻aiV (ai)

βG
❄

(6.6)

It can be verified by just composing the arrows that the outlying diagram commutes.

Therefore, the set colima∈Glima≻aiV (ai) together with the composites r↓b,G ◦ rI↓b, for all

I that meet G is a cone of the diagram with which has colimit colimI∩G6=∅limai∈IV (ai).

Hence there is a unique function βG such that

βG ◦ r
I,H = r↓b,G ◦ rI↓b (6.7)

for any rounded ideal I that meets G. It remains to be shown that the composites r↓b,G◦rI↓b
are independent of the choice of the element b for any I. Let b1, b2 be two elements in the

intersection I ∩G. Then the element b1 ∨ b2 is an element of I because I is ∨-closed and

it is also an element of G because G is upper closed. So we have

r↓b2,G ◦ rI↓b2 = r↓b2,G ◦ r
↓(b1∨b2)
↓b2

◦ rI↓(b1∨b2) =

r↓b1,G ◦ r
↓(b1∨b2)
↓b1

◦ rI↓(b1∨b2) = r↓b1,G ◦ rI↓b1

To prove that αg ◦ βG = id, it suffices to prove that for any colimit injection rI,H (i.e. for

any I that meets G), αg ◦ βG ◦ r
I,H = rI,H . We have the following sequence of equalities

αg ◦ βG ◦ r
I,H = αG ◦ r

↓b,G ◦ rI↓b (by equation 6.7)

= r↓b,H ◦ rI↓b (by diagram 6.5)

= rI,H

Finally to prove that βG ◦ αG = id, it suffices to prove that for any colimit injection

r↓a,F (i.e. for any a ∈ G) it holds βG ◦ αG ◦ r
↓a,G = r↓a,F . In the following diagram, a
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is any element in G and b is a fixed element in the intersection ↓ a ∩ G (i.e. b ≺ a and

b ∈ G).

lima≻aiV (ai)

✠�
�

�
�

�
�

�

r↓a↓b

❅
❅

❅
❅

❅
❅

❅

r↓a,H

❘
limb≻aiV (ai)

r↓b,G✲ colima∈Glima≻aiV (ai)

r↓a,G

❄ αG✲✛
βG

colimI∩G6=∅limai∈IV (ai)

(6.8)

For any a ∈ G, we have

βG ◦ αG ◦ r
↓a,G = βG ◦ r

↓a,H (by diagram 6.5)

= r↓b,G ◦ r↓a↓b (by equation 6.7)

= r↓a,G

This completes the proof of the theorem.

The above theorem in conjunction with theorem 3.24 have the following obvious con-

sequence.

Corollary 6.2 Let F be a sheaf over a stably compact locale X and x a point of X. Let

also V = Ψ(F ) be the corresponding B-sheaf over BX (vis-à-vis theorem 5.22) and F the

rounded prime filter of BX that corresponds to x (given by the expression 3.28). Then we

have

stalkxF ∼= colima∈FV (a)

Theorem 6.1 dictates that if V is a B-sheaf over a strong proximity lattice B, then its

stalk over a rounded prime filter F ⊆ B has to be

stalkFV := colima∈FV (a) (6.9)

In fact we are setting this as the definition of stalks for any presheaf with approximation.

Definition 6.3 Let V be a presheaf with approximation over a strong proximity lattice B.

Then its stalk is given by equation 6.9.

When we write stalkxV or colimx�aV (a) we shall be implying colima∈FV (a), where

F is the rounded prime filter of B that corresponds to the point x of RSpec(B) (as in

lemma 3.25).
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Remark 6.4 The definition of stalks of presheaves with approximation is geometric (it

involves a colimit) and so it makes sense inside the sheaves of any topos.

Next, we are going to promote the stalk construction into a functor

PreBShSZ(B) −→ SZ

and prove some of its properties. Here, PreBShSZ(B) is the category of presheaves with

approximation and approximating presheaf morphisms inside the sheaves of a topos Z.

Once more, it suffices to argue about the case Z = 1 (i.e. SZ = Sets), as long as we argue

geometrically and all the facts can be transferred inside SZ for any topos Z by means of

the inverse image of the essentially unique functor ! : Z −→ 1

Let f : V1 −→ V2 be an approximating presheaf map between two presheaves with

approximation (V1, φ, θ) and (V2, β, δ) over B. Then a function stalkF (f) between the sets

stalkF (V1) −→ stalkF (V2) arises naturally. We denote as θai,F : V1(ai) →֒ colimai∈FV1(ai)

and δai,F : V2(ai) →֒ colimai∈FV2(ai) the two generic colimit injections. As e.g. in the

proof of theorem 5.18, we observe that the composites δai,F ◦ fai together with the vertex

colimai∈FV2(ai) is a cone of the diagram V2 : JsF −→ Sets. By the universal property of

colimai∈FV1(ai), there is a unique function (which we denote stalkF (f)ai that makes the

following diagram commutative for any ai ∈ F .

V1(ai)
fai ✲ V2(ai)

stalkFV1

θai,F

❄ stalkF (f)ai✲ stalkV2

δai,F

❄

(6.10)

The assignments V 7→ stalkFV and f 7→ stalkF (f) define a functor

stalkF : PreBSh(B) −→ Sets

We recall from ordinary sheaf theory that if X is a topological space, then, for each

point of X, one can define a functor (usually referred to as the “skyscraper” functor) skyx :

Sets −→ Sh(X) by stipulating that for any set Z and any open a ∈ ΩX, skyx(Z)(a) = Z

if x ∈ a or skyx(Z)(a) = 1 if x /∈ a. Furthermore, it holds (e.g. Mac Lane & Moerdijk

[MM92]) that if in : Sh(X) →֒ PreSh(X) is the inclusion functor, then skyx is right

adjoint to the functor stalkx ◦ in. We are going to give a constructive version of the

skyscraper functor in the case if B-sheaves.
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Let a be any element of B and F any prime rounded filter of B. By [a ∈ F ] we denote

the set defined as

[a ∈ F ] := {∗ ∈ 1|a ∈ F}

which is the constructive counterpart of the set which is the singleton if a ∈ F and the

empty set if a /∈ F .

Definition 6.5 Let skyF : Sets −→ PreBSh(B) be the functor whose action on objects

and arrows of Sets is as follows:

• If Z is a set and a ∈ B, then skyF(Z)(a) is the exponential Z [a∈F ].

• If f : Z1 −→ Z2 is a function, then skyF(f) is the exponential transpose of the

composite

Z
[a∈F ]
1 × [a ∈ F ]

ev ✲ Z1
f ✲ Z2 (6.11)

where ev is the evaluation arrow.

The above definition does not give an account of the weak and strong restriction maps

of skyF(Z) as they emerge naturally (and trivially) as we see next.

Indeed, for a1, a2 ∈ B with a1 ≤ a2 or a1 ≺ a2, we have the following logical implica-

tions:

if ∗ ∈ [a ∈ F ], then a1 ∈ F and hence a2 ∈ F , i.e. ∗ ∈ [a2 ∈ F ] because F is upper

closed.

By the definition of the skyscraper sheaf the above line can be read as:

if ∗ ∈ [a1 ∈ F ], then skyF(Z)(a1) = skyF(Z)(a2) = Z.

So, we define the natural weak and strong restriction maps to be id : skyF(Z)(a2) −→

skyF(Z)(a1). We are going to use the simple notation ∗|a1 for both the weak and strong

restriction skyf (Z)(a2) −→ skyf (Z)(a1), for an element ∗ ∈ skyf (Z)(a2) in the case

where a1 ≤ a2 or a1 ≺ a2. The weak and strong restriction maps trivially compose in

a way that make skyF a presheaf with approximation over B. Moreover, the following

lemma asserts that skyF(Z) is a B-sheaf over B.

Lemma 6.6 For any set Z, skyF(Z) is a B-sheaf over B. Therefore skyf is a functor

Sets −→ BSh(B).

Proof. The fact that skyF(Z) is a pasting presheaf with continuous approximation

amounts to the fact that F is a rounded prime filter.

First we prove that skyF(Z) has pasting. Let x ∈ skyF(Z)(a) and y ∈ skyF(Z)(b)

such that x|a∧b = y|a∧b. Suppose that ∗ ∈ [a∨ b ∈ F ]. Then either a ∈ F or b ∈ F because
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of primeness. This means that either skyF(Z)(a) = Z or skyF(Z)(b) = Z. Suppose

without loss of generality that skyF(Z) = Z. Then x as an element of skyF(Z)(a ∨ b) if

restricted to skyF(Z)(a) remains identical. This is well defined because if both a, b ∈ F ,

then ∗ ∈ [a ∈ F ] and ∗ ∈ [b ∈ F ] then a ∈ F and b ∈ F and because F is a filter, a∧ b ∈ F

or ∗ ∈ [a ∧ b ∈ F ] or skyF(Z)(a ∧ b) = Z and all four restriction maps are identities.

Finally, it easy to prove that skyF(Z) is continuous. Let ∗ ∈ [a ∈ F ] or a ∈ F . Then

skyF(Z)(a) = Z. The assumption also implies that for any a′ ≻ a, a′ ∈ F or ∗ ∈ [a′ ∈ F ].

Hence, for any a′ ≻ a, skyF(Z)(a′) = Z. Therefore, colima′≻askyF(Z)(a′) = Z.

We also have the following result which is in accordance with the ordinary sheaf theory.

Theorem 6.7 Let B a strong proximity lattice and let i be the inclusion of categories

BSh(B) →֒ PreBSh(B). Then for any prime rounded filter F , i ◦ skyF is the right

adjoint stalkF.

Proof. First we study the counit of the adjunction. We are seeking a natural transfor-

mation ε : stalkF ◦ i ◦ skyf −→ idSets. For any set Z, the components of ε are functions

εZ : colimai∈FZ
[ai∈F ] −→ Z

The domain of ε is just Z and so we set εZ = idZ . We need to show that for any

function g : stalkF(V ) −→ Z, where V is any presheaf and Z any set, there is a unique

approximating presheaf morphism h : V −→ i ◦ skyF(Z) such that the following diagram

commutes.

stalkF ◦ i ◦ skyF(Z)
εZ ✲ Z

✟✟✟✟✟✟✟

g

✯

stalkF(V )

stalkF(h)
✻

(6.12)

We consider the following composite maps between V (a)× [a ∈ F ] −→ Z:

V (a) ⊂
θa,F✲ colima∈FV (a)

g✲ Z (6.13)

where θa,F : V (a) →֒ colima∈FV (a) are the colimit injections. We denote h the exponential

transpose of the map whose components are given as the composites 6.13. To prove that
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it has the desired properties, we argue on the following diagram.

V (a)
ha ✲ Z [a∈F ]

stalkF(V )

θa,F
❄

∩

stalkF(h)✲ stalkFZ
[a∈F ]

ina❄

∩

✙✟✟✟✟✟✟✟

εZ
stalkF(V )

g
❄

(6.14)

The arrow ina is the colimit injection. The upper square commutes as it is the property, for

any a ∈ F , of the map stalkF(h) given a map h (see diagram 6.10). The lower triangular

diagram is diagram 6.12.

To prove uniqueness of h, we observe that for any a ∈ F , Z [a∈F ], the colimit injection

ina is the identity. We have established that stalkFZ
[a∈F ] ∼= Z and defined εZ = idZ .

Therefore, if the lower diagram commutes, the outer diagram commutes and this yields

ha = g ◦ θa,F . This asserts that h thus defined is indeed the only possible map that makes

the diagram 6.12 commutative.

To prove that h actually makes diagram 6.12 commutative, we observe that the outer

diagram in 6.14 is commutative by the definition of h and the upper square is always

commutative. This together with the fact that θa,F is 1-1 implies that the triangular

diagram is commutative.

We recall (definition 5.15) that BSh(B) is a full subcategory of PreBSh(B). That

means that the inclusion functor

i : BSh(B) →֒ PreBSh(B)

is full and faithful. Similarly the following category inclusions are full and faithful

i1 : PastPreBSh(B) →֒ PreBSh(B)

i2 : BSh(B) →֒ PastPreBSh(B)

where PastPreBSh(B) is as in definition 5.14. Using this insight, theorem 6.7 has the

following corollary.

Corollary 6.8 For any prime rounded filter F of a strong proximity lattice B, the fol-

lowing adjoint situations hold:

(i) stalkF ◦ i ⊣ skyF.
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(ii) stalkF ◦ i1 ⊣ i2 ◦ skyF.

Proof. (i) For any B-sheaf V and any set Z, we have the following sequence of isomor-

phisms between hom-sets that are natural in both V and Z:

Sets(stalkF(i(V )), Z) ∼= PreBSh(B)(i(V ), i ◦ skyF(Z)) (theorem 6.7)

∼= BSh(B)(V, skyF(Z)) (i is full and faithful)

(ii) In the same fashion, for any presheaf with pasting V and any set Z, we have

Sets(stalkF(i1(V )), Z) ∼= PreBSh(B)(i1(V ), i ◦ skyF(Z)) (theorem 6.7)

∼= PreBSh(B)(i1(V ), i1 ◦ i2 ◦ skyF(Z))

∼= PastPreBSh(B)(V, i2 ◦ skyF(Z)) (i1 is full and faithful)

Now we are in position to prove the main result of this section which is that sheavifi-

cation leaves the stalks intact.

Theorem 6.9 Let V be a presheaf over a strong proximity lattice B and let F be a rounded

prime filter (point) of B. Then, the stalk of V over F is isomorphic to the stalk of the

free pasting presheaf past(V ) above V over F , or in other words

stalkF ◦ i1past(V ) ∼= stalkF(V )

where past is as in theorem 5.28.

Proof. We have seen (theorem 5.28) that past is the left adjoint of i1

PreBSh(B)
past✲✛
i1

PastPreBSh(B)
stalkF ◦ i1✲✛
i2 ◦ skyf

Sets

The two adjoint pairs stalkF ◦ i1 ⊣ i2 ◦ skyF (corollary 6.8(ii)) and past ⊣ i1 compose

nicely to yield that

stalkF ◦ i1 ◦ past ⊣ i1 ◦ i2 ◦ skyF or stalkF ◦ i1 ◦ past ⊣ i ◦ skyF (6.15)

But by theorem 6.7 stalkF ⊣ i ◦ skyF and uniqueness of the left adjoint forces stalkF ◦

i1 ◦ past = stalkF

If X is a locale then its points are morphisms 1 −→ X in Loc, i.e. continuous maps

from the terminal object (of Loc) to X. The nomenclature of this thesis dictates that a
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global point of the topos of sheaves over X is still to be denoted as

x : 1 −→ X (6.16)

where now 1 is the terminal object and x an arrow, both in Top. The consistency of

this notation is of course due to the full embedding of Loc in Top. By definition, an

arrow in Top is a geometric morphism x : 1 −→ X which amounts to a pair of functors

x∗ : Sh(X) −→ Sets and x∗ : Sets −→ Sh(X) such that x∗ is right adjoint to x∗ and x∗

is left exact. In standard textbooks (e.g. Mac Lane & Moerdijk) one can pin down the

adjoint pair x∗ ⊣ x∗: if F is a sheaf over X and A a set then

x∗ = stalkxF x∗ = skyxA

where stalkxF := colimx�aF (a) is the stalk of F over a point of the locale X and skyxA

is the “skyscraper” sheaf with respect to the point x. Obviously, there are as many pairs

stalkx ⊣ skyx as points of X.

Next, for X a stably compact locale, we are going to discuss the evaluation map

ev : [set]X −→ [set] (in Top)

We make two remarks before we start. First that the exponential [set]X exists in Top (as

shown in chapter 5 and also by Johnstone Joyal in [JJ82]) and hence merits an evaluation

map. Second, that having given a geometric account of the pair stalkx ⊣ skyx in the case

where X is stably compact, is going to facilitate the arguments.

We recall that ev is the map ε[set], where ε is the counit of the adjunction (−)X ⊣

(− × X) with (−)X , (−) × X : Top −→ Top. Note that this is an adjunction up to

equivalence. The universal property of ev says that given a stably compact locale X, then

for any Grothendieck topos Z and any geometric morphism f : Z×X −→ [set], there is an

(up to equivalence) unique geometric morphism f ′ : Z −→ [set]X such that the following

triangle commutes
Z ×X

❅
❅

❅
❅

❅

f

❘
[set]X ×X

f ′ × id

❄
ev ✲ [set]

(6.17)

Theorem 5.24 proves that [set]X ≃ [BX-sheaves]. therefore the (global) points of the

product [set]X ×X are pairs (V, x), where V is a B-sheaf over the strong proximity lattice
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BX and x a point of the locale X. We claim that the geometric morphism ev acts on

global points as

ev : (V, x) 7→ stalkxV := colimx�aV (a) (6.18)

Although it is with respect of global points only, the above description is geometric since it

involves a colimit and so it is sufficient to specify the map ev up to equivalence. We have

to show that the map that, on global points, acts as in expression 6.18 has the universal

property 6.17. Let us call it s. We first consider the special case where Z is 1. Then the

triangle 6.17 pre-composed with a global point map 1 −→ becomes

1
x ✲ 1×X

❅
❅

❅
❅

❅

f

❘
[set]X ×X

f ′ × id

❄
s ✲ [set]

(6.19)

Fixing a geometric morphism f is the same as fixing a sheaf over X in Sets (which we

still denote as f) and we know that this is the same up to equivalence with a B-sheaf over

BX. Let us look at the composite

1
x ✲ X

f ✲ [set] (6.20)

Its inverse image functor x∗ ◦ f∗ first picks the sheaf f and then calculates its stalk at the

point x. By theorem 6.1, this is the same (up to equivalence) as calculating the stalk of

the corresponding B-sheaf over BX and this description of x∗ ◦ f∗ has the advantage of

being geometric. So, if we let f ′ : 1 −→ [set]X ≃ [B-sheaves] be the map that picks the

same B-sheaf (i.e. the exponential transpose of f), the triangle 6.19 commutes and clearly

f ′ is the unique map with such property (up to equivalence).

What the above tells us is that the functor

Φ : Top(1, [set]X)
≃✲ Top(X, [set]) (6.21)

defined on objects by f 7→ s◦ < f, id > is an equivalence of categories. To generalise

the argument for any topos Z, it suffices to consider the functor Φ and equivalence of

6.21 over any topos Z. The terminal object over Z is the identity map id : Z −→ Z.

Also, [set]X is the classifying topos of B-sheaves over BX, therefore the L.H.S. of 6.21

becomes Top/Z(Z, [!∗(BX)-sheaves]Z), where [!∗(BX)-sheaves]Z is the classifying topos

over Z of the geometric theory whose models are !∗(BX)-sheaves and by corollary 5.27
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this is the same as the Z-topos p2 : [BX-sheaves] × Z −→ Z (where p2 is the second

projection).[?] Furthermore, over Z, the locale X becomes the localic geometric morphism

p2 : X × Z −→ Z (the second projection) and the object classifier [set]Z over Z is

p2 : [set]× Z −→ Z. Therefore, over Z, the equivalence 6.21 yields

Top/Z(Z, [!∗(BX)-sheaves]Z) ≃ Top/Z(X × Z −→ Z, [set]Z)

⇔ Top/Z(Z, [BX-sheaf]× Z) ≃ Top/Z(X × Z, [set]× Z)

⇔ Top/Z(Z, [set]X × Z) ≃ Top/Z(X × Z, [set]× Z) (by [?])

⇔ Top(Z, [set]X) ≃ Top(X × Z, [set]) (by [?])

This proves that the map that we denoted by s indeed satisfies the universal property

reflected in diagram 6.17 and hence s is identical up to equivalence to ev. This fact

together with corollary 6.2 yield the following conclusion.

Theorem 6.10 Let X be a stably compact locale. Then the evaluation map ev : [set]X ×

X −→ [set] acts on global points as

(F, x) 7→ stalkxF (non geometric version)

where F is a sheaf over X and x a point of X, or equivalently as

(V, x) 7→ stalkFV (geometric version)

where V is the corresponding B-sheaf over BX and F the rounded prime filter that corre-

sponds to x.

6.3 The inverse image functor

Let µ : B2 −→ B1 be a strong homomorphism between two strong proximity lattices. We

show in this section that this induces a functor

ρµ : ContPreBSh(B2) −→ ContPreBSh(B1)

between the categories of continuous presheaves with approximation over B2 and B1. The

reason why we call this functor “inverse image” will be obvious in section 6.7 although it

is not hard justify. In chapter 3 we demonstrated how the map µ gives rise to a perfect

map RSpec(µ) : RSpec(B1) −→ RSpec(B2), where RSpec(X),RSpec(Y ) are stably

compact locales. We see, therefore, that µ : B2 −→ B1 is pointing at the same direction
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as the defining frame homomorphism (RSpecµ)∗.

It is interesting that the object part construction W 7→ ρµ(W ), where W is an ap-

proximating presheaf over B2, does not rely on the continuity of W (but it always yields a

continuous presheaf with approximation over B1). Nevertheless, we need to assume that

W is continuous in order for ρµ to be functorial. Indeed, we show that given a morphism

g : W (1) −→ W (2), we can construct a map fw : ρµ(W
(1)) −→ ρµ(W

(2)) which is natural

with respect to the weak restrictions or, alternatively, a map fs : ρµ(W
(1)) −→ ρµ(W

(2))

which is natural with respect to the strong restrictions. We find that the two maps coincide

when W (1) and W (2) are continuous and so fw = fs is then an approximating presheaf

morphism.

All the constructions and proofs are geometric, so these categories may well be inside

the sheaves of any topos. In particular the construction of ρµ involves colimits.

Definition 6.11 Let µ : B2 −→ B1 be a strong homomorphism between two strong prox-

imity lattices and W : B2 −→ Sets a continuous presheaf with approximation. By V ′(a)

we denote the set

V ′(a) =
∐

i

{W (bi) ∈ B1X, a ≺ µ(bi)}

Now, let x1, x2 ∈ V (a) and in particular x1 ∈ W (b1) and x2 ∈ W (b2). We define the

equivalence relation ∼ in V (a), generated by

x1 ∼ x2 if b2 ≤ b1 and a ≺ µ(b2)

So finally we define the assignment V : B1 −→ Sets that maps any a ∈ B1 to V ′(a)/ ∼

We make the observation that the equivalence relations on the sets V ′(a), a ∈ B1 are

defined in relation only to the weak partial order of the strong proximity lattice. We are

going to use the following lemma.

Lemma 6.12 1 In V ′(a), a ∈ B1, let x1 ∈ W (b1) and x2 ∈ W (b2). Then x1 ∼
′ x2 iff

there is b12 ≤ b1 ∧ b2 ∈ B2 with a ≺ µ(a) such that x1|b12
= x2|b12

Proof. First we prove that ∼′ is an equivalence relation. It is obviously reflexive and

symmetric. It takes a small proof to show that it is also transitive. Indeed, let x1, x2, x3 ∈

V (a) and in particular x1 ∈ W (b1), x2 ∈ W (b2), x3 ∈ W (b3) such that x1 ∼
′ x2 and

x2 ∼
′ x3. This means that there are b12 ≤ b1∧b2 and b23 ≤ b2∧b3 such that x1|b12

= x2|b12

1I have an other version of this one, but I have to extract it from my laptop first! Please skip this
lemma-we have gone through it on the board anyway.
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and x2|b23
= x3|b23

. Since b12 ∧ b23 ≤ b12 and b12 ∧ b23 ≤ b23 we deduce that x1|b12∧b23
=

x2|b12∧b23
and x2|b12∧b23

= x3|b12∧b23
. Therefore, x1|b12∧b23

= x3|b12∧b23
. The restrictions of

x1 and x3 coincide in W (b12∧b23), so they have to coincide in W (b12∧b23∧b1∧b3), because

b12 ∧ b23 ∧ b1 ∧ b3 ≤ b12 ∧ b23. So we have proved that x1|b12∧b23∧b1∧b3
= x3|b12∧b23∧b1∧b3

and

b12 ∧ b23 ∧ b1 ∧ b3 ≤ b1 ∧ b3 i.e. x1 ∼
′ x3 by the definition of ∼′.

Now we prove that in fact ∼′=∼. Let x1, x2 ∈ V (a) and x1Rx2. That implies that

x1 ∈ W (b1) and x2 ∈ W (b2) with b1 ≤ b2 and a ≺ Φ(b1) such that x2|b1
= x1. This

equality can be rewritten as x1|b1∧b2
= x2|b1∧b2

since b1 ∧ b2 = b1. And this is the defining

property of x1 ∼
′ x2. So R ⊆∼′. But because ∼ is the smallest equivalence relation being

a superset of R, we deduce that ∼⊆∼′.[!!!]

Working for the other direction, let x1, x2 ∈ V (a) and in particular x1 ∈ W (b1) and

x2 ∈W (b2) with x1|b12
= x2|b12

for some b12 ≤ b1∧b2 in B2. Then x1Rx1|b12
and x2Rx2|b12

,

so x1 ∼ x2. Therefore ∼′⊆∼.

This proves that the two equivalent relations are the same. Henceforth they are going

to be denoted ∼.

We point out here that the equivalence relation ∼ is defined with respect to the strong

order ≺ of the strong proximity lattice B2; sometimes we shall denote as “∼s”. In fact,

we can also use the weak order ≤ of B2 to define equivalence relations as follows. On

the sets V ′(a) we introduce a relation Rw by stipulating that given that x1 ∈ W (b1) and

x2 ∈ W (b2) with a ≺ µ(b1) and a ≺ µ(b2), x1R
wx2 iff b1 ≤ b2 and x1 = βb2b1 (x2), where β

are the weak restriction maps of W . We define ∼w to be the equivalence relation generated

by Rw. In correspondence with the strong case, we also define a relation ∼′w on V ′(a) by

stipulating that for x1 ∈ W (b1) and x2 ∈ W (b2) with a ≺ µ(b1) and a ≺ µ(b2), x1 ∼
′w x2

iff there is b12 ≤ b1 ∧ b2 with a ≺ µ(b12) such that βb1b12(x2) = βb2b12(x2). We have the

following lemma.

Lemma 6.13 Let (W,β, δ) : B2 −→ Sets be a presheaf with approximation.

(i) The relation ∼′w defined above is an equivalence relation and ∼′w=∼w.

(ii) If in addition W is continuous then ∼=∼w.

Proof. This proof of (i) is a slight modification of the proof of lemma ??. To prove that

∼′w is transitive and hence an equivalence relation, we first weakly restrict x1 and x2 to

b12 ∧ b23 where now b12 ≤ b1 ∧ b2 and b23 ≤ b2 ∧ b3. We next further weakly restrict to

b12 ∧ b23 ∧ b1 ∧ b3. The restrictions of x1 and x3 coincide in W (b12 ∧ b23), so they have

to coincide in W (b12) ∧ b23 ∧ b1 ∧ b3), because b12 ∧ b23 ∧ b1 ∧ b3 ≤ b12 ∧ b23. So we have

proved that βb1b12∧b23∧b1∧b3(x1) = βb2b12∧b23∧b1∧b3(x2) and b12 ∧ b23 ∧ b1 ∧ b3 ≤ b1 ∧ b3. Also
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a ≺ µ(b12 ∧ b23 ∧ b1 ∧ b3) because a ≺ µ(b12), a ≺ µ(b23), a ≺ µ(b1) and a ≺ µ(b3). Hence

x1 ∼
′w x3 by the definition of ∼′w.

Reflexivity of the weak order ≤ makes the proof of ∼w=∼′w trivial. For x1, x2 as

in the proof of lemma ??, x1R
wx2 means that b1 ≤ b2 and x1 = βb2b1 (x2). Choosing

b12 := b1 ∧ b2 = b1 ≤ b1 ∧ b2 proves that Rw ⊆∼′w. The other direction is obvious (and

the same as lemma ?? with b12 ≤ b1 ∧ b2 instead of b12 ≺ b1 ∧ b2.)

Finally, suppose that (W,β, δ) is continuous. We prove that ∼w=∼. Let x1 ∈ W (b1)

and x2 ∈ W (b2) with a ≺ µ(bi), i = 1, 2 and x1 ∼ x2. Then there is b12 ≺ b1 ∧ b2

with a ≺ µ(b12) such that δb1b12(x1) = δb2b12(x2). We repeat the simple trick of choosing

b′12 = b12 ∧ b1 ∧ b2. Then b′12 ≤ b1 ∧ b2, a ≺ µ(b′12). We have also that b′12 ≤ b12 ≺ b1 ∧ b2,

i.e., b′12 ≺ b1 ∧ b2. x1 and x2 coincide when strongly restricted in W (b12) so they have to

coincide in W (b′12) because δbi
b′12

= βb12
b′12
◦ δbib12(xi) (i = 1, 2). Lemma 5.13 guarantees that

βb1b12(x1) = δb1b12(x1) and βb2b12(x2) = δb2b12(x2), therefore βb1
b′12

(x1) = βb2
b′12

(x2) which means

that x1 ∼
w x2.

For the other direction, let x1 ∈ W (b1),b2 ∈ W (b2) and x1 ∼
w x2, meaning that

there is b12 ≤ b1 ∧ b2 with a ≺ µ(b12) such that βb1b12(x1) = βb2b12(x2). Then, µ being a

strong homomorphism, there is b′12 ≺ b12 with a ≺ µ(b12). Then it holds that δbi
b′12

(xi) =

δb12
b′12
◦ βbib12(xi) (i = 1, 2) and so δb1

b′12
(x1) = δb2

b′12
(x2).

The second part of the above lemma is a facet of the fact that if W is a presheaf with

continuous approximation then its weak restriction maps are determined by its strong

restriction maps.

Definition 6.14 Assuming that (W,β, δ) is a presheaf with a (not necessarily continuous)

approximation, for each a ∈ B1, we denote

V s(a) := V ′(a)/ ∼ and V w(a) := V ′(a)/ ∼w

We now express them using categorical language. Consider the category (B2,≤),

i.e., the lattice B2 qua poset with respect to its weak order. We denote by Jwa the full

subcategory of (B2,≤) that includes all the elements bi of B2 such that a ≺ µ(bi). Then

W : Jwa −→ Sets becomes a diagram in Sets with Jwa the index category. When writing

colimw
a≺µ(bi)

W (bi)

we mean the colimit of the diagram W : Jwa −→ Sets. It is routine to check, by looking

at definition ??, that

colimw
a≺µ(bi)

W (bi) ∼= V w(a)/ ∼w
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We can apply the same logic to the construction of V s(a). Now the structure (B2,≺),

i.e., the strong proximity lattice with only the strong order is not a category because

of the absence of the identities. We therefore define (B2,≺, id) to be the category whose

objects are the elements of B2 and whose arrows are those given by the relation ≺ together

with the identity relation for all elements of B2. As before, we define Jsa to be the full

subcategory of (B2,≺, id) that includes all the elements bi with a ≺ µ(bi). We denote by

colims
a≺µ(bi)

W (bi)

the colimit of the diagram W : Jsa −→ Sets. Again it is easy to check that

colims
a≺µ(bi)

W (bi) ∼= V s/ ∼ (6.22)

(Adjoining the identities in the index category Jsa is within our freedom because x ∼s x).

The following is a consequence of lemma 6.13.

Corollary 6.15 Let W : B2 −→ Sets be a continuous presheaf. Then

colimw
a≺µ(bi)

W (bi) ∼= colims
a≺µ(bi)

W (bi)

Using coproducts, the same isomorphisms are written as

∐

a≺µ(bi)

W (bi)/ ∼
w∼=

∐

a≺µ(bi)

W (bi)/ ∼
s (6.23)

The R.H.S. “strong” colimit (and its index category Jsa) is henceforth going to be denoted

without the superscript s.

————————————-

The next step is to define weak and strong restriction maps φ, θ on the family of sets

V (a) := colima≺µ(bi)W (bi), a ∈ B1.

Suppose that a1 ≺ a2 in B1. Then, with the above notation, a2 ≺ µ(bi) implies

a1 ≺ µ(bi) for any bi ∈ B2, which renders Ja2 a full subcategory of Ja1 . The cone of

colima1≺µ(bi) is a cone of the diagram W : Ja2 −→ Sets. So there must be a unique map

θa2
a1

: colima2≺µ(bj)W (bj) −→ colima1≺µ(bi)W (bi)

For a1 ≤ a2 in B1, the fact that ≤ ◦ ≺=≺, allows us to repeat the argument of the



CHAPTER 6. FUNCTORS BETWEEN APPROXIMATING PRESHEAVES 151

above paragraph to determine a unique map

φa2
a1

: colima2≺µ(bj)W (bj) −→ colima1≺µ(bi)W (bi)

We have the following lemma.

Lemma 6.16 Let (W,β, δ) be a presheaf with approximation over the strong proximity

lattice B2. Then (V, φ, θ), with V (a) = colima≺µ(bi)W (bi) and φ, θ defined as above, is a

presheaf with approximation over the strong proximity lattice X1.

Proof. We need to prove that the maps φ, θ behave as restriction maps, or more specifi-

cally that

(i) φaa = idV (a) and for a1 ≤ a2 ≤ a3, φ
a2
a1
◦ φa3

a2
= φa3

a1
.

(ii) for a1 ≺ a2 ≺ a3, θ
a2
a1
◦ θa3

a2
= θa3

a1
.

(iii) the strong restrictions absorb the weak ones, i.e., for a1 ≤ a2 ≺ a3 ≤ a4, θ
a2
a1
◦ φa3

a2
◦

θa4
a3

= θa3
a1

.

All these properties can be easily verified by looking at the defining diagrams of φ and θ.

Switching back to the concrete description of colimits in terms of coproducts (disjoint

unions) we give the following equivalent definition of the weak (strong) restriction maps

β (θ). For a1 ≤ a2 (a1 ≺ a2), we define the obvious inclusion maps β′ : V ′(a2) 7→ V ′(a1)

(θ′ : V ′(a2) →֒ V ′(a1)). Then, denoting [x] the equivalence class with respect to ∼w (∼s)

of an element x ∈ V ′(a2), we have

[β′a2
a1

(x)] = βa2
a1

([x]) ([θ′a2
a1

(x)] = θa2
a1

([x]))

The following lemma demonstrates that the assignment of the lemma 6.16 yields a

presheaf with continuous approximation.

Lemma 6.17 Let µ : B2 −→ B1 be a strong homomorphism between two strong proximity

lattices and W a presheaf with approximation over B2. Then the presheaf with approxi-

mation (V, φ, θ) over B1, defined as above, is continuous.

Proof. We have to show that for every a ∈ B1 the obvious map

θa : colima≺a′V (ai) −→ V (a)
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is an isomorphism. By evoking the freedom given to us by the isomorphism 6.22, we

choose to construe V as the assignment

a 7→
∐

a≺µ(bi)

W (bi)/ ∼
s

First we show that θa is an injection. We assume that for z1, z2 ∈ colima≺aiV (ai) we have

θa(z1) = θa(z2). We are going to prove that z1 = z2. We use θ with single superscript to

denote the colimit injections and θa (single subscript) to denote the obvious map 6.3. We

also denote θa(z1) := x1 and θa(z2) := x2.

Let x′1 and x′2 be any elements in V ′(a1) and V ′(a2) respectively whose image in

the colima≺aiV (ai) is z1 and z2 respectively (i.e. θ′a1(x′1) = z1 and θ′a2(x′2) = z2). The

universal property of θa says that θ′a1
a (x′1) = θa◦θ

a1(x′1) = x1 and θ′a2
a (x′2) = θa◦θ

a2(x′2) =

x2. It suffices to prove that there is a′ with a ≺ a′ ≺ a1 and a ≺ a′ ≺ a2 such that

θ′a1
a′ (x′1) ∼

s θ′a2
a′ (x′2), i.e., that x′1 and x′2 become equivalent before they “reach” the colimit.

Suppose in particular that x′1 ∈ W (b1) and x′2 ∈ W (b2) with a ≺ a1 ≺ µ(b1) and

a ≺ a2 ≺ µ(b2). The assumption says that there is b12 ≺ b1 ∧ b2 with a ≺ µ(b12), such

that δb1b12(x
′
1) = δb2b12(x

′
2). The fact that a1 ≺ µ(b1) implies a1 ∧ a2 ∧ µ(b12) ≤ a1 ≺ µ(b1)

which yields

a1 ∧ a2 ∧ µ(b12) ≺ µ(b1) (6.24)

Similarly,

a1 ∧ a2 ∧ µ(b12) ≺ µ(b2) (6.25)

Also, by the definition of the strong proximity lattices, a ≺ a1, a ≺ a2 and a ≺ µ(b12)

implies that a ≺ a1 ∧ a2 ∧ µ(b12). Since ≺ is an interpolative order, there is a′ such that

a ≺ a′ ≺ a1 ∧ a2 ∧µ(b12). Combining this with the expressions 6.24 and 6.25 we have that

a ≺ a′ ≺ µ(b1) and a ≺ a′ ≺ µ(b2) (6.26)
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V (a1) V (a2)

❅
❅
❅θa1

a1∧a2
❘ ✠�

�
�
θa2
a1∧a2

V (a1 ∧ a2)) V (µ(b12))

❅
❅
❅

θa1∧a2

a1∧a2∧µ(b12)

❘ ✠�
�
�

θ
µ(b12)
a1∧a2∧µ(b12)V (a1 ∧ a2 ∧ µ(b12))

V (a′)

θ
a1∧a2∧µ(b12)
a′ ❄

❅
❅
❅
θa

′

❘
colima≺aiV (ai)

✠�
�
�
θa

V (a)

θa
′

a

❄

Expressions 6.26 guarantee that x′1 and x′2 can be strongly included in V ′(a′), i.e.

θ′a1
a′ (x′1), θ

′a2
a′ (x′2) ∈ V

′(a′) (as in proof of lemma 6.16)

Furthermore, obviously

a′ ≺ a1 ∧ a2 ∧ µ(b12)

which yields a′ ≺ µ(b12). Hence, by definition θ′a1
a′ (x′1) ∼

s θ′a2
a′ (x′2) in V ′(a′), or

θa1
a′ ([x

′
1]) = θa2

a′ ([x
′
2])

This in turn means that z1 = θa
′

(x′1) ∼
s θa

′

(x′2) = z2 which proves the 1-1 property.

Next we prove that the morphism θa is a surjection. Let x ∈ V (a) and in particular

x ∈W (b). This means that a ≺ µ(b). By the interpolative property of ≺, there is a′ ∈ B1

such that a ≺ a′ ≺ µ(b). So x can be written as x = θa
′

a (z), with z an element of V (a′)

with a′ ≻ a. Because of the universal property of θa, θ
a′

a has to factor through θa. So θa

is epi. This completes the proof of colima≺aiV (ai) ∼= V (a).

Corollary 6.18 Given a strong homomorphism µ : B2 −→ B1, we have determined an

assignment (which we now denote ρµ) of presheaves with approximation W over B2 to

continuous presheaves V over B1. This map is defined by

ρµ(W )(a) = colima≺µ(bi)W (bi)
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and with weak and strong restrictions as in lemma 6.16

Next we are going to extend ρµ to a functor between the categories of presheaves with

approximation over B2 to the category of continuous presheaves over B1. We have the

following lemma.

Lemma 6.19 Let g : (W (1), δ(1)) −→ (W (2), δ(2) be a morphism of presheaves with ap-

proximation over B2. We write

ρµ(W
(1), β(1), δ(1)) := (V (1), φ(1), θ(1)) and ρµ(W

(2), β(2), δ(2)) := (V (2), φ(2), θ(2))

We shall argue that for each a ∈ B1, there is a unique map fa as depicted in the diagram

below.

W (1)(bj1) ✛
δ
bj2
bj1

(1)
W (1)(bj2)

❅
❅
❅
δbj1(1)

�
�
�δbj2

W (2)(bj1)

gbj1 ❄
✛

δ
bj2
bj1

(2)
W (2)(bj2)

gbj2(1)
❄

❅
❅

❅
❅

❅
❅

❅

δbj1(2)

❘

❅
❅
❅❘ ✠�

�
�

✠�
�

�
�

�
�

�

δbj2(2)
colima≺µ(bi)W

(1)(bi)

colima≺µ(bi)(W
(2)(bi))

fa
❄

(6.27)

Proof. Let us denote as J
(1)
a and J

(2)
a the two defining index diagrams of colima≺Bf(bi)W

(1)(bi)

and colima≺Bf(bi)(W
(2)(bi)) respectively, in the sense that, e.g. colima≺Bf(bi)W

(1)(bi) is

the colimit of the diagram

W (1) : J (1) −→ Sets

By assumption, g is a morphism of presheaves with approximation over B2, i.e., a natural

transformation between the functors (W (1), δ(1)) and (W (2), δ(2)) which makes the square

diagram on top commutative. That means that the composites δbi(2) ◦ gbi , for any bi with

a ≺ µ(bi), together with the vertex colima≺µ(bi)(W
(2)(bi)) constitute a cone of the diagram

J
(1)
a . So there must be a unique map fa such that δbi(2) ◦ gbi = fa ◦ δ

bi(1) for any index

i.

We stress that this definition involved the strong restriction maps of W (1) and W (2).

Next we prove that they commute with the strong restriction maps of V (1) and V (2).
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Lemma 6.20 The maps are the components of a natural transformation f between the

functors

(V (1), θ(1)) −→ (V (2), θ(2))

Proof.

W (1)(bi)
gbi ✲ W (2)(bi)

colima2≺µ(bi)W
(1)(bi)

δbia2
(1)

❄
fa2✲ colima2≺µ(bi)W

(2)(bi)

δbia2
(2)

❄

colima1≺µ(bi)W
(1)(bi)

θa2
a1

(1)

❄
fa1✲ colima1≺µ(bi)W

(2)(bi)

θa2
a1

(2)

❄

We want to prove that the bottom square commutes for any a1 ≺ a2. Since δbia2
(1) is the

generic colimit injection, it suffices to prove that, for any bi with a2 ≺ µ(bi),

θa2
a1

(2) ◦ fa2 ◦ δ
bi
a2

(1) = fa1 ◦ θ
a2
a1

(1) ◦ δbia2
(1) (6.28)

But by the definition (6.16) of θ(1), θa2
a1

(1) ◦ δbia2
(1) = δbia1

. Also, the top square is com-

mutative being the defining diagram of fa2 . So the L.H.S. of the expression 6.28 becomes

θa2
a1

(2) ◦ δbia2
(2) ◦ gbi . But, by the definition of θ(2), θa2

a1
(2) ◦ δbia2

(2) = δbia1
(2), which means

that expression 6.28 becomes

δbia1
(2) ◦ gbi = fa1 ◦ δ

bi
a1

(1)

which obviously holds by the definition of fa1 . This proves the claim of this lemma.

We saw f defined by the “strong” diagram 6.27 commutes with the strong restrictions.

In general it does not commute with the weak restrictions though. On the other hand,

if we make the additional assumption that (W (1), β(1(, δ(1)) and (W (2), β(2), δ(2)) have

continuous approximations we have the following fact.

Lemma 6.21 Let W (1) and W (2) be presheaves with continuous approximation over B2.

Let f be the natural transformation defined by the diagram 6.27. Then f is a natural

transformation between the functors

(V (1), φ(1)) −→ (V (2), φ(2))
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i.e., they also commute with the weak restrictions.

Proof. For any a ∈ B1, we can define a map

fwa : colima≺µ(bi)W
(1)(bi) −→ colima≺µ(bi)W

(2)(bi)

by repeating the argument of the diagram 6.27 but with weak restrictions β instead

of the strong restrictions δ. This “weak” definition gives a unique map fwa between

colimw
a≺µ(bi)

W (1)(bi) −→ colimw
a≺µ(bi)

W (2)(bi) and lemma 6.15 guarantees that

fwa : colima≺µ(bi)W
(1)(bi) −→ colima≺µ(bi)W

(2)(bi)

We can also prove that these are the components of a natural transformation fw between

the functors (V (1), φ(1)) −→ (V (2), φ(2)) in the same way as in lemma 6.20. Therefore,

to complete the claim, we have to prove that fs = f . As before we denote by βbia (1) and

βbia (2) the (weak) colimit injections

W (1)(bi) →֒ colima≺Bf(bi)W
(1)(bi) and W (2)(bi) →֒ colima≺Bf(bi)W

(2)(bi)

respectively. In order to prove fwa = fa, it suffices to prove that for all bi with a ≺ µ(bi),

fwa ◦ β
bi
a (1) = fa ◦ β

bi
a (1) (6.29)

Since W (1) and W (2) are continuous,

W (1)(bi) = colimbi≺bijW
(1)(bij) and W (2)(bi) = colimbi≺bijW

(2)(bij)

and the maps δ
bij
bi

(1) and δ
bij
bi

(2) are (isomorphic to) the colimit injections. So to prove

6.29, it suffices to prove that

fwa ◦ β
bi
a (1) ◦ δ

bij
bi

(1) = fa ◦ β
bi
a (1) ◦ δ

bij
bi

(1) (6.30)

colima≺µ(bi)W
(1)(bi) ✛β

bi
a (1)

W (1)(bi) ✛
δ
bij
bi

(1)
W (1)(bij)

colima≺µ(bi)W
(2)(bi)

fwa

❄
✛β
bi
a (2)

W (2)(bi)

gbi

❄
✛
δ
bij
bi

(2)
W (2)(bij)

gbij

❄

Now, in the above figure, the right square diagram is the naturality square of g, so it
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commutes. The left square also commutes from the definition of the “weak” fwa which

makes the outer diagram commutative. So 6.30 becomes

βbia (2) ◦ δ
bij
bi

(2) ◦ gbij = fa ◦ β
bi
a (1) ◦ δ

bij
bi

(1) (6.31)

A strong restriction followed by a weak colimit injection amount to a strong colimit injec-

tion, so the above expression becomes

δ
bij
a (2) ◦ gbij = fa ◦ δ

bij
a (1)

which is true for bij such that a ≺ µ(bij), being the defining property of the (“strong”)

map fa. This proves that fw = f .

The combination of lemmas 6.21 and 6.20 asserts that the assignment g 7→ f of lemma

6.19 produces a morphism of presheaves with approximation when W (1) and W (2) are

continuous. So, by stipulating that

ρf (g) = f

the assignment ρf of corollary 6.18 extends to a functor

ρf : ContBPreSh(B2) −→ ContBPreSh(B1)

6.4 The Direct Image Map

In this section we are going to define a functor

BSh(B1) −→ BSh(B2)

given a strong homomorphism µ : B2 −→ B1 between two strong proximity lattices. This

construction is more obvious and less technical than the inverse image functor construction

of the previous section. The reason is that the direction of µ is convenient; a B-sheaf over

B1 can be precomposed with µ to give a B-sheaf over B2. This is analogous to the direct

image functor between sheaves over locales; a sheaf over a locale X1 can be precomposed

with f∗ to give a sheaf over a locale X2 given a continuous map f : X1 −→ X2. To

elaborate the analogy we juxtapose the preservation of finite meets, finite joins and directed

joins by f∗ with the preservation of finite meets, preservation of finite joins by µ and its

strongness.

Definition 6.22 Let µ : B2 −→ B1 be a strong homomorphism between two strong prox-

imity lattices. We define a functor πµ between presheaves with approximation over B1 and
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presheaves with approximation over B2 as follows

(i) Let (V, φ, θ) be a presheaf with approximation over B1 and b ∈ B2. Then

πµ(V )(b) := V ◦ µ(b)

The weak restrictions of πµ(V ) are given by βb2b1 := φ
µ(b2)
µ(b1) (for b2 ≤ b1) and the strong

restrictions are similarly given by δb2b1 := θ
µ(b2)
b1

(for b2 ≺ b1) .

(ii) For f : V (1) −→ V (2) a morphism between presheaves with approximation over B1

(πµ(f))b := fµ(b)

Sets Sets

BX

V

✻

✛ µ
B2

V ◦ Bf

✻

It is routine to check that the assignment πµ indeed produces approximating presheaves

over B2. The maps β are weak restriction maps because µ is monotone and the maps δ

are strong restrictions because µ preserves the strong order. For the same reasons πµ(f)

is a morphism of presheaves with approximation. Furthermore, we have the following.

Lemma 6.23 Let µ : B2 −→ B1 be a strong homomorphism between strong proximity

lattices and (V, φ, θ) a presheaf with approximation over B1. Then πµ(V ) is continuous if

V is continuous.

Proof. Suppose that V is a continuous presheaf with approximation. We will prove that

V ◦ µ is continuous, i.e. that colimb≺biV ◦ µ(bi) ∼= V ◦ µ(b).

The fact that W is continuous implies that V ◦ µ(b) = colimµ(bi)≺aiV (ai). We will

prove that

colimb≺biV ◦ µ(bi) ∼= colimµ(b)≺aiV (ai)

We denote δbi , the generic injection of the L.H.S. colimit and θai , the generic injection of

the R.H.S. colimit. We define a function

f : colimb≺biV ◦ µ(bi) −→ colimµ(b)≺aiV (ai)

in the following way:
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Since µ is strong we have bi ≻ b =⇒ µ(bi) ≻ µ(b). Therefore the maps θµ(bi) together

with the vertex colimµ(b)≺aiV (ai) constitute a cone of the defining diagram of colimb≺biV ◦

µ(bi). So there is a unique map

f : colimb≺biV ◦ µ(bi) −→ colimµ(b)≺aiV (ai)

that makes the left square diagram below commutative (for any bi ≻ b).

V (ai)

✠�
�

�
�

�
θaiBf(bi)

V ◦ Bf(bi)
∼= ✲ V (Bf(bi))

❅
❅

❅
❅

❅

θBf(bi)

❘
colimb≺biV ◦ Bf(bi)

δbi

❄ f ✲ colimBf(b)≺aiV (ai)

θai

❄

We prove that f is epi. Let y ∈ colimµ(b)≺aiV (ai). Then there is y′ ∈ W (ai) with

µ(b) ≺ ai, such that θai(y′) = y. Since µ is a strong homomorphism there is bi, for an

index i with b ≺ bi such that µ(bi) ≺ ai. This implies that θai(y′) = θµ(bi) ◦ θai
µ(bi)

(y′)

(because the R.H.S. diagram is a cone). Hence

y = θµ(bi) ◦ θai
µ(bi)

(y′) = f ◦ δbi ◦ θai
µ(bi)

(y′)

or, by calling y′′ = δbi ◦ θai
µ(bi)

(y′), we have y = f(y′′).

It is easy to demonstrate that f is into. For any colimit injection δbi , the composite

f ◦ δbi is an injection because it is equal to θµ(bi) (by commutativity of the right square

diagram). So f must be an injection.

By virtue of lemma 6.23, we can stipulate that πµ to be a functor

πµ : BSh(B1) −→ BSh(B2)

for any strong homomorphism µ : B2 −→ b1 between two strong proximity lattices. Also

we have the following.

Lemma 6.24 πµ(V ) has pasting if V has pasting.
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Proof. This is fairly obvious. If V has pasting then, by definition V (⊥) ∼= 1. But

µ(⊥) = ⊥ because µ is a lattice homomorphism. So V ◦ µ(⊥) = 1(= {∗}). Also

V : (B1,≤) −→ Sets

preserves pullbacks of the form 5.7 that exist in (B1,≤). Also,

µ : (B2,≤) −→ (B1,≤)

preserves pullbacks of the same form in (B2,≤) being a lattice homomorphism. Therefore,

the composite V ◦ µ preserves these diagrams in (B2,≤).

6.5 Adjoint functors between

continuous approximating presheaves

We begin this section by restating the main points about functors between presheaves

with approximation over strong proximity lattices. Let µ : B2 −→ B1 be a strong homo-

morphism between two strong proximity lattices.

In section 6.3 we defined a functor

ρµ : ContPreBSh(B2) −→ ContPreBSh(B1)

and in section 6.4 a functor

πµ : ContPreBSh(B1) −→ ContPreBSh(B2) (6.32)

All the mathematics involved in their definitions and in proofs were geometric so the

two categories ContPreBSh(B1) and ContPreBSh(B2) might as well be inside any topos

Z. We reiterate that these two categories are designated to signify SZ-valued continuous

approximating presheaves, where Z is any Grothendieck topos.

Therefore, by virtue of geometricity, we have also defined a functor between the classify-

ing topoi of the respective geometric theories of continuous presheaves with approximation

over B1 and over B2.

[TContPreSh(B1)] −→ [TContPreSh(B2)] (6.33)

whose induced functor between points (models) is 6.32.

In this section we are going to prove that πµ is the right adjoint of ρµ and we are going

to do that geometrically so that it will also be valid inside any topos. To that end, we
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rely on the theorem 4.33 and corollary 4.34. The recipe outlined in section 4.9 says that

it sufficient to demonstrate a bijection between the “sets”

ContPreBSh(B2)(W,πµ(V )) ∼= ContPreBSh(B1)(ρµ(V ),W ) (6.34)

Let ξ be a map in the L.H.S. of 6.34. It is a morphism between presheaves with (continuous)

approximation over B1, it amounts to a family of maps

ξb : W (b) −→ πµ(V )(a) or ξb : W (b) −→ V ◦ µ(b)

for any b ∈ B2, subject to the naturality conditions with respect to the weak and strong

restriction maps of W and πµ(V ). We are going to define a function

ContPreBSh(B2)(W,πµ(V )) ∼= ContPreBSh(B1)(ρµ(V ),W )

with ξ 7→ ψξ by using the argument of the following lemma.

Lemma 6.25 Let ξ : W −→ πµ(V ) be a morphism of presheaves with approximation with

W a continuous presheaf over B2 and V a continuous presheaf over B1. Let also, for

each a ∈ B1, J
s
a be the index category as in the discussion preceding corollary 6.15 and

colima≺µ(bi)W (bi) := ρµ(W )(a) the colimit of the diagram W : Jsa −→ Sets. Then there

is a unique map (ψξ)a that makes all the diagrams below commutative, i.e., θ
µ(bi)
a ◦ ξbi =

(ψξ)a ◦ δ
bi
a , for any bi ∈ B2 with a ≺ µ(bi).

W (b1) ✛
δb2b1 W (b2)

❅
❅
❅
δb1a

�
�
�δb2a

V ◦ µ(b1)

ξb1
❄

✛
πµ(θ)

b2
b1 V ◦ µ(b2)

ξb2
❄

❅
❅

❅
❅

❅
❅

❅

θ
µ(b1)
a

❘

❅
❅
❅❘ ✠�

�
�

✠�
�

�
�

�
�

�

θ
µ(b2)
a

colima≺µ(bi)W (bi)

V (a)

(ψξ)a
❄

(6.35)
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Moreover, for a1 ≺ a2, the following naturality property holds for ψξ

colima2≺µ(bi)W (bi)
(ψξ)a2✲ V (a2)

colima1≺µ(bi)W (bi)

ρµ(δ)
a2
a1

❄ (ψξ)a1✲ V (a1)

θa2
a1

❄

(6.36)

and also the corresponding naturality square for a2 ≤ a1.

Proof. The composites θ
µ(bi)
a ◦ ξbi with a ≺ µ(bi) and the vertex V (a) constitute a cone

of the diagram W : Jsa −→ Sets. The reason is that the top square diagram always

commutes for b1 ≺ b2 because ξ is a morphism of presheaves with approximation and as

such it is natural in b ∈ B2. Therefore, for any b1 ≺ b2

θµ(bi)
a ◦ ξb1 ◦ δ

b2
b1

= δb2b1 ◦ πµ(θ)
b2
b1
◦ ξb2

θµ(b1)
a ◦ θ

µ(b2)
µ(b1) = θµ(b2)

a ◦ ξb2

where we used the fact that by definition, πµ(θ)
b2
b1

= θ
µ(b2)
µ(b1) and the composition law of the

strong restriction maps θ for a ≺ µ(b1) ≺ µ(b2). So there must be indeed a unique map

(ψξ)a : colima1≺µ(bi)W (bi) −→ V (a)

Now we prove the strong naturality of ψξ. The layout of the proof is similar to that of

lemma 6.20. To prove the commutativity of the diagram 6.36, it suffices to prove that for

any colimit injection δbia2
: W (bi) −→ colima2≺µ(bi)W (bi), the following equality holds

(ψξ)a1
◦ ρµ(δ)

a2
a1
◦ δbia2

= θa2
a1
◦ (ψξ)a2

◦ δbia2
(6.37)

The defining property of ψξ (see diagram 6.35) says that (ψξ)a2
◦δbia2

= θ
µ(bi)
a2 ◦ξbi , it suffices

to prove that

(ψξ)a1
◦ ρµ(δ)

a2
a1
◦ δbia2

= θa2
a1
◦ θµ(bi)

a2
◦ ξbi (6.38)

But θa2
a1
◦θ

µ(bi)
a2 = θ

µ(bi)
a1 and, by the definition of ρµ(δ) (c.f. lemma 6.16), ρµ(δ)

a2
a1
◦δbia2

= δbia1
.

So equation 6.38 becomes

θµ(bi)
a1
◦ ξbi = (ψξ)a1

◦ δbia1
(6.39)

But again this is true as part of the definition of ψξ (see diagram 6.35).
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To prove the weak naturality of ψξ amounts to proving the commutativity of the far

right square in the diagram below

W (bi)
δbia2✲ colima2≺µ(bi)

ρµ(β)a2
a1✲ colima1≺µ(bi)

V ◦ µ(bi)

ξbi

❄ θ
µ(bi)
a2 ✲ V (a2)

(ψξ)a2

❄ φa2
a1 ✲ V (a1)

(ψξ)a1

❄

(6.40)

where now it involves the weak restriction maps ρµ(β) and φ. We work exactly as in

the proof of strong naturality. We need to recall that the weak restriction maps ρµ(β)

are also defined using the strong colimit diagram (see discussion preceding lemma 6.16).

Therefore, the top horizontal maps compose to δbia1
and the bottom horizontal maps to

θ
µ(bi)
a1 (because the strong restriction maps absorb the weak ones). So the equality that

needs to be proved is θ
µ(bi)
a1 ◦ ξbi = (ψξ)a1

◦ δbia1
which is exactly the equation 6.39.

So the conclusion is that ψξ is a morphism of (continuous) presheaves with approxi-

mation over B1.

This defines a functor

ContPreBSh(B2)(W,πµ(V )) −→ ContPreBSh(B1)(ρµ(V ),W )

We are going to define a functor in the opposite direction.

Let ψ : ρµ(W ) −→ V be a morphism of presheaves with approximation with W a

continuous presheaf over B2 and V a continuous presheaf over B1. For any b ∈ B2, we

can consider the component ψµ(b) of the morphism ψ.

ψµ(b) : colimµ(b)≺µ(bi)W (bi) −→ V (µ(b)) (6.41)

Now, continuity of W yields W (b) ∼= colimb≺biW (bi) and perfectness of µ guarantees that

b ≺ bi ⇒ µ(b) ≺ µ(bi). So there is a unique colimit inclusion map ib : colimb≺biW (bi) −→

colimµ(b)≺µ(bi)W (bi).

Definition 6.26 Given a a morphism of presheaves with approximation ψ : ρµ(W ) =

colima≺µ(bi) −→ V , with the above notation and for any b ∈ B2, we define maps the (ξψ)
b

as the following composites

W (b)
∼=✲ colimb≺biW (bj)

ib✲ colimµ(b)≺µ(bi)

ψµ(b)✲ V ◦ µ(b) (6.42)
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Lemma 6.27 The maps of definition 6.26 are the components of a morphism of presheaves

with approximation over B2.

Proof. Once again we have to demonstrate both the strong and weak naturality of ξψ.

To prove the strong naturality, we first look at the diagram below for b1 ≺ b2 ≺ bi in B2.

W (bi)
δbib2✲ colimb2≺biW (bi)

ib2✲ colimµ(b2)≺µ(bi)

❅
❅
❅δbib1
❘
colimb1≺biW (bi)

δb2b1 ❄ ib1✲ colimµ(b1)≺µ(bi)

ρµ(δ)
µ(b2)
µ(b1)

❄
(6.43)

The colimit injections δbib2 and δbib1 are indeed the strong restrictions (as their notation

suggests) because colimb2≺biW (bi) ∼= W (b2) and colimb1≺biW (bi) ∼= W (b1). Also for the

same reason, the left vertical map is the restriction δb2b1 . By the definition of the maps

ib1 and ib2 , the composites ib2 ◦ δ
bi
b2

and ib1 ◦ δ
bi
b1

are just the colimit injections δbi
µ(b2)

and δbi
µ(b1) respectively. So the outer diagram commutes by the definition of ρµ(δ). The

triangular diagram on the left obviously also commutes as it is the composition rule of

strong restriction maps δ. Hence, the square diagram on the right commutes. This is the

strong naturality square of the map i in the definition 6.26. The map ψ is also strongly

natural by assumption, therefore, the maps (ξψ)
b
are the components of a strongly natural

map ξψ.

To prove that ξψ is also weakly natural we work in exactly the same way taking into

account the comments made in the corresponding part of the proof of lemma 6.25. So ξψ

is a morphism of presheaves with approximation over B2.

Now we prove that the two translations ξ 7→ ψξ and ψ 7→ ξψ are inverse to each other.

Theorem 6.28 For any continuous presheaf with approximation V over B1 and any con-

tinuous presheaf with approximation W over B2, we have the bijection

ContPreBSh(B2)(W,πµ(V )) ∼= ContPreBSh(B1)(ρµ(V ),W ) (6.44)
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Proof.

W (b1) ✛
δb2b1 W (b2)

❅
❅
❅
inb1

�
�
�inb2

V ◦ µ(b1)

ξb1
❄

✛
πµ(θ)

b2
b1 V ◦ µ(b2)

ξb2
❄

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

πµ(θ)
b1
b

❯

❅
❅
❅❘ ✠�

�
�

✁
✁
✁

colimb≺biW (bi)
α ✲✛
γ

W (b)

☛✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

πµ(θ)
b2
b

colimµ(b)≺µ(bi)(W (bi))

ib
❄

V ◦ µ(b)

(ψξ)µ(b)

❄

(6.45)

By combining lemma 6.25 and definition 6.26, we verify that given a morphism of presheaves

with approximation, ξ : W −→ πµ(V ), the map ξψξ which is the target of two successive

assignments ξ 7→ ψξ 7→ ξψξ is defined as in the diagram 6.45. Its components (ξψξ)b are

the composites

(ξψξ)b = (ψξ)µ(b) ◦ ib ◦ γ

In diagram 6.45, b ∈ B2 and b ≺ b1 ≺ b2. ib is the colimit inclusion map as in definition 6.26

and αand γ are the isomorphism maps (α◦γ = id and γ ◦α = id). Also, the maps inb1 and

inb2 are the colimit injections and by virtue of the isomorphism colimb≺biW (bi) ∼= W (b)),

we have

α ◦ inb1 = δb1b and α ◦ inb2 = δb2b (6.46)

We are going to prove that (ξψξ)b = ξb which is by definition the same as (ψξ)µ(b)◦ib◦γ = ξb.

This equality is the same (up to isomorphism) with (ψξ)µ(b) ◦ ib ◦ γα = ξbα or

(ψξ)µ(b) ◦ ib = ξbα (6.47)

Since inb1 for any b1 ≻ b are the colimit injections, to prove equation 6.47 it suffices to

prove it pre-composed with any such inb1 , i.e.

∀b1 ≻ b (ψξ)µ(b) ◦ ib ◦ in
b1 = ξb ◦ α ◦ in

b1 (6.48)
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But from the definition of ib, ib ◦ in
b1 is the same as the colimit injection δb1

µ(b) : W (b1) →֒

colimµ(b)≺µ(bi)Wbi. So, equation 6.48 becomes (ψξ)µ(b) ◦ δ
b1
µ(b) = ξb ◦ α ◦ in

b1 . By virtue

of the defining property of (ψξ)µ(b) (lemma 6.25) and equation 6.46, this last equation

becomes πµ(θ)
b1
b ◦ ξb1 = ξb ◦ δ

b1
b . But this is just the strong naturality property of ξ, so it

holds for any b1 ≻ b. Therefore, ξψξ = ξ.

Now we are going to prove the other direction, i.e. that the assignment ψ 7→ ξψ 7→ ψξψ
produces a map identical to ψ.

W (bk)

W (b1)

δ
bj
b1❄

✛
δb2b1 W (b2)

colimµ(b1)≺µ(bj)W (bj)

ib1 ❄
colimµ(b2)≺µ(bj)W (bj)

ib2❄

❆
❆
ρµ(δ)

µ(b1)
a

✁
✁ρµ(δ)

µ(b2)
a

V ◦ µ(b1)

ψµ(b1) ❄
✛

πµ(θ)
b2
b1

V ◦ µ(b2)

ψµ(b2)❄

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

❙
❙

θ
µ(b1)
a

✇

❆
❆
❆
❆
❆❯ ☛✁

✁
✁
✁
✁

✴✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

θ
µ(b2)
a

colima≺µ(bi)(W (bi))

V (a)

(ψξψ)
a

❄

The above is part of the defining diagram of the component (ψξψ)
a

for a ≺ µ(b1) and

b1 ≺ b2 (and hence µ(b1) ≺ µ(b2)). The maps ib1 and ib2 are the colimit inclusions,

e.g. ib1 : W (b1) ∼= colimb1≺bjW (bj) −→ colimµ(b1)≺µ(bj) (vis-à-vis definition 6.26). Hence

the vertical composites ψµ(b1) ◦ ib1 and ψµ(b2) ◦ ib2 are the maps (ξψ)
b1

and (ξψ)
b2

of

the definition 6.26 respectively. The map (ψξψ)
a

is the unique map that makes all the

diagrams commutative. To prove that (ψξψ)
a

= ψa, it suffices to prove this equality pre-

composed with any colimit injection δb1a : W (b1) −→ colima≺µ(bi)W (bi) for any b1 ∈ B2

with a ≺ µ(b1). Furthermore, to prove this last fact, it suffices to prove that for any

bj ≻ b1,

(ψξψ)
a
◦ δb1a ◦ in

bj = ψa ◦ δ
b1
a ◦ δ

bj
b1

(6.49)
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where, due to continuity of W , δ
bj
b1

are (up to isomorphism) the colimit injections

δ
bj
b1

: W (bj) →֒ colimb1≺bjW (b1) ∼= W (b1)

Also, from the defining property of ib1 , we can substitute δb1a ◦ δ
bj
b1

with ρµ(δ)
µ(b1)
a ◦ δ

bj
µ(b1)

.

Therefore, the equality we wish to prove becomes (for any bj ≻ b1 and for any b1 with

a ≺ µ(b1))

(ψξψ)
a
◦ ρµ(δ)

µ(b1)
a ◦ δ

bj
µ(b1)

= ψa ◦ ρµ(δ)
µ(b1)
a ◦ δ

bj
µ(b1) (6.50)

But from the diagram 6.5, (ψξψ)
a
◦ ρµ(δ)

µ(b1)
a = θ

µ(b1)
a ◦ ψµ(b1), so 6.50 becomes

θµ(b1)
a ◦ ψµ(b1) ◦ δ

bj
µ(b1)

= ψa ◦ ρµ(δ)
µ(b1)
a ◦ δ

bj
µ(b1) (6.51)

which is true because θ
µ(b1)
a ◦ψµ(b1) = ψa ◦ ρµ(δ)

µ(b1)
a is just the strong naturality property

of ψ for a ≺ µ(b1) which is implied in the assumption.

This completes the proof of the isomorphism 6.34.

Corollary 6.29 The functor πµ is the right adjoint of ρµ.

6.6 Adjoint Functors between B-sheaves

We saw in section 5.6 that for any strong proximity lattice B there is the sheavification

functor

past′ : ContPreBSh(B) −→ BSh(B) (6.52)

that takes a presheaf V with approximation to its free pasting presheaf with approximation

over V . This functor is the left adjoint of the inclusion functor

i4 : BSh(B) −→ ContPreBSh(B) (6.53)

As briefly discussed in section 5.6, the application of past on a presheaf with approxima-

tion is a free construction of an essentially algebraic structure. Therefore, it is a geometric

construction and the functors of the expressions 6.52 and 6.53 are considered inside the

sheaves of any topos Z.

Also recall that if µ : B2 −→ B1 is a strong homomorphism, ρµ and πµ are the two

functors

πµ : ContPreBSh(B1) ⇋ ContPreBSh(B2) : ρµ

constructed in sections 6.3 and 6.4. In section 6.5 we proved that ρµ ⊣ πµ. Now we are
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going to “refine” this to an adjoint situation involving functors between the categories

BSh(B1) and B2.

Definition 6.30 Let µ : B2 −→ B1 be a strong homomorphism between two strong prox-

imity lattices.

(i) We define µ∗ : BSh(B2) −→ BSh(B1) to be the composite functor past ◦ ρµ ◦ i4.

(ii) We define µ∗ : BSh(B1) −→ BSh(B2) to be the composite functor past ◦ πµ ◦ i4.

BSh(B1)
µ∗ ✲✛
µ∗

BSh(B2)

ContPreBSh(B1)

i4

❄

past′
✻

πµ✲✛
ρµ

ContPreBSh(B2)

i4

❄

past′
✻

(6.54)

We need to point out the following two properties. The first is lemma 5.31(ii), i.e. that

for any B-sheaf V in BSh(B),

pastB ◦ i4(V ) ∼= V (6.55)

The second property is given by the next lemma

Lemma 6.31 For any B-sheaf V in BSh(B), πµ ◦ i4(V ) ∼= i4 ◦ µ∗(V ).

Proof. This is an immediate consequence of lemma 6.24; application of πµ on a B-sheaf

yields a B-sheaf.

The section culminates with the next theorem.

Theorem 6.32 The functor µ∗ is the right adjoint of µ∗.

Proof. We have the following sequence of isomorphisms between categories of morphisms,

for any B-sheaf V over B1 and any B-sheaf W over B2.

BSh(B1)(µ
∗(W ), V )

∼= BSh(B1)(past ◦ ρµ ◦ i4(W ), V ) (by definition)
∼= ContPreBSh(B1)(ρµ ◦ i4(W ), i4(V )) (because past ⊣ i4
∼= ContPreBSh(B2)(i4(W ), πµ ◦ i4(V )) (because (corollary 6.29) ρµ ⊣ πµ)
∼= ContPreBSh(B2)(i4(W ), i4 ◦ µ∗(V )) (because of lemma 6.31)
∼= BSh(B2)(past′ ◦ i4(W ), µ∗(V )) (because past′ ⊣ i4)
∼= BSh(B2)(W,µ∗(V )) (because of 6.55)
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So we have proved the isomorphism

BSh(B1)(µ
∗(W ), V ) ∼= BSh(B2)(W,µ∗(V )) (6.56)

which by definition implies that µ∗ is the right adjoint of µ∗.

6.7 Geometric morphisms between the exponentials

[set]RSpec(B1) and [set]RSpec(B2)

Here we use the 2-categorically sound criterion for adjunctions between Grothendieck topoi

developed in chapter 4 to “lift” the adjunction of theorem 6.32 to an adjunction between

the corresponding classifying topoi.

Let µ : B2 −→ B1 be a strong homomorphism between two strong proximity lattices.

In the previous three sections we defined an adjoint pair of functors µ∗ ⊣ µ∗

BSh(B1)
✛µ

∗

µ∗
✲ BSh(B2) (6.57)

All the work has been done geometrically and this means that the categories BSh(B1)

and BSh(B2) can be construed in their internal sense, i.e. inside the sheaves of any

Grothendieck topos. That means that the pair µ∗, µ∗ determines a pair of geometric mor-

phisms between the corresponding classifying topoi of the theories of B-sheaves over B1

and B-sheaves over B2 (see section 1.2). By theorem 5.24 we know that these classify-

ing topoi are [set]RSpec(B1) and [set]RSpec(B2) respectively. Therefore, the pair of 6.57

uniquely determines a pair of functors

[set]RSpec(B1) ✛Rµ

Pµ
✲ [set]RSpec(B2) (6.58)

Moreover, as proved in chapter 4, the fact that µ∗ is the right adjoint of µ∗ implies that

Pµ is the right adjoint of Rµ. Indeed, in the notation of section 4.9, theorem 6.32 proves

that there is a bijection

CZ
(RµV,W )

∼= CZ
V,PµW

for any Z-point of [set]RSpec(B1), i.e. a B-sheaf V overB1 and any Z-point of [set]RSpec(B2),

i.e. a B-sheaf W over B2.

We can easily demonstrate that we know the mapRµ : [set]RSpec(B2) −→ [set]RSpec(B1)

from an other source. Let X and Y be two stably compact locales and f : X −→ Y any
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continuous map between them. The topoi [set]X and [set]Y are exponential in the 2-

category Top of Grothendieck topoi. Category theory asserts that there is always an

arrow in Top (the evaluation arrow)

ev : [set]Y × Y −→ [set]

Therefore we can define the following functor.

Definition 6.33 Let f : X −→ Y be a continuous map between two stably compact locales.

We define [set]f : [set]Y −→ [set]X to be the exponential transpose of the composite

[set]Y ×X
id[set]Y × f✲ [set]Y × Y

ev ✲ [set] (6.59)

We have shown in chapter 3 that given a strong homomorphism µ : B2 −→ B1, RSpec(µ)

is a perfect map between the locales RSpec(B1) −→ RSpec(B2). Therefore, the following

is a special case of the definition 6.33.

Definition 6.34 Let µ : B2 −→ B1. We define [set]RSpec(µ) to be the exponential trans-

pose of the composite map

[set]RSpec(B2) ×RSpec(B1)
id[set]RSpec(B2) ×RSpec(µ)

✲ [set]RSpec(B2) ×RSpec(B2)

[set]

ev

❄

(6.60)

We can actually describe the composite map of 6.60 concretely by its action on points.

A (generalised) point of [set]RSpec(B2) ×RSpec(B1) is a pair consisting of a B-sheaf W

over B2 (inside SZ) and a point x of the locale RSpec(B1) (theorem 5.24). Such a point x

amounts to a completely prime filter of rounded ideals H of B1 and lemma 3.25 says that

this is the same as a rounded prime filter F of B1. The map id[set]RSpec(B2) ×RSpec(µ)

takes such a pair (W,F ) to a pair (W,pt ◦RSpec(µ))(H), where pt ◦RSpec(µ) is as in

the expression 3.25 and by corollary 3.28 this is the same as (W,RPFilt(µ)(F )) where

RPFilt(µ)(F ) = (µ)−1[F ] := {b ∈ B2|∃a ∈ F : a = µ(b)}

Finally, the map ev calculates the stalk of W above the point RPFilt(µ)(F ). Hence, the
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map of the diagram 6.60 acts on points as

(W,F ) 7→ colimb∈(µ)−1[F ]W (b) := colimµ(b)∈FW (b) (6.61)

After this insight we prove the following.

Theorem 6.35 The functor Rµ is isomorphic to the functor [set]RSpec(µ).

Proof. We know by category theory that Rµ is the exponential transpose of the composite

ev ◦ (Rµ × idRSpec(B1)), so effectively we need to demonstrate that the following square

commutes

[set]RSpec(B2) ×RSpec(B1)
id[set]RSpec(B2) ×RSpec(µ)

✲ [set]RSpec(B2) ×RSpec(B2)

[set]RSpec(B1) ×RSpec(B1)

Rµ × idRSpec(B1)

❄
ev ✲ [set]

ev

❄

(6.62)

We also give an account of the action of ev ◦ (ρφ × idRSpec(B1)) on points. The functor

Rµ × idRSpec(B1) takes a pair (W,F ) to a pair (µ∗(W ), F ), where µ∗ is the functor of the

definition 6.30. Then ev calculates the stalk of the B-sheaf µ∗(W ) above the point F .

Also we know

stalkF (µ∗(W )) ∼= stalkF (past(ρµ(W ))) (definition 6.30)

∼= stalkF (ρµ(W )) (theorem 6.9)

∼= colima∈Fρµ(W )(a) (definition 6.3)

∼= colima∈F colima≺µ(b)W (b) (section 6.3)

∼= colimµ(b)∈FW (b)

The last isomorphism holds because the sets A := {b ∈ B2|µ(b) ∈ F} and {b ∈ B2|∃a ∈

F : a ≺ µ(b)} are identical (B ⊆ A because ↑ F = F and A ⊆ B because F is rounded).

This shows that ev ◦ (Rµ × idRSpec(B1)) has the same effect as ev ◦ (id[set]RSpec(B2) ×

RSpec(µ)) on points of the topos [set]RSpec(B2) and this fact suffices to prove that the

square 6.62 commutes (up to isomorphism). Therefore, the claim of the theorem is true

because [set]RSpec(µ) and Rµ have isomorphic exponential transposes.

An immediate consequence of the above theorem is the following.
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Corollary 6.36 If µ : B2 −→ B1 is a strong homomorphism between two strong proximity

lattices then

[set]RSpec(µ) : [set]RSpec(B2) −→ [set]RSpec(B1)

has a right adjoint.

Proof. By theorem 6.35 and theorem 6.32.

In chapter 3 we saw that a perfect map between two stably compact locales always

gives rise to a strong homomorphism between the corresponding strong proximity lattice.

In this context, corollary 6.36 yields the following result.

Corollary 6.37 (i) Let f : X −→ Y be a perfect map between two stably compact

locales. Then

[set]f : [set]Y −→ [set]X

has a right adjoint.

(ii) The functor RBf acts on points as f∗ : Sh(Y ) −→ Sh(X) and the functor PBf as

f∗ : Sh(X) −→ Sh(Y ).

Proof. (i) We apply corollary 6.36 for the case B1 := BX, B2 := BY and µ = B(f),

where B is the functor of theorem 3.13. Thus, we establish that the map

[set]RSpec◦B(f) : [set]RSpec◦B(Y ) −→ [set]RSpec◦B(Y ) (6.63)

has a right adjoint. But by theorem 3.24, RSpec ◦ B = idStKLoc and so the map in 6.63

reduces to the claimed one.

(ii) It is obvious that RBf acts on points as f∗ (up to equivalence) from the fact that

RBf is equivalent to [set]f . That PBf is equivalent to f∗ follows from the uniqueness of

the right adjoint.

6.8 Conclusion: perfect maps and filtered colimits

If f : X −→ Y is a perfect map between two stably locales, then what is the character-

isation of f as a geometric morphism X −→ Y qua topoi? The answer given here will

be that f is relatively tidy in the sense of Moerdijk & Vermeulen [MV97], i.e. that f

preserves filtered colimits indexed by an external category. External category here means

a category in Sets but Sets could be substituted with any Grothendieck topos with a

natural number object.
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We start by noting that for any Grothendieck topos X, the category of its points at

stage (say) Z has all set-indexed filtered colimits (Johnstone [Joh77] Corollary 7.14). We

are going to outline a demonstration of this fact in order to establish notation and context.

First we recall the following theorem (see Johnstone [Joh77], section 2.2).

Theorem 6.38 Let C be a category with finite limits and coequalisers and I an internal

category in C. Then the functor ∆ : C −→ CI that sends an object of C to the corre-

sponding constant diagram has a left adjoint which we denote colimI. If C is cartesian

closed category, then ∆ has a right adjoint limI.

By definition the colimit of an object D of CI, i.e. an internal I-diagram in C is the image

of D along the functor colimI.

Now we restrict to the case of interest where Z is a Grothendieck topos. Then we have

that ZˆI 2 is also a topos and that

colimI ⊣ ∆ and ∆ ⊣ limI (6.64)

If furthermore I is directed, then colimI preserves finite limits (Johnstone [Joh77], 2.58).

The three functors of expression 6.64 can organise themselves as

π∗ := ∆, π∗ := limI, ∞
∗ := colimI, ∞∗ := ∆ (6.65)

to yield a pair of geometric morphisms

Z
∞ ✲✛
π

ZˆI (6.66)

Now let E be a Grothendieck topos classifying a geometric theory TE and I a directed

small category, i.e. a category in Sets. Then the exponential topos X Î (where Î is the

topos with S Î = [I,Sets]) classifies theories whose models (say) in SZ are I-diagrams of

models of TE in SZ (Johnstone & Joyal [JJ82], lemma 4.1).

Such models are equivalent to geometric morphisms Z −→ E Î by the classifying topos

property and these are in turn equivalent to geometric morphisms Z × Î −→ E by the

2With this symbol we refer to the topos whose category of sheaves is SX
I . See the discussion on topos

notation in section 1.1.
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exponentiation adjunction. The product topos Z × Î is the trivial pullback in Top

Z × Î ✲ Î

Z
❄ !✲ 1

!
❄

and so it is the topos Z !̂∗(I) whose sheaves are SZ !∗(I), i.e. !∗(I) diagrams in SZ, where

!∗(I) is the SZ-internalised version of I. This comes out of the Diaconescu’s theorem (see

[Joh77], Corollary 4.35).

We consider the definitions 6.65 and 6.66 for the case I =!∗(I). The geometric mor-

phisms ∞ and π induce, by pre-composition, a pair of functors in the point categories

Top(Z × Î , E)
Top(∞, E)✲✛
Top(π,E)

Top(Z,E) (6.67)

or equivalently, a pair of functors between the categories

Mod(S(Z × Î),TE)
∞# := colim!∗(I)✲✛

π# := ∆
Mod(SZ,E) (6.68)

The L.H.S. is the category of I-diagrams of models of TE inside SZ and the functors

∞# and π# are the pullbacks along the inverse image functors ∞∗ and π∗. It also holds

∞# ⊣ π#, which means that calculating the colimit of a I-diagram of models of TE ,

amounts to obtaining its image along ∞#. Equivalently, a filtered diagram of points is a

geometric morphism Z× Î −→ E and its colimit is obtained by pre-composition with the

geometric morphism ∞. This shows that the categories of points of Grothendieck topoi

have filtered colimits just as the posets of points of locales have directed joins.

Moreover, it is trivial to demonstrate that the action of geometric morphisms on points

preserves the filtered colimits.

Z

Z × ˆI

∞

❄

π

❄ D ✲ [TE ]
F ✲ [TH ]

(6.69)

It is basically a manifestation of the associative property of the composition of arrows in

Top! For let F be a geometric morphism E −→ H and D a diagram of TE-models in SZ,

i.e. (equivalent to)an object of Top(Z × Î , H). Then applying F on the diagram first



CHAPTER 6. FUNCTORS BETWEEN APPROXIMATING PRESHEAVES 175

and then taking the colimit corresponds to (F ◦ D) ◦ ∞ whereas calculating the colimit

first and then applying F corresponds to F ◦ (D ◦ ∞). Therefore we demonstrated the

following.

Theorem 6.39 The categories of points at any stage Z of Grothendieck topoi have all

filtered colimits. Geometric morphisms acting on points preserve these filtered colimits.

Let now f : X −→ Y be a perfect map between two stably compact locales. In chapter

5 we showed that the exponentials [set]X and [set]Y classify BX-sheaves and BY -sheaves

respectively. In this chapter we showed that f induces a pair of geometric morphisms

(with the notation of section 6.7)

[set]X ✛RBf

PBf

✲ [set]Y

such that RBf ⊣ PBf and PBf acts on BX-sheaves, or equivalently on Sh(X), as f∗ :

Sh(X) −→ Sh(Y ). Let us consider diagram 6.69 with [TE ] ≡ [set]X , [TH ] ≡ [set]Y and

F ≡ PBf . The interpretation of

PBf ◦ (D ◦∞) = (PBf ◦ D) ◦∞

is that

µ∗ (colimits of diagrams of !∗(BX)-sheaves) = colimits of µ∗ ( diagrams of !∗(BX)-sheaves)

(6.70)

We know that !∗(BX)-sheaves are equivalent to sheaves over the locale Z ×X −→ Z, so

the property 6.70 tells us that the geometric morphism

X × Z
f × id✲ Y × Z (6.71)

in Top/Z has a direct image functor that preserves filtered colimits that are indexed in

SZ. Therefore f is relatively tidy (relative to any base topos) (see definition 1.24 in

introduction).

Conversely, if X,Y are any two stably compact locales and f : Sh(X) −→ Sh(Y ) a

geometric morphism such that f∗ preserves filtered colimits, then f∗ it preserves filtered

colimits of the representable sheaf y(X) which is equivalent with the fact that f∗ : ΩX −→

ΩY preserves directed joins or that f : X −→ Y is perfect. So we have established

Corollary 6.40 A map between two stably compact locales is perfect iff it is relatively

tidy.
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In chapter 2 we demonstrated that the Beck-Chevalley condition holds for lax pullbacks

of perfect maps in Loc. Now we revisit the Beck-Chevalley condition. Combining Moerdijk

and Vermeulen’s result (see theorem 1.25 in the introduction) and corollary 6.40 we obtain

the following.

Corollary 6.41 We write the base topos as B, implying that SB ≡ Sets, the constructive

version of sets we have been working inside throughout the thesis. Let h : Y −→ Z be a

perfect map between two stably compact locales in Loc/B and f : X −→ Z any geometric

morphism whose domain is any topos over B. Consider the lax pullback in Top/B

X ⇒Z Y
ϑ2 ✲ Y

⇒

X

ϑ1

❄ f ✲ Z

h

❄

(6.72)

(i) The geometric morphism ϑ1 is proper.

(ii) The Beck-Chevalley condition holds for this lax pullback, i.e. the natural transfor-

mation

f∗ ◦ h∗ ⇒ ϑ1∗ ◦ ϑ
∗
2

is an isomorphism.

We finish with a characterisation of stable compactness in Top. We consider the

terminal object 1 in Loc. We know that 1 is compact regular and hence stably compact.

We also know that the map (in Loc)

! : X −→ 1

is proper iff X is compact. So assuming that X is stably compact entails that ! : X −→ 1 is

a proper and hence perfect (between two stably compact locales). Therefore, by corollary

6.40, the essentially unique geometric morphism ! : X −→ 1 is relatively tidy in Top, i.e.

the direct image functor !∗ which is the global sections functor

Γ : Sh(X) −→ Sets

preserves filtered colimits. Moerdijk & Vermeulen call a topos that possesses this property

strongly compact. We, thus, demonstrated the following.
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Corollary 6.42 If a locale is stably compact, then it is strongly compact as a topos.



Chapter 7

Further Work

1

We do not know yet what a stably compact topos is. There are a number of approaches

one can adopt in order to generalise stable compactness from locales to Grothendieck topoi.

Such a possible generalisation is in the spirit of the work of Johnstone and Joyal [JJ82]

on continuous categories. Define a strong proximity category to be a small category with

all finite limits and finite colimits with also an extra class of “strong” arrows that obey a

suitable generalisation of the properties of the strong order of a strong proximity lattice

(see definition 3.1). A Grothendieck toposX should then be called stably compact, iff there

is such a strong proximity category B such that SX is equivalent to the ind-completion

ind −B of B. Here by Ind −B we mean the category whose objects are the “rounded”

filtered diagrams of B.

In this section we wish to outline a different avenue based on the generalised Priestley

duality (section 1.4 or end of section 2.1 for a short spatial account), according to which,

the category of stably compact spaces and perfect maps is equivalent to the category of

partially ordered compact Hausdorff spaces and continuous monotone functions. In other

words, a stably compact space X is equivalent to a compact Hausdorff space PatchX

together with a partial order on the points of PatchX stemming from the specialisation

order of X.

A possible generalising direction of the above equivalence is the following. If a topos

is stably compact then it is equivalent to a locally ordered compact Hausdorff space (or

compact local pospace) as in definition 1.27. We elaborate this idea.

The set of points of a topological space are endowed with the specialisation order.

Correspondingly (and more generally), the points of a topos are connected with speciali-

1Most of the arguments and intuitions in this chapter are non constructive. Lemmas 7.1 and 7.2 are
constructive.
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sation morphisms. We would like, in the special case where X is a stably compact topos,

its category of points to be (equivalent to) a category whose objects are the points of a

compact Hausdorff space and whose arrows amount to a local partial order.

An example could be a topos X whose category of (say) global points Top(1,
←−
S1)

(denote it
←−
S1) is equivalent to the 1-dimensional circle S1 together with specialisation

morphisms given as follows. If eiϑ1 and eiϑ2 are two points on S1, then the set of arrows

eiϑ1 −→ eiϑ2 is isomorphic to the set of paths

nϑ1,ϑ2 : [0, 1] −→ S1

given by

nϑ1,ϑ2(t) := eϑ1+(2nπ+ϑ2−ϑ1)t

i.e. anticlockwise paths from eiϑ1 to eiϑ2 winding 0, 1, 2, ... times around the circle.

Intuitively at least, the category
←−
S1 is equivalent to the locally ordered circle of section

1.6.

We demonstrate the passage from topological spaces (specialisation order, global par-

tial order) to topoi (specialisation morphisms, local partial order). Consider the unit

interval
−−→
[0, 1] with the upper (Scott) topology (stably compact space). Suppose we at-

tempt to “bend” it in such a way that its top and bottom points become identical. This

can be done by means of the coequaliser of the diagram

1
⊤ ✲

⊥
✲
−−→
[0, 1]

The coequaliser of the above diagram in Sp is obviously the terminal local 1. Identifying

the top and bottom points of
−−→
[0, 1] causes all the points in between to become equal to

⊤ = ⊥ due to the specialisation order of
−−→
[0, 1].

On the other hand, such a coequaliser in Top gives non trivial results. We concretely

work out what happens in the case of the Sierpinski locale, trying to argue constructively

when we can2.

Lemma 7.1 By the symbol N here we understand the monoid (N,+, 0), i.e. the category

with a single object and whose set of arrows endowed with composition is isomorphic to

the set of natural numbers endowed with addition. Then ˆN is the coequaliser in Top of

2This example is attributed to S.Vickers (presentation at the 74th Peripatetic Seminar on Sheaves and
Logic, Cambridge, 2000
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the diagram

1
⊤ ✲

⊥
✲ $ (7.1)

where $ is the Sierpinski topos (see section 1.2).

Proof. Recall that for any small category C, the representable presheaves yC(c), for any

object c of C, are flat and therefore points (models) of ˆC. It follows that any point of

ˆC is a filtered colimit of the principal points yC. In our case where C is the monoid N,

we have one principal point corresponding to the single object of N. This principal point

obviously has to be a set (call it) N together with an endomorphism s : N −→ N . We

define the obvious map e : $ −→ˆN on points ⊥ −→ ⊤ of $ as below

⊤ N

⇑
e ✲ ⇑ s

⊥ N

The map e trivially agrees on ⊥ and ⊤.

Conversely, suppose that there is a map e′ : $ −→ E to a topos E agreeing on ⊥ and ⊤,

i.e. points x, of E with x ∼= y. Let C(E) be the category of diagrams of the form x⇒ y,

where x, are points of E with x ∼= y. To prove that there is a (up to an isomorphism)

unique i :ˆN −→ E, such that e′ = i ◦ e, it suffices to show that there is an equivalence

⊤(̂ N, E) ≃ C(E)

Define a functor ⊤(̂ N, E) −→ C(E) by

E F (N)

F ⇑
e ✲ ⇑ F (s)

ˆN F (N)

This functor is trivially full, faithful and essentially surjective. This proves the claim of

the lemma.

Lemma 7.2 The points of the functor toposˆN are equivalent to sets M such that

(i) M is inhabited.

(ii) If x, y ∈M then there is n ∈ N with x = n · y or y = n · x.

(iii) If n · x = n · y for some n ∈ N and x, y ∈M , then x = y.
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(iv) Only the identity map 0 has fixpoints, i.e. if n · x = x for some n ∈ N and x ∈ M ,

then n = 0.

Proof. We know by the Diaconescu theorem that points 1 −→ˆN are equivalent to flat

presheaves N −→ Sets and the latter are the same as the filtered presheaves of definition

4.12. We will check that the conditions of definition 4.12 are the same as the conditions

of this lemma.

First assume that M : N −→ Sets is a filtering presheaf. N has a single object, so M is

a single set (with automorphisms) and therefore condition (i) of definition 4.12 coincides

with condition (i) of this lemma in the case ofˆN.

Applying condition (ii) of definition 4.12 here, we get that for any two elements x, y ∈

M , there is z ∈M and natural numbers m,n such that x = m · z and y = n · z. If m ≥ n,

we get that x = (m− n) · n · z = (m− n) · y and similarly we get y = (n−m) · x.

Now suppose that n · x = n · y. Then by condition (ii) of this lemma, there is k with

x = k ·y or y = k ·x. Without loss of generality we assume the latter. Then n ·x = n ·k ·x,

i.e. n · x = (n+ k) · x. By condition (iii) of definition 4.12, there is element z and natural

number l such that x = l · z and n · l = (n + k) · l, i.e. n + l = n + k + l. This implies

k = 0, i.e. x = y.

Finally condition (iv) follows immediately by writing x = 0 ·x. Then by evoking again

condition (iii) of definition 4.12, if n · x = x = 0 · x, there is k with n+ k = 0 + k, which

gives n = 0.

Conversely, conditions (i) and (ii) of this lemma yield conditions (i) and (ii) of definition

4.12 immediately. Now assume that n · x = m · x. Without loss of generality suppose that

n ≥ m. Then the assumption can be written m · (n −m) · x = m · x. Condition (iii) of

this lemma guarantees that (n −m) · x = x and then condition (iv) forces n −m = 0 or

n = m.

Corollary 7.3 The toposˆN is coherent and hence strongly compact.

Proof. ˆN classifies a geometric whose models in Sets are given by lemma 7.2. We observe

that this geometric theory does not have infinite disjunctions of formulae which implies

thatˆN is coherent3. Also, any coherent topos is strongly compact (c.f. example 1.22 in

section 1.5), thereforeˆN is strongly compact.

Lemma 7.4 Classically,ˆN has only the following two points (up to isomorphism).

• N , i.e. the set of natural numbers acted on by addition.

3There must be an even more obvious reason whyˆN is coherent! Are all topoiˆC with C a category
with finite objects coherent?
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• Z, i.e. the set of integers acted on by addition.

Proof. First assume that there is an element x0 ∈M , such that for any y ∈M , x0 6= 1 ·y.

We show that in this case M is isomorphic to N .

The assumption implies that if x0 = n · y then n = 0. For if x0 = n · y and n 6= 0,

then we get x0 = 1 · (n − 1) · y which contradicts the assumption. Now define a function

f : N −→ M , by n 7→ n · x0. This is obviously a presheaf homomorphism and is also 1-1

by condition (iii) in lemma 7.2. To prove it also onto, consider y ∈M . Then, by condition

(ii) of lemma 7.2, there is n such that either y = n · x0 or x0 = n · y. The former case

means that y = f(n) and the latter case means that n = 0, by our assumption, and so

y = 0 = 0 · x0 = f(0).

Therefore we have proved that M ∼= N .

Now assume that there is no element x0 ∈M , such that for any y ∈M , x0 6= 1 · y, i.e.

for any x there is y such that x = 1 · y. This by induction implies that, for a any n and

any x, there is a unique y such that x = n · y. We fix an arbitrary x0 ∈ M . We define a

map g : Z −→M , by

z 7→

{
z · x0 if z ≥ 0

the unique y s.t. x0 = (−z) · y if z ≤ 0

}

First we show that g is a presheaf homomorphism, i.e. it is natural with respect to actions

of N, or more specifically g(z+n) = n·(g(z)). If z ≥ 0, then g(n+z) = (n+z)·x0 = n·(z·x0).

If z ≤ 0, we further distinguish two cases

(i) n+ z ≥ 0. Then g(n+ z) = (n+ z) · x0 = (n+ z) · (−z) · y = n · y = n · g(z).

(ii) n+z ≤ 0. Then (−n−z)n·y = (−z)·y = x0. So by the definition of g, n·y = g(n+z).

Next we prove that g is 1-1. Assume that g(z) = g(z′). We distinguish three cases.

(i) If z, z′ ≥ 0, then we get z · x0 = z′ · x0 and so z = z′ by the fact that M is filtered.

(ii) If z′ ≤ 0 ≤ z, then by the definition of g, g(z′) = y′ with x0 = (−z′) · y′. So

g(z′) = g(z)⇒ y′ = z · x0 = z · (−z) · y′ = (z − z′) · y′. Therefore z − z′ = 0 because

of condition (iv) of lemma 7.2.

(iii) If z, z′ ≤ 0, then the assumption gives g(z) = y = g(z′) with x0 = (−z) ·y = (−z′) ·y.

Therefore z = z′ again by the fact that M is filtered.

Finally we show that g is onto. Let y ∈M . By condition (ii) of lemma 7.2, there is natural

number n such that either y = n · x0 or x0 = n · y. In the former case y = g(n) and in the

latter case y = g(−n).



CHAPTER 7. FURTHER WORK 183

Therefore we have proved that M ∼= Z.

Remark 7.5 The point Z can be regarded as colimit of the filtered diagram below in the

category of monoids

N
+✲ N

+✲ . . .
+✲ N

+✲ N
+✲ . . .

❅
❅

❅
❅

❅
❅

❅

0

❘

❆
❆
❆
❆
❆
❆
❆

−1

❯ ☛✁
✁
✁
✁
✁
✁
✁

−n

✠�
�

�
�

�
�

�

−n− 1

Z

where by, e.g. −n, above we denote the colimit injection that embeds N into Z in such a

way that 0 is sent to −n.

In our context, the toposˆN seems to be a good example of a stably compact topos. What

we do next is writeˆN as a localic groupoid.

A groupoid is a category in which each arrow is an isomorphism. Most generally, it is

given by a set G of arrows, a set X of objects and the structure maps below

G×X G
c ✲ G

s ✲

✛ id

t
✲
X

G

in

❄

(7.2)

Here s denotes the source, t the target, id the map that assigns the identity arrow to each

x ∈ X, c the composition of two composable arrows and in the map that gives the inverse

arrow. A groupoid is called localic when G and X are locales and all the structure maps

are continuous functions. Given such a localic groupoid, a G-sheaf is a sheaf over the locale

X which is also equipped with a continuous G-action. We denote by SGX the category of

G-sheaves over X. It is a topos and we follow Moerdijk in calling it the classifying topos of

the groupoid G ⇒ X. We refer primarily to two sources: [JT84] and [Moe88]. For further

study, see [Moe90] and [BM98]. In [JT84], Joyal and Tierney prove the following result

that places localic groupoids in the centre of topos theory.

Theorem 7.6 For every topos E, there is a localic groupoid G ⇒ X such that there is an

equivalence

SE ≃ SGX
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We return now to the toposˆN. It is not hard to demonstrate the following.

Lemma 7.7 ˆN is the classifying topos of the localic groupoid

$ + 2 ⇒ $

where 2 is the discrete space with two points. The $ component of the arrows set contains

the identities and the 2 component provides an isomorphism ⊥⇄ ⊤ between the points ⊤

and ⊥ of $.

Proof. We argue with the stalks of the G-sheaves over $. Recall that taking stalks is

functorial. A sheaf over $ basically amounts to a function between two sets s : M⊥ −→M⊤.

An object of the topos S$+2$ is a sheaf over S$ that also allows for the non trivial action

of 2, it is therefore a function s : M⊥ −→ M⊤ with M⊥
∼= M⊤ := M . So the category

S$+2$ is obviously isomorphic to the category SetsN. The next step is an attempt

to write the topos
←−
S1 as the classifying topos of a localic groupoid. Consider the localic

groupoid

G0 +G1 +G−1 ⇒ X

Here X and G0 are each the disjoint union of three copies of
−−→
[0, 3], the closed interval [0, 3]

with the upper topology. G1 and G−1 are each the disjoint union of three copies of
−−→
[0, 1].

(Note that X ∼= G0
∼= G1

∼=−1, but we use different interval lengths for easier description.)

The component G0 contains the identities for each point of X, i.e. the source and

target maps G0 −→ X are both the identity maps. To describe the structure maps

s, t : G1 −→ X, we put indices to the connected components of X and G1:

X :=
−−−→
[0, 3]1 +

−−−→
[0, 3]2 +

−−−→
[0, 3]3

and

G1 :=
−−−→
[0, 1]1 +

−−−→
[0, 1]2 +

−−−→
[0, 1]3

We define the source and target maps by

s :
−−−→
[0, 1]1 −→

−−−→
[0, 3]1 x 7→ x+ 2

t :
−−−→
[0, 1]1 −→

−−−→
[0, 3]2 x 7→ x

s :
−−−→
[0, 1]2 −→

−−−→
[0, 3]2 x 7→ x+ 2

t :
−−−→
[0, 1]2 −→

−−−→
[0, 3]3 x 7→ x

s :
−−−→
[0, 1]3 −→

−−−→
[0, 3]3 x 7→ x+ 2

t :
−−−→
[0, 1]3 −→

−−−→
[0, 3]1 x 7→ x
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Finally, the component G−1 contains the inverses of the arrows in G1, i.e. the structure

maps G−1 ⇒ X are as G1 ⇒ X but with source and target maps swapped. Note that all

the structure maps are perfect and e.g. s, t : G1 −→ X are not proper.

Although the details of such a construction are not worked out, we anticipate that

points of the classifying topos SGX of the above groupoid G ⇒ X, together with their

specialisation morphisms constitute a category equivalent to
−→
S1. Moreover, even classically

and as in the case ofˆN, there must be an extra point or points of SGX that come into

existence as colimits of filtered subcategories of
−→
S1.

Definition 7.8 A localic groupoid G ⇒ X is stably compact iff G and X are both stably

compact and all its structure maps are perfect.

Now the general question is: what conditions must a localic groupoid G ⇒ X obey

so that the category of points of its classifying topos is equivalent with a compact local

pospace. The beginning of a conjecture is that G ⇒ X must be a stably compact lo-

calic groupoid. We expect that additional restrictions must also be imposed, probably of

algebraic topological nature.

Let us iterate that by the term “stably compact topos” we understand a topos whose

category of points and specialisation morphisms is equivalent to a compact local pospace.

Suppose also that a “local compact regular poset” is the localic analogue of a compact

local pospace. Then we have the following half-finished correspondence.

Priestley duality

Ordered Stone locales Coherent locales

& &

monotone continuous maps perfect maps

Generalised Priestley duality

Compact regular posets Stably compact locales

& &

monotone continuous maps perfect maps

Topos generalised Priestley duality (conjectured)

Local compact regular posets Stably compact localic groupoids (plus further conditions?)

& &

dimaps relatively tidy maps
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A further question concerns the patch construction. We saw (theorem 2.3) that the

functor Patch : StKLoc −→ KRegLoc is a right adjoint and so it preserves limits.

Therefore it preserves the localic groupoid structure.

Patch(G)
Patch(s)✲

Patch(t)
✲ Patch(X)

G

εG

❄ s ✲

t
✲ X

εX

❄

If the bottom localic groupoid is classified by a stably compact topos, we would like the

top localic groupoid to be classified by a compact regular locale. For example, if G ⇒ X is

the groupoid in the example with the locally ordered circle above, is the classifying topos

SPatchGPatchX equivalent to SS1?
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